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OPEN A study on intuitionistic fuzzy

generating function using T-Norm,
T-Conorm operators to enhance
night-time images for autonomous
driving system

M. S. Ragavendirane & S. Dhanasekar™

Enhancing night-time images is crucial for improving the performance of autonomous driving
systems, which rely on high-quality visual input for accurate decision-making. This study explores the
application of intuitionistic fuzzy generator in combination with T-Norm and T-Conorm operators to
enhance low-visibility night-time images. Unlike traditional image processing methods, intuitionistic
fuzzy set (IFS) incorporates both the degree of belonging and non-belonging aspects of an image
allowing for a more detailed representation of uncertainty in image enhancement. The proposed
method analyzes various aggregation operators, out of which Einstein’s T-Norm, Hamacher’s
T-Conorm, Weber’s T-Conorm and W-probabilistic T-Conorm operators refine contrast, suppress
noise and enhance illumination while preserving critical visual details. Extensive experiments on
night-time driving datasets in contrast with existing state-of-the-art methods demonstrate that

the recommended approach significantly improves image clarity via standard image quality metrics
like SSIM, PSNR and correlation coefficient. Additionally, a sensitivity analysis conducted to assess
the robustness and stability of the IFS components and aggregation operators with respect to the
parameter Y in validating its effectiveness in diverse low-light conditions. The findings indicate that
integrating IFS with some particular T-Norm and T-Conorm operations is an innovative strategy to
improve the autonomous vehicle’s perception in low-light conditions.

Keywords Autonomous driving systems, Intuitionistic fuzzy generator, Intuitionistic fuzzy set, T-Norm and
T-Conorm operators

Recently, researchers have developed ADSs as an emerging technology that diversifies into various applications,
such as object detection, tracking, segmentation and identification. An ADS involves the use of various sensors,
algorithms and computer technologies to navigate and operate vehicles independently, without the need for
human guidance. To develop an ADS, various components, such as cameras, light and radio detection with
ranging, ultrasonic sensors, global positioning systems and an odometer are involved in the perceptional phase of
the system. The system uses these components to identify and categorize obstacles, road conditions, pedestrians
and traffic situations. ADSs are considered innovative results with societal and environmental benefits such as
improved fuel economy, reduced traffic congestion and enhanced road safety'. The rapid growth of AL, deep
learning and cross-sensor processing drives ADS’s development?.

Images play a crucial role in the ADS for object recognition and segmentation, as they provide visual data
that is essential for the system in making accurate decisions and predictions to reduce the traffic accidents caused
by human errors®. Furthermore, the integration of advanced image processing algorithms allows the ADS to
not only detect obstacles and road conditions but also to differentiate between different types of objects such
as vehicles, cyclists and pedestrians. They highly rely on cameras and sensors to perceive these environmental
details. LLIE is used to efficiently improve the visual data by significantly improving the brightness, contrast
and overall quality of images in dimly lit environments for ADSs. Recently, researchers have been working on
making ADS better at seeing things, whereas * described a low-light image enhancement (LLIE) method for
an ADS that uses deep learning and a multi-scale Retinex-based framework that uses Drive-Retinex-net. Deep
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neural networks, along with Retinex theory, yield optimized contrast enhancement and noise suppression in
their illumination and reflectance components, which significantly improves night-time visibility for ADS.
Moreover, the authors in® designed a task-driven image enhancement network to improve high-level image
restoration quality and performance. A network with little memory and a feature identity extraction module
made computations simpler while keeping important features for perceptual tasks. Certainly, the authors in®
proposed a LE-net to enhance night-time driving images. LE-net integrates data augmentation, deep learning
and attention mechanisms to enhance night-time images efficiently. In’, the authors provided a modified
Bright Channel Prior and adaptive gamma correction to enhance visibility with minimal computational cost. It
produces the most appropriate, natural-looking images effectively with low processing time and computational
cost. Moreover,? presents an end-to-end Retinex-based illumination that uses a multi-branch architecture and a
memory gate mechanism to extract and preserve features at different depth levels. Then, in’, the authors suggested
a framework based on convolutional neural networks. It has two parts: one that uses infrared images captured
for ADSs to extract features and the other that improves the images. In'?, the authors introduced a N-LoLiGan to
enhance low-light tunnel images by removing contrast distortion. N-LoLiGan utilizes N-Net which integrates, a
generator with a multi-scale input layer and a convolutional block attention module to improve illumination and
color retention. Meanwhile,!! designed a real-time lane detection model for ADS during low-light conditions. In
this model, zero-reference deep curve estimation++ is used as a LLIE tool to improve low contrast and correct
exposure dynamically by predicting a set of luminance entropy curves that iteratively adjust pixel intensities
for natural enhancement. Then, the authors in!? introduced a field programmable gate array based LLIE by
incorporating Retinex algorithm and coarse grained re-configurable architecture which posses a low latency
rate and power efficient solution beneficiary for various real time tasks. Recently,'!* presented a real-time LLIE
model to improve image visibility during the night which utilizes multi-stage Retinex-based decomposition
for illumination enhancement and vision transformer for enhanced feature extraction. Further, adaptive
light source-aware enlightenment and illumination-aware exposure-balanced fusion modules were employed
to prevent over-enhancement by balancing overall brightness and contrast of the real night-time images.
Thereafter, in'* the authors developed a fine grained vehicle type detector in an ADS using EfficientNet for
low-light conditions where CLAHE and gamma corrections are utilized to improve the recognition capability.
Recently,'” discussed about four major Al-based enhancement techniques: de-blurring, LLIE, de-raining, and
dehazing to adverse some significant weather conditions like rain, fog, haze, darkness and motion blur which
impacts the performance of ADSs.

Zadeh!® introduced fuzzy logic in 1965, which is excellent at dealing with uncertainty and lack of precision
in numerous real-world cases. In image processing, it plays a predominant role while dealing with the vagueness
and uncertainty in boundary pixels and spatial relations within the pixel intensities, which allows multiple levels
of information representation from pixel-level classification to global scene understanding!”1%.

In', the authors introduced an automated image enhancement technique using a parametric index of
fuzziness as an optimization criterion in finding the best S-function for contrast enhancement. Similarly,?
proposed a fuzzy based color image enhancement technique using Gaussian membership function and
global contrast intensification operator which preserves original color composition and provides a balanced
enhancement. Then,?! explored the potential applications of fuzzy logic in image enhancement and quality
analysis due to its superior way of handling uncertainty in image processing inspired by the human way of
reasoning. Meanwhile, in?2 the authors proposed an automatic ridge-let image enhancement algorithm for road
crack detection using fuzzy entropy and divergence which improves the contrast with reducing noise showing
a better crack visibility. Certainly, the authors in?* discussed how effectively fuzzy cardinality can be measured
and applied to image processing tasks such as color histograms and dominant color detection. The three fuzzy
cardinality representations are explored and utilized for computational and linguistic descriptions which making
them more robust and human-like.

However, the limitations of fuzzy set theory can be seen in certain cases where a higher level of precision
and accuracy is required especially in ADSs to make decisions about navigation and obstacle avoidance based
on varying degrees of certainty. Atanassov?! introduced the IFS in 1983 which addresses the uncertainty in a
higher perspective, allowing for a more nuanced approach to handling imprecise information. By incorporating
both membership and non-membership values, IFS can provide a more comprehensive representation of
uncertainty and is successfully applied in various fields, including decision-making, pattern recognition and
computer vision. Intuitionistic fuzzy image processing® emerged to handle vagueness using membership, non-
membership and hesitancy functions to better model uncertainty in image analysis. This approach has shown
promising results in image segmentation, edge detection and image enhancement tasks such as, in?® proposed
an IFS based segmentation approach incorporated with an additional hesitation factor to represent uncertainty
in threshold selection and pixel classification.

Meanwhile,?” proposed an image fusion technique using IFS to improve the clarity, contrast and luminance
of fused images. It utilizes IFS based entropy as an optimizing parameter for image fusion. The authors in*
introduced an image enhancement technique based on IFS in which hyperbolization is applied to amplify
contrast differences between intensity levels. This kind of enhancement improves the visibility of images with
weak edges by highlighting regions of interest while preserving image details. Similarly,*>* proposed a new IFS
based enhancement and clustering algorithm by utilizing a novel IFG to enhance low contrast mammogram
images and to segment their lesions and tumors. Therefore, IFS-based techniques play a crucial role in improving
the quality of medical images for better diagnosis and analysis. Based on these approaches,?'~3* proposed a new
way of enhancing low light and contrast images and image fusion by using Yager’s generating function®® and
Chaira’s generating function?® which is integrated with traditional histogram equalization and contrast limited
adaptive histogram equalization techniques. In a similar way,***” proposed a LLIE for images and videos using
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a new NIFG. Recently,® introduced a LLIE model by using IFG and Retinex theory together resulting in a
superior quality of images under low-light and extremely dark environments.

Aggregation operators are essential mathematical tools used to combine multiple input values into a single
representative output, particularly in the presence of uncertain, imprecise and contradictory information. In the
context of FS and decision-making, aggregation operations like T-Norms and T-Conorms are important because
they help combine evaluations from different criteria and options into one overall score. In recent years, various
types of aggregation operators have been introduced, such as those in***°, which establish Aczel-Alsina power
aggregation operators in the g-rung Orthopair fuzzy environment for decision-making problems involving
complex-valued data, including dam construction site selection and stock market analysis. Similarly,*"4?
established power aggregation and Dombi’s T-Norm and T-Conorm operators through the intuitionistic fuzzy
rough sets for Dublin’s bike-sharing system and solar cell evaluation to handle uncertainty and imprecision better
in the decision making environment. On the other hand, the authors in*>* represented a novel multi-criteria
decision-making framework for analyzing tuberculosis and Zika virus risk factors using Einstein and power
aggregation operators in both arithmetic and geometric perspective for type-2 fuzzy sets and its extensions.

Due to their flexibility in integrating information and adaptability to various fuzzy environments, aggregation
operators allow more robustness in the modeling of real-world complexities. Even in image processing,*> has
introduced a medical image enhancement technique for CT scans, X-rays and pathological images in a type-
2 fuzzy using the Hamacher’s T-Conorm aggregation operator. This operator combines the upper and lower
membership functions of the type-2 fuzzy set, which show enhanced details and preserve important features
of the image. Similar work done for MRI images in*’ by using a modified type-2 fuzzy set with updating the
value ), which is the mean of the highest and lowest intensity of the input MRI image. In image enhancement,
aggregation operators are used to integrate fuzzy information, which helps to improve quality of the image. It
helps in combining contrast, brightness and edge information to produce an enhanced image.

As part of the literature review, different image enhancement algorithms were discussed based on various
settings, including those based on machine learning, deep learning, fuzzy logic and IFS. These algorithms
can be employed in ADS, medical diagnostics, surveillance and various other applications. This current study
represents a new way of enhancing night-time road images for an ADS that integrates the intuitionistic fuzzy
generating function with fuzzy aggregation operators such as T-Norms and T-Conorms to suppress noise and
represent the uncertainty in pixel intensities far better than traditional enhancement techniques. Figure 1 shows
the overall schematic representation of the recommended study. This paper contributes for LLIE of night-time
images which has listed as follows:

« To introduce a new enhancement model for improving visibility in the night-time images for an ADS to
detect obstacles using an intuitionistic fuzzy generator (IFG) associated with fuzzy T-Norm and T-Conorm
operations.

« To demonstrate its superior performance, this study is compared with some traditional and contemporary
enhancement algorithms such as, HE*8, SSR*°, MSR*C, IFI*3, IVIFI®!, Chithra et. al.’, Ravindar et.al.?’.

o To elaborate on its efficiency, the proposed method is validated through a comprehensive evaluation using
standard image quality metrics like SSIM, PSNR and correlation coeflicient.

The remaining paper is structured as follows: Table 1 comprises the abbreviations and acronyms utilized in this
research, Section 2 presents the fundamental concepts required for this study, Section 3 outlines the proposed
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Fig. 1. Overall framework of the proposed study.
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S.no | Abbreviation / acronyms | Full Form

1. ADSs Autonomous driving systems

2. CLAHE Contrast-limited adaptive histogram equalization
3. CT Computed tomography

4. HE Histogram equalization

5. FS Fuzzy sets

6. IFS Intuitionistic fuzzy sets

7. IFG Intuitionistic fuzzy generator

8. IFI Intuitionistic fuzzy image

9. IVIFI Interval-valued intuitionistic fuzzy image
10. | LLIE Low-light image enhancement

11. | LE-net Light enhancement network

12. | LIDAR Light detection and ranging

13. | MRI Magenetic resonance imaging

14. | MSE Mean squared error

15. | MSR Multi-scale retinex

16. | N-LoLiGan Novel low-light unsupervised generative adversarial network
17. | PSNR Peak signal to noise ratio

18. | RADAR Radio detection and ranging

19. | SOTA State-of-the-art-techniques

20. | SSIM Structural similarity index measure

21. | SSR Single-scale retinex

22. | T-Norm Triangular Norm

23. | T-Conorm Triangular Conorm

Table 1. List of abbreviations and acronyms.

methodology of this research work, Section 4 includes the experimental analysis, and Section 5 provides the
conclusion .

Fundamentals

Fuzzy Set

Let P be any universe of discourse, a fuzzy set I is a sub-collection of elements from P represented as
I = {(i,uz(i)) Vi € P}, where u7(i) denotes the membership function of i in . The membership function
(o7 (%) maps each element to a value in the interval [0, 1] which represents the degree of membership.

Intuitionistic fuzzy set
Let PP be the universe of discourse, an IFS I;; on P defined as Iin: = {(4, B, (@), vz, ,(0)V i € P}, where
pz, (i) is called as the membership function and vz, () is called as the non- membersiup function of i in [ns.
Both pq , (i) and v, (i) belongs to the closed interval [0,1] and 0 < pr,, (0 +vp, (1) < 1

Y(z ) is called the hesitation part or intuitionistic index and it is denoted by:

Trie () = 1= (pg,,,, (0) +vi,,,, (9)), o))

where, 0 <7z, (i) < 1.
Similarly, the membership and non-membership functions of an IFS denoted as,

b, () =1—vg () =77 (0), )
Vi () =1 —=pg,, (@) =77, (3), 3)

where, 7. (1) + vy, (i) + 7, (1) = 1.
Central tendency measures
Mean, median and mode represent the central tendency measures®! of an image, which summarize pixel intensity
values, providing insights into its overall brightness and contrast by determining its statistical information.
Mean represents the arithmetic average of all pixel intensities within an image. It provides a measure of
the overall brightness whereas higher mean signifies a brighter image and a lower mean indicates a darker
one. Median is defined as the middle pixel intensity values from an image’s surrounding neighborhood after
sorting them in ascending order. It gives a better representation of typical pixel intensity in a noisy image.
Mode represents the pixel intensity that appears most frequently in an image which gives insight into the most
dominant or recurring intensity value to identify common color, pattern and structure. The mean, median and
mode of an input image I with X X Y dimension can be written as,
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X v
MEAN = XiYZZizy, (4)
a=1 y=1
if X XY isodd,
MEDIAN = %
if X XY iseven,
MEDIAN = XXY 4
MODE = argmaz(I) (5)

Triangular Norms and Conorms

T-Norms (T) and T-Conorm (7™) are operations that extend the concepts of conjunction and disjunction to the
realm of fuzzy logic®2. T-Norms and T-Conorms are binary operators defined on the unit interval [0, 1], which
are functions [0, 1]> — [0, 1] that satisfy commutativity, associativity, monotonicity and possess an identity
element.

o Let 11, lz b~e two fuZZy sets, then T(il,ig) = T(iz, ’il) ;T (il, ig) =T (ig,il).

e Let I,Ip and I3 be three fuzzy sets, then T'(i1,T(i2,43)) = T(T(i1,42),43) ;
T (i1, T (i2,3)) = T™(T" (i1, i2), i3).

o Ifio < i3, then T(il,’iQ) < T(i1,i3) ;T*(il,ig) < T*£i17i3).

. T(’L'170) =1 ;T*(il7 1) =n.Vi1 € I1,i2 € 15,13 € I3.

There are several T-Norm and T-Conorm operations in the literature proposed by Yager®’, Dombi®*, Weber™,
Hamacher®® and Wang®’.

Yager™? suggested the most demanding and the least interchangeable operations via T-Norm and T-Conorm
as Y (i1,42) and Y " (i1, i2) follows.

Y (i1,d2) = 1 — min([(1 — i)™ 4+ (1 —i2)")V™, 1), (6)
Y* (i1, i) = min([iT +i3]”7,1),T > 0. ?)

Dombi* has defined the a general class of fuzzy connectives on the basis of the connection between conjunctive
and disjunctive to measure the fuzziness using T-Norm D(i1, i2) and T-Conorm D™ (i1, 2) as,

1
D(i1,i2) = T
y /T7 (8)
1 T 1 R
1+ (-1 + (5 -1)7)
1
D" (i1,12) = T
_ v\ /7T 9
(G- T &) ®
Weber™ suggested a continuous T-Norm and T-Conorm fuzzy operation as follows

W(il, iz) = max(O, (1 — T)il.ig -+ T(il + 10 — 1)), (10)
W*(i1,i2) = 1 — W(L — i1, 1 — iy). (11)

Hamacher®® developed a parameterized T-Norm H (i1, i2) along with its dual T-Conorm H* (i1, i2) can be
denoted as follows,
o 1192
H (i, = - - —, 12
(Zl 12) T+ (1 *T)(Yq + 122 7Z1.Z2) ( )

1+ 12 —11.09 — (1 — T)’il.ig

H" (i1,12) = 1— (1= )ir.iz

(13)

To inspect any two membership function among IFSs, Wang®” introduced aggregation operators for Einstein
T-Norms and T-Conorms given by E(i1,42) and E* (i1, i2),

11 + 12

E(i1,42) = Trids’ (14)
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e 11.92
E (11,22) =71_ (1 _ 7;1)(1 _ 12)- (15)

Proposed methodology

A new way of operations introduced on images generated via intuitionistic fuzzy generating functions aggregated
based on T-Norm and T-Conorm operators. This process involves (i) fuzzification, (ii) implementation of IFG’s
followed by (iii) T-Norm and T-Conorm operations and (iv) estimation of Y and finally (v) defuzzification to
obtain the resultant enhanced images. The overall workflow of the proposed methodology is illustrated in Figure
2, which presents a structured flowchart depicting each step involved in the implementation process.

Fuzzy image
The images are initially fuzzified using the normalization process which can also be determined as fuzzification
whereas the domain of pixel intensities changes from [0,255] to [0,1].

The FI can be formulated in the zy'" position as,

Hay = )

tmaz — tmin

where i, is the respective pixel level values of the original images, ¢mas and ¢min denote the uppermost and
lowermost pixel intensity values found in image I.

Intuitionistic fuzzy generator®®
On defining an IFG function for FS’s and IFSs. Any function m : [0,1] — [0, 1] isan IFG

m(i)<1—i Viel0,1],

m(0)=1 & m(1) =0. (17)

For every IFG m : [0,1] — [0, 1], there exist a continuous function h such that h(0) = 0 and their fuzzy
complementary function can be written as,

mlp(i)] = h™' [R(1) = A(u(@))]. (18)

START

FUZZIFICATION

l

IFG

DEFUZZIFICATION

I
/ OUTPUT IMAGE / / OUTPUT IMAGE / / OUTPUT IMAGE / / OUTPUT IMAGE /
1 2 3 4
[ [ |

END

Fig. 2. Flowchart of the proposed study.
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W(u(9) = gsteold + w(0) (X + 1, >0
h(0) = ﬁlog[l] =0, (19)
h(1) = ﬁlog[l +(T+1)%,

Considering p(7) as i for simplicity,

(i) = g pyatosld + (T +1)°). (o)

The inverse function can be written as,

i(r+1)%
pro =1 (21)
(T +1)2

from (18), the inverse function (21) can be implemented as follows:

N 1 1+ (T +1)?
m(@) = h ((T+1)2l09(1+i(“r+1)2>>’ 22

substitute (22) in (21) we get the IFG as,

1—1

From (17), the membership function /J;y (2) can be written as,

My = m(ay),
—1_ 1 — pay
1+ proy (T +1)%’ (24)
(L (4 1?)
Yl pey (Y1)

From (23), the non-membership function V;y can be written as,
Vy = M(fly),
1+ M;y(’r + 1)2 ’
1 — Hay(1+(C+1)?)

. 1+pay (T+1)2 (25)
- oy (1H(T+1)2) ’
L+ 5 e (T +1)?
v, = 1 = fay .
T T iy (T4 D22+ (T + 1))
Substitute (24) and (25) in (1), the hesitancy function Il can be written as follows,
Moy =1~ fipy = Voy, (26)
:1_,Ufcy(1+(T+1)2)_ 1 — piay
TF pay (T +1)2 T4 pay(T+1)22+ (T +1)2)
1ty (T + D22+ (Y1) = oy (T DD+ (T D) — 1t pay (o)
14 pay (T 4+ 1)2(2+ (T +1)2) ’
., = Hay

Lt pray (T +1)2(2 4 (T + 1)2)

T-Norm and T-Conorm aggregation
Section 2.4 discusses about different T-Norm and T-Conorm operators from the literature. To find the efficient
operator for this analysis of the night-time driving images, they are evaluated by the some T-Norm and T-Conorm
operators. Two images from are represented in the Figure 3, out of 10 existing operators, Hamacher’s T-Conorm
@1, Einstein’s T-Norm @2, Weber’s T-Conorm @3 yields superior results in their enhancement.

From (13), the Hamacher’s T-Conorm aggregation 1 between u;y and II;, can be written as,
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E*

@3 W-P D4

H* &,

D* Y*

E - Einstein’s T-norm aggregation operator, E* - Einstein’s T-conorm aggregation operator, H - Hamacher’s T-norm aggregation operator, E* - Einstein’s
T-conorm aggregation operator, W - Weber’s T-norm aggregation operator, W* - Weber’s T-conorm aggregation operator, D - Dombi’s T-norm aggregation

operator, D* - Dombi’s T-conorm aggregation operator, Y - Yager’s T-norm aggregation operator, Y* - Yager’s T-conorm aggregation operator, W-P* -

Weighted Probabilistic T-conorm aggregation operator.

Fig. 3. Images from BDD100k driving data set>® tested among various T-norm and T-conorm operators.

H*(H;yvnmy) = M;y D1 Moy,

pay (L + (T + 1)2) L Hzy
T oy T+ 12 T 1y (T4 D2+ (T + 12
1= (1= T)piy oy .

From (14), the Einstein’s T-Norm aggregation ¢ between p7,, and Il can be written as,
E(ulzgﬂ Hmj) = ,U'/zy D2 Hacyy
_ pay (1 (Y +1)%)
L pray (T + 1)

L+ (poy Tlay)

Haxy
T ey (T 122+ (T +1)2)

2]

From (11), the Weber’s T-Conorm aggregation &3 between (17, and I1,, can be written as,

W*(N;wnwy) =1- W(l - M;y: 1- H»Ly) = N//Iy D3 HQva

T+ oy (T + 12 T4 gy (T + 122+ (T + 1)2)°
1 —maz(0, [(1 = T)(1 = pizy) (1 = Tay) + L((1 = piy) + (1 =

Izy) — D).

Weighted probabilistic T-Conorm operator
The W-Probabilistic T-Conorm aggregation &4 between p7,, and I,y can be written as,

1+ pay (T +1)2 14 pay(T+1)2(24 (Y +1)2)°
Moy + 1oy — (1 T)Q-M;y'nw'

M/zy D4 Hmy =

(28)

(29)
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Estimation of 'Y’

The corresponding image’s mode value, which is to be processed, is determined to be the parameter value T
since the mode finds the dominant pixel that occurs in an image and determines its intensity. This current study
considers Y between [0, 1]. Therefore, the fuzzy image’s (16) mode is calculated and applied in the operations
and generating functions. The proposed study initiates flexibility in choosing the Y value for every image to be
enhanced.

Defuzzification

Defuzzification is the process of transforming a fuzzy set, which represents uncertain or imprecise information,
into a desired output. In image processing, it involves converting fuzzy values representing degrees of membership
for different elements within an image into precise values. Fuzzy logic systems often handle images by addressing
uncertainty and ambiguity through a variety of operations. Defuzzification translates the resulting fuzzy values
into a well-defined output, such as specific pixel intensities tailored to the image’s context, after applying these
fuzzy operations.

From (16), each pixel in the image T defuzzified as,

Ta:y = IFI(T)zy (imaz - Zmzn) + Zmzn (35)

Experimental analysis
The experiments were executed using MATLAB (R2023a) with the Image Processing Toolbox. The machine used
for the setup is equipped with a Ryzen 5 7520U processor (AMD technology) and Radeon graphics, operating
at 2.80 GHz. It runs on Microsoft Windows 11 Home and includes 512GB of SSD storage and 16GB of RAM.

The BDD100K® driving image data set is utilized for the entire analysis part of this work. Nearly thousands
images were evaluated for this study to show how efficient the proposed study performs apart from other
SOTA. 20 images were represented as DDD - 1, 2, ..., 20 in the Fig. 4. The results are primarily processed by
performing the derived aggregation operations ®1, M2, ®3 and ®4. Each operator yields enhanced image and
the resultant 4 images generated by the suggested operators is compared with existing methods in the literature
such as,33343637.48-50 Figures 5, 6, 7, & 8 represents the enhanced version of the images DDD -1, 2, ..., 20 by
the Hamacher’s T-Conorm @1, Einstein’s T-Norm @2, Weber’s T-Conorm @3 and W-Probabilistic T-Conorm
@4 aggregation operators. To evaluate the efficiency of the proposed study, the standard image quality metrics
such as SSIM, PSNR and correlation coefficient are utilized here and compared with other existing methods and
illustrated in the Table 2.

A histogram is a graphical representation that shows frequency distributions of pixel intensities in an image.
It provides a visual summary of how often each intensity value occurs, helping to analyze and understand the
image’s characteristics. Figure 9 represents the histograms for the source image DDD-1 along with its comparison
methods, such as HE*, SSR*’, MSR™, IFI*, IVIFI?}, Chithra et al.*, Ravindar et al.’” and the proposed @1,
@2, @3, B4 operators generated images via red, green and blue color channels. From this figure, it is visually
observed that the histogram pattern of the images generated by operators was similar and amplified compared

DDD-16 DDD-17 DDD-18

Fig. 4. Source images from BDD100k driving data set.
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Fig. 5. Enhanced images from BDD100k driving data set.

to other state-of-the-art techniques. The resultant images also present a clear view of the environment, especially
at night-time.

Structural similarity index measure

The Structural Similarity Index Measure (SSIM) is a metric for assessing the similarity between two images.
It’s specifically crafted to gauge the structural similarity, luminance and contrast details between an original
image and a modified version. SSIM finds widespread application in image processing and computer vision,
particularly for evaluating the effectiveness of techniques such as image and video compression, denoising and
various image enhancement methods. An SSIM score close to 1 indicates high perceptual similarity, while a
lower score indicates noticeable degradation.

(2¢1G2 + 1) (2A12 + x2)

SSIM(I,T) = ,
&.T) (G2 + G2+ 21) (A% + A2 + 22)

(36)

where z1 and x> are non-negative constants.

(1 and (1 denotes the average gray levels of images I and T.

A1 and A2 denotes the variance of I and T.

A12 indicates the covariance of I and T respectively.

In Table 2, the average SSIM values are demonstrated for 1000 images and the proposed study is compared
with existing methods such as,?33436:37:48-50 By the definition, the images generated by @1, @3, @4 yields average
SSIM values of 0.5967, 0.5432, & 0.5414 which is maximum compare to all other methods. It shows that the
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Fig. 6. Enhanced images from BDD100k driving data set.

structural information of the images generated by the proposed study are preserved compared to other existing
methods. The average SSIM values are graphically represented in Figure 11a.

Peak signal-to-noise ratio

PSNR is a metric used to assess the quality of a reconstructed image by comparing it to the original. Measured
in decibels (dB), PSNR is derived from the mean squared error (MSE) between corresponding pixels of the two
images. A higher PSNR value indicates closer similarity to the original image, reflecting lower distortion and
higher fidelity. This metric is usually applied in image processing and compression to evaluate the performance
of algorithms and techniques.

maz(T)?

37
MSE 7)

PSNR = 10.lOg10

where, MSE stands for mean squared error and implies,

i—1 j—1

MSE = ﬁ 3OS Ly = Tuy)*.

=0 y=0

Table 2 represents the average PSNR value of the images from BDD100k> dataset compared with existing state-
of-art-techniques and the proposed study. ®1 and @3 yields the second and third highest PSNR score of 17.8326
& 15.9449 where SSR* yields the maximum value which is 19.8173. It is visually observed in the Figure 10 that
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Fig. 7. Enhanced images from BDD100k driving data set.

images generated by SSR is too dark compared to the source image itself hence PSNR is showing high values
compared to the proposed study. Figure 11bshows the graphical illustration of average PSNR values.

Correlation coefficient

In the field of imaging, the correlation coeflicient is a statistical metric employed for evaluating the similarity
between two images based on their pixel intensity levels. It gauges the intensity and direction of a linear
relationship between two images. It quantifies the degree to which one image’s pixel values correspond to those
of another image.

. > (Isy — mean(l)) - (Tpy — mean(T)) . (38)

\/E(Iwy — mean(I))? - \/Z(T(m,y) — mean(T))?

Unlike SSIM, correlation coefficient justifies how closely the pixel values of the enhanced image align with those
of the source image. In Table 2, the average correlation coefficient of existing methodologies compared with the
proposed study. It shows that the images generated by ®1, ®2, ®3 and ®4 yield maximum average correlation
coeflicient value greater than 0.9 which denotes that the enhanced images retains the pixel intensity relationships
of the source image, suggesting high-quality enhancement. The correlation coefficient values are well illustrated
in the Figure 11c.

The experimental analysis were executed for the images in°® and compared with some existing
methodologies, such as?3343637:48-50 by means of some standard image quality metrics like SSIM, PSNR and
Correlation coeflicient. The proposed methods yields a superior value and the images of ®1, @2, @3 and B4
were demonstrated in the Figure 5, 6, 7 and 8. The graphical representation of the image quality metric values
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Fig. 8. Enhanced images from BDD100k driving data set.

is shown in the Figure 11. Images generated by @1, @2, @3 and @4 posses superior quality, unlike traditional
techniques, this kind of enhancement can be more efficiently utilized by an ADS to improve the visibility of any
particular environment to detect obstacles.

Sensitivity analysis

Sensitivity analysis® is a technique that determines how variations in input parameters influence the output of a
given model. In this enhancement model, Y is utilized as the parameter which is associated with improving the
visibility of night-time driving images®®. By measuring the sensitivity index, one can assess which parameters
exert the most influence on the model’s output. A higher sensitivity index indicates that small changes in the
parameter lead to significant variations in the output, whereas a lower index suggests greater system stability.
In this study, the sensitivity analysis is conducted to analyze the behaviour of yil,, (24), V%, (25), and 1L, (27)
employed in the fuzzy aggregation operators @1 (29), @2 (31), ®3 (33), and @4 (34) concerning the parameter
T

The sensitivity analysis is conducted in two ways: (i) The sensitivity index has been calculated for the DDD-1
image from Figure 4 for all the functions and operators. i, (24), V4, (25), Iz (27), @1 (29), B2 (31), B3 (33),
and @4 (34). (i) The average sensitivity index has been calculated for the entire BDD100k>® dataset for all the
functions and operators. piy,, (24), vy, (25), oy (27), ©1 (29), @2 (31), @3 (33), and B4 (34). The sensitivity
indexes are tabulated in Tables 3 and 4 as follows:

In Fig. 12, the overall sensitivity analysis is graphically presented, showcasing the responsiveness of various
fuzzy components and aggregation operators to changes in the scalar parameter Y. The sensitivity index
calculated reveals the greater robustness and stability of the proposed methodology.

Scientific Reports |

(2025) 15:33486 | https://doi.org/10.1038/s41598-025-15540-5 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

Methods | SSIM T | PSNRT | Correlation 1
8 0.2228 7.0693 0.7430
¥ 0.3088 19.8173 | 0.7641
50 0.2416 8.7158 0.3856
33 0.3090 8.2332 0.8461
3 0.3244 11.0732 0.7583
36 0.2699 8.8917 0.8020
7 0.2228 7.0693 0.7429
=3 0.5967 17.8326 | 0.9492
Do 0.4497 132439 | 0.9049
D3 0.5432 | 15.9449 | 0.9347
Da 0.5414 15.8949 | 0.9341

Table 2. Comparison of SSIM, PSNR and Correlation with proposed and SOTA methods. ’italic’ indicates the
highest value. ’bolditalic’ indicates the second highest value. 'underline’ indicates the third highest value. The
texts in Bold indicates the proposed methodologies. B1, B2, ®3 and P4 are proposed approaches

lj:lllfu:.‘.‘

v

A

A

Fig. 9. Histogram of image DDD-1 by proposed and state-of-the-art techniques.

Limitations of the proposed methodology

« The experimental validation is largely limited to specific night-time driving datasets, which may not capture
the full variability encountered in real-life autonomous driving conditions in which it’s generalizability re-
mains uncertain.

o The method relies on an IFG reformed by a specific increasing function from the Sugeno class. However, the
behavior and enhancement performance of the model are sensitive with respect to the IFG involved.

« Utilizing inappropriate increasing or decreasing functions may lead to inconsistent results while computing
the membership and non-membership values of the intuitionistic fuzzy image (IFI), affecting the stability and
adaptability of the system across different visual inputs.

« This method purely works on image enhancement perspective and does not account for multi-modal sensor
inputs like LIDAR, RADAR and thermal imaging.

Conclusion

This study demonstrates the effectiveness of intuitionistic fuzzy generating functions combined with T-Norm and
T-Conorm operators for enhancing night-time images in autonomous driving systems. By leveraging the ability
of intuitionistic fuzzy logic to represent uncertainty more comprehensively, the proposed approach achieves
significant improvements in contrast enhancement, noise suppression and illumination correction. Experimental
results on night-time driving datasets confirm that our method outperforms conventional enhancement
techniques by preserving critical visual details and improving overall image clarity. These findings suggest
that integrating intuitionistic fuzzy logic with T-Norm and T-Conorm operations is a significant approach for
enhancing autonomous vehicle perception in low-light environments, ultimately contributing to safer and more
reliable night-time driving. Further, this method can be embedded into vision modules of autonomous vehicles
to enhance image clarity during night-time and low-visibility conditions thereby improving the performance of
downstream tasks such as pedestrian tracking, obstacle and lane detection. Beyond ADSs, this approach can be
applied to surveillance and security networks to monitor dim-light environments. Future research may focus on
real-time implementation like multi-modal sensor fusion and further optimization to enhance its applicability
in autonomous navigation systems via hyper-parameter tuning.
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Fig. 10. Some BD100K images via SOTA methods.
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Fig. 11. Graphical representation of SSIM, PSNR, Correlation Coefficient.

Sensitivity Index

0.0138

-0.0110

0.0365

Average Sensitivity Index | 0.0139

—-0.0145

0.0323

Table 3. Sensitivity analysis of u,,, V4, and IL,, with respect to Y.

Sensitivity Index

0.0214

0.0254

0.0239

0.0138

Average Sensitivity index | 0.0230

0.0240

0.0249

0.0244

Table 4. Sensitivity analysis of @1, P2, B3 and B4 with respect to " Y.
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