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To address the challenge of user behavior prediction on artificial intelligence (AI)-based online 
education platforms, this study proposes a novel ensemble model. The model combines the strengths 
of Convolutional Neural Network (CNN), Multi-Head Attention Mechanism (MHAM), Weighted Random 
Forest (WRF), and Back Propagation Neural Network (BPNN), forming an integrated architecture that 
enhances WRF and BPNN with CNN and MHAM. Experimental results demonstrate that the improved 
BPNN model, when combined with WRF, outperforms individual models in predicting user behavior. 
Specifically, the integrated model achieves a prediction accuracy of 92.3% on the test dataset—
approximately 5% higher than that of the traditional BPNN. For imbalanced datasets, it attains a 
recall rate of 89.7%, significantly surpassing the unweighted random forest’s 82.4%. The model also 
achieves an F1-score of 90.8%, reflecting strong overall performance in terms of both precision and 
recall. Overall, the proposed method effectively leverages the classification capabilities of WRF and the 
nonlinear fitting power of BPNN, substantially enhancing the accuracy and reliability of user behavior 
prediction, and offering valuable support for optimizing AI-driven online education platforms.

Keywords  User behavior prediction, Weighted random forest, Back propagation neural network, Online 
education, Resource configuration

In today’s rapidly evolving information age, online education platforms have emerged as a widely adopted 
educational model. Their convenience and flexibility have attracted a vast number of students and educators, 
resulting in a large and complex user base1,2. As user numbers and activity levels continue to grow, the challenge of 
accurately predicting user behavior has become increasingly urgent. Effective behavior prediction is essential for 
optimizing learning paths, enhancing user experience, and improving learning outcomes on these platforms3–6. 
Accurate user behavior prediction plays a critical role in helping platform administrators understand users’ 
learning habits, interests, and progress. This understanding supports personalized recommendations, efficient 
resource allocation, and teaching effectiveness evaluation7,8.

Traditional methods—such as linear regression and decision trees—perform adequately on simple, linear 
datasets. However, they often fall short when applied to the complex and diverse behavioral data found on 
online education platforms9–11. These limitations are particularly evident when handling high-dimensional, 
nonlinear, and imbalanced data, where traditional models struggle to extract meaningful insights, resulting in 
low prediction accuracy and weak robustness12,13. The advancement of artificial intelligence (AI), particularly 
in machine learning and deep learning, has introduced new tools and methods for user behavior prediction14. 
Among them, the Back Propagation Neural Network (BPNN) has gained considerable attention due to its strong 
nonlinear mapping capabilities, along with its self-learning and adaptive properties15,16.

Although the BPNN performs well in predicting user behavior, it faces limitations when handling imbalanced 
data17. On online education platforms, user behavior data is often highly imbalanced—most behaviors are 
concentrated around a few common activities, while more critical actions, such as course completion or deep 
engagement, occur far less frequently. Training a BPNN directly on such data can lead to poor prediction 
accuracy for these less common but important behaviors, ultimately reducing the overall effectiveness of the 
model 18, 19. To address this issue, this study introduces a Weighted Random Forest (WRF) as a preprocessing 
step. The WRF is used to perform initial classification and assign weights to the user behavior data. Building on 
this, a new predictive model is proposed by combining the strengths of WRF and BPNN. This hybrid approach 
effectively tackles both data imbalance and nonlinear relationships present in user behavior data on online 
education platforms. The proposed model significantly improves prediction accuracy and reliability. It also 
provides valuable support for platform optimization and the delivery of personalized educational services.
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Research objectives
This study addresses the challenge of user behavior prediction on AI-driven online education platforms by 
proposing an improved BPNN model enhanced with a WRF. The primary goal is to overcome the issue of data 
imbalance in user behavior datasets, improve the recognition of minority classes through ensemble learning 
techniques, and leverage the nonlinear fitting capability of BPNN to develop a more accurate and reliable 
predictive model. The proposed integrated model combines the strengths of WRF and BPNN to enable efficient 
prediction and analysis of user behavior. It effectively mitigates the impact of data imbalance and enhances 
predictive performance, offering strong support for the optimization and advancement of online education 
platforms.

The structure of the study is as follows: “Research objectives” section presents the introduction, outlining the 
research background, motivation, and objectives, along with a summary of the paper’s organization. “Literature 
review” section provides a literature review, exploring the current applications and limitations of ensemble 
learning and deep learning techniques in user behavior prediction. This section analyzes the strengths and 
weaknesses of existing approaches and establishes the theoretical foundation for the proposed integrated model. 
“Research methodology” section details the study methodology, describing the construction and optimization 
of the WRF model, BPNN model, and the improved integrated model. “Experimental design and performance 
evaluation” section focuses on experimental design and performance evaluation, including data collection, 
experimental setup, parameter configuration, and evaluation metrics. It also presents experimental results and a 
comparative analysis between the proposed model and several baseline algorithms. Finally, “Conclusion” section 
concludes the study by summarizing the study contributions and outlining potential directions for future work.

Literature review
In recent years, the rapid development of AI has significantly expanded the application of machine learning 
and neural networks across various domains—particularly in predicting user behavior on online education 
platforms. This topic has garnered global attention, with researchers striving to extract and analyze large-scale 
user behavior data to build accurate prediction models that support platform optimization and enhance the 
learning experience. For example, Aydoğdu proposed a prediction model based on Support Vector Machines 
(SVM) to forecast student performance in online courses20. Chen et al. applied the random forest algorithm 
to address user behavior prediction challenges on educational platforms21. Disha et al. introduced the WRF 
model, which improved the identification of minority classes by assigning different weights to various sample 
categories22. Khan et al. explored the application of BPNNs for behavior prediction23but noted issues such as 
gradient vanishing and local minima during training, which negatively affected model stability and convergence 
speed.

To overcome these challenges, Shirabayashi et al. proposed a hybrid model that combined Convolutional 
Neural Network (CNN) with traditional BPNN to enhance the extraction of local features from user behavior 
data24. Alshurideh et al. studied ensemble learning approaches and integrated multiple base models to improve 
prediction performance25. While this method effectively balanced accuracy and recall, it also increased the 
complexity of model design and optimization, which made implementation more difficult. Ray et al. adopted a 
transfer learning approach, utilized pre-trained models and datasets, and enhanced the learning capability of new 
models26. Although this method partially addressed the issue of data scarcity, its effectiveness depended heavily 
on the similarity between source and target domains, which introduced uncertainty in practical applications.

Traditional machine learning methods play a central role in the early stages of user behavior prediction 
research. However, the emergence of deep learning has revitalized the field. Models based on deep neural 
networks—such as deep belief networks (DBNs), recurrent neural networks (RNNs), and their variants like 
Long Short-Term Memory (LSTM) and gated recurrent units (GRUs)—have shown strong capabilities in 
feature extraction and in capturing complex data patterns. These models have achieved significant success in 
user behavior prediction tasks. For example, Onan used decision trees and Naive Bayes classifiers to predict 
students’ academic outcomes, demonstrating that simple classification algorithms performed well on small-scale 
datasets. However, such traditional approaches often fell short in terms of accuracy and generalization when 
applied to high-dimensional, complex user behavior data27. In contrast, Lyu et al. proposed a Deep Knowledge 
Tracing (DKT) model based on LSTM, which substantially improved prediction accuracy28. Similarly, Hu et al. 
employed CNNs to extract temporal features from user behavior data, further validated the effectiveness of deep 
learning in processing complex data29.

Class imbalance remains a major challenge in predicting user behavior on online education platforms. Devan 
et al. addressed this issue by applying an XGBoost model, which improved minority class recognition through 
class weight adjustments and learning rate tuning30. Manokaran et al. explored the use of WRF for handling 
imbalanced data—a method that was conceptually similar to the approach proposed in this study. However, their 
model did not fully utilize the nonlinear fitting strengths of deep learning techniques31. In recent years, the use 
of multimodal data has emerged as a leading trend in user behavior analysis. For instance, Zhang et al. employed 
graph neural networks (GNNs) to integrate interaction data, learning logs, and textual content. This approach 
enabled multi-level modeling of user behavior and led to significant improvements in prediction accuracy32. Li 
et al. investigated the transferability of user behavior prediction models across different educational platforms. 
Their findings emphasized the importance of model stability and robustness under varying data distributions, 
providing valuable insights for improving user experience on online education platforms33.

Yan and Au used students’ course grades as predictive labels and employed a classical three-layer feedforward 
neural network as the machine learning model. They trained the model using the scaled conjugate gradient 
algorithm and conducted Pearson correlation analysis to explore the relationship between course performance 
and various student features34. The results showed that the number of days students accessed the platform 
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had the strongest correlation with course grades, followed by the number of clicks. Connection time showed 
a weaker association, while age and gender had the lowest correlation with academic outcomes. Amin et al. 
applied an Artificial Neural Network (ANN) to analyze and classify user behavior data on MOOC platforms. 
Their goal was to better understand learners’ engagement patterns and educational needs35. The model 
enabled the identification of user categories such as highly engaged users, low-engagement users, and potential 
dropouts. This classification approach supported the delivery of personalized learning experiences and targeted 
interventions, ultimately enhancing user satisfaction and learning outcomes. Talebi et al. focused on predicting 
student dropout in MOOCs by introducing a deep learning-based model36. They used LSTM networks to 
automatically learn temporal features from behavioral data. This approach allowed for more accurate prediction 
of dropout risk. Compared with traditional methods, the LSTM model was more effective in capturing dynamic 
changes and long-term dependencies in student behavior—key factors in identifying dropout trends.

Despite the promising results of ensemble learning and deep learning in user behavior prediction, both 
approaches presented notable challenges in real-world applications. Ensemble methods, while improving 
accuracy and robustness, often required significant computational resources and prolonged training times due 
to model complexity. In addition, their limited interpretability made it difficult to understand the rationale 
behind predictions. Deep learning models also encountered issues such as gradient vanishing and local optima, 
which compromised training stability and convergence speed. Moreover, their dependency on large, labeled 
datasets and lack of transparency further restricted their practical deployment in certain scenarios.

In summary, previous research has made considerable progress in user behavior prediction but still faces 
several limitations. For instance, SVM and traditional Random Forest models perform poorly when handling 
imbalanced data. While a single BPNN can model nonlinear relationships, it is prone to getting stuck in local 
optima during training. Although hybrid and ensemble learning models achieve strong predictive performance, 
they often involve high implementation complexity. Additionally, the effectiveness of transfer learning is 
constrained by the similarity between the source and target domains, introducing uncertainty in practical 
applications. The integrated model proposed in this study addresses these issues by combining the classification 
strength of WRF with the nonlinear fitting capabilities of BPNN. It further incorporates a Multi-Head Attention 
Mechanism (MHAM) to dynamically weight features. This approach effectively tackles challenges such as 
imbalanced data and complex pattern recognition in online education user behavior prediction. Compared with 
existing methods, this study is the first to integrate WRF with MHAM and optimize model parameters through 
cross-validation, resulting in significantly improved prediction accuracy.

Research methodology
WRF model
On AI-powered online education platforms, the diversity and complexity of user behavior demand prediction 
models with high accuracy and strong generalization capabilities37. However, traditional deep forest models 
face limitations when handling imbalanced datasets. To address this issue and enhance prediction accuracy, this 
study proposes a Weighted Deep Forest Model—an ensemble learning approach that assigns different weights to 
the outputs of multiple cascaded decision trees for more precise user behavior prediction.

The proposed model comprises several cascaded decision trees, each independently classifying the input 
data. Unlike traditional random forests, which rely on a simple majority voting mechanism, the weighted deep 
forest integrates predictions using a weighted average strategy. This approach determines weights based on three 
key factors:

	(1)	 Node Purity in Decision Trees: The model calculates the total purity of non-leaf nodes. Nodes with lower 
purity are more effective in classifying data and are therefore assigned higher weights.

	(2)	 Feature Importance via Gradient Boosting: Features deemed more important through the gradient boost-
ing method play a greater role in data segmentation. Decision trees that rely heavily on such features are 
given higher weights.

	(3)	 Category Distribution in Leaf Nodes: The model evaluates the proportion of each class within the leaf 
nodes. A class that dominates a leaf node is considered more reliable, and its corresponding prediction 
receives a higher weight38–40.

The weight assigned to each decision tree is computed using Eq. (1): 

	 W eight = p ∗ imp ∗ dist� (1)

In Eq. (1), p represents the weighted sum of node purity. imp is the importance of features, which is calculated 
by gradient lifting tree method. dist is to count the number of samples of each category in each leaf node, 
indicating the category distribution. Equation (2) shows the calculation of p: 

	 p = sum(w∗p.node)� (2)

In Eq. (2), w* is the weight of the node. p.node is the information entropy of the node, and sum is the sum 
operation41–43. Figure 1 shows the training process of the weighted depth forest model.

Design and training of BPNN model
BPNN is a multi-layer feedforward neural network, which is trained by error backpropagation44,45. Figure 2 
shows the structure of BPNN model.
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Figure 2 includes an input layer, a hidden layer and an output layer. Each layer consists of several nodes 
(neurons), which are connected by weighted connections. The working principle of the network is to propagate 
the input data forward to the output layer, and then adjust the weight reversely according to the output error46,47. 
Equations (3) and (4) show the calculation of forward propagation algorithm: 

	
hj = f

(
n∑

i=1

wijxi + bj

)
� (3)

	
yk = g

(
m∑

j=1

vjkhj + ck

)
� (4)

Fig. 2.  BPNN model structure.

 

Fig. 1.  Training process of weighted depth forest model.
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The input data x passes through the weighted summation and activation function f of the hidden layer. wij  is 
the weight connecting the input layer and the hidden layer. bj  is the bias term of the hidden layer. The output 
h of the hidden layer passes through the weighted sum of the output layer and the activation function g to get 
the final output y. vjk  is the weight connecting the hidden layer and the output layer. ck  is the bias term of 
the output layer. According to the error between the prediction result and the actual label, the backpropagation 
algorithm adjusts the weights in the network layer by layer from the output layer to the input layer to minimize 
the overall error48. The error δ k  of the output layer is calculated, as shown in Eq. (5): 

	 δ k = (yk − dk) · g′ (yk)� (5)

dk  is the target value. g′  is the derivative of the activation function g of the output layer. Equation (6) for 
calculating the error of hidden layer: 

	
δ j = (

l∑
k=1

δ kvjk) · f ′ (hj)� (6)

f ′  is the derivative of the hidden layer activation function f . The weights and offsets are updated as shown in 
Eqs. (7)–(10): 

	 vjk
∗ = vjk − η · δ k · hj � (7)

	 ck
∗ = ck − η · δ k � (8)

	 wij
∗ = wij − η · δ j · xi� (9)

	 bj
∗ = bj − η · δ j � (10)

η  is the learning rate. vjk
*, ck

*, wij
* and bj

* respectively represent the updated weight and offset. This 
updating process helps to minimize the overall loss function through the gradient descent rule, thus optimizing 
the prediction performance of the neural network49.

Construction and optimization of integrated model
To address the problem of user behavior prediction on AI-powered online education platforms, this study 
proposes an improved ensemble model that integrates a WRF with a BPNN. By combining the strengths of 
both WRF and BPNN, the model enhances the accuracy and robustness of user behavior prediction. First, 
the WRF is employed to classify user behavior data. Through ensemble learning, WRF effectively handles 
class imbalance and produces classification results along with corresponding weights for each sample. These 
classification results, including both preliminary class information and sample weights, are then used as input 
features for the BPNN. This enables the neural network to directly leverage the classification capability of WRF, 
providing richer and more precise input data. After receiving the WRF outputs, the BPNN is trained using 
the backpropagation algorithm. During training, the network’s weights and biases are updated by considering 
the sample weight information to minimize a weighted loss function. This approach effectively integrates the 
classification advantages of WRF with the nonlinear fitting capability of BPNN, allowing the model to better 
adapt to the complex characteristics of user behavior data. Figure 3 illustrates the architecture of the ensemble 
model based on WRF and BPNN.

In order to consider the weight information of the WRF, the loss function adopts the weighted cross entropy 
loss function. The weighted cross entropy loss function can effectively reflect the importance of different 
categories of samples and improve the influence of a few categories in the training process. Equation (11) shows 
the calculation: 

Fig. 3.  An ensemble model based on WRF and BPNN.
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L = −

N∑
i=1

wi[dilog (yi) + (1 − di) log (1 − yi)]� (11)

In Eq. (11), wi represents the weight of sample i. di represents the actual label of sample i. yi represents the 
output probability of neural network prediction. The detailed definitions of the symbols used in this study are 
listed in Table 1.

To further improve user behavior prediction on AI online education platforms, this study proposes a novel 
integrated model that combines CNN, MHAM, WRF, and Backpropagation Neural Network (BPNN). The model 
is designed to efficiently extract features from user behavior data using CNN, while MHAM assigns dynamic 
weights to these features to enhance the model’s perception and decision-making capabilities. Specifically, CNN 
captures local features from user behavior data through multiple convolutional layers. This enables the model 
to detect complex patterns and structures, which are crucial for accurate user behavior prediction in online 
education. Following the convolution layers, MHAM fuses the extracted features by dynamically weighting each 
one. This attention mechanism helps the model focus more on features that significantly impact prediction. 
MHAM processes multiple “perspectives” simultaneously, which improves the model’s global learning and 
representation abilities. Building on this, WRF classifies and weights the user behavior data. Using an ensemble 
learning approach, WRF applies weighted voting across multiple decision trees to address class imbalance. 
It dynamically adjusts the weight of each tree based on prediction accuracy, feature importance, and class 
distribution, thereby enhancing recognition of minority user behaviors. The outputs from WRF serve as input 
features for the CNN and MHAM components. These features then undergo nonlinear fitting through BPNN. 
The BPNN trains on WRF outputs and optimizes the network by adjusting weights via backpropagation. This 
integration results in more accurate user behavior prediction.

The training process of the integrated model proceeds as follows. First, the CNN extracts features from 
the original user behavior data, producing a high-dimensional feature map through its convolutional layers. 
Next, this feature map is fed into the MHAM module, where features are weighted and fused to generate richer 
representations. The fused features are then classified by the WRF, which outputs both the predicted category 
and corresponding weight for each data point. Finally, the WRF output serves as input to the BPNN for training 
and optimization. By minimizing a weighted cross-entropy loss function and updating network weights via 
backpropagation, the BPNN enhances the model’s prediction accuracy and robustness.

This study improved the model in several key ways. First, the use of CNN went beyond simple feature 
extraction. It was specifically optimized to handle the high-dimensional and locally dependent nature of user 
behavior data on online education platforms. The carefully designed convolution and pooling layers enabled 
extraction of distinctive local features from raw data, which are crucial for capturing user behavior patterns under 
different contexts. For instance, users’ login frequency and learning duration often exhibit local dependencies 
over time and space, and CNN’s local receptive fields effectively identify these patterns. Second, the MHAM 
in the integrated model offered unique advantages for processing user behavior data. Such data not only 
includes behavioral metrics like learning time and course clicks but also contains multi-dimensional interaction 

Symbol Definition

p Weighted sum of the purity of non-leaf nodes in the decision tree

imp Feature importance calculated using the gradient boosting tree method

dist Distribution of sample categories within each leaf node

wi Weight of sample ii

di True label of sample ii

yi Predicted probability output by the neural network for sample ii

f Activation function of the hidden layer

g Activation function of the output layer

η Learning rate

δ k Error term at the output layer

δ j Error term at the hidden layer

wij Weight between input layer and hidden layer

vjk Weight between hidden layer and output layer

bj Bias of the hidden layer

ck Bias of the output layer

L Weighted cross-entropy loss function

hj Output of the hidden layer∑
Summation operator

sum(w* · p.node) Weighted sum of purity across all non-leaf nodes in the decision tree

Table 1.  Definitions of symbols.
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information. Each feature contributes differently to the prediction task, with complex nonlinear relationships 
among them. By incorporating MHAM, the model dynamically assigned varying weights to features during 
training, prioritizing those most influential to prediction accuracy. This significantly enhanced the model’s 
performance on complex data. Third, the WRF model addressed the common problem of data imbalance in 
online education platforms. Typically, user behavior data are heavily skewed, with most users being inactive 
and only a small fraction being highly active or potential long-term payers. WRF tackled this by incorporating 
sample weights into the decision tree training, improving classification performance especially for minority user 
groups. Finally, the BPNN performed nonlinear fitting on the WRF outputs, enabling the integrated model not 
only to classify different user behavior types accurately but also to further optimize performance through error 
backpropagation. This process helped reduce overfitting and improved the model’s generalization ability.

Experimental design and performance evaluation
Datasets collection
The user behavior dataset used in this study was collected from multiple well-known online education platforms, 
including the international platform Coursera and the domestic platform NetEase Cloud Classroom.

The Coursera dataset covers user activity from 2019 to 2022 and includes detailed logs of various learning-
related interactions, such as course browsing, video viewing, quiz submissions, and forum participation. These 
multidimensional records provide a comprehensive view of users’ learning behaviors and habits. In contrast, 
the data from NetEase Cloud Classroom spans from June 2020 to January 2023 and features a diverse user base, 
including high school students, university students, and working professionals across different age groups and 
educational backgrounds. This dataset not only captures core learning behaviors—such as course selection and 
study duration—but also includes user interaction data such as comments, likes, and discussions, offering rich, 
multidimensional insights for behavior analysis.

The dataset was collected through direct collaboration with the online education platforms and constitutes 
proprietary experimental data. Rigorous preprocessing and cleaning procedures were applied to ensure data 
quality and usability. In total, the dataset contains approximately 200,000 samples with multiple feature 
dimensions, including user demographics, course selection, study time, and interaction behaviors—allowing 
for a comprehensive representation of user activity on online education platforms. To safeguard user privacy 
and ensure data anonymity, the study strictly adhered to data protection regulations and privacy standards 
during data collection. All user information was encrypted to prevent any disclosure of personal data. During 
preprocessing, a variety of methods were employed: missing values were handled using mean imputation or 
interpolated based on behavioral correlations; outliers were detected and removed using box plot techniques; 
and all numerical features were standardized to have a mean of 0 and a variance of 1. This normalization allowed 
different features to be compared on the same scale, thereby enhancing the efficiency and accuracy of model 
training. Through these preprocessing steps, data quality was significantly improved, ensuring the stability and 
performance of the predictive models.

Experimental environment
The experiments in this study were conducted on a high-performance computing server equipped with multiple 
GPU accelerators to support the training and validation of deep learning models. Python was used as the 
primary programming language, with TensorFlow and Keras frameworks employed to construct and train the 
BPNN model. Additionally, the WRF model was implemented using the Random Forest Classifier from the 
Scikit-learn library, with custom adjustments made to incorporate weighting mechanisms.

Parameters setting
To optimize the improved BPNN model based on the WRF framework, this study carefully configured several 
key parameters. Table  2 presents the main parameters and their corresponding values used during model 
training. The number of decision trees in the WRF model was set to 100, based on extensive experimentation and 
cross-validation. This number was chosen to strike a balance between prediction accuracy and computational 
efficiency. While increasing the number of trees can reduce variance and improve stability, it also leads to 
diminishing returns and higher computational costs beyond a certain point. Empirical results showed that 100 
trees offered sufficient ensemble diversity to achieve high prediction accuracy without introducing excessive 
computational overhead. Moreover, this configuration helped mitigate overfitting in the presence of imbalanced 
data by enhancing model robustness. The maximum depth of each decision tree was set to 10, a parameter that 
directly influences model complexity. Deeper trees are capable of capturing more intricate patterns, but they also 
increase the risk of overfitting, particularly in noisy or limited datasets. Conversely, overly shallow trees may 
underfit and fail to capture key relationships. After testing various depth values ranging from 5 to 20, a depth 
of 10 was selected as the optimal setting. This depth offered a balanced trade-off, allowing the model to capture 
meaningful patterns without overfitting. It also ensured the model remained interpretable—an important factor 
for understanding user behavior on online education platforms. Other parameters were configured based on 
best practices in decision tree modeling and the specific characteristics of the user behavior data. For instance, 
the “gini” criterion was used to measure split quality due to its computational efficiency and effectiveness, 
especially with moderately balanced datasets. The min_samples_split parameter was set to 2, allowing internal 
nodes to continue splitting until all leaves reached purity, which is a standard setting in many decision tree 
implementations.

The selection of hyperparameters in deep learning models—such as learning rate, number of hidden layers, 
dropout rate, and regularization coefficient—is inherently complex and computationally demanding. Although 
this study carefully determined these values based on experimental results using data from an online education 
platform, it remains important to discuss the generalizability of these parameters in similar contexts and the 
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associated cost of their selection. In this study, hyperparameters including a learning rate of 0.001, 50 hidden 
layer nodes, and a regularization coefficient of 0.001 were selected to align with the characteristics of the 
dataset, which comprised user login data, course interactions, and other behavioral metrics. These settings were 
chosen to optimize the performance of the integrated WRF-BPNN model for predicting user behavior within 
the AI-driven online education context. However, these parameter settings may not be universally applicable 
across all platforms or datasets. Variations in user demographics, engagement patterns, or course content may 
necessitate different configurations. For example, if a dataset is skewed toward a small group of highly active 
users, adjustments to the learning rate or the number of hidden layers may be required to prevent overfitting or 
underfitting. For more diverse user behaviors or larger datasets, more complex architectures—such as deeper 
networks or larger batch sizes—may be necessary to effectively capture interaction patterns. Conversely, for 
simpler or smaller datasets, a more lightweight configuration with fewer hidden layers or a lower learning rate 
may still yield satisfactory results.

Hyperparameter tuning is inherently resource-intensive and can significantly increase the time and 
computational cost of model training. While methods such as Grid Search and Random Search are commonly 
used and effective, they become computationally expensive when applied to large datasets or deep learning 
models with many parameters. In this study, the chosen hyperparameters reflect a balance between model 
performance and computational feasibility. Initial parameter selection was conducted using Random Search, 
followed by cross-validation to fine-tune these values, ensuring an optimal trade-off between prediction accuracy 
and training efficiency. To mitigate the high cost of hyperparameter tuning, future work could explore automated 
optimization techniques such as Bayesian optimization or genetic algorithms. These methods provide more 
efficient exploration of the hyperparameter space and can significantly reduce computational demands without 
compromising model performance.

In practical applications, transferring hyperparameters across different datasets or platforms presents 
another challenge. This study suggests that certain parameters—such as the learning rate and regularization 
coefficient—tend to be relatively robust across varying data characteristics. However, others, such as the number 
of hidden layers or the overall network architecture, may require adjustment based on dataset size and behavioral 
complexity. For large-scale or behaviorally rich datasets, advanced tuning techniques like cross-validation or 
sensitivity analysis can help identify the most impactful parameters. Incorporating domain knowledge into this 
process can further improve both the efficiency and effectiveness of hyperparameter selection. In summary, 
hyperparameter selection is a critical step in model development. In the context of dynamic and diverse 
datasets—such as those from online education platforms—careful consideration must be given to both the 
computational cost and generalizability of the chosen parameters.

Performance evaluation
Figure 4 illustrates the impact of different hyperparameters on the model’s prediction performance. When the 
learning rate is reduced from 0.01 to 0.001, the model’s Accuracy, Recall, and F1-score improve to 92.3%, 89.7%, 
and 90.8%, respectively. This indicates that a lower learning rate helps the model converge more effectively and 
reduces the risk of overfitting. Additionally, the model performs best when the number of hidden layer nodes 
is set to 50. Increasing the nodes to 100 leads to a decline in performance, suggesting that excessive model 
complexity can hinder learning. Furthermore, the model achieves optimal performance with a regularization 
coefficient of 0.001, highlighting the role of appropriate regularization in enhancing generalization.

Figure 5 shows the performance comparison results among different models. The proposed integrated model 
performs well in several benchmark models, especially in three important evaluation indexes: Accuracy, Recall 
and F1-score, which are significantly improved compared with other models. Firstly, in terms of accuracy, the 
proposed ensemble model (WRF + BPNN + CNN + Attention) reaches 92.3%, which is obviously improved 
compared with the traditional BPNN (87.3%) and the unweighted random forest (89.2%). In addition, the CNN 

Parameter name Parameter description Set value

n_estimators The number of decision trees in WRF 100

max_depth Maximum depth of decision tree 10

min_samples_split Minimum number of samples required to segment internal nodes 2

min_samples_leaf Minimum number of samples required for leaf nodes 1

max_features The maximum number of features to consider when finding the best split “auto”

criterion The standard used when building the tree, “gini” or “entropy” “gini”

learning_rate Learning rate in the training process of BPNN 0.001

hidden_layers The number of hidden layers in BPNN, in the format of “number of layers _ number of nodes” “2_50”

epochs The number of iterations in the training process 200

batch_size Number of samples used in each iteration 32

activation_function Activation function for hidden layer and output layer “relu”

optimizer An optimizer for updating the model weights “adam”

dropout_rate Dropout ratio for regularization to prevent over-fitting 0.2

weight_decay L2 regularization term, which is used to control the model complexity 0.001

Table 2.  Key parameters used in model training and their set values.
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and LSTM are 90.5% and 90.1% respectively, while the accuracy of extreme gradient boosting (XGBoost) is 
91.0%. It shows that the integrated model is not only superior to the traditional single model (such as BPNN 
and unweighted random forest), but also surpasses other deep learning methods, such as CNN, LSTM and 
XGBoost. This shows that the integration method can better handle complex user behavior data by combining 
the advantages of different models, thus improving the overall prediction accuracy. In the recall rate, the 
performance of the proposed integrated model is equally outstanding, reaching 89.7%. This result is obviously 
higher than other models, especially traditional BPNN (84.1%) and unweighted random forest (82.4%). In 
addition, the recall rates of CNN, LSTM and XGBoost are 85.3%, 86.2% and 87.5% respectively. Improving 
the recall rate means that the model can better identify minority samples and reduce the situation of missing 
detection. The integrated model shows great ability in this respect, especially when dealing with unbalanced data, 

Fig. 5.  Performance comparison results among different models.

 

Fig. 4.  The influence of different parameters on the prediction results of the model (the abscissa “1” in 
the figure is learning _ rate = 0.01; “2” is learning _ rate = 0.001; “3” is hidden _ layers = 50; “4” is hidden _ 
layers = 100; “5” means regularization coefficient = 0.01; “6” is regularization coefficient = 0.001).
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which can better capture the feature information of minority categories and further improve the practicability 
and reliability of the model. F1 score, as an indicator of comprehensive consideration of accuracy and recall, 
directly reflects the overall performance of the model. In terms of F1 score, the score of integrated model reaches 
90.8%, which is significantly higher than all benchmark models. The F1 score of traditional BPNN is 85.6%, that 
of unweighted random forest is 85.6%, that of CNN and LSTM is 87.8% and 88.1%, and that of XGBoost is 89.2%. 
The integrated model achieved the highest F1 score among all compared models, indicating its strong overall 
predictive capability by balancing both accuracy and recall. This balanced performance helps avoid the common 
pitfall of overemphasizing one metric at the expense of the other. Overall, the proposed model demonstrates 
clear advantages in accuracy, recall, and F1 score, particularly when handling complex user behavior data. It 
effectively addresses the limitations of traditional models and enhances prediction accuracy. Compared to other 
advanced deep learning methods such as CNN, LSTM, and XGBoost, the ensemble model—by combining the 
strengths of WRF, BPNN, and MHAM—offers superior overall performance, improved generalization, and 
greater application potential.

Figure 6 presents the cross-validation results. Increasing the number of folds from 5 to 10 improves the 
model’s average accuracy, recall, and F1 score to 92.3%, 89.7%, and 90.8%, respectively. However, further 
increasing the folds to 15 causes a slight decline in performance. This suggests that 10-fold cross-validation 
offers a good balance, ensuring strong generalization while avoiding over-fitting.

Figure 7 illustrates the relationship between training time and predictive performance. As the data volume 
increases, training time grows linearly, while accuracy, recall, and F1 score also improve. Specifically, when the 
dataset size rises from 50,000 to 200,000, accuracy increases from 91.3 to 92.3%, recall from 88 to 89.7%, and F1 
score from 89.6 to 90.8%. This indicates that larger datasets enhance the model’s predictive ability, but require 
greater computational resources.

Figure 8 illustrates the impact of different user behavior features on the model’s prediction results. Using 
the correct answer rate as a feature yields the highest accuracy, recall, and F1 score—92.3%, 89.7%, and 90.8%, 
respectively. This highlights the correct answer rate as a key predictor that significantly enhances model 
performance. Features like learning time and course clicks also improve the model’s performance, though to a 
lesser extent. In contrast, interaction frequency has relatively little effect on the model’s accuracy.

Figure 9 compares the proposed improved integrated model with several benchmark algorithms. All 
experiments were conducted on the same dataset, and multiple evaluation metrics were recorded for each 
model to assess the superiority and effectiveness of the improved integrated model. The results show that 
performance differences between the improved WRF-BPNN ensemble model and traditional models like SVM, 
Neural Networks, and LightGBM are statistically significant. Paired t-tests confirm that the integrated model 
outperforms others in accuracy, recall, and F1 score, with all p-values below 0.05, indicating strong statistical 
significance.

Compared to SVM, the improved integrated model clearly excels at handling nonlinear relationships and 
high-dimensional data. While SVM performs well on small datasets, its effectiveness decreases with larger, more 
complex data. In contrast, the integrated model leverages the strengths of both WRF and BPNN to effectively 
manage large-scale data and capture nonlinear patterns. Against Neural Networks, the integrated model achieves 
higher recall and F1 scores, particularly in addressing class imbalance. Although neural network has strong 
feature-learning capabilities, it often struggles to detect minority classes in imbalanced datasets. The weighted 
mechanism in WRF enhances minority class recognition, helping maintain strong predictive performance 

Fig. 6.  Cross-validation results.
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under imbalance. Compared to LightGBM, the integrated model offers better prediction accuracy and stability. 
LightGBM, a fast and efficient gradient boosting algorithm, performs well on large datasets but can be challenged 
by complex nonlinear relationships and high-dimensional features. By incorporating BPNN’s nonlinear fitting 
capability, the integrated model better captures these complexities, resulting in superior accuracy and stability.

To assess the competitiveness and originality of the proposed model, this study conducts a direct evaluation 
against four representative works. These works focus on user or student behavior prediction in educational 
settings. To ensure fairness and consistency, the key predictive models from these studies are re-implemented 
on the same test dataset, with all parameter settings replicated precisely as originally reported. Table 3 presents 
a detailed comparison between the proposed ensemble model (WRF + BPNN + CNN + Attention) and the 
benchmark models from the literature.

As shown in Table 3, the results clearly demonstrate the consistent performance advantage of the proposed 
ensemble model (WRF + BPNN + CNN + Attention) over several recent state-of-the-art approaches. In terms 
of accuracy, this model achieved 92.3%, surpassing Luo et al.’s machine learning method by 3.2%, Yildiz Durak 
& Onan’s PLS-SEM + ML approach by 2.0%, Jain & Raghuram’s SEM-ANN model by 1.6%, and Mathur et 
al.’s hybrid SEM-ANN framework by 1.1%. The performance gains are even more notable in recall, where the 
proposed model achieved 89.7%—substantially higher than the baseline models, which ranged from 83.5 to 
86.9%. This demonstrates a stronger capacity to detect minority behavior classes, such as high-engagement users 
or at-risk students, particularly within imbalanced datasets. Additionally, the F1-score—a balanced measure 

Fig. 8.  Influence of user behavior characteristics on prediction results.

 

Fig. 7.  Relationship between training time and prediction performance.
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that considers both precision and recall—reached 90.8%, underscoring the overall predictive superiority of this 
model.

These improvements stem from several targeted architectural innovations. First, unlike traditional machine 
learning methods or shallow ANN/SEM models, this approach incorporates a CNN. The CNN automatically 
and effectively extracts complex local temporal patterns in user behavior data. Examples include login frequency 
trends and time-specific engagement peaks. These patterns are often missed by conventional methods. Second, 
a MHAM is integrated to dynamically reweight the extracted features. This significantly enhances the model’s 
ability to detect critical discriminative cues, such as consistently high-performance behaviors or key course 
interactions. The addition of MHAM also overcomes the limitations of earlier SEM and ANN models, which 
tend to rely on static feature weights or implicitly learned feature relevance. Third, to address the pervasive issue 
of class imbalance in online education datasets, a WRF is incorporated either as a preprocessing component or as 
the core classifier. By applying class-weighting strategies based on node purity, feature importance, and skewed 
class distributions, the WRF significantly enhances the model’s ability to detect minority class instances. These 
include high-value user behaviors and dropout risks. This aspect is often underemphasized in prior studies. 
Finally, a BPNN is employed for the final prediction stage. Leveraging its strong nonlinear fitting capabilities, 
the BPNN models the complex patterns extracted and enhanced through CNN-MHAM and refined via WRF-
based classification.

From the perspective of academic innovation and competitive performance, the core strength of this study lies 
in its deep integration of four components. These are CNN (for feature extraction), MHAM (for dynamic feature 
weighting), WRF (for handling class imbalance), and BPNN (for nonlinear modeling). All components work 
together within a unified predictive framework. This architecture is specifically tailored to the high-dimensional, 
temporally structured, locally dependent, nonlinear, and highly imbalanced nature of user behavior data on 
AI-driven online education platforms. Compared to traditional machine learning methods or hybrid SEM-
ANN models, which primarily focus on structural relationships and shallow predictive capabilities, this model 
represents a significant technical advancement. It excels in automated feature engineering, adaptive feature 
importance learning, minority class detection, and the modeling of complex behavioral patterns. In particular, the 
CNN-MHAM module’s enhancement of local and discriminative features, combined with WRF’s effectiveness in 
identifying minority behavior patterns, are key drivers of this model’s superior performance—especially in terms 
of recall. These innovations collectively demonstrate the model’s robustness and competitiveness in addressing 
real-world, complex, and imbalanced behavioral prediction tasks in educational settings.

References Model description Accuracy (%) Recall (%) F1-score (%)

Luo et al.50 Machine learning algorithm (based on online behavior) 89.1 83.5 86.2

Yildiz Durak and Onan51 PLS-SEM + ML (partial least squares structural equation modeling + machine learning) 90.3 84.8 87.4

Jain and Raghuram52 SEM-ANN (structural equation modeling - artificial neural network) 90.7 86.1 88.3

Mathur et al.53 Hybrid SEM-ANN (structural equation modeling - artificial neural network) 91.2 86.9 89.0

Proposed (this study) WRF + BPNN + CNN + Attention 92.3 89.7 90.8

Table 3.  Model performance comparison results.

 

Fig. 9.  Performance comparison of different models.
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Discussion
An integrated model combining WRF and BPNN is proposed, and by incorporating CNN and MHAM, the 
accuracy and reliability of user behavior prediction on AI online education platforms are significantly enhanced. 
Chi et al. explored the use of a traditional random forest algorithm for predicting user behavior on such 
platforms54. Their findings showed that random forests performed well on large-scale datasets, particularly in 
terms of prediction accuracy. However, traditional random forests often struggle with imbalanced data, tending 
to overlook minority samples, which leads to a low recall rate. To address this issue, this study adopts the WRF 
model, which improves recognition of minority classes and enhances overall prediction performance by weighting 
the prediction results of each decision tree. Experimental results show that the integrated model achieves a recall 
rate of 89.7%, significantly higher than the 82.4% recall rate of the unweighted random forest. This improvement 
confirms the effectiveness of the WRF model in handling imbalanced data and highlights the importance of the 
weighting strategy for identifying minority classes. As Chi et al. noted, WRF effectively mitigated data imbalance 
problems. Xiao et al. examined the application of BPNN for user behavior prediction55. By adjusting the network 
structure and hyperparameters, they improved prediction accuracy to some extent. However, single BPNN 
models can suffer from overfitting and slow convergence when handling complex nonlinear relationships. To 
overcome these limitations, this study proposes an integration method combining WRF and BPNN. In this 
approach, WRF serves as a preliminary classifier, enhancing data processing efficiency and providing more 
accurate initial weight distributions, thereby addressing the shortcomings of standalone BPNN models. This 
allows the BPNN to converge faster and better capture the nonlinear relationships in the data. Experimental 
results show that the integrated model achieves an accuracy of 92.3%, approximately 5% points higher than the 
traditional BPNN’s 87.3%, demonstrating the effectiveness of the integration method in improving prediction 
accuracy. Ferdinandy et al. highlighted the importance of cross-validation in model training and examined how 
the generalization ability changed with different fold numbers56. While their study concluded that 10-fold cross-
validation is preferable, it primarily focused on optimizing single algorithms and did not explore integrated 
models in depth. In this study, 10-fold cross-validation is applied to the integrated model, and its performance is 
evaluated accordingly. Results indicate that increasing the number of folds improves the average accuracy, recall, 
and F1 score, with 10-fold cross-validation yielding the best generalization. However, when the number of folds 
increases to 15, performance slightly declines, confirming that 10-fold cross-validation strikes a good balance 
between generalization and overfitting prevention. The application of the proposed integrated model in online 
education platforms holds significant practical value. Accurate user behavior prediction helps platforms better 
understand user needs, optimize course recommendations, and personalize learning paths, thereby enhancing 
user experience and learning outcomes. Furthermore, the model’s strong performance with imbalanced data 
is crucial for identifying minority user behaviors, enabling the platform to serve diverse user groups more 
effectively.

Conclusion
Research contribution
The main contribution of this study is the proposal and exploration of an improved BPNN model based on 
WRF to address user behavior prediction in AI-driven online education platforms. First, WRF is introduced as a 
preprocessing step to effectively tackle data imbalance challenges common in such platforms. By using ensemble 
learning, WRF enhances the model’s ability to recognize minority classes, thereby improving overall prediction 
performance. Second, the BPNN model employs the backpropagation algorithm to optimize weights, enabling 
it to better capture and fit the nonlinear relationships in user behavior data, which further boosts prediction 
accuracy and generalization. Finally, WRF and BPNN are integrated into a unified model. Its performance is 
optimized through cross-validation and hyperparameter tuning, demonstrating the method’s effectiveness and 
reliability in practical applications.

Although the proposed model is developed and validated for user behavior prediction on AI-enabled online 
education platforms, its core design principles and technical components exhibit strong generalizability. This 
suggests significant potential for broader applications. The model integrates several widely used machine 
learning and deep learning techniques: CNN, which effectively captures local patterns and spatial-temporal 
dependencies; MHAM, which dynamically identifies and weights key features; WRF, which addresses class 
imbalance and improves recognition of minority classes; and BPNN, known for robust nonlinear modeling 
capabilities. These components are not limited to a specific domain, making the model adaptable to a variety 
of complex prediction tasks. Its main strength lies in handling data characterized by high dimensionality, 
complex temporal or sequential patterns, strong local dependencies, pronounced nonlinearity, and imbalanced 
class distributions. This makes it well suited for user or customer behavior prediction across diverse domains, 
including:

	(1)	 E-commerce platforms: Predicting user purchase intent, click behavior, churn risk, or identifying high-val-
ue customers. E-commerce data typically involve rich interaction sequences (e.g., browsing, clicking, add-
ing to cart, purchasing), high-dimensional features (e.g., product attributes, user profiles), and imbalanced 
behavior classes (e.g., buyers vs. browsers).

	(2)	 Social media analytics: Forecasting user engagement (likes, comments, shares), topic virality, or community 
affiliation. Social media data streams are highly temporal and diverse, with large variations in user activity 
levels.

	(3)	 Fintech and risk management: Applications include credit scoring, fraud detection, and behavioral fore-
casting in personal finance. These tasks involve complex transactional sequences and rare but critical events 
(e.g., fraud), demanding accurate pattern recognition and effective handling of data imbalance.
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	(4)	 Smart healthcare and health management: Predicting disease risk, treatment adherence, or intervention 
effectiveness. Healthcare data are similarly high-dimensional, sequential (e.g., biometric monitoring), and 
often imbalanced due to the rarity of certain conditions. Successfully adapting this model to new domains 
requires domain-specific feature engineering and, where necessary, model fine-tuning. The input layer must 
be reconfigured to match the dimensionality of the new feature set. More importantly, CNN components 
may need adjustments to kernel size and stride to effectively capture domain-relevant local patterns—for 
example, browsing sequences in e-commerce or transaction windows in financial data. The MHAM com-
ponent can automatically learn dynamic feature weights in the new context. The WRF module’s weighting 
strategies—based on node purity, feature importance, and class distribution—are inherently generalizable 
and remain effective for addressing class imbalance. The BPNN can be retrained or fine-tuned on new 
data to model complex, domain-specific nonlinear relationships. Overall, the model architecture offers a 
robust and flexible foundation. Although this study focuses on the online education context, the proposed 
ensemble model demonstrates strong generalizability and transferability for user behavior prediction across 
various domains. A key direction for future research involves deploying and evaluating the model across 
diverse application areas, such as e-commerce and financial risk assessment. This will help further validate 
its robustness, scalability, and practical applicability. These efforts aim to facilitate the model’s adoption 
across a broader range of user behavior prediction tasks.

Future works and research limitations
Although the improved BPNN model based on WRF has shown significant success in predicting user behavior, 
several areas still require further investigation and enhancement. Data imbalance remains a major challenge in 
online education platforms. While existing methods have made progress, there is room for improvement. Future 
research should explore more advanced weighting strategies and sampling techniques to better identify minority 
classes. Additionally, incorporating cutting-edge methods such as transfer learning and generative adversarial 
networks could more effectively utilize limited minority class data, improving the model’s generalization and 
adaptability. Further work could also examine more complex ensemble learning frameworks and deep learning 
models to enhance predictive performance and better handle complex data. For example, combining different 
ensemble approaches with deep learning techniques may yield more robust and adaptable prediction systems. 
Finally, developing customized feature engineering and model optimization methods tailored to specific types of 
user behavior data could uncover deeper insights, thereby improving prediction accuracy and reliability.

Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author Zhensen 
Liang on reasonable request via e-mail zhensenl97@gmail.com.
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