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In the first part of this study, magnetic nanoparticles were decorated with folic acid (Vitamin B9) under 
ultrasonic agitation in water, resulting in heterogeneous nano-biocatalysts (FA@γ-Fe2O3), which were 
characterized using different techniques, such as VSM, FT-IR, and FESEM. The efficiency of the as-
prepared magnetic nanocatalyst was assessed in the synthesis of quinoxaline derivatives. In the second 
part, a Cu (II) folic acid complex was used for modifying the surface of γ-Fe2O3 (FA-Cu@γ-Fe2O3). It 
was used successfully in several different transformations in a one-pot reaction sequence, including 
the aerobic oxidation of benzylic alcohols to aldehydes and the tandem synthesis of benzimidazoles 
through the dehydrogenative coupling of primary benzylic alcohols and aromatic diamines. The 
biocatalysts maintained their efficiency and structural integrity after 4 runs, which confirmed that 
components are firmly bonded. The advantages of these catalytic systems include easy separation 
and reusability of the solid catalyst for subsequent rounds of reactions with an external magnet, 
demonstrating great potential for practical applications.
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Nowadays, the advancement of catalytic technologies towards sustainable approaches for converting raw materials 
into valuable chemical products, high-value building blocks, and industrial applications is a major challenge 
that needs to be urgently addressed due to growing environmental concerns. Achieving green chemistry goals 
provides strong motivation and essential tools for improving environmental and economic issues1–3. Therefore, 
the synthesis of available, active, multi-purpose, and safe catalysts is a great goal for researchers4–9. In addition, 
catalytic protocols for achieving these goals should have environmentally compatible synthetic routes that 
are energy- and cost-efficient and operationally simple. Achieving green chemistry goals requires the use of 
environmentally friendly materials, mild reaction conditions, and cost and labor-saving measures, which have 
led to an increasing use of biocatalysts in industrial environments10. Due to the vital importance of vitamins 
as essential organic molecules, this category of compounds is of great interest. Vitamins can act as coenzymes, 
antioxidants, hormones, and active carriers in oxidation-reduction reactions such as electron transfer11,12. 
Also, vitamins are organic molecules containing a variety of functional groups, such as carboxyl (-COOH), 
amino (-NH2), and hydroxyl (-OH) groups. Their rich coordination chemistry (through the carboxylate, amino, 
hydroxyl groups and side chains) makes them an attractive class of organic ligands for the preparation of metal 
complexes. So, the researchers, considering the ability of vitamins to bind the metal in monodentate, bidentate, 
bidentate bridging, and tridentate-bridging coordination modes, have chosen these molecules as ligands to 
design novel metal complexes for biological and medical applications13–18.

Among different vitamines, the B-group vitamins exhibit a broad spectrum of biochemical and medicinal 
properties in numerous studies19,20. Folic acid, a B vitamin known as vitamin B9, is a biocompatible molecule 
found in various foods and often consumed as a dietary supplement. The folate form of folic acid has been 
utilized in targeted drug delivery strategies for the imaging and elimination of tumors in cells that overexpress 
the folate receptor21–23. The molecular structure of folic acid, which consists of p-aminobenzoic acid, pteridine, 
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and glutamic acid, renders it slightly soluble in water at neutral pH24,25. The unique chemical properties of folic 
acid make it a valuable tool in various biomedical applications, including drug delivery and imaging, and its 
compatibility synthesis conditions provide an opportunity for its integration into metal-organic frameworks for 
potential applications in catalysis and gas storage26. The structural diversity observed in metal complexes of folic 
acid can be attributed to the various modes of binding of the carboxylate groups of folic acid, which can act as 
either bidentate or monodentate ligands27–32.

Following our research on the development of novel strategies for organic transformation by biocatalysts16–18,33, 
we have developed green, cost-effective, and easily synthesized biocatalysts for organic reactions. These were 
achieved by immobilizing folic acid on iron oxide nanoparticles. To improve the catalytic properties of the 
biocatalyst, we incorporated a simple and readily available Cu (OAC)2 compound into folic acid-coated γ-Fe2O3 
nanoparticles under ultrasonic agitation, resulting in a novel heterogeneous biocatalyst. This study presents 
practical and efficient synthesis methods that employ Folic acid-derived catalysts to facilitate the production of 
biologically significant such as quinoxaline derivatives, and one-pot synthesis of benzimidazoles under solvent-
free conditions. (Scheme 1).

Quinoxaline derivatives are important in industry due to their ability to inhibit the metal corrosion34–36, in 
the preparation of the porphyrins, since their structure is similar to the chromophores in the natural system, 
and also in the electroluminescent materials37–39. In pharmacological industry, they have absorbed a great deal 
of attention due to their wide spectrum of biological properties. For example, they can be used against bacteria, 
fungi, virus, leishmania, tuberculosis, malaria, cancer, depression, and neurological activities, among others. The 
quinoxaline structural nucleus renders all these activities possible.

Similarly, benzimidazoles are heterocyclic compounds renowned for their diverse biological activities, 
including antimicrobial, antifungal, antiviral, and anticancer properties40,41.

Results and discussion
Catalyst fabrication and structural analysis
Initially, γ-Fe2O3 was prepared according to previous reports42. Then, an aqueous solution of folic acid was 
gradually added to γ-Fe2O3 nanoparticles dispersed in deionized (DI) water under ultrasonic agitation (FA@γ-
Fe2O3). The desired Cu-containing catalyst (FA-Cu@ γ-Fe2O3) was prepared by the addition of Cu (OAc)2 to 
FA@γ-Fe2O3 nanohybride under ultrasonic agitation (Scheme 2, for experimental details, see the supporting 
information).

Scheme 2.  Synthesis of biocatalysts derived from the folic acid.

 

Scheme 1.  Synthesis of quinoxaline derivatives and one-pot synthesis of benzimidazoles by biocatalysts 
derived from the folic acid.
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Comparative FT-IR spectra of γ-Fe2O3, FA@γ-Fe2O3, and FA-Cu@ γ-Fe2O3 biocatalyst depicted in Fig. 1, 
confirm FA coated γ-Fe2O3 and the complexation of Cu(II) with FA coated γ-Fe2O3. As depicted in Fig. 1, all 
of the samples show a broad peak at around 3200–3600 cm−1 corresponding to the hydroxyl groups. The bands 
in the region of 588 and 637 cm−1 are attributed to the stretching vibrations of Fe–O groups Fig. 1a, c, and d).

The FT-IR spectrum of the folic acid (Fig. 1b) reveals the presence of major bands at 1193, 1485, and 1607 
cm−1, attributed to the stretching vibrations of C − N groups and C = C bonds in aromatic rings, respectively. 
Also, the weak peak at 1640 cm−1 is related to the stretching vibration of C = N and the strong peak at 1695 
cm−1 is related to the stretching vibration of carbonyl amide and acidic groups. The broad peak in the area of 
3400–2400 cm−1 is assigned to the O-H stretching vibration of acidic groups while, the peaks at 3325, 3416 and 
3545 cm−1 are related to the amine and amide N-H stretching vibrations in the structure of folic acid43,44.

Besides, characteristic peaks of γ-Fe2O3 and folic acid appeared in Fig. 1c and d, confirm their presence in 
the as-prepared composites.

The XRD patterns of the γ-Fe2O3 and FA-Cu@ γ-Fe2O3 biocatalyst are shown in Fig. 2A. The obvious 
diffraction peaks at 2ϴ values of 30.3°, 35.7°, 43.4°, 53.9°, 57.4° and 63.7° were corresponded to (220), (311), 
(400), (422), (511), and (440), planes of γ-Fe2O3, clearly suggest that γ-Fe2O3 can be assigned to maghemite phase 
(JCPDS no. 39-1346) (Fig. 2A-a)42. The same XRD patterns of the samples confirmed that γ-Fe2O3 preserved its 
crystalline structure during surface modification.

To investigate the thermal behavior of the biocatalyst, thermogravimetric analysis (TGA) was performed. 
The TGA curve, shown in Fig. 2B, reveals two distinct stages. The first one occurring between 50 and 160 °C 
corresponds to the evaporation of adsorbed water. The second stage spanning from 160 to 680 °C is associated 
with the breakdown of the folic acid-γ-Fe2O3 complex followed by decomposition of folic acid. (Fig. 2B)

The magnetic property of FA-Cu@ γ-Fe2O3 biocatalyst was investigated by vibrating sample magnetometer 
(VSM) at room temperature. Based on Fig. 2C, the saturation magnetization (MS) quantities for γ-Fe2O3, 
FA@γ-Fe2O3, and FA-Cu@ γ-Fe2O3 biocatalyst are 70.4, 35.03 and 34.98 emu/g, respectively. The saturation 
magnetization of the FA-Cu γ-Fe2O3 biocatalyst was lower than that of the uncoated γ-Fe2O3 nanoparticle due 
to the diamagnetic effect of the organic group, which resulted in a lower mass fraction of the magnetic substance. 
Nevertheless, the solid could still be easily isolated from the solution using a permanent magnet.

The scanning electronic microscopy (SEM) images of FA@γ-Fe2O3 and FA-Cu@ γ-Fe2O3 nanohybride (Fig. 
3a, b) displayed the sphere-like morphology with the size of 19–38 nm 12–32 nm, respectively.

The energy-dispersive X-ray spectroscopy (EDX) indicated composed elements of biocatalyst including Fe, 
N, C, O and Cu, as expected (Fig. 3 C). The copper content of the biocatalyst was determined to be 2.75 mmolg−1 
using inductively coupled plasma atomic emission spectroscopy (ICP-OES).

Fig. 1.  FT-IR spectra of (a) γ-Fe2O3 (b) FA (c) FA@ γ-Fe2O3 (d) FA-Cu@ γ-Fe2O3 biocatalyst.
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Catalytic activity
The catalytic activity of FA@γ-Fe2O3 nano biocatalyst in the synthesis of quinoxalines and 
pyrido pyrazines
The catalytic potential of the as-prepared FA@γ-Fe2O3 nanohybrid as a green biocatalyst was assessed in the 
synthesis of quinoxalines. At the outset, 4, 4’-dimethoxybenzil (0.125 mmol, 0.03 g) and o-phenylenediamine 
(0.15 mmol, 0.016 g) were selected as model substrates to optimize the synthesis conditions (Table 1). The 
catalytic efficiency of FA@γ-Fe2O3 nanohybrid was tested in a range of solvents including EtOH, H2O, EtOAc, 
MeCN, and under solvent-free condition and the highest product yield was obtained in EtOH. The effect of 
temperature was investigated, and the best efficiency was obtained at 60 °C. It was also found that 2 mg of catalyst 
is enough to drive the reaction with high performance.

To clarify that the FA@γ-Fe2O3 nanohybrid itself and not its components act as an effective catalyst, it was 
replaced by material precursors with respect to the catalyst composition. The quinoxaline yield decreased to 75 
and 55% in the presence of folic acid and γ-Fe2O3 respectively, under the optimized conditions after 60 min (Fig. 
4).

After establishing the optimized reaction conditions for the synthesis of quinoxalines, the substrate scope 
of this transformation was studied. The electron-withdrawing groups on the phenyl ring in diamine derivatives 
(Table 2, entries 3c, 3e and 3g), as well as electron-donating groups on the phenyl ring in diketone derivatives 
(Table 2, entries 3d, 3e and 3i), reduce the reaction rate. Additionally, applying similar reaction conditions to 
the condensation of 5-bromo-2,3-diaminopyridine and various 1,2-diketones for the synthesis of pyrido[2,3-b] 
pyrazines resulted in high yields of the desired products (Table 2, entries 3h, 3i and 3j). As anticipated, 
condensation reactions involving 5-bromo-2,3-diaminopyridine with dicarbonyl compounds required longer 
reaction times compared to aryl 1,2-diamines.

The catalytic activity of FA-Cu@γ-Fe2O3 nano biocatalyst in the aerobic oxidation of 
benzyl alcohols
We began our studies using 4-chlorobenzyl alcohol (0.125 mmol) as a model substrate to investigate the optimal 
reaction conditions for the oxidation reaction (Table 3).

Fig. 2.  (A) XRD pattern of (a) γ-Fe2O3 (b) and FA-Cu@ γ-Fe2O3 biocatalyst, (B) TGA curve of γ-and FA-
Cu@ γ-Fe2O3 biocatalyst (C) Magnetization curve of (a) γ-Fe2O3 (b) FA@ γ-Fe2O3 (c) and FA-Cu@ γ-Fe2O3 
biocatalyst.
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A variety of solvents including H₂O, EtOAc, MeCN, EtOH as well as solvent-free conditions, were examined, 
with the solvent-free setup proving to be the most optimal for this reaction. By decreasing the reaction 
temperature from 80 to 25 °C, the conversion of the oxidation of 4-chlorobenzyl alcohol reduced from 97 to 13%. 
The catalyst concentration was also screened. The increase in catalyst loading from 1 to 2 mg at 80 °C promoted 
the yield of the oxidation product from 40 to 60% after 180 min. Among the radical generators examined in this 
work, TEMPO was a superior choice. Increasing the concentration of TEMPO from 1 to 3 mg increased the 
oxidation yield from 30 to 97%, while further increases reduced the yield. The effect of the oxidant nature was 
also investigated, and the result was interesting. The lower yield of the oxidation product was achieved in the 
presence of O2, UHP, H2O2, TBHP, TBAOX, and Oxone. Thus, to reach the highest performance, the reaction 
needs air and 3 mg catalyst and 3 mg TEMPO under solvent-free conditions at 80 °C.

With the optimal reaction conditions in hand, the substrate scope was investigated. A number of aromatic 
benzyl alcohols with electronic requirements were examined. Benzyl alcohols substituted with electron-releasing 
groups demonstrated an increased conversion rate (Table 4, entries 2e, 2f, 2i, and 2k), while those substituted 
with electron-withdrawing groups exhibited a decreased conversion in a longer reaction time (Table 4, entries 
2g, 2h).

As shown in Table 4, secondary benzylic alcohols such as 1-phenylethanol, diphenylmethanole and 
1,2,3,4-Tetrahydronaphthalen-1-ol were successfully converted into their corresponding ketones (Table 
4, entries 2l, 2m and 2n), achieving a moderate yield.

To evaluate the efficiency of the catalytic system turnover number (TON) was determined under a saturation 
regime of the reactants (10 folds 4-chlorobenzyl alcohol (1.25 mmol) with the constant catalyst loading of 8.25 

Fig. 3.  SEM images of (a) FA@ γ-Fe2O3and (b) FA-Cu@ γ-Fe2O3 (c) EDX analysis of FA-Cu@ γ-Fe2O3 
biocatalyst.
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µmol)50. The catalyst exhibited a turnover frequency (TOF) of 45 h⁻¹ and TON of 106, indicating of an efficient 
catalytic performance with sustained activity and a moderate reaction rate.

The catalytic activity of FA-Cu@γ-Fe2O3 biocatalyst in aerobic tandem synthesis of 
benzimidazoles using benzyl alcohols
First, we evaluated the catalytic efficiency of the FA-Cu@γ-Fe2O3 γbiocatalyst in comparison with individual 
components and precursor materials, namely γ-Fe2O3, folic acid, the FA@γ-Fe2O3 nanohybrid, and Cu(OAc)2 
under optimized reaction conditions (Fig. 5). As illustrated in Fig. 5, FA-Cu@γ-Fe2O3 demonstrated superior 
catalytic performance in the synthesis of a benzimidazole derivative from 4-chlorobenzyl alcohol and 
1,2-phenylenediamine, outperforming all other tested catalysts. This could be due to the oxidative activity of 
Cu(II) centers combined with the catalytic activity of the folic acid and γ-Fe2O3, which acts as a support.

To broaden the scope of the current catalytic system, the catalytic potential of the FA-Cu@γ-Fe2O3 nano 
biocatalyst was utilized for the one-pot synthesis of various biologically significant benzimidazoles using benzyl 
alcohols as starting materials. After completing the oxidation of alcohols (0.125 mmol) under optimized conditions 
obtained in the previous section, 1,2-phenylenediamine (0.15 mmol) was added to produce benzimidazoles. The 
results in Table 5 show that benzylic alcohols with electron-donating groups (Table 5, entries 3e, 3f, 3i, and 3k) 
produce the desired products with better efficiency than those bearing electron-withdrawing groups (Table 5, 
entreis 3g, and 3h).

Recycling experiments
The stability and reusability of the FA@γ-Fe2O3 and FA-Cu@γ-Fe2O3 biocatalysts were assessed over 4 runs 
(Fig. 6) in mentioned reactions. At each run’s end, an external magnet separated the catalyst from the reaction 
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Fig. 4.  Comparison of the catalytic activity of the FA@γ-Fe2O3 nanohybrid with γ-Fe2O3 and folic acid in the 
synthesis of Quinoxalines of 4, 4’-dimethoxybenzil (0.125 mmol) and o-phenylenediamine (0.15 mmol) at 60 
°C after 60 min.

 

Entry Solvent Temp. (oC) Catalyst (mg) Conversion%

1 H2O 60 2 30

2 EtOH 60 2 100 (95%)b

3 S.F. 60 2 20

4 MeCN 60 2 70

5 EtOAc 70 2 50

6 EtOH 25 2 60

7 EtOH 40 2 60

8 EtOH 50 2 80

9 EtOH 70 2 85

10 EtOH 60 3 90

11 EtOH 60 1 50

12 EtOH 60 - 30
aThe reactions were run using 4, 4’-dimethoxybenzil (0.125 
mmol) and o-phenylenediamine (0.15 mmol) after 60 min. 
bIsolated yield.

Table 1.  Screening of various factors in the synthesis of quinoxalines by FA@-Fe2O3 nanohybrida.
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3a, 95 %, 35 min 3b, 97 %, 30 min 3c, 72%, 720 min

3d, 95%, 60 min 3e, 55%, 240 min 3f, 93 %, 30 min

3g, 65 %, 60 min 3h, 72 %, 50 min 3i, 83 %, 360 min
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mp: 146-147 OC mp: 193-194 OC mp: 226 -227OC

mp: 240 -242OC

3j, 75 %, 55 min

mp: 233 -236 OC

mp: 150-152 OC mp: 134-136 OC

Table 2.  Synthesis of quinoxaline derivatives and pyrido pyrazines in the presence of FA@γ-
Fe2O3nanohybrida.
aThe reactions were run with 1,2-dicarbonyl (0.125 mmol), 1,2-diamine (0.15 mmol) and cat. (2 mg) under air 
at 60 °C in EtOH (0.5 mL). bThe products were characterized using 1H NMR spectroscopy and their melting 
points were compared with previously reported values45–49.
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solution. A new batch of synthesis reaction was initiated using the separated nanohybrids, which were repeated 
for up to four runs. A slight reduction in product yields was observed after the 4th run, indicating the efficiency 
and reusability of the catalyst (Fig. 6). An FT-IR spectral analysis was performed on the recovered catalyst from 
the model reactions to document its stability, as illustrated in Figure S1. Further, the copper content of the used 
catalyst determined by ICP-OES analysis was found to be 2.63 mmolg−1 indicating minor leaching (4.3%) of 
copper during the reaction. These findings confirmed that FA@γ-Fe₂O₃ and Cu are firmly bonded.

Conclusion
In this study, magnetically separable biocatalysts FA@γ-Fe2O3 and FA-Cu @γ-Fe2O3 were fabricated using 
folic acid as a bio-ligand in water as a green solvent under ultrasonic agitation. In the first part, the efficiency 
of FA@γ-Fe2O3 was evaluated in the synthesis of quinoxaline derivatives. In the second part, the surface of 
γ-Fe2O3 modified with a Cu (II) folic acid complex under ultrasonic agitation in water (FA-Cu@γ-Fe2O3). 
The as-prepared magnetic nanocomplex of FA-Cu @γ-Fe2O3 successfully derived several important processes, 
including aerobic oxidation of benzylic alcohols to aldehydes and then the tandem synthesis of benzimidazoles 
through the dehydrogenative coupling of primary benzylic alcohols with aromatic diamines under solvent-free 
conditions. Further advantages of our work are minimizing waste, synthesizing the biocatalysts in water as 
an environmentally friendly solvent under ultrasonic agitation, and conducting the reaction in a solvent-free 
environment. These aspects demonstrate that our approach is atom-efficient and aligns with the principles of 
green chemistry. This strategy creates new opportunities to fabricate natural-based multi-purpose catalysts for 
synchronous eco-friendly processes.

Experimental section
Synthesis of Catalyst. The detailed step-by-step preparation of the FA@γ-Fe2O3 and FA-Cu@ γ-Fe2O3 
biocatalysts and the experimental procedures are provided in the supporting information.

Entry Solvent Temp. (oC)
Catalyst
(mg) TEMPO (mg) Oxidant

Radical producer
(g) Yield (%)b

1 H2O 80 3 3 air TEMPO 20

2 EtOH 80 3 3 air TEMPO 7

3 S.F. 80 3 3 air TEMPO 97

4 MeCN 80 3 3 air TEMPO 10

5 EtOAc 80 3 3 air TEMPO 5

6 S.F. 25 3 3 air TEMPO 13

7 S.F. 40 3 3 air TEMPO 30

8 S.F. 50 3 3 air TEMPO 55

9 S.F. 60 3 3 air TEMPO 84

10 S.F. 70 3 3 air TEMPO 86

11 S.F. 80 - 3 air TEMPO 10

12 S.F. 80 1 3 air TEMPO 40

13 S.F. 80 2 3 air TEMPO 60

14 S.F. 80 4 3 air TEMPO 70

15 S.F. 80 3 - air Glucose 10

16 S.F. 80 3 - air NHPI 5

17 S.F. 80 3 - air NHSI 5

18 S.F. 80 3 - air TEMPO 10

19 S.F. 80 3 1 air TEMPO 30

20 S.F. 80 3 2 air TEMPO 60

21 S.F. 80 3 4 air TEMPO 70

22 S.F. 80 3 3 O2 TEMPO 80

23 S.F. 80 3 - Oxone - 10

24 S.F. 80 3 - TBHP - 5

25 S.F. 80 3 - UHP - 10

26 S.F. 80 3 - H2O2 - 5

27 S.F. 80 3 - TBAOX - 10
aReactions were run for 180 min under air containing 0.125 mmol of 4-chlorobenzyl alcohols, bGC 
Yield

Table 3.  Screening of various factors on the aerobic oxidation of 4-chlorobenzyl alcohola.
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2b, 98 %, 120 min 2c, 92 %, 210 min 2e, 93 %, 210 min

2j, 63%, 240 min 2k, 65 %, 120 min

2n, 42 %, 360 min

2l, 63 %, 360 min 2m, 44%, 360 min

2b-n1b

OH H

O

R R

FA-Cu @�-Fe2O3

Air/TEMPO
Solvent Free
T= 80 oC

O O
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Me
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O

Me
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NO2

O

O2N
O
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2f, 95 %, 210 min 2g, 45 %, 240 min 2h, 63 %, 240 min 2i, 82 %, 150 min

O

Me-S

O

OMe

O

O

O

b,c

Table 4.  Oxidation of benzylic alcohols in the presence of FA-Cu @γ-Fe2O3 biocatalysta.
aReaction condition: 0.125 mmol alcohol, TEMPO (3 mg), Cat. (3 mg), and the reaction was run in solvent-
free conditions at 80 °C under air. bThe products were identified by comparison with authentic sample 
retention times of GC analysis and 1H NMR spectroscopy51–54. cThe selectivity of products was > 99% based on 
GC analysis.
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Fig. 5.  Comparison of catalytic activity of FA-Cu @γ-Fe2O3 biocatalyst with parent materials in the Synthesis 
of benzimidazole derivatives from 4-chlorobenzyl alcohol (0.12 mmol), 1,2-phenylene diamine (0.15 mmol), 
TEMPO (3 mg) at 80 °C under air.
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3b, 98 %, 120 c + 60 dmin 3c, 92 %, 210 c + 150 d min

3e, 93 %, 210 c + 180 d min

3j, 62%, 240 c + 240 d min

3k, 64 %, 120 c + 60 d min

3b-k1b

3d, 97%, 180 c+ 90 d min

3f, 95 %, 210 c + 180 d min 3g, 58 %, 240 c + 240 dmin

3h, 63 %, 240 c + 240 d min 3i, 82 %, 150 c + 150 d min

N

H
NOH

+

NH2

NH2R
R

FA-Cu@ -Fe2O3

Air/TEMPO

T= 80 oC
Solvent Free

N

NH

N

NH

Cl
N

NH
Cl

N

NH

Me
N

NH
Me N

NH

NO2

N

NH
NO2 N

NH
t-Bu

N

NH
S-Me

N

NH
OMe

2b

mp: 292 -293oC mp: 232-234 oC mp:301-302 oC

mp: 212-214 oC mp: 268-270 oC

mp: 227-228 oC

mp: > 300 oC mp: 224–226 oCmp: 255-257 °C.

mp: 171-172 oC

b

Table 5.  Synthesis of benzimidazole derivatives from benzyl alcohols and 1,2-phenylenediaminesa.
aReaction condition: Benzyl alcohol (0.12 mmol), 1,2-phenylene diamine (0.15 mmol), catalyst (3 mg), 
TEMPO (3 mg) at 80 °C under air. bThe products were characterized using 1H NMR spectroscopy and their 
melting points were compared with previously reported values55–59. cOxidation time of benzyl alcohol. 
dCoupling time of aldehyde with diamine. e Product yield according to Isolated yield.
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