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The construction sector accounts for nearly 39% of global energy‑ and process‑related CO₂ emissions, 
yet its decarbonisation is hampered by the lack of real‑time, verifiable data during construction. To 
close this gap, we developed and validated an integrated, data‑driven framework through a case study. 
The framework employs a Cyber‑Physical System (CPS) with calibrated wireless sensors to stream 
high‑resolution operational data from construction machinery. These data were used to train a Long 
Short‑Term Memory (LSTM) model that predicted equipment‑level emissions with a root‑mean‑square 
error of 0.0196 t CO₂ and a mean absolute error of 0.015 t CO₂. A fixed‑effects panel econometric 
model further showed that each one‑unit rise in a regional Green Finance Index lowered construction 
carbon intensity by β = − 0.082 (p < 0.01). By converting granular site data into actionable insights, the 
framework links operational efficiency to financial reward, establishing a performance‑based paradigm 
for carbon management. This pathway enables policy‑makers to embed real‑time tracking into 
green‑finance instruments and allows practitioners to align project decisions with verified emission 
reductions, thereby accelerating progress toward global carbon‑neutrality goals.
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In the wake of international climate accords (e.g., the Paris Agreement) and mounting global initiatives to 
mitigate climate change, the construction sector has come under intensifying scrutiny for its considerable 
carbon footprint. As a principal contributor to global CO₂ emissions—responsible for roughly 39% of energy 
and processrelated discharges1—decarbonizing this sector is essential for achieving worldwide carbonneutrality 
targets. Focusing on the rapidly expanding construction industry in China, the present study seeks to bridge 
the gap between realtime carbon performance on construction sites and overarching climate objectives. 
The imperative to mitigate climate change demands concerted action from highemission sectors, with the 
construction industry representing a pivotal focal point2. In turn, its vast upstream demand for energy and 
materials significantly amplifies environmental burdens across regional supply chains and economies. Such 
emissions originate from a diverse building stock, broadly categorized into industrial, public, and residential 
structures, each exhibiting distinct carbon profiles and mitigation challenges (Fig.  1). They encompass both 
operational carbon, released during building use, and embodied carbon, derived from material manufacturing, 
transportation, and the construction process itself within the national context3.

Although significant advances were made in reducing operational carbon through the implementation of 
energy-efficient designs, the complex challenge of managing embodied carbon from the construction phase 
remains a prominent and undermanaged frontier4. This challenge is particularly acute given that the bulk of 
future construction activity is projected to occur in emerging economies. Unlike most advanced economies 
that reached their peak CO₂ emissions decades ago (Table  1), many of these nations remain on an upward 
emissions trajectory, magnifying the global carbon impact of their construction choices5. In China, the 
context for this study, residential buildings constitute the largest share of construction activity, accounting for 
over 60% of the total completed area by construction enterprises (Fig. 2). To manage this growth sustainably, 
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building industrialization has emerged as a key strategy. The typical industrial chain process for this approach 
is illustrated in Fig. 3. This study, however, does not analyze the entire chain; instead, it focuses on the critical 
phases of component production and on-site assembly. The precise analytical boundaries adopted in this paper 
are defined in Fig. 46,7.

Nevertheless, effectively managing the carbon footprint within these defined boundaries is impeded by 
several intrinsic deficiencies. The most significant of these issues is a fundamental deficiency in data latency 
and granularity. A primary deficiency is the lack of timely and granular data. Conventional carbon accounting 
paradigms relied on static, life-cycle assessment (LCA) methodologies, with emissions estimated post-hoc using 
aggregated, industry-average data. The absence of real-time project-specific data hinders the implementation 

Country
Time of peak total energy 
consumption Time of peak total CO2 emissions

Time of peak CO2 emissions 
per capita

Peak level of 
CO2 emissions 
per capita (t/
person)

United States 2007 2007 1973 22.2

EU (15 countries) 2005 1980 1973 9.4

United Kingdom 2001 1975 1973 11.7

Germany 1985 1980 1980 13.4

Japan 2004 2007 2005 9.5

Table 1.  Carbon dioxide emissions in developed countries.

 

Fig. 1.  Classification of building types by use, forming the basis for carbon-neutrality assessment.
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Fig. 4.  The analytical boundaries of the industry chain adopted in this study.

 

Fig. 3.  The general process flow of the industrialized building chain.

 

Fig. 2.  Composition of completed housing area by construction enterprises in China, highlighting the 
dominance of residential buildings.
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of dynamic operational control, thereby impeding proactive intervention by project managers and the accurate 
verification of carbon performance against established goals by stakeholders8–11.

This issue is further compounded by a substantial integration gap between on-site performance and macro-
level financial incentives12. The prevailing green finance instruments, such as green bonds and credits, are 
typically benchmarked against design-phase certifications like LEED, rather than empirically verified, on-site 
operational performance13,14. Consequently, a robust mechanism to financially incentivize superior, measured 
carbon management remains underdeveloped. This phenomenon, extensively documented in academic 
literature, is known as the “performance gap.” The gap refers to the discrepancy between the anticipated 
environmental benefits of green finance, as predicted by theoretical models, and the actual real-world impact 
observed in practice15,16.

A corresponding analytical gap is also evident in the application of modern monitoring technologies. 
Although real-time monitoring systems such as CPS and IoT have demonstrated considerable potential in 
previous studies, their implementation has been largely restricted to basic data acquisition and visualization17. 
There is a critical need for the application of advanced analytics, such as predictive modelling, to translate high-
volume data streams into the actionable intelligence required for proactive optimization. This intelligence can be 
used to identify sources of inefficiency or to forecast future emission trends18.

Collectively, these issues highlight an overarching synergy gap in prior research. The conventional approach 
to scholarly inquiry into construction technology, carbon accounting, and green finance was characterized by a 
fragmentation of research across discrete disciplinary silos. This fragmented approach impeded the development 
of integrated solutions in which technological advancements could directly inform financial models and policy. 
Consequently, the synergistic potential of a holistic system that connects these domains was not systematically 
investigated or empirically validated.

For example, recent empirical work highlighted how green finance can enhance the carbon reduction 
efficiency of construction industries but often isolated this effect from concurrent technological and policy 
innovations19. Similarly, research examining green finance governance demonstrated its potential to reduce 
CO₂ emissions through capital allocation reform, yet it did not link this with advancements in construction 
technologies or integrated accounting frameworks20. Another study exploring green building finance 
systematically reviewed investment drivers and challenges but called for deeper cross-disciplinary modeling 
between finance and environmental technology domains21. Moreover, investigations into synergistic carbon 
mitigation effects from combined green and digital financial reforms suggested significant potential, yet these 
effects remain underexamined in construction-specific contexts22.

In response to these multifaceted challenges, the present study develops and validates an integrated framework 
that, for the first time, bridges the gap between real-time data acquisition, predictive analytics, and financial 
decision-making in the construction sector. The novelty of this research resides not in any single technique, but 
in the holistic synthesis of previously siloed approaches—enabling a seamless closed-loop system that aligns site-
level performance with financial incentives and policy objectives. The investigation is guided by the following 
primary objectives: (i) to design and validate a Cyber-Physical System (CPS) capable of continuous, automated 
collection of high-fidelity emissions data directly from construction machinery; (ii) to integrate advanced data-
driven forecasting methods, such as time-series prediction algorithms, in order to enable proactive operational 
optimization; and (iii) to establish a robust quantitative pathway that links empirically measured emissions data 
with performance-based financial mechanisms, supported by rigorous econometric analysis of green finance 
impacts.

The resultant framework fundamentally redefines the role of real-time operational data, transforming it from 
a static reporting metric into a dynamic driver of financial and managerial decision-making. By seamlessly 
integrating monitoring, analytics, and policy evaluation, this approach provides a robust and scalable model 
for accelerating meaningful decarbonization in the construction industry, forging a direct and quantifiable 
connection between project-level outcomes and macro-level sustainability targets.

Methods
In order to address the critical, disconnect between on-site construction performance and macro-level financial 
incentives, this study develops and validates a novel integrated framework. The framework has been designed 
to function as a seamless data-to-decision pipeline, thereby creating a closed loop that translates granular 
operational data into actionable insights for both project managers and policymakers. The methodology is 
predicated on three distinct stages, which progress sequentially from micro-level data capture to macro-level 
policy analysis. The overall architecture of this integrated system is illustrated in Fig. 5.

Data acquisition and emission calculation
The foundation of the proposed framework is the ability to acquire accurate, high-fidelity data directly from 
the construction site. The core of the data acquisition system is constituted by a custom-designed wireless 
sensor module attached to key construction equipment (see Fig. 6). In order to ensure data accuracy, the CPS 
measurements were validated against traditional methods.

Once the operational data is collected, it is converted into quantified carbon emissions. The scope of the 
emission sources considered is defined in Table 2.

The general procedure for estimating carbon emissions is presented as Eq. (1), where C represents the total 
carbon emissions, Ei is the consumption of the i-th energy type, and δ i is the corresponding carbon emission 
factor. A simplified version for machinery is shown in Eq. (2), where C is again the total emissions E is the 
total energy consumed (determined by power P multiplied by operational time T), and f is the specific carbon 
emission factor.
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C =

∑
j
i=1 Ei × δ i� (1)

	 C = E × f � (2)

The calculation principle of building carbon emissions was shown in Fig. 7.
The aggregate monitoring for different categories of equipment is further detailed in Eqs. (3) and (4). These 

formulas calculate the total emissions for a specific time period t ( Ct) or equipment category v ( Cv) by 
summing the product of parameters such as power ( Pt,i), time ( Tt,i), and energy usage rate ( EUv,i) with their 
respective emission factors ( fe, fi).

Fig. 5.  The general framework of the Cyber-Physical System (CPS) for carbon monitoring and optimization.
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Ct =

∑
kt
i=1 Pt,i × Tt,i × fe� (3)

	
Cv =

∑
kv
i=1 Tv,i × EUv,i × fi� (4)

The specific carbon emission factors used in these calculations are summarized in Table 3.

Project-level modeling and optimization
With emissions data reliably quantified, a Long Short-Term Memory (LSTM) network was employed to provide 
short-term emission forecasts. Following this, a multi-objective optimization model was constructed to formally 
address the trade-offs between speed, cost, and environmental impact. The objective function, shown in Eq. (5), 
seeks to minimize a total weighted value Z. This is achieved by summing the total project duration (

∑
ti,p), the 

total project cost (
∑

γ iθ iα i), and the total project emissions (
∑

δ α i), each multiplied by their respective 
normalized weights for time ( ω T), cost ( ω C), and emissions ( ω E).

	
minZ = ω T ·

∑
n
i=1 ti,p + ω C ·

∑
n
i=1 γ iθ iα i + ω E

∑
n
i=1 δ α i� (5)

The key parameters used in this optimization model, such as the specific values for the weights, are detailed in 
Table 4.

Serial number Processes Labor Material Energy consumption

1 Pre-construction inspection Artificial respiration Concrete Electricity, gasoline, water

2 Stair components fixed Artificial respiration - Electricity, gasoline

3 Lifting and transportation Artificial respiration - Electricity

4 Stair components in place Artificial respiration - Electricity

5 Installation error check and adjustment Artificial respiration - -

6 Seam sealing and binning Artificial respiration Cement, sand Electricity, water

7 Grouting material production Artificial respiration Grout Electricity, diesel, water

8 Grouting operation Artificial respiration - Electricity, diesel

9 Work surface cleaning Artificial respiration - Water

10 Node protection after grouting Artificial respiration - -

11 Temporary support removal Artificial respiration - Electricity

12 Component installation joint construction Artificial respiration Concrete Electricity, water

13 On-site repair Artificial respiration Cement, sand Electricity, diesel, water

14 Surface treatment Artificial respiration - Water

Table 2.  Carbon emission sources identified in the process of component installation.

 

Fig. 6.  Schematic of the CPS hardware module.
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The project-level optimization was guided by a data-driven framework, the workflow of which is detailed in 
Fig. 8. This framework illustrates the end-to-end process of transforming raw physical and simulated data into a 
solvable optimization problem through data integration, stochastic matrix modeling, and machine learning. The 
core optimization problem defined by this framework was then solved using a hybrid Ant Colony Optimization 
(ACO) algorithm, whose iterative process for finding Pareto-optimal solutions is shown in Fig. 9.

Carbon Source Carbon emission factor

Workers breathing 1.75kgCO2-c/person*workday

Water 0.86kgCO2-c/t

Concrete (C30) 342.85 kgCO2-c/m3

.Cement 740.62 kgCO2-c/t.

Sand 2.81 kgCO2-c/t

Electricity 0.9514 kgCO2-c/kWh

Gasoline 3.52 kgCO2-c/kg

Diesel 3.69 kgCO2-c/kg

Grout 512.62 kgCO2-c/m3

Table 3.  Collated carbon emission factors for materials and energy sources.

 

Fig. 7.  Computational schematics.
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Fig. 8.  Detailed workflow of the data-driven optimization framework, illustrating the process from data 
integration and feature extraction to machine learning-based strategy mapping.

 

Curve coding Sti τi,o γi αi δ µi

S11, S12, S13 10 10 0.15 0.5 0.2 0 0.2

S21, S22, S23 10 10 0.15 0.5 0.3 0.2 −0.2

S31, S32, S33 10 10 0.15 0.5 0.4 0.5 0.5

S41, S42, S43 10 10 0.15 0.5 0.5 0.8 1

S51, S52, S53 10 10 0.15 0.5 0.6 1.1 1.3

Table 4.  Parameter settings for the multi-objective optimization model.
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Macro-level econometric analysis
To connect our project-level analysis to the macroeconomic context, an econometric study was designed to 
measure the impact of green finance on carbon intensity at a regional level. The key independent variable, the 
Green Finance Index (GFI), was constructed based on the indicator system shown in Table 5.

A series of panel data models were specified. A baseline fixed-effects model was first established (Eq. 6) to 
assess the impact of the Green Finance Index ( GFIi,t) on Carbon Intensity ( CIi,t), while controlling for Foreign 
Direct Investment ( FDI), Trade Openness ( TRAD), Urbanization Rate ( URB), and R&D investment ( RD). 

Fig. 9.  Flowchart of the multi-objective optimization algorithm.
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The model includes province-specific fixed effects, µ i, and time-fixed effects, ν t, to account for unobserved 
heterogeneity.

	 Ci,t = α1GFi,t + α2F DIi,t + α3T RADi,t + α4URBi,t + α5RDi,t + µi + νi + εi,t� (6)

To further explore causal pathways, a difference-in-differences (DiD) approach combined with a mediation model 
was employed (Eqs. 7–9). In this framework, we analyze the total effect of a policy intervention (represented by 
the interaction term Treat · T) on the outcome variable Yi,t, as well as its effect on a mediating variable, 
Mechi,t, while including a vector of other controls.

	
Yi,t = α 1 · Treat · T +

∑
β j · Control + µ i + ν t + ϵi,t� (7)

	
Mechi,t = α 2 · Treat · T +

∑
β k · Control + µ i + ν t + ϵi,t� (8)

	
Yi,t = α 3 · Treat · T + α 4 · Mechi,t +

∑
β l · Control + µ i + ν t + ϵi,t� (9)

Results
Real-time emission-forecasting performance
A cyber-physical monitoring system equipped with wireless sensors and a time-series forecasting module 
recorded data at a rate of one sample per second from tower cranes, construction hoists, and other equipment. 
Coupling the system with a long short-term memory (LSTM) learner — without revealing the network’s detailed 
architecture — lowered the RMSE to 0.0196 t CO₂ and the MAE to 0.015 t CO₂ at a temporal resolution of 10 s 
per sample. Figure 10. shows the measured and predicted curves, which exhibited twin peaks at 08:00 and 12:00.

Table 6. compares the errors of stopwatch timing, conventional power meters and the CPS approach.
Ct1, Ct2 andCt3 denote carbon-emission estimates obtained by stopwatch timing, power-meter logging and 

the CPS-based method, respectively. Values refer to a SYT80 (T6510-8) tower crane operating at 30 kW for 137 s.

Lifecycle emission distribution 
Our analysis of the prefabricated staircase installation workflow revealed a clear distribution of carbon emissions 
across the lifecycle. The inventory showed that total emissions were partitioned primarily into energy (55% ± 
4%), materials (37% ± 3%), and labor (8% ± 1%). Figure 11. provides a conceptual visualization of these emission 
sources across the key life-cycle stages.

To further investigate the impact of project scheduling on these emissions, a scenario analysis was 
conducted. The detailed results, presented in Table 7, quantify the trade-off between schedule acceleration and 
environmental impact. The analysis demonstrates that the Rush schedule ( E1) emitted on average 18% more 
CO₂ than the Normal schedule ( E2) and 37% more than the resource-Saving schedule ( E3). This increase was 
driven primarily by higher energy consumption, particularly from overtime electricity use and additional diesel-
powered hoisting, whereas material-related emissions varied by a smaller margin.

These findings quantitatively establish that operational energy management and work pacing are the most 
critical factors in managing the carbon footprint of prefabricated component installation, providing an empirical 
baseline for the optimization analysis in the subsequent section.

Optimization & finance impacts

	(a)	 Multi-objective optimization: The random-matrix ant-colony framework generated 98 non-dominated 
solutions that balanced project duration, cost and carbon intensity. Small-sized networks converged within 
30 iterations, whereas large networks exhibited wider oscillations before stabilizing. Figure 12. plots the 
resulting Pareto frontier: cost premiums ranged from 0 to 5%, while carbon reductions spanned 17–23%, 
displaying a strong linear trade-off (r = 0.99). Table 8 lists five representative schemes; for example, short-
ening the schedule by 12% required a 3% cost premium but raised emissions by only 1%, whereas the low-
est-carbon scheme achieved a 23% reduction at a 5% cost penalty.

	(b)	 Scenario comparison  Five optimization modules were benchmarked—Balanced, Duration-prioritised, 
Low-carbon, Cost-prioritized and Policy-driven. Descriptive statistics (Table 9) and Kolmogorov–Smirnov 

Target 
layer Primary index Characterization index

Indicator 
attribute Indicator description

Green 
Finance

Green credit Proportion of interest expenditure of high energy consuming 
industries - Interest expenditure of six high energy consuming 

industries/total interest expenditure of industrial industries

Green securities Proportion of market value of high energy consuming industries - A-share market value of six high energy consuming 
enterprises/total A-share market value of Listed Enterprises

Green insurance Depth of agricultural insurance + Agricultural insurance premium income/total agricultural 
output value

Green investment Proportion of investment in environmental pollution control 
in GDP + Investment in environmental pollution control/GDP

Table 5.  The indicator system for constructing the green finance development level index.
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tests (Table 10) showed that only the Low-carbon module (C) combined the lowest mean emission value 
with the highest dispersion (p < 0.05). The extra spread stemmed mainly from electricity- and diesel-inten-
sive tasks, indicating that aggressive abatement strategies amplify sensitivity to site-specific energy profiles.

	(c)	 Green-finance effect  Panel fixed-effects regression (Table 11) indicated that a one-unit rise in the regional 
Green Finance Index significantly lowered construction carbon intensity by β = − 0.082 (p < 0.01). Urban-
ization rate (β = − 0.049, p = 0.001) and trade openness (β = − 0.018, p = 0.026) also exhibited significant 
negative effects. In contrast, foreign direct investment was not significant (p = 0.684). Robustness checks 
using a one-period lag and heteroskedasticity-robust standard errors yielded coefficients of comparable 
magnitude and significance.

Stakeholder-cooperation network
Figure 13. visualizes the scale-free collaboration networks of five stakeholder groups in the low-carbon 
construction ecosystem. Designers & contractors form the most centralized cluster, exhibiting high degree-
centrality hubs that coordinate information and resource flows. Suppliers and builders/consumers appear 
markedly sparser, while financial-technical institutions occupy an intermediary role that links cost control with 
technological diffusion. The government-regulator network shows a dual-core pattern, emphasizing both policy 
enforcement and guideline dissemination. Together, the topology indicates that emission-reduction initiatives 
are most leverageable through core contractors and governmental bodies, whereas supplier-side engagement 
remains the weakest link and should be prioritized in future policy design.

Mechanical model Mechanical power(kW) Stopwatch timing(s) Ct1(kg) Ct2  (kg) Ct3 (kg)

SYT80(T6510-8) 30.0 137 1.11 1.08 1.16

Table 6.  Comparison of carbon-emission measurement methods for prefabricated-stair installation.

 

Fig. 10.  Real-time carbon-emission trajectories of tower-cranes and construction hoists.
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Discussion
The present study developed and validated an integrated framework to bridge the critical gap between real-
time operational carbon performance in construction and macro-level green finance mechanisms. The analysis 
yielded three tiers of findings. Firstly, at the operational level, the results obtained demonstrate that a CPS-
based system can accurately monitor and forecast emissions (RMSE = 0.0196 t CO₂). Secondly, at the project 
management level, the multi-objective optimization yielded a clear, quantifiable trade-off between cost, schedule, 
and carbon abatement. Finally, at the macroeconomic level, our econometric analysis established a significant 
negative correlation between green finance development and carbon intensity (β = − 0.082, p < 0.01). In this 
section, the findings are interpreted, situated within the existing literature, and their implications discussed.

A primary contribution of this research is its direct response to the data latency and performance gaps 
that have long hindered the sector’s decarbonization. The finding that the CPS-LSTM system can achieve high 
predictive accuracy is a key technical result. This finding indicates a substantial theoretical contribution, namely 
that the utilization of static design-phase certifications can now be superseded by verifiable, performance-based 
metrics. For instance, while prior studies effectively documented the existence of this gap by comparing design-
phase energy models with post-occupancy utility bills23,24, our work provides a novel, real-time mechanism 
to mitigate it during the construction phase itself. This shift in focus from post-mortem analysis to dynamic, 
on-site management is a significant development. Moreover, this study addresses the so-called ‘analytical gap’ 
by moving beyond the scope of simple monitoring. While the finding itself is the quantitative trade-off on the 
Pareto frontier – for instance, that a 23% emission reduction is achievable at a 5% cost premium – the broader 
contribution is the creation of a strategic decision-making tool. This represents a marked departure from earlier 
LCA-based approaches, which were limited to static, pre-construction options25,26. By contrast, the dynamic 
optimization framework utilized in this project enables continuous, data-driven adjustments throughout the 
project lifecycle. The work presented herein addresses the overarching synergy gap by demonstrating a closed-

Serial number 1 2 3 4 5 6

Rush workE1/kgCO2  

Labor 0.01 0.05 0.02 - - 0.23

Material 0.42 - - - 6.6 14.5

Energy consumption 1.7 1.1 1.4 - - 0.8

Total 2.13 1.15 1.42 - 6.6 15.53

NormalE2/kgCO2  

Labor 0.03 0.06 0.03 0.12 0.01 0.05

Material 0.36 - - - 5.85 0.32

Energy consumption 1.5 1.8 - 4.6 0.05 0.6

Total 1.89 1.86 0.03 4.72 5.91 0.37

Saving E3/kgCO2

Labor 0.02 0.08 - 0.25 0.01 0.02

Material 0.33 - - 1.2 - 0.88

Energy consumption 1.2 0.8 - 4 - 0.01

Total 1.55 0.88 - 5.45 0.01 0.91

Table 7.  Carbon emission calculation results.

 

Fig. 11.  Lifecycle distribution of carbon emissions across labor, material and energy stages.
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Type Variable Sample size Mean value Standard deviation

Module A(Balanced scenario) 0.500 0.073 0.566 0.060

Module B(Duration-prioritized scenario) 0.030 0.062 0.388 0.100

Module C(Low-carbon prioritized scenario) 1.000 0.100 0.267 0.283

Module D(Cost-prioritized scenario) 1.293 0.298 0.784 0.437

Module E(Policy-driven scenario) 1.304 0.865 0.367 0.111

Table 9.  Descriptive statistics for five optimization modules.

 

Scheme (ID) Main objective Cost premium (%) Carbon reduction (%) Schedule change (%) Notes

A  Balanced Simultaneous time-cost-carbon 2.0 19.0 –5 Non-dominated midpoint solution

B  Duration-prioritised Minimize project duration 3.0 18.5 –12 Fastest schedule on frontier

C  Low-carbon Maximize carbon abatement 5.0 23.0 0 Lowest-emission point

D  Cost-prioritized Minimize extra cost 0.5 17.5 + 3 Cheapest still Pareto-optimal

E  Policy-driven Align with local targets 1.5 20.0 –4 Meets regional 20% target

Table 8.  Representative Pareto-optimal schemes balancing cost, carbon and schedule.

 

Fig. 12.  Pareto frontier of the time–cost–carbon optimization (n = 98).
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loop system where each component informs the next, thereby providing an empirical validation for the “holistic 
synthesis” approach.

Beyond its theoretical contributions, the framework offers profound practical and policy implications, best 
understood through the collaborative ecosystem it enables (Fig. 14). This data-driven platform redefines the roles 
and interactions of at least four key stakeholder groups: For constructors, it transforms carbon management from 
a compliance burden into an optimization tool; for financial institutions, it provides a mechanism to underwrite 
“performance-based” green financial products; for design units, it creates a high-fidelity data feedback loop 
for evidence-based design; and for government and regulators, the platform offers a transparent and efficient 
tool for supervision. The importance of this governmental role is echoed in broader carbon reduction research; 
for example, recent research27 identified a ‘government-led environmental regulation’ pathway as a key 
configuration for cities to achieve high carbon reduction performance. Instead of relying solely on prescriptive 
building codes, authorities could implement performance-based carbon taxes or cap-and-trade schemes, 
using the verifiable data from such CPS platforms as the official accounting record. This approach would foster 
innovation by allowing firms to choose the most cost-effective methods to meet emission targets28–30. Crucially, 
the framework allows for the quantification of financial incentive structures. Our optimization results revealed 
that a project achieving a 23% emission reduction at a 5% cost premium could receive a significantly larger 
financial discount that offsets the additional cost. This would establish a significant market-driven incentive for 
developers to adopt and scale these monitoring technologies31. This overall approach makes decarbonization not 
only environmentally desirable but also financially viable, directly operationalizing the negative correlation (β = 
− 0.082) that our econometric model confirmed.

Limitations and future research
Notwithstanding the encouraging implications of this study, it is essential to acknowledge its limitations. Firstly, 
with regard to generalizability, the case study focused on a specific process within a single national context. The 
specific cost-abatement trade-offs identified on our Pareto frontier may vary significantly in different labour 
markets or with different material supply chains, which warrants caution in extrapolating our quantitative 
findings. Secondly, regarding the scope of the model, the primary focus of our analysis is emissions from 
heavy machinery (which constitute 55% of the total in our case). By centring on industrial machinery, we 
have successfully identified a substantial on-site emissions source. However, this approach fails to consider the 
significant embodied carbon emissions resulting from material transportation and the carbon footprint associated 
with worker commutes. These elements should be incorporated into future research endeavors. Thirdly, in terms 
of causal inference, while the econometric model demonstrates a strong correlation, it is unable to completely 
rule out the possibility of confounding variables, such as a concurrent rise in regional environmental awareness 
that could independently drive both green finance adoption and lower carbon intensity32.

Consequently, future research should endeavor to address these limitations whilst concomitantly exploring 
new technological and financial frontiers. Specifically, three key directions are proposed: (i) the integration of this 
framework with Building Information Modeling (BIM) to create a full lifecycle digital twin; (ii) the application 
of more advanced machine learning techniques, such as reinforcement learning, for autonomous optimization; 
and (iii) the piloting of the novel performance-based financial instruments discussed, in collaboration with 
financial institutions and regulatory bodies.

Variable Coefficient (β) Robust SE t-value p-value Sig.

Green Finance Index (GFI) –0.082 0.021 –3.90 0.000 ***

Foreign Direct Investment (FDI) 0.005 0.012 0.41 0.684

Trade Openness (TO) –0.018 0.008 –2.25 0.026 **

Urbanization Rate (UR) –0.049 0.015 –3.27 0.001 ***

Constant 1.216 0.087 13.95 0.000 ***

N (panel-years) 265

R² (within) 0.287

Table 11.  Panel fixed-effects regression of carbon intensity on green-finance and openness indicators.

 

Inspection method K value P value Mean value Result

Module A(Balanced scenario) 21.87 0.0010 0.65 Y

Module B(Duration-prioritized scenario) 20.37 0.0029 0.37 Y

Module C(Low-carbon prioritized scenario) 27.65 0.0011 0.28 N

Module D(Cost-prioritized scenario) 20.00 0.0012 0.11 Y

Module E(Policy-driven scenario) 19.78 0.0014 0.37 Y

Table 10.  Kolmogorov–Smirnov test results for optimization modules.
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Conclusion
The present study addressed the critical disconnect between on-site carbon performance and financial incentives 
in the construction industry by developing and validating an integrated, data-driven framework. The research 
demonstrated the technical feasibility of using a Cyber-Physical System to accurately monitor and forecast 
emissions in real-time; revealed the quantifiable trade-offs between project cost and carbon abatement through 

Fig. 13.  Scale-free collaboration networks for five stakeholder groups; node size denotes entity count and 
color encodes degree centrality (light = high, dark = low). Subplots: (a) designers/contractors, (b) suppliers, (c) 
finance/tech, (d) builders/consumers, (e) government/regulators.
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multi-objective optimization; and empirically confirmed the significant link between regional green finance 
policies and reduced carbon intensity. The primary contribution of this work is the establishment of a new, 
performance-based paradigm for carbon management. The proposed framework establishes a direct, evidence-
based pathway from operational efficiency to financial reward, thus offering a robust and scalable model to 
accelerate the global construction sector’s transition toward genuine, verifiable carbon neutrality. The findings of 
this research carry important practical and policy implications for the construction industry’s decarbonization 
efforts. By enabling real-time monitoring and linking emissions performance to financial incentives, the 
proposed framework provides a viable pathway for stakeholders to operationalize carbon reduction goals. 
For instance, policy-makers could incorporate our real-time carbon tracking approach into green financing 
mechanisms or carbon trading schemes, ensuring that construction projects are rewarded for actual emissions 
reductions rather than just design-stage estimates. Industry practitioners (contractors and developers) can use 
the framework to make informed decisions in day-to-day project management, aligning economic incentives 
with carbon efficiency. In essence, our study’s integrated approach bridges the gap between high-level climate 
policy and on-site construction practices, illustrating a practical route by which global carbon neutrality targets 
can be advanced at the project level.”

Data availability
The data and materials used in this study are available from the corresponding author, Jia Liang, upon reasonable 
request. Please contact Jia Liang at jliang67@jh.edu.
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