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Electrical impedance tomography (EIT) is a bedside imaging technique in which voltage data arising 
from current applied on electrodes is used to compute images of admittivity in real time. Due to 
the severe ill-posedness of the inverse problem, good spatial resolution poses a challenge in EIT. 
Conversely, the temporal resolution is high, facilitating dynamic bedside imaging. In this work, 
we propose a real-time linearized reconstruction algorithm that makes use of an anatomical atlas 
to provide prior spatial information at two stages of the reconstruction with the goal of improving 
the spatial resolution. The algorithm updates a non-constant initial estimate of an anatomically 
relevant distribution of conductivity and susceptivity obtained from the mean of the atlas, and 
using the Schur complement method as a post-processing technique. Two atlases are constructed 
from a database of CT scans of 89 infants; one for the reconstruction of ventilation and one for the 
reconstruction of pulsatile perfusion. The algorithm is applied to data collected on 16 premature 
infants with lung disease of prematurity and 5 healthy control infants to reconstruct conductivity and 
susceptivity images of both ventilation and pulsatile perfusion in real time using the ACT 5 EIT system. 
EIT parameters describing homogeneity of ventilation distribution throughout the lung and the 
distribution anterior/posterior and in the left versus right lung were computed for each infant. The left/
right ventilation distribution was found to distinguish between the healthy and the preterm infants 
with statistical significance (p-value< 0.05). The reconstructions demonstrate qualitatively improved 
resolution when compared to the NOSER algorithm currently used on the ACT 5 system for real-time 
bedside imaging, and the ability to image changes due to ventilation and pulsatile perfusion, as well as 
regional inhomogeneity. Since CT scans were not available for these infants, there is no gold standard 
for validation. In conclusion, we present a novel real-time algorithm with the goal of improving spatial 
resolution for bedside imaging with EIT for conductivity and susceptivity imaging of ventilation and 
pulsatile perfusion, with the potential to aid in the evaluation of lung function in infants at the bedside.

Electrical impedance tomography (EIT) is a bedside imaging modality suitable for patients from birth through 
adulthood in which low-frequency (10 to 250 kHz), low-amplitude current is applied on electrodes placed 
circumferentially on the patient’s chest, resulting in voltage data on the electrodes that is used to compute images 
of changes in conductivity and susceptivity in real time. Cross-sectional dynamic images are formed by solving 
a nonlinear ill-posed problem to reconstruct the admittivity distribution in the plane of the electrodes for each 
frame of data. The ill-posedness of the inverse problem results in a sensitivity to noise in the data and the need 
for high precision voltage measurements. The regularization techniques that are applied to overcome the ill-
posedness typically result in images with blurred organ boundaries and lower contrast. While EIT images are of 
low spatial resolution, the temporal resolution is high, often in excess of 50 frames/s. This makes EIT particularly 
attractive for bedside imaging and as-needed monitoring since it also imparts no ionizing radiation. EIT has 
been well-studied for monitoring patients with acute respiratory distress syndrome (ARDS)1–5, including those 

1Department of Mathematics, Colorado State University, Fort Collins 80523, CO, USA. 2School of Biomedical 
Engineering, Colorado State University, Fort Collins 80523, CO, USA. 3Department of Electrical & Computer 
Engineering, University of Albany, Albany, NY 12222, USA. 4Department of Pediatrics, University of 
Colorado School of Medicine, Section of Pulmonology and Sleep Medicine, Aurora, CO 80045, USA. email:  
C.Rocheleau@ColoState.edu

OPEN

Scientific Reports |        (2025) 15:29622 1| https://doi.org/10.1038/s41598-025-15543-2

www.nature.com/scientificreports

http://www.nature.com/scientificreports
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-025-15543-2&domain=pdf&date_stamp=2025-8-13


with COVID-196–9 and neonatal respiratory distress syndrome10–13. EIT has been used to study ventilation 
and pulsatile perfusion in preterm infants14,15, including longitudinally16, as well as for optimizing positive 
end expiratory pressure in ventilated infants17. The effects of suction on mechanically ventilated infants have 
been studied with EIT18–20, as well as the effects of time and body position21. Lung volume and air distribution 
in preterm infants has been studied using EIT22–25. Other studies have used EIT to evaluate lung function in 
neonates26,27. For further background, the reader is directed to review articles on pulmonary applications of 
EIT28–30, and its application to neonatal imaging31.

The primary purpose of this paper is to propose a reconstruction method that provides improved resolution 
over the standard Newton One-Step Error Reconstructor (NOSER)32 algorithm used in the ACT series of 
simultaneous multi-current source EIT systems. The MEan Atlas Noser-based (MEAN) algorithm computes a 
perturbation from a non-constant initial estimate of the conductivity that is obtained from the mean conductivity 
distribution of a representative anatomical atlas33. The novel improvements proposed here to the MEAN 
algorithm permit real-time imaging of both conductivity and susceptivity for both ventilation and pulsatile 
perfusion from clinical data collected on premature infants. The MEAN algorithm was originally developed 
to compute single-frame images of simulated data for conductivity distributions of ventilation at maximum 
inspiration. Novel to this work is a more efficient method of computing the Jacobian matrix and the introduction 
of the susceptivity, which is the imaginary part of a complex conductivity, in the atlas and the MEAN algorithm. 
Furthermore, the MEAN algorithm is applied for the first time to compute dynamic images of ventilation and 
pulsatile pulmonary perfusion on human subject data. The reconstruction of pulsatile perfusion in EIT is well-
known to be more challenging than ventilation due to the small signal amplitude.

The inclusion of a priori information about features of the conductivity has been shown to be an effective 
method for improving the low spatial resolution of EIT images. Various techniques for doing this can be found 
in the literature. Iterative methods34–37 include an a priori conductivity distribution in the penalty term of the 
cost functional. The a priori distribution could be based on a patient’s previous CT or MRI scan, an anatomical 
atlas, or from a generic expected distribution, for example. Multi-step iterative methods have the disadvantage 
of requiring an accurate forward problem simulation at each iteration, and are therefore challenging to develop 
and require longer computation times. Care must be taken when the prior is in the penalty term not to bias the 
solution towards the prior by over-weighting the penalty term. Edge-preserving techniques38,39 make use of the 
knowledge that organ boundaries correspond to discontinuities in the conductivity distribution and improve 
resolution by promoting those features. However, including a priori knowledge of the conductivity distribution 
itself requires combining these techniques with other approaches, which may be quite promising. Bayesian 
approaches39–42 provide a natural framework for including a priori information, but have the drawback of 
requiring longer computation times. While much progress has been made in developing faster algorithms, real-
time reconstruction still remains a challenge to be met. More recently Finite Element Method (FEM) grouping43 
has been proposed to simultaneously reduce ill-posedness and computational cost by using an adaptive FEM 
scheme and Tikhonov regularization with an H1 seminorm penalty. While this method is promising with its 
improved efficiency and proven convergence in the sense of providing a sequence that converges to the solution 
of the optimality system for the continuous situation, it also does not provide real-time reconstructions, and 
a priori information is included in the penalty term. Additionally, many machine learning approaches have 
been proposed. At the time of this writing, it is arguably the fastest-growing body of approaches. Examples 
of machine learning algorithms for EIT imaging include end-to-end reconstruction approaches44–58 and post-
processing of EIT reconstructions59–62,62. However, it is a well recognized concern that machine approaches 
introduce a black box solution that is not readily analyzed as to how the solution is produced. Our work differs 
from the above approaches in that the information from the anatomical atlas serves as a starting point for the 
algorithm, which assumes that the solution is a perturbation from the mean admittivity distribution of the 
atlas and takes one iterative step toward a solution that provides better fidelity to the data. The single iteration 
facilitates real-time reconstructions. In this work we study further improvement in resolution by applying a 
post-processing technique known as the Schur complement method to the MEAN reconstruction. The Schur 
complement method was introduced to improve the resolution of D-bar images63, and has been extended here 
to post-process the susceptivity images for the first time.

This is the first work in which the MEAN and MEAN + Schur complement methods are applied to a suite 
of dynamic human subject EIT data sets to image ventilation and pulsatile perfusion in infants. As a secondary 
goal of this paper, we study the images and several EIT-derived measures from an archival EIT data set collected 
at Children’s Hospital Colorado (CHCO) on 16 preterm infants with lung disease of prematurity and 5 healthy 
full-term infants.

Extremely preterm infants are at high risk of developing a chronic lung diseases known as bronchopulmonary 
dysplasia (BPD). BPD is the most common cause of lung disease in infants64 and affects 10,000–15,000 premature 
infants in the United States every year65. Extremely preterm infants, defined to be those born at gestational 
age 28 weeks or younger, are at high risk of neonatal mortality66. Infants with BPD present with a variable 
mix of parenchymal, airway, and pulmonary vascular disease that results in a heterogeneous lung architecture 
with areas of atelectasis and over-expansion67,68. Imaging this heterogeneity could inform treatment strategies 
including medications and ventilatory settings. In this work we demonstrate the ability of our algorithm to 
capture heterogeneity in the infants’ lungs. Validation of the results will be a subject of future study.

Methods
The 2-D generalized Laplace equation serves as the mathematical model for the inverse problem of EIT69 for the 
reconstruction of the unknown admittivity. The admittivity will be denoted by γ(x, y) = σ(x, y) + iωϵ(x, y), 
where σ(x, y) is the conductivity, ω is the frequency of the applied current, and ϵ(x, y) is the electric permittivity. 
The quantity ωϵ is known as the susceptivity.
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The anatomical atlases
Construction from CT scans
In order to implement prior information about the typical infant anatomy, two anatomical atlases were 
developed to capture general structures of infant bodies and to represent average conductivity and susceptivity 
tissue values when alternating current is applied at 93 kHz during ventilation and pulsatile perfusion. The atlases 
were built from CT scans of 89 infants aged 0 to 3 months, acquired from the New Mexico Decedent Database70. 
Upon receipt and selection of applicable data, the scans were then segmented into tissues of varying electrical 
properties using the ITK-SNAP71 software. Based on the visible contrast of the scans, the scans were able to be 
segmented into soft tissue, trachea, lung, and bone. However the scans did not allow for systematic segmentation 
of the heart, and a representative average heart was manually placed in the center of the chest cavity.

The three-dimensional segmentation models were then saved as neuroimaging information technology 
initiative (NIFTI) files and imported into Seg3D 2.5.172 to divide into two-dimensional tomographic images in 
the transverse plane. A total of 8,171 slices containing lung tissue were retained to be used in constructing the 
anatomical atlas.

The slices were then imported into MATLAB73 for processing. For each slice, the boundaries between each 
tissue type were found and randomized conductivity and susceptivity values at 93 kHz74,75 were applied for that 
tissue type according to the statistical tissue descriptions during ventilation and perfusion processes as shown in 
Table 1. This randomization process was repeated 10 times for each slice to result in a complete dataset of 81,710 
axial slices for each of the two atlases, one to represent ventilation, and one to represent perfusion.

Domain shape modeling
Since the true contour of the torso is unknown for the human subjects in our archival data set, a canonical infant 
shape was used for the EIT recontruction mesh. Each 2-D slice in the atlas was conformally mapped to this 
canonical shape. An example of one of these mappings of the conductivity distribution is shown in Fig. 1a. After 
conformally mapping each slice, the mean over all of the distributions is computed from a pixel-wise averaging 
of complex admittivity values across each of the two atlases. Reconstructions were computed on the Joshua tree 
mesh, which was introduced on a circlular domain32, conformally mapped to the canonical infant shape (Fig. 2). 
The mean of each atlas was discretized to the conformally mapped Joshua tree mesh using the nearest-neighbor 
to the centroid of each component. The MEAN initial admittivity estimate for ventilation is shown in Fig. 1b.

Voltage data simulation
Since data sets collected on infants with the ACT 5 EIT system76 were the targeted application in this work, 
simulations were designed to mimic data collected with ACT 5. Voltages arising from trigonometric current 
patterns were computed using a 2-D finite element method (FEM) with approximately 18,000 elemeents using 
the complete electrode model (CEM)69. ACT 5 applies linearly independent trigonometric current patterns 
defined for L electrodes by

	
T k

ℓ = M
{ cos(kθℓ), k = 1, . . . , L/2

sin((k − L/2)θℓ), k = L/2 + 1, . . . , L − 1 � (1)

Fig. 1.  (a) Example conformal mapping of a transverse slice from a member of the anatomical atlas to the 
canonical shape. (b) Conductivity and susceptivity distributions of the MEAN initial estimate for ventilation 
computed from the infant anatomical atlas.

 

Tissue Range of admittivity values (S/m) used in ventilation atlas Range of admittivity values (S/m) used in perfusion atlas

Soft Tissue 0.3 + 0.2i 0.3 + 0.2i

Lung (0.0, 0.3] + [0.0, 0.8]i [0.3, 0.6] + [0.2, 0.6]i

Heart [0.4, 0.6] + [0.2, 0.6]i [0.6, 1.0] + [0.2, 0.6]i

Trachea [0.1, 0.2] + [0.0, 0.1]i [0.1, 0.2] + [0.0, 0.1]i

Bone (0.0, 0.1] + [0.0, 0.1]i [0.03, 0.07] + [0.03, 0.07]i

Table 1.  Conductivity and susceptivity value ranges used in the random assignment of admittivity values to 
each tissue for the anatomical atlases. The values sampled uniformly in each range. Note that the soft tissue 
(background) was held constant with a conductivity of 0.3 S/m and susceptivity of 0.2 S/m.
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where θℓ = 2πℓ
L  represents the angle from a central reference point in the body to the ℓth electrode. In the 

simulations, the current amplitude was M = 0.35 mA, and L =16 electrodes with a width and height of 3.3 
cm were applied. The CEM accounts for the shunting effect of the electrodes and the contact impedance between 
the electrodes and tissue, which was set to z = 0.05 Ω · m2. Measured voltages were computed for each slice of 
the anatomical atlas separately, with a constant admittivity distribution extended in the transverse plane with a 
height of 3.3 cm, corresponding to the electrode height. No corrections were made to account for out-of-plane 
effects in the simulations. Noise simulating that of the ACT 5 EIT system was included by adding random 
Gaussian noise of magnitude 0.1% of the maximum voltage signal to the matrix of simulated voltages.

The MEAN atlas NOSER-based algorithm
As in the NOSER algorithm32, a linearized least-squares approach is taken to find an admittivity distribution 
that minimizes the error between the measured and simulated voltages. Denote the voltage measured on the ℓth 
electrode arising from the kth current pattern by V k

ℓ . Since only one step in the iterative algorithm is taken, we 
only need to compute simulated voltages corresponding to the initial estimate in the algorithm, γ̄. These will be 
denoted by Uk

ℓ , and were computed using the method in Section 2.1.
Reconstructions were computed on the canonical infant torso shape using a 2-D Joshua tree mesh of N = 496 

elements mapped to that shape as in Fig. 2. Assuming the admittivity is constant on each mesh element, for any 
point (x, y) in the canonical domain, we can write

	
γ(x, y) =

N∑
j=1

γnχn(x, y),� (2)

where χn is the characteristic function for the nth mesh element, which we denote Ωn. Let γ be the vector with 
entries γn. Then we seek to solve the minimization problem

	
min

γ
E(γ), where E(γ) =

L−1∑
k=1

L∑
ℓ=1

(V k
ℓ − Uk

ℓ (γ))2.� (3)

A necessary condition for a minimizer is ∂E(γ)
∂γn

= 0, or

	
0 = −2

L−1∑
k=1

L∑
ℓ=1

(V k
ℓ − Uk

ℓ (γ))∂Uk
ℓ (γ)

∂γn
≡ Fn(γ), n = 1, . . . , N.� (4)

We then wish to solve

	 0 = Fn(γ1, . . . , γN ).� (5)

Taking one step in a Gauss-Newton method with initial guess γ̄ to solve (5) results in an approximation γ̂ to the 
admittivity given by

	 γ̂ = γ̄ − [F ′(γ̄)]−1F (γ̄),� (6)

where F ′(γ̄) is the Jacobian matrix of F  with entries

	
F ′

n,m(γ) = ∂

∂γm

∂E(γ)
∂γn

.� (7)

Taking a linearized approximation to (7) results in32

Fig. 2.  The Joshua tree mesh used in the NOSER algorithm (left) and mapped onto the canonical infant shape 
for the MEAN algorithm (right).
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F ′

n,m(γ̃) ≈ 2
L−1∑
k=1

L∑
ℓ=1

∂Uk
ℓ (γ̃)

∂γn

∂Uk
ℓ (γ̃)

∂γm
.� (8)

To compute the partials, we expand ∂Uk(γ̄)
∂γn

 in the basis of trigonometric current patterns T k = [T1, . . . , TL] 
as follows:

	

∂Uk(γ̄)
∂γn

=
L−1∑
s=1

⟨T s, ∂Uk(γ̄)
∂γn

⟩
⟨T s, T s⟩ T s.� (9)

Representing ⟨T s, Uk⟩ as a discretization of the integral

	

∫

∂Ω
ukγ

∂us

∂ν
dS =

∫

Ω
γ∇uk · ∇usdA� (10)

and differentiating the right side with respect to γn, we see

	

∂

∂γn

∫

Ω
γ∇uk · ∇usdA =

∫

Ω

∂γ

∂γn
∇uk · ∇usdA +

∫

Ω
γ∇∂uk

∂γn
· ∇usdA +

∫

Ω
γ∇uk · ∇ ∂us

∂γn
dA.� (11)

For the last two terms, we integrate by parts and differentiate the governing equations of EIT with respect to γn 
to find

	

∫

Ω
γ∇∂uk

∂γn
· ∇usdA =

∫

∂Ω
usγ

∂

∂ν

∂uk

∂γn
dS +

∫

Ω
us∇ · γ∇∂uk

∂γn
dA � (12)

	
=

∫

∂Ω
us

(
− ∂γ

∂γn

∂uk

∂ν

)
dS +

∫

Ω
us

(
− ∇ · ∂γ

∂γn
∇uk

)
� (13)

	
=

∫

∂Ω
us

(
− ∂γ

∂γn

∂uk

∂ν

)
dS −

( ∫

∂Ω
us

(
− ∂γ

∂γn

∂uk

∂ν

)
dS +

∫

Ω
∇us · ∂γ

∂γn
∇uk

)
� (14)

	
= −

∫

Ω
∇us · ∂γ

∂γn
∇uk � (15)

Differentiating (2) we see ∂γ
∂γn

= 1 on Ωn and 0 elsewhere. Recognizing that the dot product is commutative, we 
can exchange s and k and substitute into (11) and further discretize to find

	

⟨
T s,

∂Uk(γ̄)
∂γn

⟩
≈ −

∫

Ωn

∇uk · ∇usdA ≈ −
∑

Ej ∈Ωn

∇uk
j · ∇us

j ,� (16)

where Ej  denotes a triangular element the FEM forward solution mesh. The gradients ∇uk
j  are estimated on 

each triangular element Ej  of the FEM mesh by computing the gradient of the unique plane that passes through 
the three points (x, uk(x, γ̄)) making up the element. The integration is further discretized by summing over 
each element with center located within the nth component, Ωn, of our conformally remapped Joshua tree mesh. 
This approach allows the gradients to be efficiently estimated using a single solving of the forward problem for 
each current pattern.

Finally, we note that the matrix F ′(γ̃) as computed above is ill-conditioned, and so in practice we regularize 
the matrix using a two-step process. First, let the matrix A be defined by its entries

	 An,m = F ′
n,m(γ̄) + βF ′

n,m(γ̄)δn,m,� (17)

where δn,m is the Kronecker delta function, and β is a regularization parameter, chosen empirically, which will 
ensure A is diagonally dominant and positive definite if chosen sufficiently large. Next, let

	
Ã = A + α max

n
(An,n)I,� (18)

where α is a second regularization parameter, determined empirically. For the reconstructions shown in Section 
3, the regularization parameters were β = 20 and α = 0.00025.

Finally, the reconstructed admittivity distribution is computed from the formula

	 γ̂ = γ̄ − Ã−1F (γ̄).� (19)
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Note that the MEAN algorithm computes absolute images, and time-difference images are formed by subtracting 
two absolute images.

Schur complement
In addition to allowing us to compute and implement an improved initial condition for the NOSER method, the 
anatomical atlas can be used to post-process reconstructed images based on prior statistical data using a Schur 
Complement property63,77. The conductivity and susceptivity are post-processed separately, but analogously, so 
we describe the method for the conductivity here.

Since we have known numerical phantoms σ for each image in our anatomical atlas, we can compute a 
covariance matrix, Γ, of the joint distribution between each pixel in the numerical phantom images and the 
corresponding conductivity distribution on the Joshua tree mesh given by σ̂. Writing Γ as a block matrix,

	
Γ =

[Γσσ Γσσ̂

Γσ̂σ Γσ̂σ̂,

]
� (20)

where Γσσ  and Γσ̂σ̂  are the covariance matrices of the numerical phantom and reconstruction images, 
respectively, and Γσσ̂ = Γ⊺

σ̂σ  represent the cross-covariance matrices. Letting µσ  and µσ̂  denote the pixel-wise 
means of each numerical phantom image and segment-wise mean of the corresponding MEAN reconstructions, 
respectively, we suppose we have a joint multivariate Gaussian distribution of σ and σ̂ given by

	
π(σ, σ̂) ∝ exp

(
−1

2

[
σ − µσ

σ̂ − µσ̂

]T [ Γσσ Γσσ̂

Γσ̂σ Γσ̂σ̂

]−1 [
σ − µσ

σ̂ − µσ̂

])
.� (21)

As a covariance matrix, Γ is a symmetric positive definite matrix, so the Schur complements of Γ are defined by

	 Γ̃σ̂σ̂ = Γσσ − Γσσ̂Γ−1
σ̂σ̂Γσ̂σ and � (22)

	 Γ̃σσ = Γσ̂σ̂ − Γσ̂σΓ−1
σσΓσσ̂, � (23)

which we use to rewrite Γ−1 in the form78

	
Γ−1 =

[Γσσ Γσσ̂

Γσ̂σ Γσ̂σ̂

]−1
=

[
Γ̃−1

σ̂σ̂ −Γ̃−1
σ̂σ̂Γσσ̂Γ−1

σ̂σ̂

−Γ̃−1
σσΓσ̂σΓ−1

σσ Γ̃−1
σσ

]
.� (24)

Then, for a given reconstruction σ̂, the conditional distribution is of the form78

	
π(σ|σ̂) ∝ exp

(
− 1

2
(
σ − Γσσ̂Γ−1

σ̂σ̂(σ̂ − µσ̂)
)⊺Γ̃−1

σ̂σ̂

(
σ − Γσσ̂Γ−1

σ̂σ̂(σ̂ − µσ̂)
))

,� (25)

from which the expected value of the true conductivity distribution given a reconstructed image σ̂ is given by

	 E(σ|σ̂) = µσ + Γσσ̂Γ−1
σ̂σ̂(σ̂ − µσ̂).� (26)

In practice, since Γσ̂σ̂  is typically ill-conditioned we regularize the matrix using diagonal ridge regression by 
adding a diagonal term κI  using κ = 10−3. This updated estimate of E(σ|σ̂) is the Schur complement post-
processed reconstruction of the conductivity distribution. That is,

	 σ̂S = µσ + Γσσ̂(Γσ̂σ̂ + κI)−1(σ̂ − µσ̂).� (27)

For implementation, we recognize that this equation can be rewritten in the form σ̂S = Aκσ̂ + bκ where we 
precompute

	 Aκ = Γσσ̂(Γσ̂σ̂ + κI)−1 � (28)

	 bκ = µσ − Γσσ̂(Γσ̂σ̂ + κI)−1µσ̂ � (29)

allowing post-processing to be performed as a single matrix multiplication and addition, adding a minimal 
amount of time to processing.

Since the admittivity distribution provides us with images of both the conductivity and susceptivity, we can 
follow the same process to post-process output susceptivitity images as well, resulting in a Schur post-processed 
admittivity distribution γ̂S = σ̂S + iω̂ϵS .

Human subject data collection
The archival EIT data were collected at Children’s Hospital Colorado as part of a larger study and under the 
approval of the Colorado Multiple Institutional Review Board (COMIRB) (approval number COMIRB 18-
1843), Aurora, CO. Informed parental consent was obtained prior to participation. All research was performed 
in accordance with the Declaration of Helsinki and all relevant guidelines and regulations. In that study EIT data 
were collected every 4-5 weeks on each patient for up to five visits or until discharge. Each EIT data collection 
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period is referred to as a “visit”, and so each visit is 4 to 5 weeks later than the previous one. Control subjects were 
only imaged once. Reconstructions of pulsatile perfusion were computed from data collected during a breath 
pause identified by the power waveform as opposed to using bandpass filtered EIT signals. Due to the high SNR 
of the ACT 5 data76, we do not need to average or filter the voltage data to compute these reconstructions.

Reconstructions on three representative subjects, A, B, and C are presented in the following section. The 
healthy control, Subject A, was an infant born at 40 weeks gestational age and imaged at 106 days chronological 
age. Subjects B and C were male twins born prematurely at 28 weeks gestational age. Subject B received 3 imaging 
visits. Subject B was imaged first at 19 days chronological age while receiving ventilatory support through 
continuous positive airway pressure (CPAP). Visit 2 was at 51 days on low flow nasal cannula. At Visit 3 the 
patient was still receiving low flow nasal cannula and diagnosed with lung disease of prematurity. The infant was 
discharged from the hospital after Visit 3. Subject C is the twin of Subject B and was diagnosed with Grade 3 BPD 
and received 5 imaging visits. Visit 1 was at 19 days chronological age, while the patient was receiving CPAP. 
Visit 2 was at 51 days chronological age, on invasive mechanical ventilation. Visit 3 was at 79 days chronological 
age, while the patient was receiving oxygen via high flow nasal cannula. Visit 4 was at 106 days chronological 
age, with high flow nasal cannula. Visit 5 was at 136 days chronological age, still with high flow nasal cannula.

Derived measures and statistical analysis
The global inhomogeneity (GI) index79, anterior/posterior center of ventilation (CoV), and left/right lung 
ventilation distribution were computed for each of the 16 preterm infants at the visit closest to gestational age 
36 weeks, since that this is the age at which a diagnosis of BPD is made, and for each of the 5 healthy full-term 
infants. The GI index was computed from the conductivity difference image DI ≡ σ̂(tinsp) − σ̂(texp), where 
tinsp represents end-inspiration and texp end-expiration for each breath, on a segmentation of the lung region, 
Lung, using the formula

	

GI =


 ∑

(x,y)∈Lung

|DI(x,y) − Median(DI)|


 /


 ∑

(x,y)∈Lung

|DI(x,y)|


 .� (30)

The reported GI index value was taken as the mean value across all recorded breaths. The anterior/posterior CoV 
was found as follows. First, the estimated volumes of air80 in each element of the Joshua tree mesh were found 
and mapped to a 64x64 image of square pixels. Since each element of the 64x64 mesh may contain multiple 
pixels, air volume was assumed be uniformly distributed among all pixels contained in any specific component 
Ωn. Then, starting with the posterior-most row of the image the cumulative air volume was computed with 
the CoV defined to be the distance to the first row in which the cumulative volume exceeds half of the total 
tidal volume. This position is presented as a percentage of the distance from the posterior-most position on 
the domain to the anterior-most position on the domain. The left/right lung ventilation distribution is found 
by assigning each component Ωn to the left and right side of the body. The air volume contained on the right 
side is accumulated and found as a percentage of the total computed air volume at end-inspiration. An unequal 
variance (independent) t-test was used to analyze whether each measure could distinguish between healthy 
controls and the patients with lung disease.

Code availability
Code implementing the MEAN algorithm can be found on GitHub at ​h​t​t​p​s​:​/​/​g​i​t​h​u​b​.​c​o​m​/​c​j​r​o​c​h​e​l​e​a​u​/​M​E​A​N​_​
E​I​T​_​A​l​g​o​r​i​t​h​m​​​​​​

Results and discussion
Statistical results
The right/left ventilatory volume distribution of air at full inspiration was found to distinguish between the 
healthy subjects and those with chronic lung disease with statistical significance (p < 0.05). Computations 
of the anterior/posterior center of ventilation (CoV) and the global GI index did not distinguish between the 
groups with statistical significance. The box-whisker plot for the right/left ventilatory volume distribution is 
found in Fig. 3. Sample statistics corresponding to images shown in sections 3.3-3.5 are presented in Table 2.

Reconstructed images
CT scans were not performed on these subjects, and so there is no adjunct modality for comparison of anatomical 
structure in the reconstructions. However, the inclusion of a healthy control, and comparison to NOSER images 
demonstrate qualitatively the improved spatial resolution of the proposed approaches. Reconstructions of 
difference images of conductivity and susceptivity are presented in Figs. 4,5,6 for each patient’s visits. After 
an approximately 30 second initialization period to compute the gradients for a specific subject, the MEAN 
reconstruction takes on average 10 ms for each frame of current patterns on a Ryzen 7 3.20 GHz CPU, 16 GB 
RAM laptop computer, or 13 ms including the Schur post-processing. For comparison, processing took 7 ms and 
7.7 ms for MEAN and MEAN with Schur post-processing, respectively, on a Core i7 3.40 GHz CPU, 64 GB RAM 
desktop computer. Since data for a full set of current patterns takes 18 ms to collect, results can be computed and 
displayed in real time.

All ventilation images shown in this section are difference images at full inspiration with reference image at 
full expiration. Pulsatile perfusion images are difference images at a frame chosen at the end of T-wave, expected 
to be systole, identified from the EIT ECG, with a reference frame at the end of the QRS complex. Images were 
normalized and displayed using identical contrast ranges and presented in arbitrary units (A.U.).
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Fig. 4.  Control subject difference images (displayed in arbitrary units) for ventilation (a) and pulsatile 
perfusion (b) using the NOSER, MEAN, and MEAN with Schur complement post-processing algorithms.

 

Subject Visit Percent Ventilation in Right Lung Anterior-Posterior Center of Ventilation GI Index

A 1 57.8 43.5 0.33

B 1 29.8 41.3 0.53

2 51.1 47.8 0.30

3 64.1 41.3 0.38

C 1 55.1 45.7 0.40

2 45.8 56.5 0.44

3 62.7 45.7 0.38

4 78.4 50.0 0.45

5 67.5 41.3 0.37

Table 2.  EIT-derived measures for Subjects A, B, and C computed from the MEAN conductivity 
reconstruction at each of the data collection visits.

 

Fig. 3.  Box and whisker plot of left/right ventilation distribution for infants with BPD (peach) and healthy 
control infants (teal).
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Subject A: control case
Comparisons of the reconstruction methods to NOSER for visualizing ventilation and pulsatile perfusion are 
shown in Fig. 4a and b, respectively, for data collected on the healthy control infant. For this subject, the NOSER 
ventilation difference image shows a large ventilated region with little definition between the two lungs, and 
the heart is not visible. The MEAN and Schur images show clear lung definition in both the conductivity and 
susceptivity images, with the right lung slightly larger than the left, as is expected in a healthy infant. All of the 
reconstructions show both lungs being well-ventilated, as would be expected as well. In the conductivity and 
susceptivity images post-processed by Schur, a large, well-defined heart region is present, very similar to the 
shape one sees in the mean of the atlas in Fig. 1b. This may be an artefact potentially caused by overweighting of 
the contribution of the atlas, but was not mitigated by decreasing the parameter κ, at least not to the extent that 
a reasonable image was still preserved.

When studying the NOSER reconstruction of the pulsatile perfusion difference image of the healthy infant 
in Fig. 4b the lungs are filled with blood as expected during the systole phase. In each of the images, one sees 
that the heart is less conductive than in the reference frame, and therefore contains less blood, and the lungs are 
more conductive than in the reference frame, therefore containing more blood. In the both the MEAN images, 
the lung region is larger than that of the NOSER reconstruction. The Schur reconstructions again have a large, 
well-defined heart, that may be due to bias from the atlas.

Subject B: lung disease of prematurity
Figure 5a and b contain the ventilation and pulsatile perfusion difference images for the three visits with images 
displayed on the same scale across visits. The ventilation difference images for Visit 1 show a high degree of 
heterogeneity with a GI Index of 0.63, with only 29.8% of total lung volume contained within the right lung. The 
ventilatory balance improves with Visits 2 and 3, and the heterogeneity decreases with GI indices of 0.30 and 

Fig. 5.  Subject B difference images (displayed in arbitrary units) for ventilation (a) and pulsatile perfusion (b) 
using the NOSER, MEAN, and MEAN with Schur complement post-processing algorithms.
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0.38, respectively. The pulsatile perfusion images are more homogeneous than the ventilatory images. It is to be 
noted that the possible large heart artefact is also present in the Schur complement pulsatile perfusion images 
for Subject B for all three visits.

Subject C: Grade 3 BPD
Figure 6a and b contain the ventilation and pulsatile perfusion difference images for Subject C for the five 
visits. In this case the NOSER ventilation images for Visit 1 show clear definition of the lungs with right slightly 
less ventilated than the left. Subsequent visits show less overall ventilation in the NOSER images. That is, the 
conductivity of the lungs show a much smaller decrease in value at full inspiration compared to the reference 
image of full expiration than they do for Visits 1 and 2. This may be attributable to the use of the high flow 
nasal cannula in Visits 2 - 5 as opposed to invasive ventilation in Visit 1. The same phenomenon holds true in 
MEAN reconstructions for Visits 3, 4, and 5, although to a lesser extent. Inhomogeneity in the aerated region 
is also evident in both conductivity and susceptivity images. The Schur images show a large well-defined heart, 
similar to what was observed for the healthy control infant. The pulsatile perfusion difference images for all five 
visits in Fig. 6b demonstrate fairly homogeneous pulsatile perfusion to both lungs. However, the dynamic range 
is smaller in Visits 2, 3, 4, and 5 than in Visit 1. As a representative sample of real-time display, movies of the 
reconstruction sequences for ventilation and pulsatile perfusion for each of the methods during Visit 1 can be 
found in the supplemental data.

Further discussion and limitations
While ventilatory heterogeneity is apparent to the eye in the ventilation images, it was not well-captured by the 
GI index. This lack of sensitivity could be due to a canceling-out effect between larger homogeneous regions and 
smaller one with inhomogeneities.

A consideration surrounding the pulsatile perfusion reconstructions is that the reconstruction may not 
account for collapse of small pulmonary vessels and is influenced by their distensibility and the patency of the 
pulmonary microvascular bed81. An injection of hypertonic saline solution has been suggested and used in some 
studies as an EIT contrast agent to measure perfusion82. However, this technique is generally unsafe for use in 
infants, and the measurement of pulsatility has been shown to correlate well with stroke volume measured by 
thermodilution83.

Fig. 6.  Subject C difference images (displayed in arbitrary units) for ventilation (a) and pulsatile perfusion (b) 
using the NOSER, MEAN, and MEAN with Schur complement post-processing algorithms.
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The presence of the larger heart in the reconstructions post-processed by the Schur complement method is 
conjectured to be caused by a high variance that was observed upon inspection of the matrix Γσσ̂  in the Schur 
complement method. This could result in an over-estimate of the weighting of heart pixels in the post-processing 
formula. One strategy to mitigate this could be to take a dynamic post-processing approach that accounts for 
each frame’s timing in the cardiac cycle. However, the development of such a technique is beyond the scope of 
this paper.

Conclusion
The purpose of this paper is to demonstrate the effectiveness on in vivo EIT data of a novel Newton One-Step 
Error Reconstruction Method in which the initial condition in the algorithm is derived from the mean of an 
anatomical atlas created from CT scans from infants age 0 to 3 months. EIT images are characteristically low 
resolution due to the severe ill-posedness of the inverse problem, and this approach addresses that issue by 
providing the algorithm with a starting point that is closer to the patient’s true anatomy than a constant. The 
method is coined “MEAN” due to the choice of the mean of the infant atlas as the initial guess. The resolution 
is further improved by the application of a post-processing technique known as the Schur complement method 
to the MEAN reconstruction. The MEAN approach was introduced for simulated data33, and this is the first 
application of the method to human data. The method has also been extended here to apply to complex valued 
conductivities - that is, reconstructions of both conductivity and susceptivity. The Schur complement method 
has also been extended here to post-process the susceptivity images. Both methods run in real time on the ACT 
5 EIT system.

Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable 
request.
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