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This study investigates the use of CT-based radiomics for predicting extrahepatic metastasis in 
hepatocellular carcinoma (HCC) following hepatectomy. We analyzed data from 374 patients from 
two centers (277 in the training cohort and 97 in an external validation cohort). Radiomic features 
were extracted from contrast-enhanced CT scans. Key features were identified using the least 
absolute shrinkage and selection operator (LASSO) to compute radiomics scores (radscore) for model 
development. A clinical model based on risk factors was also created. We developed a combined 
model integrating both radscore and clinical variables, constructing nomograms for personalized risk 
assessment. Model performance was compared via the Delong test, with calibration curves assessing 
prediction consistency. Decision curve analysis (DCA) was employed to assess the clinical utility and 
net benefit of the predictive models across different threshold probabilities, thereby evaluating their 
potential value in guiding clinical decision-making for extrahepatic metastasis. Radscore based on 
CT was an independent predictor of extrahepatic disease (p < 0.05). The combined model showed 
high predictive performance with an AUC of 87.2% (95% CI: 81.8%-92.6%) in the training group and 
86.0% (95% CI: 69.4%-100%) in the validation group. Predictive performance of the combined model 
significantly outperformed both the radiomics and clinical models (p < 0.05). The DCA shows that the 
combined model has a higher net benefit in predicting extrahepatic metastases of HCC than the clinical 
model and radiomics model. The combined prediction model, utilizing CT radscore alongside clinical 
risk factors, effectively forecasts extrahepatic metastasis in HCC patients.
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Background
Hepatocellular carcinoma (HCC) is the fourth most prevalent cancer and the second leading cause of cancer-
related mortality worldwide1,2. Surgical resection remains the primary treatment for HCC. Despite this, patients 
who develop extrahepatic metastasis post-surgery face a dismal prognosis. Median survival for advanced HCC 
patients with extrahepatic metastasis is less than one year3, compared to a five-year survival rate of approximately 
70% for those without metastasis4,5. Extrahepatic metastasis is a critical prognostic factor, with 13.5–42% of 
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patients exhibiting these metastases at diagnosis6–8. Common metastatic sites include the lungs, bones, adrenal 
glands, and brain9–11. Aggressive management of extrahepatic metastases can improve survival rates12,13. Thus, 
identifying reliable predictors of extrahepatic metastasis is essential for risk assessment and improving long-
term survival.

Radiomics offers a sophisticated approach to tumor characterization by converting standard medical images 
into high-dimensional datasets, enabling detailed analysis of intra-tumor heterogeneity. It captures subtle 
imaging phenotypes beyond human visual perception, allowing comprehensive tumor profiling14–17. By analyzing 
these extensive data, radiomics holds promises for predicting various post-treatment outcomes, such as overall 
survival, tumor recurrence, and treatment response18–20. Studies indicate that radiomic features can effectively 
forecast these outcomes in HCC, as well as in other malignancies21–23. Specifically in hepatocellular carcinoma, 
radiomics has shown value in predicting microvascular invasion, early recurrence, and histopathological 
subtypes, facilitating personalized treatment planning24–26.

However, few studies have specifically explored the use of radiomics for predicting extrahepatic metastasis in 
HCC, particularly in the context of postoperative surveillance. To address this gap, our study aims to develop and 
validate a combined model that incorporates both CT-based radiomic features and clinical variables to predict 
extrahepatic metastasis after hepatectomy. By comparing this model with clinical and radiomics models, we aim 
to provide a more accurate, individualized, and non-invasive tool for early risk stratification in HCC patients.

Materials and methods
Patients
This study was approved by the Ethics Committees of Hospital 1 and Hospital 2 and informed consent was 
waived for this retrospective study. We included patients who underwent hepatectomy for HCC from January 
2013 to November 2018. The selection criteria were: (1) pathologically confirmed HCC. (2) Newly diagnosed 
intrahepatic HCC lesions without any distant metastasis before surgery. (3) CT scans performed within two 
weeks prior to hepatectomy. Exclusion criteria included: (1) CT images were either unrecognizable or the lesion 
was less than three layers (scan layer thickness = 5 mm, pitch = 1.0); (2) incomplete clinical data; (3) preoperative 
anticancer treatments (n = 20); and (4) errors in feature extraction. Ultimately, 277 patients with complete data 
were selected from Hospital 1 and 97 from Hospital 2. Figure 1 depicts the patient selection flowchart.

Clinical endpoints and follow-up
The primary endpoint of this study was the development of liver cancer metastasis. Postoperative follow-up 
consisted of monthly liver ultrasounds for the first three months, transitioning to quarterly ultrasounds thereafter. 
Lung CT scans and enhanced CT or MRI of the liver were scheduled every three months for the initial two 

Fig. 1.  Flow diagram of the patient selection.
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years. Following this period, imaging frequency was reduced to every six months to facilitate timely evaluation 
and intervention for potential disease recurrence or progression. During these follow-ups, liver function tests, 
including alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alpha-fetoprotein (AFP), 
were conducted to monitor postoperative conditions and document any occurrences of extrahepatic metastases.

Image acquisition and tumor segmentation
CT imaging was performed using Siemens SOMATOM Definition Flash and GE Healthcare Discovery CT 
scanners at both hospitals. The imaging parameters were: 120 kV voltage, 200 to 350 mA current, 5 mm slice 
thickness and spacing, and a 512 × 512 matrix. A dual-head high-pressure injector administered contrast 
medium with 350 mg/mL iodine concentration, at 3.0 mL/s and 1.5 mL/kg dose. Enhancement phases were 
timed as follows: arterial phase at 30 s, portal venous phase at 60 s, and equilibrium phase at 120 s.

Feature extraction
Tumor regions of interest (ROIs) of the arterial, venous, and delayed phases were manually outlined by 
experienced radiologists using ITK-SNAP version 3.6.0 (http://www.itksnap.org). Image preprocessing and 
feature extraction of the three phases were conducted using the Radiomics package in 3D Slicer ​(​​​h​t​t​p​s​:​/​/​w​w​w​.​
s​l​i​c​e​r​.​o​r​g​/​​​​​)​. To evaluate the reproducibility of the segmentation results, ROI segmentation was repeated on CT 
images from 50 HCC patients. Additionally, another experienced radiologist independently performed ROI 
segmentation on these same patients. Intraclass and interclass correlation coefficients (ICCs) were calculated, 
retaining only features with ICCs greater than 0.75 for further analysis.

During the initial extraction phase, preprocessing was essential to enhance the differentiation of texture 
features. To address the batch effects arising from the use of different imaging equipment, all data underwent 
normalization via z-score standardization, adjusting the intensity values to have a mean of 0 and a standard 
deviation of 1. Additionally, the image slices were resampled to achieve a voxel size of 1 × 1 × 1 cm. A total of 
1130 CT radiomic features were extracted from the tumor regions in each phase, including First order statistical 
features, Shape features, gray-level cooccurrence features, matrix-based features (GLCM), gray-level.

run-length matrix-based features (GLRLM), gray-level size zone matrix-based features (GLSZM), gray-
level dependence matrix-based features (GLDM), Neighborhood Gray-Tone Difference Matrix (NGTDM) and 
Laplace wavelet changes. Figure 2 shows the flow diagram of feature selection and model construction.

Model and nomogram construction
To prevent overfitting the model, the Least Absolute Shrinkage and Selection Operator (LASSO) with 10 folds 
cross validation was used to further select key features and then compute the radiomic score (Radscore) and 
to build a radiomic model based on this score. Univariate and multivariate logistic regression analyses were 
conducted to identify clinical risk factors and independent predictors of extrahepatic metastasis in HCC 
patients, with p-values under 0.05 deemed statistically significant. The clinical risk factors determined through 

Fig. 2.  The flow diagram of feature selection and model construction.
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multivariate analysis were used to construct clinical models, for which corresponding nomograms were 
created. Additionally, a combined model was developed by integrating clinical risk factors with the Radscore, 
accompanied by a nomogram for this combined model. The predictive performance of the clinical, radiomic, 
and combined models in assessing the risk of liver cancer metastasis was evaluated using ROC curve analysis 
in both training and validation cohorts. Calibration curves were generated to assess model consistency. The 
DeLong test was employed to compare the predictive efficiency of the models, while decision curve analysis 
(DCA) was used to evaluate the net clinical benefit of predicting extrahepatic metastasis.

Statistical analysis
All statistical analyses were performed by R version 4.3.1 Categorical variables between the two groups were 
compared using the chi-square test or Fisher’s exact test, while continuous variables were analyzed using either 
the t-test or the Mann-Whitney U test. A p-value of less than 0.05 was considered statistically significant.

Results
Patient characteristics
Table 1 summarizes the characteristics of patients in the training and validation cohorts. The training cohort 
consisted of 277 individuals, including 230 males (83.03%) and 47 females (16.97%). Among them, 35 patients 
had extrahepatic metastases, with 19 cases involving a single site: 7 lung metastases, 2 vertebral metastases, 8 
lymph node metastases, 1 renal metastasis, and 1 diaphragm metastasis. Additionally, 16 patients experienced 
multiple metastases, primarily involving the lungs, bones, and lymph nodes. The validation cohort included 97 
patients, with 83 males (85.57%) and 14 females (14.43%). Postoperative extrahepatic metastases were observed 
in 10 patients (10.31%), including 6 cases with a single site (4 lung metastases and 2 lymph node metastases) and 
4 cases with multiple metastases.

Radiomics score construction
Feature selection was performed using the LASSO logistic regression algorithm (Fig.  2C), which identified 
the most relevant features. Ultimately, 9 features were selected from the training cohort, and a radscore was 
calculated. The radiomics model built based on a radscore showed that the AUC for the training group was 
82.4% (95% CI: 75.8%−89.0%), with a sensitivity of 74.2%, a specificity of 78.6% and a F1-score of 74.8%. The 
AUC for validation group was 78.5% (95% CI: 62.9%−94.1%). The sensitivity was 80%, the specificity was 77.8% 
and the F1-score was 71.7%.

Radscore=
log-sigma-1-5-mm-3D_gldm_LargeDependenceHighGrayLevelEmphasis×0.188
+wavelet-HLL_gldm_SmallDependenceLowGrayLevelEmphasis×−0.062
+wavelet-HLH_glszm_LargeAreaHighGrayLevelEmphasis×0.067
+wavelet-HHL_glszm_ZoneEntropy×0.033
+log-sigma-0-5-mm-3D_glszm_SizeZoneNonUniformity×0.009
+log-sigma-1-0-mm-3D_glrlm_RunVariance×0.301
+wavelet-LHL_ngtdm_Contrast×−0.033
+wavelet-LHH_glcm_JointEnergy×−0.157
+wavelet-LLL_glcm_MaximumProbability×−0.499+(−2.157)

Development and assessment of clinical models
As shown in Table 2, univariate analysis identified BMI, histopathological grade, tumor diameter, MVI, PV, AST, 
ALB, PLT, and Cr as clinical risk factors for extrahepatic metastasis in liver cancer. Multivariate analysis further 
confirmed BMI, MVI, PV, and ALB as independent risk factors for postoperative extrahepatic metastasis. Using 
these independent predictors, we created a clinical prediction model. The AUC for the training set was 81.2% 
(95% CI: 74.7–87.7%), with sensitivity at 85.7%, specificity at 74.0% and F1-score at 79.4% (Fig. 3A). In the 
validation set, the AUC was 76.4% (95% CI: 57.5–95.4%), demonstrating a sensitivity of 80%, a specificity of 
76.7% and a F1-score of 74.0% (Fig. 3B).

A nomogram was constructed using these independent risk factors (Fig.  3C), and it visually represents 
the contribution of each predictor to the overall risk of postoperative extrahepatic metastasis. The calibration 
curves for both the training and validation sets showed good agreement between predicted probabilities and 
actual outcomes (Fig. 3D and E). Additionally, decision curve analysis (Fig. 3F and G) demonstrated that the 
nomogram provided a significant net benefit in predicting extrahepatic metastasis.

Development and assessment of combined models
According to Table 3, multivariate analysis integrating Radscore with clinical risk factors identifies MVI, PV, 
ALB, and Radscore as independent prognostic factors for predicting extrahepatic metastasis in HCC.

A combined model was developed using these factors, resulting in an AUC of 87.2% (95% CI: 81.8%−92.6%) 
for the training cohort, showing a sensitivity of 88.6%, a specificity of 70.1% and a F1-score of 81.6% (Fig. 4A). 
In the validation cohort (Fig. 4B), the AUC was 86.0% (95% CI: 69.4%−100%), achieving a sensitivity of 80%, a 
specificity of 85.1% and an F1-score of 78.2%. As shown in Fig. 4C, the nomogram that combines radscore and 
clinical risk factors provides a clear assessment of the risk of postoperative extrahepatic metastasis. Additionally, it 
plays a significant role in personalized medicine and clinical decision-making aimed at improving overall patient 
outcomes. The calibration curves in Fig. 4D and E demonstrate excellent consistency in predicting extrahepatic 
metastasis after surgery. Decision curve analysis for both the training and validation cohorts further confirmed 
that the nomogram offered substantial net clinical benefit in predicting extrahepatic metastasis (Fig. 4F and G).
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Variables
Training cohort
(N = 193) Validation cohort P

Gender Male 230 (83.03) 83(85.57) 0.741

Female 47 (16.97) 14(14.43)

Age ≥ 65 59 (21.30) 19(19.59) 0.832

< 65 218 (78.70) 78(80.41)

BMI 24.22(22.04–26.61) 23.98(21.97–26.23) 0.406

Alcohol abuse Present 62 (22.38) 20(20.62) 0.827

Absent 215 (77.62) 77(79.38)

Diabetes Present 39(14.08) 10(10.30) 0.440

Absent 238(85.92) 87(89.70)

Histopathological_grade I, II 208(75.09) 69(71.13) 0.528

III, IV 69(24.91) 28(28.87)

Tumor diameter (cm) ≤ 2 23(11.91) 3(3.09) 0.485

>2 244 (88.09) 94(96.91)

Tumor number ≤ 2 248 (89.53) 79(81.44) 0.059

≥ 2 29 (10.47) 18(18.56)

MVI Present 128 (46.21) 37(38.14) 0.208

Absent 149 (53.79) 60(61.86)

PV Present 14 (5.05) 5(5.15) 0.979

Absent 263 (94.95) 92(94.85)

Liver capsule invasion Present 138 (49.72) 50(51.55) 0.861

Absent 139 (50.18) 47 (48.45)

Tumor satellite Present 31 (11.19) 10(10.31) 0.960

Absent 246 (88.81) 87(89.69)

Live cirrhosis Present 187 (67.51) 56(57.73) 0.167

Absent 90 (32.49) 41(42.27)

HBV Present 240 (86.64) 81(83.51) 0.703

Absent 37 (13.16) 16(16.49)

HBsAg Positive 240 (86.64) 79(81.44) 0.281

Negative 37 (13.16) 18(18.56)

AFP (ng/ml) ≤ 20 122 (44.04) 36(37.11) 0.285

> 20 155 (55.96) 61(62.89)

ALT (IU/l) ≤ 50 191 (68.95) 67(69.07) 0.999

> 50 86 (31.05) 30(30.93)

AST (IU/l) ≤ 35 172 (43.68) 55(56.70) 0.415

> 35 105 (56.32) 42(43.30)

TBIL(µmol/l) ≤ 17.1 129 (46.57) 56(57.73) 0.076

> 17.1 148 (53.43) 41(42.27)

ALB (g/l) ≤ 45 230 (83.94) 89(91.75) 0.055

> 45 47 (16.06) 8(8.25)

PLT (× 10^9/l) ≤ 100 32 (11.91) 16(16.49) 0.287

> 100 244 (88.09) 81(83.51)

PT (s) 10.5(9.8–11.1) 10.5(10–11) 0.969

NEUT (× 10^9/l) 3.06(2.39–4.25) 2.87(2.10–3.79) 0.062

Lymphocyte 1.63(1.24–2.16) 1.58(1.17–1.94) 0.257

Cr 68(54–83) 13(12.5–13.5) 0.454

Child–Pugh A 266 (96.03) 91(93.81) 0.537

B 11(3.97) 6(6.19)

CNLC I, II 143(51.62) 53(54.64) 0.694

III, IV 134(48.38) 44(45.36)

Table 1.  Characteristics of patients in the training and validation cohorts. Abbreviations: BMI body mass 
index; PV Portal vein thrombosis; MVI microvascular invasion; HBsAg hepatitis B surface antigen status; ALT 
alanine aminotransferase; AST aspartate aminotransferase; TBIL total bilirubin; AFP alpha-fetoprotein; ALB 
albumin; PT prothrombin time; PLT platelet count; NEUT neutrophil count. CNLC Chinese Liver Cancer 
Staging System.
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Comparative predictive performance of clinical, radiomics, and combined models
In the training cohort (Fig.  5A), the combined model achieved the highest predictive performance with an 
AUC of 87.2% (95% CI: 81.8%−92.6%), followed by the radiomics model at 82.4% (95% CI: 75.8%−89.0%), and 
the clinical model with the lowest AUC of 81.2% (95% CI: 74.7%−87.7%). The combined model significantly 
outperformed both the radiomics model (DeLong test P = 0.028) and the clinical model (DeLong test P = 0.008), 
while no significant difference was found between the radiomics and clinical models (DeLong test P = 0.739). 
Additionally, the decision curve analysis indicated that the combined model with Radscore offered the highest 
clinical net benefit compared to the other models in the threshold range of 0-0.4 (Fig. 5C).

In the validation cohort (Fig. 5B), the combined model again demonstrated the highest predictive accuracy, 
achieving an AUC of 86.0% (95% CI: 69.4%−100%). It was followed by the clinical model at 76.4% (95% CI: 
57.5%−95.4%) and the radiomics model at 78.5% (95% CI: 62.9%−94.1%). While no significant differences 
in predictive power were observed among the three models (DeLong test P > 0.05), decision curve analysis 
consistently showed that the combined model offered the greatest clinical net benefit compared to the other two 
models in the threshold range of 0-0.3 (Fig. 5D).

Discussion
Previous research has explored radiomics models for predicting tumor prognosis using contrast-enhanced CT27. 
To the best of our knowledge, this is the first study to utilize enhanced CT sequence data specifically for assessing 
postoperative extrahepatic metastasis in HCC patients.

Radiomics has garnered significant attention in cancer research due to its ability to extract a vast array of 
feature data from standard medical images, thereby potentially enhancing clinical decision-making28. By 
employing advanced imaging analysis techniques, radiomics can identify subtle patterns and features within 
tumors, offering a cost-effective, and reproducible method for characterizing tumor phenotypes related to 

Variables

Univariate analysis Multivariate analysis

Odd ratios (95%CI) P-value Odd ratios (95%CI) P-value

Gender 1.262 (0.516–3.090) 0.610

Age 0.996(0.960–1.033) 0.836

Alcohol abuse 1.463 (0.578–3.703) 0.422

BMI 0.814 (0.718–0.923) < 0.05* 0.830(0.719–0.958) < 0.05*

Histopathological grade
grade
diameter

2.433 (1.300-4.456) < 0.05* 1.753(0.874–3.516) 0.114

Tumor diameter 1.222(1.110–1.346) < 0.05* 1.029(0.915–1.158) 0.631

Liver capsule invasion 0.544(0.262–1.129) 0.102

MVI 0.176 (0.074–0.419) < 0.05* 0.238(0.085–0.669) < 0.05*

PV 0.232 (0.073–0.737) < 0.05* 0.167(0.037–0.762) < 0.05*

Tumor number 0.498 (0.130–1.911) 0.310

Tumor satellite 0.557 (0.211–1.471) 0.238

Live cirrhosis 1.327 (0.626–2.816) 0.461

Diabetes 2.978(0.685–12.947) 0.146

HBV 0.914 (0.331–2.528) 0.863

HBsAg 1.002(0.998–2.528) 0.863

AFP 0.999 (0.999–1.002) 0.187

ALT 1.003 (0.999–1.006) 0.076

AST 1.005 (0.999–1.009) < 0.05* 1.003(0.998–1.008) 0.208

TBIL 0.999 (0.972–1.026) 0.914

ALB 0.922 (0.855–0.994) < 0.05* 0.897(0.809–0.995) < 0.05*

PT (s) 0.986 (0.913–1.064) 0.710

NEUT 1.117 (0.964–1.294) 0.142

PLT 1.006 (1.000-1.012) < 0.05* 1.007(1.000-1.014) 0.053

Cr 0.976(0.958–0.995) < 0.05* 0.984(0.967–1.008) 0.232

Lymphocyte 0.665(0.384–1.153) 0.146

Child -Pugh 0.637(0.132–3.079) 0.575

CNLC 0.003(0.001–0.005) 0.995

Table 2.  Univariate and multivariate analyses were conducted on the training cohort to identify clinical 
features associated with extrahepatic metastasis in patients. Abbreviations: BMI body mass index; PV 
Portal vein thrombosis; MVI microvascular invasion; HBsAg hepatitis B surface antigen status; ALT alanine 
aminotransferase; AST aspartate aminotransferase; TBIL total bilirubin; AFP alpha-fetoprotein; ALB albumin; 
PT prothrombin time; PLT platelet count; NEUT neutrophil count. CNLC Chinese Liver Cancer Staging 
System.
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internal heterogeneity. This approach enhances our understanding of tumor biology and may contribute to the 
development of more personalized treatment strategies29. These features are derived from imaging modalities 
such as CT, MRI, and PET scans30–32, encompassing various aspects of tumor morphology, texture, and intensity, 
which collectively offer a comprehensive understanding of tumor biological behavior. Radiomic feature scoring, 
when integrated with clinical and pathological risk factors, can improve diagnostic accuracy, predict therapeutic 
responses, and monitor disease progression33,34, ultimately advancing the field of precision oncology. As research 
progresses, radiomics has been applied to liver tumors for diverse purposes, including diagnosis, prognosis, 
pathological grading, and microvascular invasion (MVI)35–38. A comprehensive summary of recent radiomics 
studies related to hepatocellular carcinoma and other malignancies in Supplementary Table S1.

In this study, we utilized enhanced CT imaging data from patients with liver cancer for tumor region 
segmentation and feature extraction. We assessed the consistency of the segmentation results using ICC to 
ensure that the extraction of tumor characteristics is highly stable and reproducible across different time points 
and observers. This evaluation method is crucial for enhancing the reliability of imaging features in clinical 
research, as it ensures the accuracy and consistency of the research data and minimizes variations introduced by 
observer39,40. Additionally, features with high consistency contribute to improving the predictive capability of 
models, thereby enhancing the quality of diagnostic and therapeutic decision-making.

Variables

Univariate analysis Multivariate analysis

Odd ratios (95%CI) P-value Odd ratios (95%CI) P-value

BMI 0.814 (0.718–0.923) < 0.05* 0.896(0.742–1.017) 0.080

Histopathological grade 2.433 (1.300-4.456) < 0.05* 1.402(0.690–2.849) 0.351

Tumor Diameter 1.222(1.110–1.346) < 0.05* 0.880(0.755–1.026) 0.102

MVI 0.176 (0.074–0.419) < 0.05* 0.201(0.067–0.607) < 0.05

PV 0.232 (0.073–0.737) < 0.05* 0.144(0.028–0.725) < 0.05

AST 1.005 (0.999–1.009) < 0.05* 1.001(0.996–1.006) 0.641

ALB 0.922 (0.855–0.994) < 0.05* 0.876(0.784–0.979) < 0.05

PLT 1.006 (1.000-1.012) < 0.05* 1.006(0.998–1.014) 0.116

Cr 0.976(0.958–0.995) < 0.05* 0.998(0.968–1.009) 0.261

Radscore 6.102(3.237–11.505) < 0.05* 5.282(2.312–12.069) < 0.05

Table 3.  Clinical risk factors combined with Radscore analysis results. Abbreviations: BMI body mass index; 
MVI microvascular invasion; PV Portal vein thrombosis; ALB albumin; PT prothrombin time; PLT platelet 
count.

 

Fig. 3.  Development and evaluation of clinical prediction models. Clinical prediction models for training 
(A) and validation (B) cohorts. (C): Nomogram predicting extrahepatic metastasis. Calibration curves for 
the training (D) and validation (E) cohorts. Decision curve analyses for the training (F) and validation (G) 
cohorts.
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Fig. 5.  Comparison of the performance of three prediction models. Comparative analysis of ROC curves of 
radiomic, clinical, and combined models in training (A) and validation (B) cohorts. The ROC curves reveal 
that the combined model achieves the highest AUC, outperforming both the clinical and radiomic models 
alone. Decision curves for the radiomics, clinical, and combined models were compared in the training (C) 
and validation (D) cohorts. This indicates that the combined model is more effective in supporting clinical 
decision-making.

 

Fig. 4.  The performance of Combined prediction model. ROC curves for the combined model in the 
training (A) and validation (B) cohorts. C: Nomogram combining radscore and clinical risk factors to predict 
extrahepatic metastasis. Calibration curves for the combined model in the training (D) and validation (E) 
cohorts shows a high degree of agreement between the predicted probabilities and actual outcomes, indicating 
that the combined model is well-calibrated and performs reliably when applied to unseen data. Decision curves 
for the combined model in the training (F) and validation (G) cohorts demonstrate that the combined model 
provides the highest net clinical benefit across a wide range of threshold probabilities, compared with the 
radiomics-only and clinical-only models.
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We employed the LASSO algorithm to identify features most relevant to extrahepatic metastasis, utilizing 
ten-fold cross-validation to mitigate overfitting. The LASSO algorithm is effective for analyzing large feature sets 
with relatively small sample sizes, reducing data noise interference and enhancing model reliability41. Imaging 
features linked to extrahepatic metastasis were selected through LASSO regression, and Radscore values were 
computed. Our analysis confirmed that BMI, MVI, PV, ALB and Radscore are independent predictors of HCC 
prognosis, aligning with previous findings42–44.

We developed predictive models for postoperative extrahepatic metastasis in HCC patients, including a 
radiomics model, a clinical model, and a combined model integrating clinical factors and Radscore. In both the 
training and validation cohorts, the combined model that includes Radscore, MVI, PV, and ALB exhibited better 
AUC performance than both the radiomics and clinical models (P < 0.05). There was no significant difference 
between the clinical and radiomics models in predicting extrahepatic metastasis (P > 0.05), which aligns with 
previous research findings45,46. The clinical net benefit of patients was analyzed according to the decision curve. 
Whether in the training group or the validation group, the net benefit of patients in the combined model was 
generally higher, indicating that the model was safe. Our study validated the use of enhanced CT imaging tools 
that can predict postoperative extrahepatic metastases in patients with liver cancer, further demonstrating the 
stability and reproducibility of radiomics in prognostic assessment of liver cancer47,48.

However, this study has limitations: manual 2D ROI delineation was time-consuming, suggesting that 
automated lesion segmentation should be a focus of future research. In future studies, the performance of 
automatic and semi-automatic segmentation methods can be further improved through algorithm optimization, 
integration of multimodal imaging data (such as CT and MRI), and enhancement of user interactivity. Developing 
interactive semi-automatic tools may help balance segmentation accuracy and clinical usability. Furthermore, 
the complex relationship between radiomics features and biological behaviors remains challenging to fully 
elucidate. Integrating radiomics with genomics or pathology data may help elucidate the biological basis of the 
radiomic features, thus enhancing model interpretability and clinical utility.

Conclusions
Our findings indicate that radscore is an independent prognostic indicator for predicting extrahepatic metastasis 
in HCC. By integrating radscore with clinical risk factors, we developed a non-invasive radiomics model that 
provides a data-driven tool for the early prediction of extrahepatic metastasis after hepatectomy. This model 
may assist in formulating personalized follow-up strategies and enabling timely interventions. Future research 
directions include validating this model in larger, multicenter, and prospective cohorts to ensure generalizability.

Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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