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Enhancing medical response
efficiency in real-time large crowd
environments via smart coverage
and deep learning for stable
ecological health monitoring
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Festivals and city-wide mass events are prevalent in human societies worldwide, drawing large crowds.
Such events range from concerts with a dozen attendees to large-scale actions with thousands of
viewers. It is the highest priority for each organizer of such an occasion to be capable of upholding
a higher standard of safety and minimizing the danger of events, especially medical emergencies.
Therefore, establishing sufficient safety measures is significant. There is a requirement for event
organizers and emergency response personnel to identify developing, potentially critical crowd
situations at an early stage during city-wide mass assemblies. In general, the localization of the
global positioning system (GPS) and proximity-based tracking is employed to capture intricate
crowd dynamics throughout an event. Recently, technology has been used in numerous diverse
ways to achieve these large crowds. For example, computer vision-based models are employed to
observe the flexibility and behaviour of crowds. In this manuscript, a model for Medical Response
Efficiency in Real-Time Large Crowd Environments via Smart Coverage and Hiking Optimisation
(MRELC-SCHO) is presented, aiming to maintain stable ecological health. The primary objective of
this paper is to propose an effective method for enhancing medical response efficiency in large crowd
environments by utilizing advanced optimization algorithms. Initially, the MRELC-SCHO model
utilizes min-max normalization to transform the input data into a structured format. Furthermore,
the Chimp Optimisation Algorithm (CHOA) model is employed for the feature selection (FS) process
to select the most significant features from the dataset. Additionally, the MRELC-SCHO technique
utilizes the bidirectional long short-term memory with an auto-encoder (BiLSTM-AE) method for
classification. Finally, the parameter selection for the BiLSTM-AE model is performed by using the
Hiking Optimisation Algorithm (HOA) model. The experimentation of the MRELC-SCHO approach
is accomplished under the Ecological Health dataset. The comparison analysis of the MRELC-SCHO
approach revealed a superior accuracy value of 98.56% compared to existing models.

Keywords Medical response efficiency, Smart coverage, Large crowd environments, Stable ecological health,
Hiking optimisation algorithm

Crowd management is a crucial area of study, as it directly impacts the safety and well-being of individuals. A
crowd refers to a large group of people who come together, driven by a common goal or collective emotions'.
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Numerous motives can contribute to a crowd’s existence, including a political rally, a spiritual get-together,
a concert, or a sports event. Crowd management is a challenging task that involves thorough and detailed
planning, precise execution, and proactive control approaches®. The consequences of any absence or error in
management will be intolerable and expensive. Old histories have documented damages and mortalities at
crowded gatherings. Hence, it is vital to effectively monitor the safety of the crowd and implement essential
management strategies throughout the event. In this procedure, individuals are assessed to identify potential
crowd hazards®. If a hazard is found, it should be observed and recorded. Similarly, crowd assessment is used
to interpret crowd actions and enhance crowd control tools. Furthermore, medical management and response
are key services provided by towns at various levels®. Medical management approaches have recently been
reinforced through town protocols, which will only control familiar events. However, as cities became more
sophisticated and people’s behaviour evolved, nature, scale, shape, and planning for events became increasingly
complex to forecast®. The prompt production and distribution of information regarding events are crucial for
mobilizing response resources, coordinating efforts, evaluating circumstances, and conducting analysis, which
in turn informs future prevention and preparedness approaches. This prompt provision fosters an environment
of credibility and trust among urban residents in a highly dynamic atmosphere, providing rescue workers with
basic information regarding events and their geographical context’. Smartphone usage has grown rapidly.
As it has become more common, smartphones have also undergone drastic development: models nowadays
consist of hardware, including accelerometers, GPS sensors, gyroscopic sensors, magnetic compasses, cameras,
and pedometers. Furthermore, Wi-Fi and Bluetooth are also standard in new phones, permitting continuous
internet connection’. Such influential sensors are used in numerous applications that operate on smartphones,
such as context-aware mobile applications, which utilize the user’s location. Several applications utilize GPS-
aided localization techniques specifically for external landscapes®. Computer vision (CV) methods are used for
monitoring crowd movement and actions. Although significant developments have occurred in this domain, the
models have become ineffective when applied on a larger scale due to their limited perspective lines and unclear
detection limits®. Currently, video-assisted monitoring methods are frequently used for medical response
efficiency. The current study has focused on developing computer-aided models to autonomously analyze stored
acts and identify unusual and potentially unsafe crowd conditions!°.

In this manuscript, a Medical Response Efficiency in Real-Time Large Crowd Environments via Smart
Coverage and Hiking Optimisation (MRELC-SCHO) model for stable ecological health is presented. The
primary objective of this paper is to propose an effective method for enhancing medical response efficiency in
large crowd environments by utilizing advanced optimization algorithms. Initially, the MRELC-SCHO model
utilizes min-max normalization to transform input data into a structured format. Furthermore, the Chimp
Optimisation Algorithm (CHOA) model is employed for the feature selection (FS) process to select the most
significant features from the dataset. Additionally, the MRELC-SCHO technique utilizes the bidirectional long
short-term memory with an auto-encoder (BiLSTM-AE) method for classification. Finally, the parameter
selection for the BILSTM-AE model is performed by using the Hiking Optimisation Algorithm (HOA) model.
The experimentation of the MRELC-SCHO approach is accomplished under the Ecological Health dataset. The
significant contribution of the MRELC-SCHO approach is listed below.

o The MRELC-SCHO technique utilizes min-max normalization to preprocess data, which scales features to
a uniform range, improving consistency and mitigating bias. This preprocessing step enhances the quality
of the input data, thereby improving the effectiveness of subsequent feature selection and classification, and
ultimately increasing the overall accuracy and reliability of the model.

« The MRELC-SCHO method utilizes the CHOA model to select the most relevant features, thereby enhancing
the efficiency and accuracy of the learning process. By concentrating on key attributes, it mitigates dimen-
sionality and improves classification performance. This results in faster training and better generalization on
new data.

o The MRELC-SCHO approach employs a BILSTM-AE model to capture intrinsic temporal patterns and re-
construct key features for accurate classification. This approach enhances the model’s ability to learn sequen-
tial dependencies and mitigate noise, leading to improved accuracy and more robust predictions.

o The MRELC-SCHO methodology utilizes the HOA technique for fine-tuning parameters, improving overall
performance by effectively searching for the optimal configuration. This optimization mitigates training time
and prevents overfitting, resulting in more reliable and accurate model predictions across diverse datasets.

o The MRELC-SCHO model uniquely incorporates advanced optimization algorithms such as CHOA and
HOA, with BiLSTM-AE for feature selection, classification, and parameter tuning. This integration enhances
accuracy and efficiency by optimizing each stage of the learning process. Its novelty is in combining these
techniques to create a comprehensive and adaptive framework that improves performance across multiple
tasks.

Literature review

Cai et al.!! examined a new model for cognitive energy-efficient healthcare-based aerial computing and trajectory
optimization (CEHEAT) for addressing these challenges. The presented model enhances energy efficiency by
integrating cognitive IoT (CIoT) capabilities with autonomous aerial vehicles (AAVs) and aerial computing
to address the diverse needs of healthcare systems. This model ensures effective data processing and collection
through cognitive skills, such as dynamic resource allocation and adaptive sensing, guaranteeing reliable
healthcare monitoring. Chen et al.'? proposed a smart regional health and safety monitoring and emergency
treatment system that integrates IoT, cloud computing, big data, and AI techniques to facilitate understanding
of cross-regional medical resource planning, telemedicine consultation, ICU bed management, and other
related applications. Damagevicius et al.!* aimed to explore the utilization of IoES in disaster management and
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Fig. 1. Overall process of the MRELC-SCHO model.

emergency response, with a concentration on the IoT devices and sensors in delivering dynamic information to
the ambulance team. Zhang et al.!* introduced an original method that utilizes a hybrid Near-Field and Far-Field
Non-Orthogonal Multiple Access (NOMA) approach to address the challenges of increased device bandwidth
and density in emergencies. The introduced resource orchestration method perfectly stabilizes energy, Quality of
Service (QoS), and quantity through a power and device matching framework for reasonable PD-NOMA entry.
A real-time Actor-Critic framework for a practical multi-objective optimizer, safeguarding proper resource
allocation between IoT systems.
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Fig. 2. BiLSTM-AE structure.

Lv et al.!® proposed the emergency-aware distributed edge intelligence (DEI) for medical response (EDEM)
model, a novel model that utilizes DEI to address these challenges. Particularly, EDEM presents a hierarchical
edge collaborative computing structure, which practically builds learning fields depending on a complete medical
data capability technique. Next, a deep-reinforcement-learning-driven node selection framework safeguards
effective task distribution in the system. Liu et al.!® designed a PSES multiterminal fusion system (SafeCity)
that leveraged the expertise of diverse mobile crowd sensing concepts. Khaer et al.!” recommended UAVs as
an effective technique for dynamic data transmission and trained them to function more capably compared to
human resources, with greater security. This could be a crucial model in emergencies's. Recommended a new
collaborative health emergency response system in the Cooperative Intelligent Transportation Environment,
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such as C-HealthIER. C-HealthIER constantly monitors individuals’ health and implements supportive
behaviour in response to health crises through vehicle-to-infrastructure and vehicle-to-vehicle data sharing to
identify nearby healthcare professionals. Dehbozorgi, Ryabchykov, and Bocklitz!® evaluated the efficiency of
various feature extraction techniques, such as statistical, radiomics, and DL, for binary classification of medical
images using Principal Component Analysis-Linear Discriminant Analysis (PCA-LDA) models. The method
showed superiority over recent models such as ResNet50 and DenseNet121. Nurmaini et al.’ improved cervical
precancerous lesion detection by utilizing a DL technique, You Only Look Once version 8 (YOLOVS8), integrated
with Slicing Aided Hyper Inference (SAHI) and medical guidelines, to analyze cervicograms before and after
acetic acid application for more accurate and consistent visual inspection with acetic acid (VIA) assessments.

Materials and methods

In this manuscript, the MRELC-SCHO approach for stable ecological health is presented. The primary objective
of this paper is to propose an effective method for improving medical response efficiency in large crowd
environments by utilizing advanced optimization algorithms. It comprises four different kinds of processes
involving data normalization, attribute selection using CHOA, classification, and parameter tuning using HOA.
Figure 1 exemplifies the entire procedure of the MRELC-SCHO model.

Stage I: Min—-Max normalisation

Initially, the MRELC-SCHO applies a min-max normalization-based data normalization method to convert the
input data®!. This model is chosen for its effective scaling capability and also preserves the original distribution
while ensuring uniformity across diverse features. This model preserves the relative associations of the original
data, which can enhance the model’s convergence and stability. This is especially beneficial when input variables
have different units or scales, as it prevents features with larger ranges from dominating the learning process. It
is simple to implement, computationally efficient, and works well with algorithms sensitive to feature scaling,
such as neural networks and optimization algorithms. These merits make it a reliable choice for preprocessing
data in DL models.

Min-max normalization is a significant process that is utilized to measure data within a precise range,
typically between 0 and 1, making it ideal for normalizing varied input variables in real-time applications. From
the perspective of medical response efficiency in large crowds, min-max normalization ensures that numerous
parameters, such as crowd density, response time, and resource accessibility, are on a similar scale. This enhances
the efficiency of the smart coverage model, as it permits superior integration and organization of real-time data.
By regularising the values, the system can generate more precise decisions, which ensures appropriate medical
responses and enhances resource allocation. In large-crowd situations, this normalization aids in minimizing
biases produced by fluctuating scales of input data, ultimately improving overall coordination and medical
response tactics. In this approach, the method becomes more adaptable to dynamic environments, ensuring
optimal performance in crowd management and medical emergencies.

Stage II: attribute optimization using CHOA

Additionally, the CHOA is employed in the FS process to select the most significant features from a dataset®?.
This model is chosen for its robust capability in balancing exploration and exploitation phases. The technique
also shows efficiency in searching the feature space for the most relevant attributes. The method replicates
the intelligent hunting behaviour of chimps, thus enabling it to avoid local optima and achieve better global
solutions. It is computationally efficient and adaptable to high-dimensional data, making it appropriate for
intrinsic datasets. Additionally, CHOA's ability to dynamically adjust its search strategy improves convergence
speed and accuracy in feature selection, ultimately enhancing model performance and mitigating overfitting.
These advantages make CHOA an ideal choice for attribute optimization tasks.

Chimpanzees are highly social great apes closely connected to humans, and they live in a dynamic fission-
fusion society where the composition and size of the group fluctuate. This social framework is reflected in
the CHOA, where individual groups discover the searching area by employing diverse approaches, utilizing
individual abilities to resolve complex concerns. Searching happens in exploitation and exploration. Compute
pursuing prey and driving. To split the driving and succeeding prey (1) and (2) are mathematical expressions.

d = [c.prey (t) — M-Tehimp (t)] (1)

Lchimp (t + 1) = Tprey (t) —ad (2)

The vectors a and c are inspected in Egs. (3, 4), correspondingly.

Ecological stage Ecological label | No. of samples
Ecologically healthy EH 30,735
Ecologically stable ES 18,371
Ecologically critical EC 2988
Ecologically degraded | ED 9251

Total samples 61,345

Table 1. Details of the dataset.
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Fig. 3. 80%TRPHE and 20% TRPHE of (a,b) confusion matrices and (c,d) PR and ROC curves.
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Barrier, Chaser, and Driver chimpanzees sometimes search, but attackers typically do not. The finest position of
prey is unidentified in a searching area. Therefore, the other locations of chimpanzees are modified to correspond
to those of better chimps, assisting them to enhance their search models.

dAttacke'r = |CI$Attacke'r - m1£E|
dBu'rTieT - |C2xBaTrier - m2x|
dchaser = |03$Chaser - m3$|
dDriver = |C4wD'river - 77’L4£E"
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Class labels | Accuy ‘ Prec, ‘ Reca; ‘ Flscore | GMeasure
TRPHE (80%)

EH 98.48 98.05 98.93 98.49 98.49
ES 98.59 96.49 98.88 97.67 97.68
EC 99.19 93.15 90.08 91.59 91.60
ED 97.50 94.79 88.33 91.45 91.50
Average 98.44 95.62 94.05 94.80 94.82
TSPHE (20%)

EH 98.53 98.16 98.95 98.55 98.56
ES 98.81 97.12 98.93 98.01 98.02
EC 99.19 92.68 90.32 91.49 91.50
ED 97.71 94.87 89.55 92.13 92.17
Average 98.56 95.71 94.44 95.05 95.06

Table 2. Classifier outcome of MRELC-SCHO model at 80% TRPHE and 20%TSPHE.
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Fig. 4. Average values of MRELC-SCHO at 80%TRPHE and 20%TSPHE.

T1 = T Attacker — A1 (dAttacke'r)
T2 = TBarrier — A2 (dBa'rT'LeT) (6)
T3 = LChaser — A3 (dChaser)
T4 = TDriver — Q4 (dDm'ver)

T1 + X2 + X3 + T4

z(t+1)= 1
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Fig. 5. Accuy curve of the MRELC-SCHO method under 80:20.

During this primary phase, chimps abandon their roles and turn chaotic. It is stated as a fifty per cent chance
of employing chaotic movement rather than the standard upgrading procedure. This enables the model to
escape local optima and discover novel solutions. The searching procedure implies chimps in diverse roles,
modifying their locations depending on the assessed location of prey. Parameters are adaptively adjusted to
faster convergence.

_ _f Tprey () —ad ... if u <05
Tehimp (t+ 1) = { chaotic_value . .. ifp >05 (8)

Chimpanzees are arbitrarily allocated to barricades, attackers, drivers, and chasers. Every chimp employs
group-based “f” coeflicient upgrades. In every iteration, the barrier, attacker, driver, and chaser chimpanzees
evaluate their position relative to the prey. Every possible solution modifies its prey distance depending on the
approximation. The “m” and “c” vectors are adaptively adjusted to accelerate convergence and prevent local
optima.

The fitness function (FF) utilized in the proposed model is designed to strike a balance between the count of
designated features in all the results (smallest) and the classifier accuracy (highest) achieved by employing this
nominated feature. Equation (9) signifies the FF to assess the solution.

|R|

Fitness:a'yR(D)—F,B@ )

While v (D) implies the classifier ratio of errors, |R| denotes the cardinality of the selected subset, and |C|
exemplifies the complete number of features. o and [ are two parameters that match the consequence of
classifier quality and subset length.

Stage lll: classification using the BiLSTM-AE model

Moreover, the MRELC-SCHO model incorporates the BiLSTM-AE technique for classification?®. This
methodology is chosen for its ability to capture long-range dependencies in sequential data by processing data
in both forward and backwards directions. The AE model assists in learning effective feature representations by
reconstructing input data, which mitigates noise and emphasizes crucial patterns. The approach also enhances
context understanding compared to conventional LSTM or unidirectional models. This methodology presents
enhanced robustness, specifically for time-series or sequential datasets, resulting in higher accuracy and
better generalization compared to other classifiers. Its integrated feature learning and classification capabilities
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Fig. 6. Loss curve of MRELC-SCHO method at 80:20.

make it appropriate for intrinsic, real-world tasks where data relationships are complex. Figure 2 portrays the
configuration of BILSTM-AE.

AE is one of the neural network frameworks built from stacked layers, frequently utilizing nonlinear activation
functions that are complex in modelling nonlinear relations in the information. With this ability, AE is widely
utilized for reducing dimensions and extracting features in higher-dimensional datasets, offering a substrate
for the following challenges of ML. A standard AE typically consists of three elements: latent representation,
decoder, and encoder. The encoder mapping is a process that converts higher-dimensional input data into a
lower-dimensional representation, known as a latent representation.

z=g(Wex + be) (10)

Now, b depicts the biased vector with dimension p, g refers to the activation function, and W, is the weighted
matrix with dimension p X m. The dimension of the latent space z is denoted as p; now, p represents a
positive integer, indicating the reduced dimensionality of the input data.

The decoder employs the hidden representation z to rebuild the new input with high probability. The
reconstructed output is depicted as X, whereas the variance between X and the new input x is stated as an error
of reconstruction. Equation (11) standardizes the procedure of decoding, Wy refers to the weighted matrix with
dimension m X p, f indicates the function of activation, X specifies reconstructed input data, and b4 signifies
the biased vector with dimension m. Equation (12) defines the computation of reconstruction error, now m
signifies the dimensionality of the original data, equivalent to variable counts, and L is the reconstruction error.

z=f (Waz + ba) (11)
L(2,3) = %Zzl@ — ) (12)

LSTM is an upgraded version of RNN that effectually alleviates the vanishing gradient concern by adaptively
managing the values of output and input gates, thus regulating the forgetting or retention of data in the state
of the cell. It enables LSTM to acquire and utilize temporal dependencies in time sequences. The framework
of LSTM comprises three significant elements: input, output, and forget gates, with the data flow among these
elements.

fe =0 Wrexe + Wenhio1 + by) (13)
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E: tanh (Wzmxt =+ szhht—l + b:) (14)
it =0 (Wigme + Winhe—1 + b;) (15)
c=ft® -1+ O c4 (16)
or =0 (Wegme + Worhi—1 + bo) (17)
ht = 0: © tanh (c¢) (18)

Now, i, 0¢, and f; refer to the outputs of the input, output, and forgetting gates. These outputs are n
-dimensional vectors, where n corresponds to the number of hidden units in the hidden layer (HL) of the LSTM.
Wie, W | Wig,and Wo, are the weighted matrices corresponding to the input at the existing time step x ;
and the forgetting, input, and output gates, respectively. Every weighted matrix has dimensions n x m, where

Scientific Reports|  (2025) 15:30000 | https://doi.org/10.1038/s41598-025-15629-x nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

Avg.Values (%)

Class labels | Accuy | Prec, | Recay | Flscore | Ghreasure
TRPHE (70%)

EH 95.40 93.83 97.21 95.49 95.51
ES 97.57 96.34 95.54 95.94 95.94
EC 98.69 85.55 87.54 86.53 86.53
ED 95.93 91.03 80.93 85.68 85.83
Average 96.90 91.69 90.30 90.91 90.95
TSPHE (30%)

EH 95.35 93.66 97.29 95.44 95.46
ES 97.54 96.08 95.65 95.87 95.87
EC 98.61 86.19 86.29 86.24 86.24
ED 95.77 90.93 80.08 85.16 85.33
Average 96.82 91.72 89.83 90.68 90.72

Table 3. Classifier outcome of MRELC-SCHO model at 70%TRPHE and 30%TSPHE.
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Fig. 8. Average values of the MRELC-SCHO model under 70%TRPHE and 30%TSPHE.

m refers to the dimensionality of the input vector. by, bc, b, and b, refer to the n-dimensional biased vectors
for the forgetting, input, and output gates, respectively. Wy, W~ |, Wip, and Wy, are the weighted matrices

corresponding to the forgetting, cell, input, and output, respectlveily, among the HL at the preceding time step
ht-1. Every weighted matrix has dimensions n x n..

LSTM is highly effective at taking temporal dependency in time sequence data. Nevertheless, it depends
on previous memory that can induce errors in the task of classification and prediction. Bi-LSTM, conversely,
employs bi-directional data flow by combining either past-to-future or future-to-past dependency, thus allowing

for more precise inspection and time-series data processing.
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Fig.9. Accuy curve of the MRELC-SCHO method under 70:30.

Stage IV: HOA-based parameter tuning

Finally, the parameter choice of the BILSTM-AE model is performed by using the HOA technique?. This model
is chosen for its efficiency in balancing the exploration and exploitation phases, which enables it to search
effectively for optimal hyperparameters. Compared to conventional tuning methods, such as grid or random
search, HOA is more adaptive and can avoid getting trapped in local minima, resulting in improved model
performance. This technique enables dynamic adjustment of the search process based on feedback and replicates
the strategic movements of hikers. HOA is computationally efficient and appropriate for high-dimensional
parameter spaces, mitigating tuning time while improving accuracy and generalization. These advantages make
HOA an ideal choice for optimizing model parameters.

The HOA is stimulated by experiments faced by individuals attempting to attain the highest hills, rocks,
or mountains, which depend upon the condition. Throughout a hike, individuals frequently factor in either
instinctively or intentionally. Hikers are well-known for the region’s landscape and will estimate the time to reach
the meeting. This leads to delays in attaining the global optimum throughout a trek. The method depends upon
duplicating the task of hiking to tackle optimization problems.

The HOA mainly originated from Tobler’s Hiking Function (THF). This function employs an exponential
method to evaluate a hiker’s pace. THF is mathematically formulated below:

Wi,t _ 667345\siyt+0.05\ (19)

Here, Wi, ; signifies the speed of the ith hiker, designated in km/h at time t, and S; ; means the gradient of
the trail. Also, the gradient S;,; is computed below:

Sit = n _ tant ;. (20)
dx

where, dz and dh signify the variations in distance and height moved by the hiker, respectively. Furthermore,
0 i+ is the slope angle within the interval of [0,50° ]..

The HOA model influences the decision-making procedure of the cluster and the individual cognitive
abilities of every hiker.

Wit =Wit1+5 4 (Boest — @itBis) (21)

The parameter 7, , signifies a randomly generated value from a uniform distribution between 0 and 1. While
Wi, and W; 11 correspond to the hiker’s speed 14 at the present and preceding time steps, respectively. 5 ..,
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Fig. 10. Loss curve of MRELC-SCHO method at 70:30.

Approach Accuy Prec,, | Reca; | Flscore
PCA-LDA 90.28 91.42 89.73 92.95
YOLOvVS 88.97 94.49 93.39 93.03
SAHI 95.81 90.30 93.63 91.79
HealthSecureNet 95.31 93.39 91.49 92.79
SVM 90.22 91.35 89.66 92.88
k-NN 88.91 94.43 93.33 92.96
LSTM 95.76 90.23 93.57 91.72
GRU 95.08 91.10 91.28 93.89
Inception-ResNet V2 | 95.57 93.46 90.18 92.52
DenseNet 89.08 94.31 91.85 89.13
MRELC-SCHO 98.56 95.71 94.44 95.05

Table 4. Comparative study of the MRELC-SCHO methodology with existing models.

denotes the position of the leading hiker, whereas « ;; means the SF for the ith hiker. The SF aids the hiker
in maintaining proximity, which allows them to follow the leader’s direction and stay in sync with any signals.
Let the hiker speed 4, the novel position 3, ,,, for hiker i be computed below:

Bitt1 =8+ Wi (22)

First, the way agents play a crucial part in the performance of numerous meta-heuristic techniques, namely
HOA, which influences the probability of discovering feasible solutions and the convergence rate. Here, the HOA
uses a randomly generated initialization model to set the initial locations of its agents. The starting locations of
hikers are signified as 3 ; ;, and are recognized by the upper ¢ ? and lower ¢ } bounds, as stated by the below-
mentioned formulation:

Biv=9¢;+0;(pl—0;) (23)
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Fig. 11. Comparative study of the MRELC-SCHO methodology with existing models.

Approach ET (s)
PCA-LDA 15.99
YOLOVS 20.09
SAHI 22.31
HealthSecureNet 24.26
SVM 23.30
k-NN 24.77
LSTM 14.31
GRU 17.88
Inception-ResNet V2 | 24.82
DenseNet 13.10
MRELC-SCHO 10.56

Table 5. ET outcome of MRELC-SCHO model with existing approaches.

& j refers to a random value from a uniform distribution between zero and one. ga; and <p32- correspond to
the least and highest bounds of the jth decision variable. The SF is a primary parameter that directs the balance
between exploitation and exploration. Equation (21) defines the distance between the leader and the other
members. The HOA is a global search model, primarily intended to identify optimizer issues in the solution
space. To start the hike, the initial point of every hiker was recognized, and utilizing THE, their novel positions
were proposed. In each iteration, the location of a leader is re-evaluated to ensure that the fittest hiker is the best.
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Input: UB,LB.T.I.d

F + Preallocate fitness vector R™*

Fpeer — Preallocate the finest fitness vector BT +1%1
[ « Set the hiker’s location at random R/*¢

fori < 1toldo

F; < Assess a hiker’s fitness

end for

Fraszey « Initial best fitness of the hikers

Fort = 1toTdo

Frager — Define the best fitness hiker

Brese — Extract the location of best fitness Fj... .
fori «~1toldo

;¢ < Extract the initial location of hiker i

B; » < Define trial'terrain angle of elevation.

5; ¢+ « Calculate the slope utilizing Eq. (20)

W; ._, < Calculate the initial hiking velocity using Eq. (19)

W; . < Define the actual velocity of hiker i using Eq. (21)
B r+1 « Upgrade the hiker’s location utilizing Eq. (22
B;¢ < Bound §;,,, within LB and UB

If F, = F(n) then

y(n:) — H
Fn) < Fy
end if
end for
Feoili + 1) « min (F)
end for
Fiq = argmin(F, ;)
Return

Algorithm 1: Pseudocode of HAO.

The fitness choice is the key factor influencing the HOA’s performance. The parameter range process consists
of an encoded method to evaluate the efficiency of candidate results. The HOA reveals accuracy as the primary

measure for projecting FE, which is expressed below.
Fitness = max (P)

P
P=Tpvrp
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Fig. 12. ET outcome of MRELC-SCHO model with existing approaches.

where F'P and T P imply the positive rates of false and true positives.

Experimental result and analysis

The experimental outcomes of the MRELC-SCHO model are examined under the Ecological Health dataset®.
The dataset comprises a total of 61,345 samples under four class labels. The complete details of this dataset
are represented below in Table 1. The total number of features is 15, including Temperature, Timestamp,
PM2.5, Soil_Moisture, Humidity, Nutrient_Level, Biodiversity_Index, Pollution_Level, Biochemical Oxygen_
Demand, Dissolved_Oxygen, Water_Quality, Air_Quality_Index, Soil_pH, Chemical Oxygen_Demand,
Total_Dissolved_Solids. But only 13 features are selected like Soil_Moisture, Temperature, Biodiversity_Index,
Humidity, Nutrient_Level, Pollution_Level, Chemical Oxygen_Demand, Water_Quality, Total Dissolved_
Solids, Air_Quality_Index, Soil_pH, Dissolved_Oxygen, Biochemical _Oxygen_Demand.

Figure 3 displays the classifier result of the MRELC-SCHO approach at 80%TRPHE and 20%TSPHE.
Figure 3a,b establishes the confusion matrices with precise detection of 4 classes. Figure 3c shows the PR
valuation, representative maximum performance among the 4 class labels. At Last, Fig. 3d exemplifies the ROC
curve, representing efficient performances with elevated ROC for individual classes.

Table 2; Fig. 4 represent the classifier result of the MRELC-SCHO approach on 80%TRPHE and 20%TSPHE.
With 80%TRPHE, the MRELC-SCHO approach achieves an average accuy, precn, reca;, Flscore, and
G Measure Of 98.44%, 95.62%, 94.05%, 94.80%, and 94.82%, respectively. Furthermore, under 20%TSPHE,
the MRELC-SCHO method achieves an average accuy, precn, recar, Flscore, and Gureasure of 98.56%,
95.71%, 94.44%, 95.05%, and 95.06%, respectively.

In Fig. 5, the training (TRNG) accuy and validation (VALID) accu, of the MRELC-SCHO approach at
80:20 are shown. The figure emphasizes that both accu,, values illustrate an increasing propensity, indicating
the MRELC-SCHO approach’s effectiveness with improved performance across several iterations. Likewise, both
accuy remain close to the epochs, reflecting minimal overfitting and displaying the MRELC-SCHO model’s
improved outcome.

In Fig. 6, the TRNG and VALID losses outcome of the MRELC-SCHO method under 80:20 is depicted. It is
noted that both values elucidate a declining trend, reporting the MRELC-SCHO approach’s capability to stabilize
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a trade-off amid generalization as well as data fitting. The persistent decline further suggests that the MRELC-
SCHO approach will perform better.

Figure 7 illustrates the classifier result of the MRELC-SCHO method at 70%TRPHE and 30%TSPHE.
Figure 7a and b exhibits the confusion matrices by precise detection of all classes. Figure 7c presents the PR
evaluation, specifying the maximum outcome among every class. Lastly, Fig. 7d illustrates the ROC inspection,
providing capable results with higher ROC values for separate classes.

Table 3; Fig. 8 display the classifier results of the MRELC-SCHO model on 70%TRPHE and 30%TSPHE. With
70%TRPHE, the MRELC-SCHO method achieves average accuy, precn, reca;, Flscore, and Gareasure
of 96.90%, 91.69%, 90.30%, 90.91%, and 90.95%, correspondingly. Moreover, under 30%TSPHE, the MRELC-
SCHO method achieves average accuy, precn, recar, Flscore, and Gareasure 0f 96.82%, 91.72%, 89.83%,
90.68%, and 90.72%, respectively.

In Fig. 9, the TRNG and VALID accu, outcomes of the MRELC-SCHO method under a 70:30 ratio is
depicted. The outcome underlined that both accu, values reveal a growing propensity, demonstrating the
proficiency of the MRELC-SCHO with upgraded performance in various iterations. Additionally, both accu,
remain close to the epochs, exhibiting representative minimal overfitting and demonstrating the MRELC-SCHO
method’s greater performance.

In Fig. 10, the TRNG and VALID losses of the MRELC-SCHO technique at 70:30 are demonstrated. It is
indicated that both values highlight a diminishing propensity, demonstrating the proficiency of the MRELC-
SCHO method in balancing a trade-off between generalization and data fitting. The frequent decline, moreover,
promises improved performance for the MRELC-SCHO method.

The comparative exploration of the MRELC-SCHO technique with current models under numerous
metrics is presented in Table 4; Fig. 111%20:26-28_ The table values highlighted that the presented MRELC-
SCHO method illustrated upgraded performance with maximum accuy, precn, reca;, and Flscore of
98.56%, 95.71%, 94.44%, and 95.05%, respectively. Whereas, the present models, such as PCA-LDA, YOLOVS,
SAHI, HealthSecureNet, SVM, k-NN, LSTM, GRU, Inception-ResNet V2, and DenseNet, attained the worst
performance.

In Table 5; Fig. 12, the execution time (ET) of the MRELC-SCHO technique with existing approaches is
illustrated. Depending on ET, the MRELC-SCHO technique obtains the least value of 10.56 s, while the PCA-
LDA, YOLOv8, SAHI, HealthSecureNet, SVM, k-NN, LSTM, GRU, Inception-ResNet V2, and DenseNet
methodologies got the highest ET of 15.99 s, 20.09 s, 22.31 s, 24.26 5, 23.30 5, 24.77 5, 14.31 5, 17.88 5, 24.82 5,
and 13.10 s, correspondingly.

Conclusion

In this study, the MRELC-SCHO model for stable ecological health is introduced. The primary objective of this
paper is to propose an effective method for improving medical response efficiency in large crowd environments
by utilizing advanced optimization algorithms. Initially, the MRELC-SCHO technique utilizes min-max
normalization for converting input data into a structured format. Additionally, the CHOA is employed in the FS
process to select the most significant features from a dataset. Moreover, the MRELC-SCHO technique utilizes
the BiLSTM-AE technique for classification. Finally, the hyperparameter selection of the BILSTM-AE model
is performed by using the HOA model. The experimentation of the MRELC-SCHO approach is accomplished
under the Ecological Health dataset. The comparison analysis of the MRELC-SCHO approach revealed a
superior accuracy value of 98.56% compared to existing models.

Data availability
The data that support the findings of this study are openly available in the Kaggle repository at https://www.kag

gle.com/datasets/datasetengineer/ecological-health-dataset/data, reference number®.
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