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Festivals and city-wide mass events are prevalent in human societies worldwide, drawing large crowds. 
Such events range from concerts with a dozen attendees to large-scale actions with thousands of 
viewers. It is the highest priority for each organizer of such an occasion to be capable of upholding 
a higher standard of safety and minimizing the danger of events, especially medical emergencies. 
Therefore, establishing sufficient safety measures is significant. There is a requirement for event 
organizers and emergency response personnel to identify developing, potentially critical crowd 
situations at an early stage during city-wide mass assemblies. In general, the localization of the 
global positioning system (GPS) and proximity-based tracking is employed to capture intricate 
crowd dynamics throughout an event. Recently, technology has been used in numerous diverse 
ways to achieve these large crowds. For example, computer vision-based models are employed to 
observe the flexibility and behaviour of crowds. In this manuscript, a model for Medical Response 
Efficiency in Real-Time Large Crowd Environments via Smart Coverage and Hiking Optimisation 
(MRELC-SCHO) is presented, aiming to maintain stable ecological health. The primary objective of 
this paper is to propose an effective method for enhancing medical response efficiency in large crowd 
environments by utilizing advanced optimization algorithms. Initially, the MRELC-SCHO model 
utilizes min-max normalization to transform the input data into a structured format. Furthermore, 
the Chimp Optimisation Algorithm (CHOA) model is employed for the feature selection (FS) process 
to select the most significant features from the dataset. Additionally, the MRELC-SCHO technique 
utilizes the bidirectional long short-term memory with an auto-encoder (BiLSTM-AE) method for 
classification. Finally, the parameter selection for the BiLSTM-AE model is performed by using the 
Hiking Optimisation Algorithm (HOA) model. The experimentation of the MRELC-SCHO approach 
is accomplished under the Ecological Health dataset. The comparison analysis of the MRELC-SCHO 
approach revealed a superior accuracy value of 98.56% compared to existing models.

Keywords  Medical response efficiency, Smart coverage, Large crowd environments, Stable ecological health, 
Hiking optimisation algorithm

Crowd management is a crucial area of study, as it directly impacts the safety and well-being of individuals. A 
crowd refers to a large group of people who come together, driven by a common goal or collective emotions1. 
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Numerous motives can contribute to a crowd’s existence, including a political rally, a spiritual get-together, 
a concert, or a sports event. Crowd management is a challenging task that involves thorough and detailed 
planning, precise execution, and proactive control approaches2. The consequences of any absence or error in 
management will be intolerable and expensive. Old histories have documented damages and mortalities at 
crowded gatherings. Hence, it is vital to effectively monitor the safety of the crowd and implement essential 
management strategies throughout the event. In this procedure, individuals are assessed to identify potential 
crowd hazards3. If a hazard is found, it should be observed and recorded. Similarly, crowd assessment is used 
to interpret crowd actions and enhance crowd control tools. Furthermore, medical management and response 
are key services provided by towns at various levels4. Medical management approaches have recently been 
reinforced through town protocols, which will only control familiar events. However, as cities became more 
sophisticated and people’s behaviour evolved, nature, scale, shape, and planning for events became increasingly 
complex to forecast5. The prompt production and distribution of information regarding events are crucial for 
mobilizing response resources, coordinating efforts, evaluating circumstances, and conducting analysis, which 
in turn informs future prevention and preparedness approaches. This prompt provision fosters an environment 
of credibility and trust among urban residents in a highly dynamic atmosphere, providing rescue workers with 
basic information regarding events and their geographical context6. Smartphone usage has grown rapidly. 
As it has become more common, smartphones have also undergone drastic development: models nowadays 
consist of hardware, including accelerometers, GPS sensors, gyroscopic sensors, magnetic compasses, cameras, 
and pedometers. Furthermore, Wi-Fi and Bluetooth are also standard in new phones, permitting continuous 
internet connection7. Such influential sensors are used in numerous applications that operate on smartphones, 
such as context-aware mobile applications, which utilize the user’s location. Several applications utilize GPS-
aided localization techniques specifically for external landscapes8. Computer vision (CV) methods are used for 
monitoring crowd movement and actions. Although significant developments have occurred in this domain, the 
models have become ineffective when applied on a larger scale due to their limited perspective lines and unclear 
detection limits9. Currently, video-assisted monitoring methods are frequently used for medical response 
efficiency. The current study has focused on developing computer-aided models to autonomously analyze stored 
acts and identify unusual and potentially unsafe crowd conditions10.

In this manuscript, a Medical Response Efficiency in Real-Time Large Crowd Environments via Smart 
Coverage and Hiking Optimisation (MRELC-SCHO) model for stable ecological health is presented. The 
primary objective of this paper is to propose an effective method for enhancing medical response efficiency in 
large crowd environments by utilizing advanced optimization algorithms. Initially, the MRELC-SCHO model 
utilizes min-max normalization to transform input data into a structured format. Furthermore, the Chimp 
Optimisation Algorithm (CHOA) model is employed for the feature selection (FS) process to select the most 
significant features from the dataset. Additionally, the MRELC-SCHO technique utilizes the bidirectional long 
short-term memory with an auto-encoder (BiLSTM-AE) method for classification. Finally, the parameter 
selection for the BiLSTM-AE model is performed by using the Hiking Optimisation Algorithm (HOA) model. 
The experimentation of the MRELC-SCHO approach is accomplished under the Ecological Health dataset. The 
significant contribution of the MRELC-SCHO approach is listed below.

•	 The MRELC-SCHO technique utilizes min–max normalization to preprocess data, which scales features to 
a uniform range, improving consistency and mitigating bias. This preprocessing step enhances the quality 
of the input data, thereby improving the effectiveness of subsequent feature selection and classification, and 
ultimately increasing the overall accuracy and reliability of the model.

•	 The MRELC-SCHO method utilizes the CHOA model to select the most relevant features, thereby enhancing 
the efficiency and accuracy of the learning process. By concentrating on key attributes, it mitigates dimen-
sionality and improves classification performance. This results in faster training and better generalization on 
new data.

•	 The MRELC-SCHO approach employs a BiLSTM-AE model to capture intrinsic temporal patterns and re-
construct key features for accurate classification. This approach enhances the model’s ability to learn sequen-
tial dependencies and mitigate noise, leading to improved accuracy and more robust predictions.

•	 The MRELC-SCHO methodology utilizes the HOA technique for fine-tuning parameters, improving overall 
performance by effectively searching for the optimal configuration. This optimization mitigates training time 
and prevents overfitting, resulting in more reliable and accurate model predictions across diverse datasets.

•	 The MRELC-SCHO model uniquely incorporates advanced optimization algorithms such as CHOA and 
HOA, with BiLSTM-AE for feature selection, classification, and parameter tuning. This integration enhances 
accuracy and efficiency by optimizing each stage of the learning process. Its novelty is in combining these 
techniques to create a comprehensive and adaptive framework that improves performance across multiple 
tasks.

Literature review
Cai et al.11 examined a new model for cognitive energy-efficient healthcare-based aerial computing and trajectory 
optimization (CEHEAT) for addressing these challenges. The presented model enhances energy efficiency by 
integrating cognitive IoT (CIoT) capabilities with autonomous aerial vehicles (AAVs) and aerial computing 
to address the diverse needs of healthcare systems. This model ensures effective data processing and collection 
through cognitive skills, such as dynamic resource allocation and adaptive sensing, guaranteeing reliable 
healthcare monitoring. Chen et al.12 proposed a smart regional health and safety monitoring and emergency 
treatment system that integrates IoT, cloud computing, big data, and AI techniques to facilitate understanding 
of cross-regional medical resource planning, telemedicine consultation, ICU bed management, and other 
related applications. Damaševičius et al.13 aimed to explore the utilization of IoES in disaster management and 
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emergency response, with a concentration on the IoT devices and sensors in delivering dynamic information to 
the ambulance team. Zhang et al.14 introduced an original method that utilizes a hybrid Near-Field and Far-Field 
Non-Orthogonal Multiple Access (NOMA) approach to address the challenges of increased device bandwidth 
and density in emergencies. The introduced resource orchestration method perfectly stabilizes energy, Quality of 
Service (QoS), and quantity through a power and device matching framework for reasonable PD-NOMA entry. 
A real-time Actor-Critic framework for a practical multi-objective optimizer, safeguarding proper resource 
allocation between IoT systems.

Fig. 1.  Overall process of the MRELC-SCHO model.
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Lv et al.15 proposed the emergency-aware distributed edge intelligence (DEI) for medical response (EDEM) 
model, a novel model that utilizes DEI to address these challenges. Particularly, EDEM presents a hierarchical 
edge collaborative computing structure, which practically builds learning fields depending on a complete medical 
data capability technique. Next, a deep-reinforcement-learning-driven node selection framework safeguards 
effective task distribution in the system. Liu et al.16 designed a PSES multiterminal fusion system (SafeCity) 
that leveraged the expertise of diverse mobile crowd sensing concepts. Khaer et al.17 recommended UAVs as 
an effective technique for dynamic data transmission and trained them to function more capably compared to 
human resources, with greater security. This could be a crucial model in emergencies18. Recommended a new 
collaborative health emergency response system in the Cooperative Intelligent Transportation Environment, 

Fig. 2.  BiLSTM-AE structure.
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such as C-HealthIER. C-HealthIER constantly monitors individuals’ health and implements supportive 
behaviour in response to health crises through vehicle-to-infrastructure and vehicle-to-vehicle data sharing to 
identify nearby healthcare professionals. Dehbozorgi, Ryabchykov, and Bocklitz19 evaluated the efficiency of 
various feature extraction techniques, such as statistical, radiomics, and DL, for binary classification of medical 
images using Principal Component Analysis–Linear Discriminant Analysis (PCA-LDA) models. The method 
showed superiority over recent models such as ResNet50 and DenseNet121. Nurmaini et al.20 improved cervical 
precancerous lesion detection by utilizing a DL technique, You Only Look Once version 8 (YOLOv8), integrated 
with Slicing Aided Hyper Inference (SAHI) and medical guidelines, to analyze cervicograms before and after 
acetic acid application for more accurate and consistent visual inspection with acetic acid (VIA) assessments.

Materials and methods
In this manuscript, the MRELC-SCHO approach for stable ecological health is presented. The primary objective 
of this paper is to propose an effective method for improving medical response efficiency in large crowd 
environments by utilizing advanced optimization algorithms. It comprises four different kinds of processes 
involving data normalization, attribute selection using CHOA, classification, and parameter tuning using HOA. 
Figure 1 exemplifies the entire procedure of the MRELC-SCHO model.

Stage I: Min–Max normalisation
Initially, the MRELC-SCHO applies a min-max normalization-based data normalization method to convert the 
input data21. This model is chosen for its effective scaling capability and also preserves the original distribution 
while ensuring uniformity across diverse features. This model preserves the relative associations of the original 
data, which can enhance the model’s convergence and stability. This is especially beneficial when input variables 
have different units or scales, as it prevents features with larger ranges from dominating the learning process. It 
is simple to implement, computationally efficient, and works well with algorithms sensitive to feature scaling, 
such as neural networks and optimization algorithms. These merits make it a reliable choice for preprocessing 
data in DL models.

Min-max normalization is a significant process that is utilized to measure data within a precise range, 
typically between 0 and 1, making it ideal for normalizing varied input variables in real-time applications. From 
the perspective of medical response efficiency in large crowds, min-max normalization ensures that numerous 
parameters, such as crowd density, response time, and resource accessibility, are on a similar scale. This enhances 
the efficiency of the smart coverage model, as it permits superior integration and organization of real-time data. 
By regularising the values, the system can generate more precise decisions, which ensures appropriate medical 
responses and enhances resource allocation. In large-crowd situations, this normalization aids in minimizing 
biases produced by fluctuating scales of input data, ultimately improving overall coordination and medical 
response tactics. In this approach, the method becomes more adaptable to dynamic environments, ensuring 
optimal performance in crowd management and medical emergencies.

Stage II: attribute optimization using CHOA
Additionally, the CHOA is employed in the FS process to select the most significant features from a dataset22. 
This model is chosen for its robust capability in balancing exploration and exploitation phases. The technique 
also shows efficiency in searching the feature space for the most relevant attributes. The method replicates 
the intelligent hunting behaviour of chimps, thus enabling it to avoid local optima and achieve better global 
solutions. It is computationally efficient and adaptable to high-dimensional data, making it appropriate for 
intrinsic datasets. Additionally, CHOA’s ability to dynamically adjust its search strategy improves convergence 
speed and accuracy in feature selection, ultimately enhancing model performance and mitigating overfitting. 
These advantages make CHOA an ideal choice for attribute optimization tasks.

Chimpanzees are highly social great apes closely connected to humans, and they live in a dynamic fission-
fusion society where the composition and size of the group fluctuate. This social framework is reflected in 
the CHOA, where individual groups discover the searching area by employing diverse approaches, utilizing 
individual abilities to resolve complex concerns. Searching happens in exploitation and exploration. Compute 
pursuing prey and driving. To split the driving and succeeding prey (1) and (2) are mathematical expressions.

	 d = |c.xprey (t) − m.xchimp (t)|� (1)

	 xchimp (t + 1) = xprey (t) − a.d� (2)

The vectors a and c are inspected in Eqs. (3, 4), correspondingly.

Ecological stage Ecological label No. of samples

Ecologically healthy EH 30,735

Ecologically stable ES 18,371

Ecologically critical EC 2988

Ecologically degraded ED 9251

Total samples 61,345

Table 1.  Details of the dataset.
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	 a = 2.f.r1 − f � (3)

	 c = 2.r2� (4)

Barrier, Chaser, and Driver chimpanzees sometimes search, but attackers typically do not. The finest position of 
prey is unidentified in a searching area. Therefore, the other locations of chimpanzees are modified to correspond 
to those of better chimps, assisting them to enhance their search models.

	

dAttacker = |c1xAttacker − m1x|
dBarrier = |c2xBarrier − m2x|
dChaser = |c3xChaser − m3x|
dDriver = |c4xDriver − m4x|

� (5)

Fig. 3.  80%TRPHE and 20% TRPHE of (a,b) confusion matrices and (c,d) PR and ROC curves.
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x1 = xAttacker − a1 (dAttacker)
x2 = xBarrier − a2 (dBarrier)
x3 = xChaser − a3 (dChaser)
x4 = xDriver − a4 (dDriver)

� (6)

	
x (t + 1) = x1 + x2 + x3 + x4

4
� (7)

Fig. 4.  Average values of MRELC-SCHO at 80%TRPHE and 20%TSPHE.

 

Class labels Accuy P recn Recal F 1Score GMeasure

TRPHE (80%)

EH 98.48 98.05 98.93 98.49 98.49

ES 98.59 96.49 98.88 97.67 97.68

EC 99.19 93.15 90.08 91.59 91.60

ED 97.50 94.79 88.33 91.45 91.50

Average 98.44 95.62 94.05 94.80 94.82

TSPHE (20%)

EH 98.53 98.16 98.95 98.55 98.56

ES 98.81 97.12 98.93 98.01 98.02

EC 99.19 92.68 90.32 91.49 91.50

ED 97.71 94.87 89.55 92.13 92.17

Average 98.56 95.71 94.44 95.05 95.06

Table 2.  Classifier outcome of MRELC-SCHO model at 80%TRPHE and 20%TSPHE.
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During this primary phase, chimps abandon their roles and turn chaotic. It is stated as a fifty per cent chance 
of employing chaotic movement rather than the standard upgrading procedure. This enables the model to 
escape local optima and discover novel solutions. The searching procedure implies chimps in diverse roles, 
modifying their locations depending on the assessed location of prey. Parameters are adaptively adjusted to 
faster convergence.

	
xchimp (t + 1) =

{
xprey (t) − a.d . . . if µ < 0.5
chaotic−value . . . if µ > 0.5 � (8)

Chimpanzees are arbitrarily allocated to barricades, attackers, drivers, and chasers. Every chimp employs 
group-based “f ” coefficient upgrades. In every iteration, the barrier, attacker, driver, and chaser chimpanzees 
evaluate their position relative to the prey. Every possible solution modifies its prey distance depending on the 
approximation. The “m” and “c” vectors are adaptively adjusted to accelerate convergence and prevent local 
optima.

The fitness function (FF) utilized in the proposed model is designed to strike a balance between the count of 
designated features in all the results (smallest) and the classifier accuracy (highest) achieved by employing this 
nominated feature. Equation (9) signifies the FF to assess the solution.

	
F itness = α γ R (D) + β

|R|
|C| � (9)

While γ R (D) implies the classifier ratio of errors, |R| denotes the cardinality of the selected subset, and |C| 
exemplifies the complete number of features. α  and β  are two parameters that match the consequence of 
classifier quality and subset length.

Stage III: classification using the BiLSTM-AE model
Moreover, the MRELC-SCHO model incorporates the BiLSTM-AE technique for classification23. This 
methodology is chosen for its ability to capture long-range dependencies in sequential data by processing data 
in both forward and backwards directions. The AE model assists in learning effective feature representations by 
reconstructing input data, which mitigates noise and emphasizes crucial patterns. The approach also enhances 
context understanding compared to conventional LSTM or unidirectional models. This methodology presents 
enhanced robustness, specifically for time-series or sequential datasets, resulting in higher accuracy and 
better generalization compared to other classifiers. Its integrated feature learning and classification capabilities 

Fig. 5.  Accuy  curve of the MRELC-SCHO method under 80:20.
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make it appropriate for intrinsic, real-world tasks where data relationships are complex. Figure 2 portrays the 
configuration of BiLSTM-AE.

AE is one of the neural network frameworks built from stacked layers, frequently utilizing nonlinear activation 
functions that are complex in modelling nonlinear relations in the information. With this ability, AE is widely 
utilized for reducing dimensions and extracting features in higher-dimensional datasets, offering a substrate 
for the following challenges of ML. A standard AE typically consists of three elements: latent representation, 
decoder, and encoder. The encoder mapping is a process that converts higher-dimensional input data into a 
lower-dimensional representation, known as a latent representation.

	 z = g (Wex + be)� (10)

Now, be depicts the biased vector with dimension p, g refers to the activation function, and We is the weighted 
matrix with dimension p × m. The dimension of the latent space z is denoted as p; now, p represents a 
positive integer, indicating the reduced dimensionality of the input data.

The decoder employs the hidden representation z to rebuild the new input with high probability. The 
reconstructed output is depicted as X, whereas the variance between X and the new input x is stated as an error 
of reconstruction. Equation (11) standardizes the procedure of decoding, Wd refers to the weighted matrix with 
dimension m × p, f  indicates the function of activation, X  specifies reconstructed input data, and bd signifies 
the biased vector with dimension m. Equation (12) defines the computation of reconstruction error, now m 
signifies the dimensionality of the original data, equivalent to variable counts, and L is the reconstruction error.

	 x̂ = f (Wdz + bd)� (11)

	
L (x, x̂) = 1

m

∑ m

i=1
(x̂i − xi)2� (12)

LSTM is an upgraded version of RNN that effectually alleviates the vanishing gradient concern by adaptively 
managing the values of output and input gates, thus regulating the forgetting or retention of data in the state 
of the cell. It enables LSTM to acquire and utilize temporal dependencies in time sequences. The framework 
of LSTM comprises three significant elements: input, output, and forget gates, with the data flow among these 
elements.

	 ft = σ (Wfxxt + Wfhht−1 + bf )� (13)

Fig. 6.  Loss curve of MRELC-SCHO method at 80:20.
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∼
c= tanh

(
W∼

c x
xt + W∼

c h
ht−1 + b∼

c

)
� (14)

	 it = σ (Wixxt + Wihht−1 + bi)� (15)

	 ct = ft ⊙ ct−1 + it ⊙
∼
c t� (16)

	 ot = σ (Woxxt + Wohht−1 + bo)� (17)

	 ht = ot ⊙ tanh (ct)� (18)

Now, it, ot, and ft refer to the outputs of the input, output, and forgetting gates. These outputs are n
-dimensional vectors, where n corresponds to the number of hidden units in the hidden layer (HL) of the LSTM. 
Wfx, W ∼

c x
, W ix, and Wox are the weighted matrices corresponding to the input at the existing time step χ i 

and the forgetting, input, and output gates, respectively. Every weighted matrix has dimensions n × m, where 

Fig. 7.  70%TRPHE and 30%TSPHE of (a,b) confusion matrices and (c,d) PR and ROC curves.
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m refers to the dimensionality of the input vector. bf , bC , bj , and bo refer to the n-dimensional biased vectors 
for the forgetting, input, and output gates, respectively. Wfh, W ∼

c h
, W ih, and Woh are the weighted matrices 

corresponding to the forgetting, cell, input, and output, respectively, among the HL at the preceding time step 
ht-1. Every weighted matrix has dimensions n × n..

LSTM is highly effective at taking temporal dependency in time sequence data. Nevertheless, it depends 
on previous memory that can induce errors in the task of classification and prediction. Bi-LSTM, conversely, 
employs bi-directional data flow by combining either past-to-future or future-to-past dependency, thus allowing 
for more precise inspection and time-series data processing.

Fig. 8.  Average values of the MRELC-SCHO model under 70%TRPHE and 30%TSPHE.

 

Class labels Accuy P recn Recal F 1Score GMeasure

TRPHE (70%)

EH 95.40 93.83 97.21 95.49 95.51

ES 97.57 96.34 95.54 95.94 95.94

EC 98.69 85.55 87.54 86.53 86.53

ED 95.93 91.03 80.93 85.68 85.83

Average 96.90 91.69 90.30 90.91 90.95

TSPHE (30%)

EH 95.35 93.66 97.29 95.44 95.46

ES 97.54 96.08 95.65 95.87 95.87

EC 98.61 86.19 86.29 86.24 86.24

ED 95.77 90.93 80.08 85.16 85.33

Average 96.82 91.72 89.83 90.68 90.72

Table 3.  Classifier outcome of MRELC-SCHO model at 70%TRPHE and 30%TSPHE.
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Stage IV: HOA-based parameter tuning
Finally, the parameter choice of the BiLSTM-AE model is performed by using the HOA technique24. This model 
is chosen for its efficiency in balancing the exploration and exploitation phases, which enables it to search 
effectively for optimal hyperparameters. Compared to conventional tuning methods, such as grid or random 
search, HOA is more adaptive and can avoid getting trapped in local minima, resulting in improved model 
performance. This technique enables dynamic adjustment of the search process based on feedback and replicates 
the strategic movements of hikers. HOA is computationally efficient and appropriate for high-dimensional 
parameter spaces, mitigating tuning time while improving accuracy and generalization. These advantages make 
HOA an ideal choice for optimizing model parameters.

The HOA is stimulated by experiments faced by individuals attempting to attain the highest hills, rocks, 
or mountains, which depend upon the condition. Throughout a hike, individuals frequently factor in either 
instinctively or intentionally. Hikers are well-known for the region’s landscape and will estimate the time to reach 
the meeting. This leads to delays in attaining the global optimum throughout a trek. The method depends upon 
duplicating the task of hiking to tackle optimization problems.

The HOA mainly originated from Tobler’s Hiking Function (THF). This function employs an exponential 
method to evaluate a hiker’s pace. THF is mathematically formulated below:

	 Wi,t = 6e−3.5|si,t+0.05|� (19)

Here, Wi,t signifies the speed of the ith hiker, designated in km/h at time t, and Si,t means the gradient of 
the trail. Also, the gradient Si,t is computed below:

	
Si,t = dh

dx
= tanθ i,t� (20)

 where, dx and dh signify the variations in distance and height moved by the hiker, respectively. Furthermore, 
θ i,t is the slope angle within the interval of [0,50◦ ]..

The HOA model influences the decision-making procedure of the cluster and the individual cognitive 
abilities of every hiker.

	 Wi,t = Wi,t−1 + γ i,t

(
β best − α i,tβ i,t

)
� (21)

The parameter γ i,t signifies a randomly generated value from a uniform distribution between 0 and 1. While 
Wi,t and Wi,t−1 correspond to the hiker’s speed i at the present and preceding time steps, respectively. β best 

Fig. 9.  Accuy  curve of the MRELC-SCHO method under 70:30.

 

Scientific Reports |        (2025) 15:30000 12| https://doi.org/10.1038/s41598-025-15629-x

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


denotes the position of the leading hiker, whereas α i,t means the SF for the ith hiker. The SF aids the hiker 
in maintaining proximity, which allows them to follow the leader’s direction and stay in sync with any signals.

Let the hiker speed i, the novel position β i,t+1 for hiker i be computed below:

	 β i,t+1 = β i,t + Wi,t� (22)

First, the way agents play a crucial part in the performance of numerous meta-heuristic techniques, namely 
HOA, which influences the probability of discovering feasible solutions and the convergence rate. Here, the HOA 
uses a randomly generated initialization model to set the initial locations of its agents. The starting locations of 
hikers are signified as β i,t, and are recognized by the upper φ 2

j  and lower φ 1
j  bounds, as stated by the below-

mentioned formulation:

	 β i,t = φ 1
j + δ j

(
φ 2

j − φ 1
j

)
� (23)

Approach Accuy P recn Recal F 1Score

PCA-LDA 90.28 91.42 89.73 92.95

YOLOv8 88.97 94.49 93.39 93.03

SAHI 95.81 90.30 93.63 91.79

HealthSecureNet 95.31 93.39 91.49 92.79

SVM 90.22 91.35 89.66 92.88

k-NN 88.91 94.43 93.33 92.96

LSTM 95.76 90.23 93.57 91.72

GRU 95.08 91.10 91.28 93.89

Inception-ResNet V2 95.57 93.46 90.18 92.52

DenseNet 89.08 94.31 91.85 89.13

MRELC-SCHO 98.56 95.71 94.44 95.05

Table 4.  Comparative study of the MRELC-SCHO methodology with existing models.

 

Fig. 10.  Loss curve of MRELC-SCHO method at 70:30.
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δ j  refers to a random value from a uniform distribution between zero and one. φ 1
j  and φ 2

j  correspond to 
the least and highest bounds of the jth decision variable. The SF is a primary parameter that directs the balance 
between exploitation and exploration. Equation  (21) defines the distance between the leader and the other 
members. The HOA is a global search model, primarily intended to identify optimizer issues in the solution 
space. To start the hike, the initial point of every hiker was recognized, and utilizing THF, their novel positions 
were proposed. In each iteration, the location of a leader is re-evaluated to ensure that the fittest hiker is the best.

Approach ET (s)

PCA-LDA 15.99

YOLOv8 20.09

SAHI 22.31

HealthSecureNet 24.26

SVM 23.30

k-NN 24.77

LSTM 14.31

GRU 17.88

Inception-ResNet V2 24.82

DenseNet 13.10

MRELC-SCHO 10.56

Table 5.  ET outcome of MRELC-SCHO model with existing approaches.

 

Fig. 11.  Comparative study of the MRELC-SCHO methodology with existing models.
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Algorithm 1: Pseudocode of HAO.

The fitness choice is the key factor influencing the HOA’s performance. The parameter range process consists 
of an encoded method to evaluate the efficiency of candidate results. The HOA reveals accuracy as the primary 
measure for projecting FF, which is expressed below.

	 F itness = max (P )� (24)

	
P = T P

T P + F P
� (25)
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 where F P  and T P  imply the positive rates of false and true positives.

Experimental result and analysis
The experimental outcomes of the MRELC-SCHO model are examined under the Ecological Health dataset25. 
The dataset comprises a total of 61,345 samples under four class labels. The complete details of this dataset 
are represented below in Table  1. The total number of features is 15, including Temperature, Timestamp, 
PM2.5, Soil_Moisture, Humidity, Nutrient_Level, Biodiversity_Index, Pollution_Level, Biochemical_Oxygen_
Demand, Dissolved_Oxygen, Water_Quality, Air_Quality_Index, Soil_pH, Chemical_Oxygen_Demand, 
Total_Dissolved_Solids. But only 13 features are selected like Soil_Moisture, Temperature, Biodiversity_Index, 
Humidity, Nutrient_Level, Pollution_Level, Chemical_Oxygen_Demand, Water_Quality, Total_Dissolved_
Solids, Air_Quality_Index, Soil_pH, Dissolved_Oxygen, Biochemical_Oxygen_Demand.

Figure  3 displays the classifier result of the MRELC-SCHO approach at 80%TRPHE and 20%TSPHE. 
Figure  3a,b establishes the confusion matrices with precise detection of 4 classes. Figure  3c shows the PR 
valuation, representative maximum performance among the 4 class labels. At Last, Fig. 3d exemplifies the ROC 
curve, representing efficient performances with elevated ROC for individual classes.

Table 2; Fig. 4 represent the classifier result of the MRELC-SCHO approach on 80%TRPHE and 20%TSPHE. 
With 80%TRPHE, the MRELC-SCHO approach achieves an average accuy , precn, recal, F 1Score, and 
GMeasure of 98.44%, 95.62%, 94.05%, 94.80%, and 94.82%, respectively. Furthermore, under 20%TSPHE, 
the MRELC-SCHO method achieves an average accuy , precn, recal, F 1Score, and GMeasure of 98.56%, 
95.71%, 94.44%, 95.05%, and 95.06%, respectively.

In Fig. 5, the training (TRNG) accuy  and validation (VALID) accuy  of the MRELC-SCHO approach at 
80:20 are shown. The figure emphasizes that both accuy  values illustrate an increasing propensity, indicating 
the MRELC-SCHO approach’s effectiveness with improved performance across several iterations. Likewise, both 
accuy  remain close to the epochs, reflecting minimal overfitting and displaying the MRELC-SCHO model’s 
improved outcome.

In Fig. 6, the TRNG and VALID losses outcome of the MRELC-SCHO method under 80:20 is depicted. It is 
noted that both values elucidate a declining trend, reporting the MRELC-SCHO approach’s capability to stabilize 

Fig. 12.  ET outcome of MRELC-SCHO model with existing approaches.
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a trade-off amid generalization as well as data fitting. The persistent decline further suggests that the MRELC-
SCHO approach will perform better.

Figure  7 illustrates the classifier result of the MRELC-SCHO method at 70%TRPHE and 30%TSPHE. 
Figure 7a and b exhibits the confusion matrices by precise detection of all classes. Figure 7c presents the PR 
evaluation, specifying the maximum outcome among every class. Lastly, Fig. 7d illustrates the ROC inspection, 
providing capable results with higher ROC values for separate classes.

Table 3; Fig. 8 display the classifier results of the MRELC-SCHO model on 70%TRPHE and 30%TSPHE. With 
70%TRPHE, the MRELC-SCHO method achieves average accuy , precn, recal, F 1Score, and GMeasure

of 96.90%, 91.69%, 90.30%, 90.91%, and 90.95%, correspondingly. Moreover, under 30%TSPHE, the MRELC-
SCHO method achieves average accuy , precn, recal, F 1Score, and GMeasure of 96.82%, 91.72%, 89.83%, 
90.68%, and 90.72%, respectively.

In Fig.  9, the TRNG and VALID accuy  outcomes of the MRELC-SCHO method under a 70:30 ratio is 
depicted. The outcome underlined that both accuy  values reveal a growing propensity, demonstrating the 
proficiency of the MRELC-SCHO with upgraded performance in various iterations. Additionally, both accuy  
remain close to the epochs, exhibiting representative minimal overfitting and demonstrating the MRELC-SCHO 
method’s greater performance.

In Fig. 10, the TRNG and VALID losses of the MRELC-SCHO technique at 70:30 are demonstrated. It is 
indicated that both values highlight a diminishing propensity, demonstrating the proficiency of the MRELC-
SCHO method in balancing a trade-off between generalization and data fitting. The frequent decline, moreover, 
promises improved performance for the MRELC-SCHO method.

The comparative exploration of the MRELC-SCHO technique with current models under numerous 
metrics is presented in Table  4; Fig.  1119,20,26–28. The table values highlighted that the presented MRELC-
SCHO method illustrated upgraded performance with maximum accuy , precn, recal, and F 1Score of 
98.56%, 95.71%, 94.44%, and 95.05%, respectively. Whereas, the present models, such as PCA-LDA, YOLOv8, 
SAHI, HealthSecureNet, SVM, k-NN, LSTM, GRU, Inception-ResNet V2, and DenseNet, attained the worst 
performance.

In Table 5; Fig. 12, the execution time (ET) of the MRELC-SCHO technique with existing approaches is 
illustrated. Depending on ET, the MRELC-SCHO technique obtains the least value of 10.56 s, while the PCA-
LDA, YOLOv8, SAHI, HealthSecureNet, SVM, k-NN, LSTM, GRU, Inception-ResNet V2, and DenseNet 
methodologies got the highest ET of 15.99 s, 20.09 s, 22.31 s, 24.26 s, 23.30 s, 24.77 s, 14.31 s, 17.88 s, 24.82 s, 
and 13.10 s, correspondingly.

Conclusion
In this study, the MRELC-SCHO model for stable ecological health is introduced. The primary objective of this 
paper is to propose an effective method for improving medical response efficiency in large crowd environments 
by utilizing advanced optimization algorithms. Initially, the MRELC-SCHO technique utilizes min-max 
normalization for converting input data into a structured format. Additionally, the CHOA is employed in the FS 
process to select the most significant features from a dataset. Moreover, the MRELC-SCHO technique utilizes 
the BiLSTM-AE technique for classification. Finally, the hyperparameter selection of the BiLSTM-AE model 
is performed by using the HOA model. The experimentation of the MRELC-SCHO approach is accomplished 
under the Ecological Health dataset. The comparison analysis of the MRELC-SCHO approach revealed a 
superior accuracy value of 98.56% compared to existing models.

Data availability
The data that support the findings of this study are openly available in the Kaggle repository at ​h​t​t​p​s​:​​/​/​w​w​w​.​​k​a​g​
g​l​e​​.​c​o​m​/​d​​a​t​a​s​e​​t​s​/​d​a​t​​a​s​e​t​e​n​​g​i​n​e​e​r​​/​e​c​o​l​​o​g​i​c​a​l​​-​h​e​a​l​t​​h​-​d​a​t​a​​s​e​t​/​d​a​t​a, reference number25.
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