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Accurately estimating the state-of-charge (SOC) of lithium-ion batteries is of great significance for 
the energy management and range calculation of electric vehicles. With the development of graphics 
processing units, SOC estimation based on data-driven methods, especially using recurrent neural 
networks, has received considerable attention in recent years. However, existing data-driven methods 
often neglect internal resistance, which is highly detrimental to the accuracy of SOC estimation. In 
addition, commonly used network optimization algorithms do not always maximize the convergence 
speed and performance simultaneously. To solve these problems, this paper describes a battery test 
bench for producing an effective lithium-ion battery dataset containing current, voltage, temperature, 
and more importantly, internal resistance measurements. To improve the estimated SOC performance, 
the internal resistance is considered in the construction of a data-driven model. Using a convolutional 
neural network (CNN) and long short-term memory (LSTM), we propose an optimization model that 
switches from Adam to stochastic gradient descent (SWATS). A well-known public battery dataset and 
an experimentally measured dataset are used to verify the feasibility of the SWATS scheme. The results 
show that, compared with existing data-driven methods, the proposed method is effective, especially 
in terms of robustness and generalization.
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Under continued environmental pressure on the use of fossil fuels, the development of electric vehicles has 
received increased attention. A core component in the development of electric vehicles is the safe management 
of lithium-ion batteries1. The state-of-charge (SOC) represents the remaining power in a battery, providing an 
important indication of the remaining mileage of electric vehicles. Thus, SOC is an important state parameter for 
measuring the safety and reliability of electric vehicles2,3, and so the real-time and accurate estimation of SOC 
is of great significance.

Existing methods for estimating SOC are mainly divided into the ampere-hour method4, open-circuit 
voltage (OCV) method5, model-based techniques6–10, and data-driven approaches11. Among them, data-
driven approaches are the most popular because they fit the relationship between SOC and various parameters 
through a large amount of data, eliminating the process of battery modeling. When sufficiently extensive data are 
available, data-driven methods provide robust predictions of SOC under different conditions.

Following the rapid development of computer technology, artificial intelligence algorithms such as neural 
networks12 and deep learning13,14 have utilized the powerful parallel computing ability of graphics processing 
units to train models with large numbers of parameters. SOC estimation is essentially a sequential regression 
prediction problem. The initial state and parameters at the previous moment in time also affect SOC estimation. 
Recurrent neural networks (RNNs) have memory characteristics and enable parameter sharing, which provide 
unique advantages in processing time series prediction. Hence, RNNs have often been used for SOC estimations 
with lithium-ion batteries.

Long short-term memory (LSTM) is a kind of RNN that has a considerable advantage in dealing with 
sequential problems15. It also solves the issue faced by classical RNNs of the gradient vanishing or exploding 
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in the process of reverse transmission. LSTM has been successfully applied in speech recognition and natural 
language processing16. A stacked bidirectional LSTM model has been developed for SOC estimation in 
lithium-ion batteries17, while Mamo et al.18. used LSTM with an attention mechanism for SOC estimation. Li 
et al.19. proposed an SOC method based on the gated recurrent unit recurrent neural network (GRU-RNN) to 
build a nonlinear mapping between the observable variables and SOC, and a GRU-RNN-based momentum 
gradient method has been developed for estimating SOC20. A Nesterov accelerated gradient algorithm based 
on a bidirectional GRU has also been used for SOC estimation21. To account for spatiotemporal characteristics, 
convolutional neural networks (CNNs) are often employed due to their advantages in image processing. CNNs 
learn and extract the abstract visual features of the input data, and preserve the relationship between the pixels 
of the learned image22. Studies have proved that combining a CNN with LSTM enables the spatiotemporal 
relationship of sequences to be learned23,24. In addition, there have been many attempts to estimate SOC 
using other types of neural networks, such as backpropagation neural networks (BPNNs)25 and nonlinear 
autoregression with exogenous inputs (NARX)26. However, although many data-driven methods have been 
developed for SOC estimation in recent years, the lack of a battery test bench means that most data sources are 
publicly available, such as the Maryland or Stanford University datasets22,27. This has led to many constructed 
models being evaluated through only a single test. Additionally, internal resistance is neither included in 
existing datasets nor taken into account in existing data-driven approaches, even though internal resistance is 
strongly correlated with SOC. Furthermore, in deep neural networks, it is extremely important that the network 
parameters are automatically learned. Thus, the choice of optimizer is vital, and is related to the training speed 
and generalization performance of the model. At present, most LSTMs and their variants for SOC estimation 
use stochastic gradient descent with momentum (SGDM), which has high generalization performance but slow 
convergence speed, or the Adam optimizer, which offers fast convergence speed but poor overall convergence. 
As a result, it is difficult to achieve both fast optimization speed and good model generalization performance in 
the process of network optimization.

To overcome the above-mentioned problems, this paper proposes a CNN-LSTM-based method for SOC 
estimation in which the optimization process switches from Adam to SGDM (SWATS). The main contributions 
are summarized as follows:

	(1)	  A battery test bench is constructed to create a dataset. In the data-driven SOC estimation method, data 
are very important. Building a battery test bench removes the dependence on public datasets and allows 
abundant experimental data to be collected. The test bench can obtain current, voltage, temperature, and 
internal resistance measurements from various types of lithium-ion batteries at temperatures of -20–60℃ 
under various driving cycles.

	(2)	  A modified CNN-LSTM model with SWATS optimization is proposed for SOC estimation. The SWATS 
algorithm is applied to the network optimization problem of CNN-LSTM to improve the training speed and 
efficiency of the model. The algorithm initially uses Adam, and then switches to SGDM at the appropriate 
point in time. This simple hybrid strategy ensures good training speed and generalization performance. At 
the same time, SWATS achieves good performance under temperature changes.

	(3)	  The internal resistance of the battery is considered in the SOC estimation problem. During the discharge 
process, the internal resistance is closely related to the SOC, and so considering the internal resistance 
greatly improves the estimation performance.

The remainder of this paper is organized as follows. "Battery test bench and dataset description" introduces 
the battery test bench and dataset for SOC estimation. The proposed hybrid network architecture and SWATS 
algorithm for SOC estimation are introduced in "SOC estimation via SWATS-based CNN-LSTM" "SOC 
estimation results and discussion" presents experimental results and discussion, before Sect. 5 concludes this 
paper.

Battery test bench and dataset description
When using a data-driven method to estimate SOC, the acquisition of data is very important. Thus, a battery test 
bench was constructed to obtain the necessary battery measurements. All discharge processes were carried out 
in a temperature test chamber (ESPEC GMC-71). Batteries were discharged using a programmable electronic 
load (IT8818B, manufactured by ITECH). The internal resistance of the batteries was measured by a battery 
tester (BT3562, manufactured by HIOKI). Note that the core device in the battery test bench is the battery 
monitor. To solve the problem of sampling clock deviations in different instruments and equipment, preventing 
multiple signals from cannot be measured at the same time, a battery monitor was designed to monitor the 
current, voltage, internal resistance, and temperature in real time. A current sensor and temperature sensor 
(IN260 and TMP1117, respectively, manufactured by Texas Instruments) were used to measure the discharge 
current and temperature. The BT3652 battery tester was used to measure the voltage and internal resistance of 
the units, ensuring high accuracy and data stability. A PC terminal ensured coordination between the measuring 
equipment through the serial port, and the collected battery information was stored in specific files according to 
the requirements of the test. The test bench is shown in Fig. 1.

In this experiment, a Panasonic NCR18650BD battery cell was tested. The basic electrical characteristics of 
this battery with a rated capacity of 3000 mAh are listed in Table 1. After 20 charge–discharge cycles under a 
constant 2-A current, the average voltage and internal resistance characteristics were as shown in Fig. 2. Voltage 
is highly correlated with SOC, leading to the use of the OCV method to estimate SOC, and voltage measurements 
are often used as a factor in SOC estimation in data-driven approaches.

In practical applications, there is a certain correlation between the internal resistance of batteries and SOC, 
that is, when SOC decreases, the internal resistance steadily increases In addition, the internal resistance of 
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Fig. 2.  Voltage and resistance characteristics of NCR18650BD.

 

Parameter
Panasonic NCR
18650BD

Samsung INR
18650-20R

Capacity 3000 mAh 2000 mAh

Nominal voltage 3.6 V 3.6 V

Minimum discharge voltage/Maximum charge voltage 2.5 V/4.2 V 2.5 V/4.2 V

Continuous discharge current 10 A 20 A

Internal resistance Less than 26 mΩ Less than 20 mΩ

Operating temperature -20–60℃ -20–60℃

Table 1.  Basic electrical characteristics of the batteries.

 

Fig. 1.  Equipment used for battery testing.
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batteries is usually modeled as a normal distribution with a certain variance and mean. This is because small 
differences in the manufacturing process, different usage environments, and long-term aging can all affect the 
performance of batteries, and the result of the interaction of these factors often presents a symmetrical bell 
shaped curve. Given the above characteristics, Pearson correlation coefficient is used to verify the correlation 
between internal resistance and SOC of the battery.

Furthermore, according to the correlation analysis presented in Table 2, the internal resistance of the battery 
also has a significant correlation with SOC, even higher than that of the voltage. The voltage of the Panasonic 
NCR18650BD in the process of constant discharge at 2 A is positively correlated with SOC (Pearson correlation 
coefficient of 0.842). The internal resistance is negatively correlated with SOC (Pearson correlation coefficient of 
-0.960). Therefore, considering the variation of internal resistance in the data-driven method for SOC estimation 
should improve the accuracy and stability of the estimation.

During experimentation, the battery was exposed to four different drive cycles: New York City Cycle (NYCC), 
Urban Dynamometer Driving Schedule (UDDS), Highway Fuel Economy Test (HWFET), and LA92 from the 
United States Environmental Protection Agency. The target speed driving schedules of these four drive cycles 
are shown in Fig. 3.

The specific steps of the test were as follows:

•	 • Step 1: Fully charge the lithium-ion battery with a 2 A constant current. After a certain time, ensure that the 
battery’s chemical properties and voltage are stable.

•	 • Step 2: Place the battery in the thermal chamber for 2 h at the set test temperature (0℃, 25℃, or 45℃).
•	 • Step 3: Test profile. NYCC, UDDS, HWFET, and LA92 drive cycles were used for testing. Record the current, 

voltage, and internal resistance of the battery during the process.
•	 • Repeat Steps 1–3.

The battery test bench was used to create a number of datasets. In addition to the current, voltage, and temperature, 
the internal resistance of the battery was obtained, which is of great significance for SOC estimation.

To further evaluate the accuracy and generalization performance of the proposed model, a well-recognized 
lithium-ion battery dataset from the University of Maryland was used as the second experimental dataset22. 
This dataset was collected from Samsung 18,650 LiNiMnCoO2/Graphite lithium-ion batteries by the Center 
for Advanced Life Cycle Engineering (CALCE). The basic electrical characteristics of the battery are listed in 
Table 1. The data were obtained under Dynamic Stress Test (DST), Federal Urban Driving Schedule (FUDS), 
and US06 drive cycles at three different ambient temperatures. Figure 4 shows the current profile and measured 
voltage in one discharge cycle.

Fig. 3.  Speed driving schedules of four drive cycles: (a) NYCC, (b) UDDS, (c) HWFET, and (d) LA92.

 

Index Voltage Internal resistance

SOC

Pearson correlation coefficient 0.842** − 0.960**

Quadratic sum 824.836 − 2479.913

Covariance 0.130 -0.389

Number of cases 6348 6348

Table 2.  Correlation analysis of voltage, internal resistance, and SOC during 2 A constant-current discharge. ** 
indicates significance at 0.01 level.
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Both lithium-ion battery datasets used a sampling frequency of 1 Hz for data collection, and all tests were 
performed at ambient temperatures of 0 °C, 25 °C, and 45 °C. Although the SWATS based CNN-LSTM proposed 
in this article was trained on data obtained from Panasonic NCR18650BD and Samsung INR18650 batteries, 
the model could also be trained on other types of battery. The well-known CALCE public dataset was used to 
verify the performance of the proposed model, enabling comparison with other state-of-the-art methods. The 
dataset collected by the battery test bench allows the generalization performance of the model to be evaluated. 
The experiments were conducted on a PC with an Intel(R) Core(TM) i7-6850 K CPU @ 3.60 GHz, using Python 
3.6, Tensorflow 1.13, and Keras 2.2.4.

SOC Estimation via SWATS-based CNN-LSTM
CNN-LSTM construction
LSTM is a form of RNN that was first proposed by Hochreiter et al.28. to solve the problem of gradients that are 
prone to long-term timing. Using memory units instead of ordinary hidden units to avoid the gradient vanishing 
or exploding after many time steps, LSTM overcomes the difficulties encountered in classical RNN training. The 
core of LSTM involves a variety of gates, including a forget gate, an input gate, and an output gate. A schematic 
diagram of an LSTM unit is shown in Fig. 5.

The forget gate determines what information should be discarded or retained. The input gate is used to 
update the unit state. The output gate determines the value of the next hidden state. The forward calculation 
process of an LSTM unit is as follows:

	 it = σ(W i · [ht − 1, xt] + bi)� (1)

	 ft = σ(Wf · [ht−1, xt] + bf )� (2)

	 C̃t = tanh(WC · [ht−1, xt] + bC)� (3)

	 Ct = ft ∗ Ct−1 + it−1 ∗ C̃t� (4)

	 ot = σ(Wo[ht−1, xt] + bo)� (5)

	 ht = ot ∗ tanh(Ct)� (6)

Fig. 5.  Structure of LSTM.

 

Fig. 4.  Current profile and measured voltage in one discharge cycle: (a) DST, (b) FUDS, and (c) US06.
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where xt, ht, and Ct are the input, output, and state of the LSTM unit, respectively. it, ft, and ot are the activation 
vectors of the input gate, forget gate, and output gate, respectively. W and b denote the weight matrix and bias 
parameter, and σ is the sigmoid activation function given by

	
σ(x) = 1

1 + exp(−x) � (7)

SOC estimation is based on inference from other data, such as voltage, current, and temperature measurements. 
These measurements are not only continuous in time, but also have a certain spatial relationship. Thus, it is not 
feasible to extract their temporal relationship using only an LSTM network. Considering that CNNs can extract 
spatial features, this study combines CNN and LSTM to capture the spatiotemporal features of measurements in 
an attempt to improve the performance of the model for SOC estimation. The hidden layers are the convolutional 
layer, LSTM layer, and fully connected layer, respectively. In SOC estimation, the input data are the measurements 
of voltage, current, and temperature, and the output is the estimated SOC.

CNN-LSTM can extract complex features from multiple input variables used for SOC estimation, and can 
store complex irregular trends. The convolution layer receives various parameters related to SOC. In addition, 
features such as internal resistance and charge–discharge cycles can be extracted in the convolution layer. The 
vector hcnn propagates forward from the input layer to the output of the convolutional layer, and can be expressed 
as

	 hcnn = σ(Xk ∗ Wcnn + bcnn)� (8)

where Xk is the input vector, Wcnn is the weight kernel, and bcnn is the bias.
LSTM is used to capture the time features required for SOC estimation, as extracted by the CNN. The output 

from the previous CNN layer is passed to the LSTM unit.

	 it = σ(Wxihcnn + Whiht−1 + bi)� (9)

	 ft = σ(Wxf hcnn + Whf ht−1 + bf )� (10)

	 Ct = ft ∗ Ct−1 + it ∗ tanh(Wxchcnn + Whcht−1 + bc)� (11)

	 ot = σ(Wxohcnn + Whoht−1 + bo)� (12)

Finally, Eq. (6) is used to update the LSTM hidden state ht.

SWATS optimized algorithm
At present, the commonly used moving average algorithm, which is based on the square of the historical 
gradient, cannot converge to the optimal solution. Thus, the generalization error using this approach, such as 
in Adam, may be worse than that of SGDM and other methods. However, SGDM has disadvantages in terms 
of convergence speed, so the SWATS algorithm for SOC estimation is proposed. SGDM29 adds a momentum 
mechanism in the process of gradient descent. The gradient of the current iteration and the cumulative gradient 
from previous iterations affect the parameter update. In this way, SGDM prevents parameters from becoming 
trapped around local optima. The Adam30 optimizer has an adaptive learning rate that can be considered as 
a combination of the momentum method and RMSprop. Adam not only uses momentum to determine the 
parameter update direction, but also adjusts the learning rate adaptively. SWATS combines Adam and SGDM31. 
The main idea of SWATS is to allow the algorithm to switch from Adam to SGDM after a certain number of 
learning iterations. In this way, the convergence speed of the model is accelerated while convergence to the 
optimal solution is ensured. The optimization strategy of SWATS is shown in Fig. 6.

In this hybrid strategy, the switchover point and the learning rate for SGD after the switch are important 
parameters, and can be learned as part of the training process. Note that Keskar’s model31 monitors the SGD 
learning rate after the switchover using a projection of the Adam step on the gradient subspace and takes the 
exponential average as an estimate. Further, the switchover is triggered when no change in this monitored 
quantity is detected. The update equation of SGDM is given by:

	 vk = βvk−1 + ∇̂f(wk−1)� (13)

Fig. 6.  Optimization strategy of SWATS.
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	 wk = wk−1 − αk−1 vk � (14)

where f is a loss function, wk denotes the kth iteration, αk is the learning rate, and ∇̂f(wk) denotes the stochastic 
gradient computed at wk. β∈[0, 1) is the momentum parameter. The update equation of Adam can be written as:

	
wk = wk−1 − αk−1 ·

√
1 − βk

2

1 − βk
1

· mk−1√
vk−1 + ε

� (15)

	 mk−1 = β1mk−2 + (1 − β1 )∇̂f(wk−1)� (16)

	 vk−1 = β2 vk−2 + (1 − β2)∇̂f(wk−1)2� (17)

Consider wk with a stochastic gradient gk and a step pk computed by Adam. Then, gk and pk can be expressed as:

	 gk = ∇̂f(wk−1)� (18)

	
pk = −

√
1 − βk+1

2

1 − βk+1
1

· αk√
vk + ε

gk � (19)

	 wk+1 = wk + pk � (20)

The process for calculating the switchover point and the learning rate for SGD after the switch is described in 
Algorithm 1.

Algorithm 1.  Calculating the switchover point and the learning date.

The determination of the switchover point and the learning rate can also be established by other criteria, 
such asγk = ∥p∥

∥g∥ , involving the monitoring of gradient norms. Regarding the selection of the learning rate and 
switchover point, more specific derivations can be found in31.

SOC Estimation based on the proposed method
As shown in Fig. 7, the proposed SWATS-based CNN-LSTM network starts with a sequence input layer. The 
input vectors are some measured signals of the battery, i.e., temperature, current, voltage, and resistance: x=[T, 
I, V, R], T=[t1, t2,…, tn], I=[i1, i2,…, in], V=[v1, v2,…, vn], R=[r1, r2,…, rn]. Next, perform data preprocessing. In 
this paper, we use the minimum-maximum normalization method to preprocess the data, and scale the battery 
data to 0 ~ 1 range, to remove the unit limit of the data, so as to facilitate the comparison and weighting of 
indicators in different units or magnitudes and improve the training speed of the network. Minimum-maximum 
normalization:
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xi=

xi − xmin

xmax − xmin
� (21)

A convolution layer then learns the spatial features based on previous inputs. The output of the convolution layer 
serves as the input to the LSTM layer, and the memory unit effectively retains or eliminates the influence factors 
according to historical training, thus learning the temporal features of the measured signals. The fully connected 
layer maps all distributed features to the sample label space, and merges the output. Finally, an output layer gives 
the SOC estimation: ŷ=SOC=[soc1, soc2,…, socn]. One-dimensional convolution is used to extract the features of 
the measurements. The convolution layer uses eight filters of length three to apply the convolution operation to 
the input multivariate time-series, and passes the result to the LSTM layer. The batch size and time steps of LSTM 
are set to 64 and 50, respectively. The SWATS-based CNN-LSTM for SOC estimation uses the backpropagation 
method. Considering possible overfitting during the training phase, the dropout algorithm with a dropout 
percentage of 30% is used in each hidden layer. To obtain superior training outcomes, the optimization function 
of the network is SWATS as mentioned above.

The root mean square error (RMSE) and mean absolute error (MAE) are used to evaluate the performance of 
the established model. RMSE measures the deviation between the prediction and the measurement, while MAE 
indicates the degree of fit between the prediction and the measurement. If ym denotes the measurement and ŷm 
denotes the prediction, and M denotes the number of samples, then

	

RMSE =

√√√√ 1
M

M∑
m=1

(ym − ŷm)2� (22)

	
MAE = 1

M

M∑
m=1

|ym − ŷm|� (23)

Model complexity and deployment feasibility analysis
The proposed method builds upon traditional CNN-LSTM architectures but introduces SWATS to reduce 
computational demands while maintaining high SOC estimation accuracy. From a complexity perspective, the 
optimized model significantly reduces both parameters and floating-point operations (FLOPs). Specifically, 
parameter count decreases by approximately 25% (from 35,000 to 26,250), and FLOPs reduction is around 40% 
(from 128 million to 76.8 million). This reduction in computational load enables the model to run efficiently on 
resource-constrained embedded devices, enhancing its practicality for real-world applications.

Fig. 7.  Architecture of the proposed SWATS based CNN-RNN network.

 

Scientific Reports |        (2025) 15:29572 8| https://doi.org/10.1038/s41598-025-15597-2

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


To validate the method’s real-time performance capabilities, experiments were conducted under standard 
testing conditions. The results demonstrate that the optimized CNN-LSTM model achieves an average inference 
time of 0.15 s per SOC estimation (± 0.03 s), outperforming both traditional LSTM-based approaches (0.28 s, 
± 0.04  s) and DCNN variants (0.21  s, ± 0.02  s). This significant improvement in speed ensures the model’s 
suitability for applications requiring rapid responses.

Furthermore, this method supports hardware acceleration strategies such as integrated FPGA 
implementation, further enhancing the practicality of the model. For instance, inference speed improves to 
0.10 s per SOC estimation (± 0.02 s) when deployed on FPGA platforms, accompanied by a 35% reduction in 
energy consumption. This combination of efficiency and reduced hardware costs makes the proposed method 
highly viable for industrial deployment.

SOC Estimation results and discussion
Complete Estimation of SOC during charging and discharging process
Figure 8 shows the SOC estimation for the FUDS test at room temperature. The SWATS-based CNN-LSTM 
network with 150 hidden neurons was trained over 500 epochs using data from the US06 and DST tests at 25℃. 
Figure 8 describes the complete SOC estimation of a lithium-ion battery during the charging and discharging 
process, and the error represents the distance between the estimated SOC and the measured SOC. The overall 
performance of the SWATS-based model is satisfactory. After a short period of fluctuation in the charging 
process and the early stage of discharge, high estimation accuracy is achieved (maximum error ~ 4%). In the 
later stage of the discharge process, the error increases, but it can still be controlled within 5%.

The prediction of the FUDS condition starts from the time of charging, and the values of RMSE = 0.019 
and MAE = 0.013 indicate that the proposed model can achieve good performance in different service periods. 
The results show that, under a fixed temperature and mixed drive cycles, FUDS produces a stable prediction 
performance with an RMSE of less than 0.024.

Comparison of SWATS based CNN-LSTMs at varying epochs
In a neural network, an epoch refers to the process of updating the parameters after all training data have 
undergone a forward and a backward process. Various numbers of epochs were used to evaluate the impact 
of epochs on the estimation performance of the SWATS-based model. The DST and US06 datasets at room 
temperature were used as training sets. Table 3 lists the comparison results for 300, 400, and 500 epochs, tested 
on the FUDS datasets recorded at an ambient temperature of 25℃. Each of the layers in three networks consisted 
of 500 computational nodes. As the number of epochs increases, the accuracy of the model improves, but the 
rate of improvement obviously becomes weaker. Figure 9 shows the estimation results of the established SWATS-
based model tested on the FUDS dataset. The estimation accuracy increases slowly as the number of epochs 
increases from 400 to 500. Too many epochs in the training process will increase the computational load with 
little effect on the accuracy. On the contrary, if there are too few epochs, it is difficult for the model to learn 
the dynamic characteristics of lithium-ion batteries. Therefore, the number of epochs needs to be determined 
according to the dataset. The results obtained in this study suggest that 500 epochs is the optimal number.

Note that larger errors usually occur in the middle and at the end of the discharge process. This is because 
the voltage is stable in the middle of the discharge process, and small voltage fluctuations may lead to larger 
SOC prediction errors. At the end of the discharge, the battery power is low, resulting in changes in the internal 
characteristics of the battery that are difficult to estimate.

Epochs

Estimation accuracy on FUDS

MAE RMSE Maximum error

300 0.024 0.030 13%

400 0.018 0.022 12%

500 0.016 0.019 8%

Table 3.  Comparison results on FUDS with varying numbers of epochs.

 

Fig. 8.  Performance of FUDS test case, including charge–discharge profiles, recorded at ambient temperature 
of 25℃.
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Fig. 10.  Performance of FUDS test case under various initial SOC conditions: (a) 80%, (b) 60%, and (c) 40%.

 

Fig. 9.  Performance of three different models with 300, 400, and 500 epochs.
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Comparison of SWATS-based CNN-LSTM with LSTM and CNN-LSTM
To further verify the effectiveness of the SWATS-based model, we compared it with conventional LSTM and 
CNN-LSTM models. The comparison results using FUDS as a test case are shown in Fig. 10. The discharge 
process was simulated under various initial SOC conditions. This is because, in actual estimation cases, the 
battery does not always start discharging from 100%. In this experiment, the initial SOC was set to either 80%, 
60%, or 40% to verify the robustness of the model under different initial conditions. The prediction results are 
compared in Fig. 10, and the RMSE and MAE are listed in Table 4.

It is clear that all three models can predict SOC, although the proposed SWATS-based model outperforms 
the LSTM and CNN-LSTM models. According to Table  4, the proposed method has the highest estimation 
accuracy under all initial conditions. As the initial SOC decreases, the difficulty of estimation increases. This 
is because as the initial SOC decreases, the amount of data used for network training and testing is greatly 
decreases, making it difficult to capture the spatiotemporal relationship of sequences. In addition, in the middle 
and late stage of discharge process, the chemical characteristics of the battery become complexly, and the factors 
affecting SOC estimation become more obvious, which increases the difficulty of estimation. But as the model 
improved, the proposed model retains good estimation accuracy.

SOC Estimation at varying ambient temperatures
SOC estimation becomes more difficult at low temperatures, and so the influence of the ambient temperature 
cannot be ignored. To evaluate the sensitivity of the model to temperature, US06 was used as the training set, and 
the FUDS dataset at various temperatures was used as the test case to verify the proposed method. The estimation 
results of complete charge/discharge under the FUDS conditions are shown in Fig. 11. Due to the temperature 
variation, the estimation of SOC presents a nonlinear and unstable trend. At low temperatures, although the 
classic LSTM and SWATS-based models can estimate SOC well for the lithium-ion battery, the estimation error 
is relatively large compared with higher ambient temperatures, and the predicted SOC fluctuates significantly 
over the entire estimation process. As the temperature decreases, the estimation error tends to increase. Due to 
the embedded LSTM memories, both LSTM and SWATS-based CNN-LSTM achieve low estimation errors over 
the time series, but the addition of a convolutional layer improves the ability to capture spatial characteristics 
such as temperature. To verify the generalization performance of the model, the DST test set was used and 
shown in Fig. 12.

The fluctuations in the predictions made by the proposed SWATS-based method are much smaller than 
those of the simple LSTM, which indicates that the proposed method is less sensitive to temperature. At 0℃, the 
maximum error is greater than 10%, but most of the errors are still less than 5%. At low ambient temperatures, 
the internal chemical characteristics inside the battery vary greatly, making them more difficult to capture. As 
shown in Table 5, the proposed model outperforms LSTM in terms of MAE at all temperatures, and produces 
better RMSE performance at 25 °C and 0 °C. At high temperature, the chemical properties of the battery are 

Fig. 11.  Performance of three different models with various ambient temperatures (FUDS dataset): (a) 45℃, 
(b) 25℃, and (c) 0℃.

 

Initial SOC

MAE RMSE

LSTM CNN-LSTM SWATS with CNN-LSTM LSTM CNN-LSTM SWATS with CNN-LSTM

80% 0.019 0.018 0.016 0.022 0.022 0.019

60% 0.022 0.022 0.017 0.025 0.024 0.021

40% 0.026 0.025 0.021 0.028 0.027 0.024

Table 4.  Comparison of SWATS-based CNN-LSTM with LSTM and CNN-LSTM under various initial SOC 
conditions.
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stable, the relationship between SOC and measurements are easier to capture, and the RMSE of the two models 
is quite different.

SOC Estimation for Panasonic NCR 18650BD (considering internal resistance)
Different from the public dataset, the lithium-ion battery dataset constructed using the battery test bench not 
only contains the current, voltage, and temperature of the battery, but most importantly it also contains internal 
resistance measurements. As the estimated performance of the SOC and the internal resistance are closely 
related, these data are very meaningful.

Figure  13 shows the SOC estimations for the Panasonic NCR 18650BD battery. In this experiment, the 
training case was a mixture of NYCC, UDDS, and HWFET, and the test case was LA92 at an ambient temperature 
of 25℃. The red curve in the figure indicates the estimations using only current, voltage, and temperature 
data. The blue curve denotes the estimations including the internal resistance data. The experimental results 
show that when the lithium-ion battery dataset is changed, it is difficult to capture the regular SOC due to 
external interference and noise in the battery test platform. This reduces the estimation performance of the 
model. However, considering the influence of internal resistance in the SOC estimation greatly improves the 
accuracy of estimation. Thus, the proposed SWATS-based network can still obtain accurate SOC estimations. 
The model with internal resistance taken into account provides significantly better SOC estimations during 
the entire discharge process than the traditional method that only considers current, voltage, and temperature, 
and the estimated and the measured results display a high degree of correlation. This experiment verifies the 
generalization performance of the proposed model. Table 6 describes the effect of the internal resistance data on 
the model performance. According to Table 6, under the LA92 conditions, the consideration of internal resistance 
reduces the MAE and RMSE significantly. Among them, MAE decreased by 52.8%, RMSE decreased by 47.6%, 
and maximum error decreased by 4% This strongly validates the effectiveness of increasing consideration of 
battery internal resistance when using this method for SOC estimation.

we use a statistical test to verify whether this improvement is statistically significant, it can strength claims 
about superiority over baseline methods. Paired t-test is a commonly used statistical methods for comparing the 
differences between two sets of related data to analyze paired designs (i.e. measuring the same group of subjects 
under two different conditions). The mathematical formula is as flows:

	
t = D

(SD/
√

n)
� (24)

Models

MAE RMSE

45℃ 25℃ 0℃ 45℃ 25℃ 0℃

LSTM (FUDS dataset) 0.011 0.015 0.016 0.008 0.018 0.020

SWATS-based CNN-LSTM (FUDS dataset) 0.009 0.011 0.014 0.009 0.013 0.018

LSTM (DST dataset) 0.010 0.014 0.019 0.010 0.022 0.025

SWATS-based CNN-LSTM (DST dataset) 0.006 0.009 0.015 0.009 0.014 0.022

Table 5.  Comparison of SWATS-based CNN-LSTM with LSTM under various initial SOC.

 

Fig. 12.  Performance of three different models with various ambient temperatures (DST dataset): (a) 45℃, (b) 
25℃, and (c) 0℃.
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Where D is the mean of the difference, SD  is the standard deviation of the difference, and n is the number 
of samples After calculation, the sample rejected the null hypothesis, P = 0.0075, This indicates a significant 
difference between the two sets of data, verifying the effectiveness of considering battery internal resistance in 
SOC estimation problems.

To fully verify the effectiveness of internal resistance for SOC estimation of lithium-ion batteries, the 
Panasonic NCR 18650bd dataset was tested using different data-driven models: LSTM, Bi-LSTM, CNN-LSTM, 
SWATS-LSTM, GRU, CNN-GRU, Bi-GRU, SWATS-GRU, NARX, and NARX-LSTM. The RMSE results of these 
ten models with two different inputs (with and without internal resistance data) are shown in Fig. 14. As the 
internal resistance of the battery is closely related to SOC, it should not be ignored in SOC estimation, especially 
when using data-driven methods. Compared with the traditional estimation models considering only the 
current, voltage, and temperature, the RMSEs of the models considering the battery’s internal resistance under 
the LA92 conditions have been reduced by nearly 50%. This further verifies the benefits of the battery test bench 
established in this study, as it can produce rich and meaningful battery datasets for different types of lithium-ion 
batteries and temperatures.

Models

Estimation accuracy for LA92

MAE RMSE Maximum error

SWATS-CNN-LSTM with input=[T, I, V] 0.036 0.042 13%

SWATS-CNN-LSTM with input=[T, I, V, R] 0.017 0.022 9%

Table 6.  Comparison of models with varying input.

 

Fig. 13.  SOC estimation results for Panasonic NCR 18650BD at 25℃.
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Comparison of SWATS-CNN-LSTM with SGD-CNN-LSTM and ADAM-CNN-LSTM
Finally, SGDM, Adam, and SWATS were used to train the CNN-LSTM architecture on the Samsung 18,650 
LiNiMnCoO2/Graphite lithium-ion battery dataset. The training loss and validation loss of the model are shown 
in Fig. 15. SGDM-CNN-LSTM finally achieved the best test accuracy during training. After 1000 epochs, the 
training loss stabilized at 0.037, although the validation loss jittered significantly with each epoch. Adam-CNN-
LSTM produced the fastest rate of decrease in the training loss, but although the training and generalization 
metrics of Adam are initially better than those of SGDM, the convergence stagnates and the training loss remains 
stuck at 0.074. SWATS uses a simple strategy to convert from Adam to SGD during training. It achieves a rapid 
initial decrease in the training loss, and then converges well after switching to SGDM, with an eventual loss of 
0.041. This experiment demonstrates that SWATS combines the advantages of Adam and SGDM, and switches 
from Adam to SGDM at the appropriate point. Overall, this improves the training speed of the CNN-LSTM and 
guarantees good generalization and convergence.

Conclusions
This study has made three special contributions. The first is the establishment of a battery test bench, free of 
dependence on public datasets, which provides the ability to create datasets for various types of lithium-ion 
batteries at different temperatures and driving cycles. More importantly, in addition to the conventional current, 
voltage, and temperature data, the measurements also include internal resistance. The second contribution is a 
data-driven method that considers internal resistance for SOC estimation. By considering internal resistance, 
the RMSE of the model can be reduced by nearly half. The third contribution is the creation of a CNN-LSTM 
model that uses a SWATS optimization strategy. The CNN-LSTM network structure learns the spatiotemporal 

Fig. 15.  Loss of CNN-LSTM models using different optimizers: (a) SGDM, (b) Adam, and (c) SWATS.

 

Fig. 14.  Performance (RMSE) of ten kinds of data-driven models under two different inputs.
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information of the battery measurement sequence, and better captures the spatiotemporal dependences. SWATS 
switches from Adam to SGDM at a specific switching point, which improves the generalization performance and 
training speed of the model.

Finally, two different lithium-ion battery datasets were used for simulations, and the effects of the ambient 
temperature, network parameters, network structure, and optimization algorithms for SOC estimation were 
analyzed through experiments. The results show that the proposed model has good robustness to temperature 
changes, and the addition of internal resistance data greatly increases the accuracy of the estimation model. 
In summary, the SWATS-based CNN-LSTM model considering internal resistance has the advantages of high 
network generalization performance and high SOC estimation accuracy.

Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author upon 
reasonable request.
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