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Skin cancer is a significant global health concern, and accurate and timely diagnosis is crucial 
for successful treatment. However, manual diagnosis can be challenging due to the subtle visual 
differences between benign and malignant lesions. This study introduces Skin-DeepNet, a novel 
deep learning-based framework designed for the automated early diagnosis and classification of 
skin cancer lesions from dermoscopy images. Skin-DeepNet incorporates a two-step pre-processing 
stage to enhance image contrast, followed by robust skin lesion segmentation using Mask R-CNN and 
GrabCut algorithm to achieve near-perfect segmentation accuracy (IOU up to 99.93%). Then a dual-
feature extraction strategy is performed using a combination of a pre-trained high-resolution network 
(HRNet) model and attention block, which serve as feature descriptors. A deep belief networks (DBN) 
model is then trained on their outputs to capture high-level discriminative features. Finally, robust 
decision fusion strategies are employed to integrate the predictions of the proposed models using 
boosting and stacking to enhance overall Skin-DeepNet’s accuracy. The Skin-DeepNet’s performance 
has been validated on two challenging datasets: ISIC 2019 and HAM1000. The Skin-DeepNet system 
has outperformed the existing state-of-the-art systems by achieving an accuracy rate of 99.65% 
Precision of 99.51%, AUC of 99.94% on the ISIC 2019 dataset. Similarly, on the HAM1000 dataset, 
the Skin-DeepNet system demonstrated an accuracy rate, precision, and AUC of 100%, 99.92%, and 
99.97%, respectively. These findings indicate that the developed Skin-DeepNet system can exhibit 
outstanding proficiency in accurately classifying skin lesions while aiding physicians in early diagnosis 
and treatment tasks in clinical settings.
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One of the most common types of cancer is skin cancer, which begins in the epidermis, the outer layer of the 
skin. Skin cancer, one of the most common types of malignancy, is a global health challenge associated with 
uncontrolled skin cell proliferation caused by overexposure to sunlight or tanning beds1. More than 97,160 
people in the United States were newly diagnosed in 2023, representing roughly 5.0% of new cancer cases2. Sadly, 
7,990 individuals succumbed to skin cancer in the same year, highlighting its significant impact with 1.3% of 
all cancer-related deaths attributed to this condition2. Skin cancer is classified into four main types: melanoma, 
melanocytic nevi, basal cell carcinoma, and squamous cell carcinoma. Among these, melanoma is the most 
aggressive form due to its rapid metastasis to other organs. It is responsible for over 10,000 deaths annually in 
the United States. Early detection of melanoma is critical for effective treatment, as the five-year relative survival 
rate is approximately 92% when diagnosed in its early stages3. The primary method for diagnosing skin cancer 
remains visual examination by dermatologists, though its accuracy is approximately 60%. A significant challenge 
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in detecting melanoma is the visual similarity between benign and malignant skin lesions, making diagnosis 
difficult even for highly trained specialists. Distinguishing lesions based on visual inspection alone is particularly 
challenging. Consequently, various imaging techniques, such as dermoscopy, have been introduced over the 
years. Dermoscopy is a non-invasive imaging method that enhances the visualization of the skin surface through 
magnification and the use of immersion fluids. This technique increases diagnostic accuracy for skin cancer to 
89%. For example, dermoscopy has sensitivities of 82.6%, 98.6%, and 86.5% for melanocytic lesions, basal cell 
carcinoma, and squamous cell carcinoma, respectively2. Although dermoscopy greatly enhances the diagnosis of 
melanoma, accurately identifying certain lesions, especially early-stage melanomas with indistinct dermoscopic 
features, remains difficult. This calls for more developments aimed at further improving patient survival rates.

In order to assist dermatologists in overcoming the challenges of melanoma diagnosis and enhancing 
diagnostic accuracy, computer-aided diagnosis (CAD) systems have been developed. CAD systems are now a 
crucial component of everyday clinical practice for identifying abnormalities in medical imaging in different 
screening centers and healthcare facilities4. CAD systems normally consist of several components, such as image 
acquisition, image pre-processing, image segmentation, feature extraction, and disease classification. The first 
step in the diagnosis of pigmented cutaneous lesions is the taking of high-quality images with cutting-edge 
equipment like spectroscopes, dermatoscopes, or plain digital cameras. This is followed by the utilization of image 
pre-processing methods for the enhancement of image quality via artifact reduction and contrast improvement, 
which in turn enhances the robustness of the subsequent analytical steps. The segmentation phase delineates 
the borders of pigmented skin lesions within the image, usually using half-automatic algorithms requiring user 
interaction. The features extracted from the segmented areas are used as input to a classification system so 
that pigmented skin lesions can be differentiated into various diagnostic categories. Image segmentation is an 
important part in the diagnosis of skin cancer, as the features for classification are taken from the segmented 
area5. Skin cancer segmentation is very challenging because of the tremendous variations in color, texture, 
position, and size of the skin lesions as they appear in dermoscopic images. Moreover, low contrast between the 
images complicates the distinction of adjacent tissue types. Air bubbles, hair, dark borders, ruler marks, blood 
vessels, and color illumination variations are also among the other challenges for accurate lesion segmentation6.

The development of deep learning methods within the area of machine learning has generated much interest 
in whether artificial intelligence can potentially be used, especially in the area of medicine7,8. It has been 
confirmed by recent research that deep features obtained using convolutional neural networks (CNNs) have 
better performance in detecting and classifying skin lesions than conventional feature extraction approaches9–12. 
Unlike traditional approaches that rely on separate extraction of shape, color, and texture features, deep features 
incorporate both local and global image information. Convolutional layers capture local details, while fully 
connected layers and global average pooling extract global context. This holistic representation has contributed 
to the improved accuracy and efficiency of deep learning models in medical image analysis. This study presents 
a fast and fully-automated system, named as Skin-DeepNet system for skin lesion classification that incorporates 
several innovative techniques. Firstly, an enhanced image pre-processing pipeline is developed to enhance 
contrast and a novel hair removal algorithm to improve image quality. Secondly, a robust segmentation algorithm 
is suggested using Mask R-CNN and GrabCut to accurately delineate lesion boundaries. Thirdly, the Skin-
DeepNet system employs a dual-feature learning strategy, where pre-processed segmented images are processed 
through an HRNet backbone to extract hierarchical multi-scale features. These features are enhanced by an 
attention mechanism, then split into two pathways: one passes through a DRBM and Softmax layer to produce 
skin cancer class probabilities, while the other uses a DBN to refine and strengthen feature discriminability. 
Finally, robust decision fusion strategies are utilized to fuse the predictions obtained from the suggested HRNet 
and DBN models through boosting (e.g., XGBoost) and stacking (e.g., LR, RF, and ET) approaches to improve 
the overall accuracy of the Skin-DeepNet system. The key contributions of this study are as follows:

	1.	 In the study, Adaptive Gamma Correction with Weighting Distribution (AGCWD) approach is applied for 
contrast enhancement of images with preservation of important details and artifacts suppression. This is 
an important step for better visualization of small lesion features. An efficient algorithm is then proposed 
for hair removal from images. This is done through morphological operations in detecting the hair region 
boundary, followed by inpainting for filling the erased areas without leaving gaps, resulting in cleaner and 
more useful images for further analysis.

	2.	 An effective skin lesion segmentation algorithm is developed by merging the advantages of both the Mask 
R-CNN and the GrabCut algorithm. The two algorithms collaborate to improve the segmentation results 
through the removal of background noise and extraction of only the lesion area.

	3.	 We introduce an efficient dual feature extraction strategy to derive discriminative deep feature representa-
tions from dermoscopy images. Initially, the segmented images are processed through an HRNet backbone, 
which extracts features in a hierarchical, multi-scale manner. These features are refined by an attention mech-
anism, whose outputs are directed into two distinct pathways: one channel feeds into a nonlinear classifier 
composed of a DRBM and a Softmax layer to generate probability distributions across skin cancer categories, 
while the other channel leverages a DBN to further enhance and stabilize the discriminative quality of the 
feature representations.

	4.	 Robust decision fusion strategies are proposed to integrate the predictions of the proposed (HRNet and the 
attention block) and DBN models with boosting (e.g., XGBoost) and stacking (e.g., logistic regression (LR), 
random forest (RF), and extra trees (ET)). These ensemble learning techniques enhance predictive accuracy 
by aggregating the strengths of these two models. Boosting iteratively enhances predictions by giving heavy 
weight to misclassified instances, while stacking trains a meta-learner to optimally combine the multiple 
model outputs. This strategy drastically improves accuracy, stability, and generalizability.
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	5.	 The developed Skin-DeepNet system performs better than state-of-the-art methods on the ISIC 2019 and 
HAM10000 datasets with higher accuracy, precision, recall, and F1-score. These outcomes demonstrate its 
potential for clinical application in real-world scenarios, helping dermatologists in the early and accurate 
diagnosis of skin lesions.

This paper is organized as follows: “Related works” reviews existing research on skin cancer classification. 
Section “Materials and methods” presents the skin cancer dataset used and provides a detailed description of 
the developed Skin-DeepNet system. Section “Experimental results” presents and discusses the experimental 
results, followed by concluding the paper and outlining the future research directions in “Conclusions and future 
work”.

Related works
Skin cancer classification using machine learning and deep learning has gained importance for its potential 
in early and accurate diagnosis, essential for effective treatment. This section examines recent advancements, 
particularly in CNNs, transfer learning, federated learning, and ensemble methods. For instance, Maiti et 
al.13 suggested a skin cancer classification system using quantized color features and generative adversarial 
networks (GANs) for improved diagnostic accuracy. The method adopts color quantization for discriminative 
feature extraction from dermoscopic images, and GANs are used for dataset augmentation and class imbalance 
correction to improve the generalization of the classification model. The technique was tested on benchmark 
datasets and showed better performance in the classification between benign and malignant lesions than state-of-
the-art methods, indicating the promise of fusing color-based features and synthetic data generation for efficient 
skin cancer detection. Maiti and Chatterjee14 explored the influence of different feature selection techniques 
on melanoma classification performance using a dataset transformed by various feature selection methods, 
including filter, wrapper, and embedded approaches. The authors implemented the techniques in combination 
with machine learning classifiers to compare their performance in enhancing classification accuracy, minimizing 
dimensionality, and removing irrelevant or redundant features. The authors’ findings indicated that some feature 
selection methods, especially wrapper- and embedded-based approaches, greatly outperformed classification 
models without feature selection, underscoring the need for effective feature selection in melanoma detection 
and offering recommendations for optimizing diagnostic models in medical imaging studies. Tahir et al.1 
introduced DSCC_Net, a deep learning-based skin cancer classification network utilizing a CNN and tested 
on ISIC 2020, HAM10000, and DermIS datasets. DSCC_Net achieved an Area Under the Curve (AUC) of 
99.43%, accuracy of 94.17%, recall of 93.76%, precision of 94.28%, and an F1-score of 93.93% across four skin 
cancer types. Comparatively, ResNet-152, VGG-19, MobileNet, VGG-16, EfficientNet-B0, and Inception-V3 
reported accuracies between 89.12% and 92.51%. DSCC_Net outperformed these models, providing valuable 
assistance for skin cancer diagnosis. Sharma et al.15 presented a cascaded model that combines the strengths 
of handcrafted feature extraction techniques with deep learning. By integrating deep convolutional networks 
(ConvNets) with handcrafted features, such as color moments and texture features, the model enhances skin 
disease image classification accuracy. Referred to as a cascaded ensembled deep learning model, the proposed 
architecture significantly outperforms the ConvNet al.one, improving classification accuracy from 85.3 to 98.3%, 
as demonstrated by simulation results. Naeem et al.16 introduced SCDNet, a model combining VGG16 with 
CNN for skin cancer classification. The model’s accuracy was compared with four state-of-the-art pre-trained 
classifiers in the medical field: ResNet50, Inception V3, AlexNet, and VGG19. Using the ISIC 2019 dataset, 
SCDNet achieved an accuracy of 96.91% for multiclass skin cancer classification, outperforming ResNet50 
(95.21%), AlexNet (93.14%), VGG19 (94.25%), and Inception V3 (92.54%). The results demonstrate that 
SCDNet surpasses these existing classifiers.

Bechelli et al.17 evaluated ML and DL models for skin tumor classification. ML methods (logistic regression, 
k-nearest neighbors, etc.) underperformed with accuracies below 0.72, while DL models, using custom CNNs 
or transfer learning (VGG16, Xception, ResNet50), reached up to 0.88 accuracy. Ensemble learning improved 
ML accuracy to 0.75. On a larger, imbalanced dataset, fine-tuned pre-trained DL models, particularly VGG16, 
achieved strong results, with an F-score and accuracy of 0.88 on a smaller dataset, and 0.70 and 0.88 on the 
larger one. Imran et al.18 employed convolutional deep neural networks for skin cancer detection using the ISIC 
dataset. Recognizing the inherent limitations of individual machine learning models in the sensitive context of 
cancer detection, where misdiagnosis can have severe consequences, this study explores the benefits of ensemble 
learning. By combining the predictions of multiple diverse learners, ensemble methods can enhance accuracy 
and robustness. To this end, an ensemble of deep learners was developed, incorporating VGG, CapsNet, and 
ResNet models, for improved skin cancer detection. The ensemble approach exhibited superior performance 
compared to individual models across all evaluation metrics, including sensitivity, accuracy, specificity, F-score, 
and precision. The proposed method achieved an average accuracy of 93.5% with a training time of 106  s, 
suggesting its potential applicability for other disease detection tasks. Afza et al.19 introduced a new multi-
class skin lesion classification method that integrates deep learning feature fusion with an extreme learning 
machine. Their approach comprises five stages: image acquisition and contrast enhancement, deep learning 
feature extraction using transfer learning, feature selection employing a hybrid whale optimization and entropy-
mutual information (EMI) method, feature fusion through a modified canonical correlation approach, and final 
classification using an extreme learning machine. The feature selection enhances computational efficiency and 
accuracy. Tested on HAM10000 and ISIC 2018 datasets, the method achieved accuracies of 93.40% and 94.36%, 
outperforming state-of-the-art techniques while maintaining computational efficiency. Bassel et al.20 introduced 
a method for melanoma and benign skin cancer classification based on stacking classifiers in three folds. The 
system was trained on 1,000 skin images, with 70% used for training and 30% for testing. Feature extraction was 
conducted using ResNet50, Xception, and VGG16. Performance was evaluated using accuracy, F1 score, AUC, 
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and sensitivity metrics. The Stacked CV method trained models using deep learning, support vector machine 
(SVM), RF, neural networks (NN), KNN, and logistic regression. Xception-based feature extraction achieved 
90.9% accuracy, outperforming ResNet50 and VGG16. Further optimization with larger datasets could enhance 
the system’s reliability and robustness. Hamida et al.21 developed a hybrid system combining RF and deep 
neural networks (DNN) to improve skin disease classification. Using the HAM10000 dataset, the RF component 
diagnoses based on symptoms, while the DNN analyzes skin lesion images for more accurate results. The system 
achieves a 96.8% accuracy, performing well across six of seven skin disease classes. Though sensitivity variations 
and data quality issues are noted, the system shows promise for advancing skin disease diagnosis. Dahdouh et 
al.22 developed an advanced system integrating the internet of things (IoT) with a Raspberry Pi, camera, and a 
deep learning model based on a CNN for real-time melanoma detection and classification. The model’s process 
includes data pre-processing (cleaning, normalization, and augmentation) to minimize overfitting, feature 
extraction using the deep CNN algorithm, and classification with a Sigmoid activation function. Experimental 
results demonstrate the system’s effectiveness, achieving 92% accuracy, 91% precision, 91% sensitivity, and an 
AUC-ROC of 91.33% using a dataset of 3,297 images.

While the reviewed works show excellent advancement in skin cancer classification with machine learning 
and deep learning, there are several limitations in these studies. The majority of the developed models are trained 
on small or class-imbalanced datasets, which can restrict their generalizability to real-world, heterogeneous 
clinical settings and lead to overfitting despite high reported accuracy. For instance, though methods like those 
of Bechelli et al.17 and Dahdouh et al.22 report high performance numbers, their evaluations are often conducted 
on limited datasets, which questions their scalability and consistency in diverse populations. Besides, various 
approaches, including those using hand-engineered feature extraction (e.g., Sharma et al.15, can be biased and 
restrict scalability as they depend on manually chosen features that may fail to describe the complete intricacy of 
skin lesions. Moreover, computational efficiency and inference latency dimensions continue to be inadequately 
addressed, with limited research focusing on the actual deployment of such systems within clinical practice. 
Lastly, interpretability is an issue; most models are not decision-transparent, discouraging dermatologists from 
using them due to the need for explainable AI for usability and trust.

Materials and methods
The architecture of the Skin-DeepNet system, depicted in Fig. 1, starts with raw skin lesion images undergoing 
an image pre-processing stage, where AGCWD approach is applied to enhance image contrast without losing 
vital details and removing artifacts. Image segmentation is then carried out by the Mask R-CNN and GrabCut 
algorithms for delineating regions of interest. The pre-segmented images are then fed through a HRNet 
backbone, which is responsible for feature extraction in hierarchical fashion. These features are enhanced by an 
attention block that feeds its outputs into two parallel streams: one stream feeds information into a non-linear 
classifier formed by a DRBM coupled with the Softmax layer for outputting the probability distribution across 
various skin cancer classes, and the other stream passes through a DBN for further enhancing and consolidating 
the feature representations. The model integrates predictions from both pathways using advanced decision 
fusion techniques, including boosting (e.g., XGBoost) and stacking (e.g., LR, RF, and ET), which combine the 
complementary strengths of the HRNet-attention block with the DBN model to augment the overall diagnostic 
accuracy. The ensemble approach ensures robustness and precision in distinguishing between various skin 
cancer categories. This ensemble approach guarantees reliability along with accuracy in differentiating among 
the different classes of skin cancer.

Datasets description
The accurate identification of skin cancer relies heavily on robust and diverse datasets for training deep learning 
models capable of reliable prediction. However, acquiring datasets with a sufficient number of diverse and high-
quality labeled images for effective deep model training remains a significant challenge. In this work, we leverage 
two established datasets, ISIC 201923 and HAM1000024, to address this critical need. The publicly accessible ISIC 
2019 dataset comprises a diverse collection of 25,331 dermoscopic images, sourced from various institutions23. 
These images represent eight distinct categories of skin lesions, with varying sample sizes: melanoma (4,522), 
melanocytic nevi (12,875), basal cell carcinoma (3,323), squamous cell carcinoma (628), vascular lesions (253), 
dermato-fibromas (239), actinic keratosis (867), and benign keratosis (2,624). This dataset presents a challenging 
classification task due to its imbalanced class distribution and the visual similarities between certain lesion types. 
All images are stored in RGB format with varying resolutions. Figure 2 provides a few example images of ISIC 
2019 dataset.

The HAM10000 dataset24, also known as the “Human Against Machine with 10,000 training images” dataset, is 
among the largest collections available for identifying pigmented skin lesions, with a total of 10,015 dermoscopic 
images accessible via the ISIC repository. The dataset is composed of seven distinct classes: melanocytic nevus 
(nv), dermatofibroma (df), actinic keratosis (akiec), vascular lesions (vacs), basal cell carcinoma (bcc), benign 
keratosis (bkl), and melanoma (mel). The dataset includes 6,705 nv images, 327 akiec images, 115 df images, 514 
bcc images, 115 vacs images, 1,099 bkl images, and 1,113 mel images. The gender distribution within the dataset 
is 54% male and 45% female. Due to substantial intra-class similarities and minimal inter-class distinctions 
among some skin lesion types, this dataset presents significant challenges for accurate classification, with a high 
risk of misclassification. Figure 3 provides a few example images of HAM1000 dataset.

Image pre-processing stage
To enhance tumor boundary detection and segmentation accuracy, a two-step pre-processing technique is 
employed to mitigate the disruptive influence of skin artifacts (See Fig. 4-a). The initial step involves applying 
AGCWD approach to amplify the image’s contrast25. This approach, renowned for its effectiveness in various 
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image processing applications (e.g., medical imaging, remote sensing, etc.), is chosen to accentuate subtle details, 
textures, and low-contrast areas within the input image. Through adaptively changing the gamma correction 
parameter, AGCWD approach can increase contrast in under- and overexposed regions, preserve fine details, 
and minimize the introduction of artifacts, such as noise or artificial color transitions (see Fig. 4b). The main 
steps to use AGCWD approach can be summarized as follows: (i) The input image histogram is examined to 

Fig. 3.  A few example images of HAM1000 dataset.

 

Fig. 2.  A few example images of ISIC 2019 dataset.

 

Fig. 1.  Illustrates the overall architecture of the developed Skin-DeepNet system.
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know the intensity level distribution, through which areas with low contrast or over-saturation can be identified, 
(ii) The weighting distribution function (WDF) is calculated from the histogram of the input image to assign 
weights to various intensity levels, promoting areas to be enhanced and suppressing areas that have sufficient 
contrast already, (iii) The cumulative distribution function (CDF) (e.g., the cumulative probability of pixel 
intensities at or below a particular level), is calculated for the input image, (iv) The gamma correction factor, γ, 
is adaptively computed for each pixel based on the intensity and the WDF such that the enhancement process 
can be accurately controlled, and (v) Adaptive gamma correction rescales original pixel intensities through the 
WDF. This has the effect of increasing low-contrast area intensity range and decreasing high-contrast area range, 
making the image overall clearer.

In the second step, the hair is effectively removed, allowing for enhanced clarity and accuracy in subsequent 
image analysis tasks, such as image segmentation or feature extraction. The input image is converted to grayscale. 
This transformation simplifies the data by reducing color complexity, which is beneficial for subsequent 
processing. Then, the grayscale image undergoes a morphological Blackhat operation using a structural element 
of size (11 × 11). This operation highlights dark regions (e.g., hair) against a lighter background, enhancing the 
visibility of hair structures for further processing. This is followed by applying a binary threshold to the result 
of the Blackhat operation to create a mask that isolates the hair regions. Pixels with intensity values above 10 are 
set to 255 (white), while those below are set to 0 (black), producing a binary image of hair locations (Fig. 4d). 
Finally, the original image is then inpainted using the thresholded binary mask. Inpainting reconstructs the areas 
identified as hair by filling them in using information from surrounding pixels. The inpainting algorithm used 
is the Telea method, which effectively removes hair artifacts while preserving image integrity. Figure 4c shows 
some hair removal results.

Image segmentation stage
In this stage, a fully automated and efficient image segmentation algorithm is introduced to detect skin lesions 
and improve the discriminative power of feature representations in the subsequent stage of the Skin-DeepNet 
system (See Fig. 5). Specifically, Mask R-CNN is utilized to automatically generate pixel-wise masks, effectively 
segmenting foreground objects from the complex background26,27. Mask R-CNN, an advancement of Fast 
R-CNN, is capable of both detecting objects within an image and generating pixel-wise segmentation masks for 
each detected instance. This model operates in two stages: initially, it generates proposals for potential objects 
in the image; then, it predicts each object’s class, refines the bounding box, and produces the corresponding 
binary mask27. In this study, the ResNet50 backbone network is used to extract feature maps, which are further 
processed by a feature pyramid network (FPN) to capture multi-scale features for precise object localization. 
The FPN leverages CNNs’ inherent multi-scale capabilities, enhancing skin lesion detection across different 
scales. A sliding window technique is applied on the feature maps to identify skin lesion regions in the form 
of bounding boxes. Since these bounding boxes vary in size, the ROIAlign method is utilized to standardize 
feature maps, ensuring uniformity. These standardized maps are then processed by a network head to classify 
objects and generate bounding boxes, while additional convolutional layers within the mask component create 
the segmentation mask for skin lesions. Mask R-CNN generates object class labels, bounding boxes, and binary 
masks as output. However, the generated masks can sometimes include background elements, leading to 
inaccuracies in the subsequent analysis. To mitigate this issue, the GrabCut algorithm is employed. Using the 
Mask R-CNN-generated mask as an initial seed, GrabCut effectively refines the segmentation by minimizing 

Fig. 4.  The outputs of the image pre-processing and segmentation stage: (a) Original image, (b) image contrast 
enhancement, (c) hair removal results, and (d) the outputs of the image segmentation stage.
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background noise interference and improving the accuracy of skin lesion detection within the developed Skin-
DeepNet system.

The GrabCut algorithm is a robust segmentation technique designed to eliminate unwanted, complex 
background edges from skin lesion images, preserving only the lesion as the foreground28. GrabCut algorithm 
improves the initial lesion segmentation from Mask R-CNN through the application of graph cut operations. It 
begins by applying the process with the drawing of a bounding box around the lesion as indicated in the Mask 
R-CNN result. Then, it uses a gaussian mixture model (GMM) for the estimation of color distributions for 
the foreground (lesion) and background parts of the image. Using this GMM, the GrabCut algorithm assigns 
class labels (foreground or background) to each pixel based on its color characteristics. This process involves 
representing the image as a graph, where pixels are nodes and the connections between them are edges (as 
illustrated in Fig. 6). It iterates over each pixel, breaking weaker connections and assigning pixels to either the 
foreground or background accordingly. Integrating GrabCut with Mask R-CNN notably reduces background 
interference, improving segmentation accuracy and the precision of contour extraction in skin lesion analysis. To 
enhance the accuracy of the final segmentation outcomes, a post-processing procedure is conducted to eliminate 
irrelevant background elements, remove isolated regions, and merge the remaining areas. This procedure begins 
with the application of a morphological dilation operation using a (3 × 3) spherical kernel to smooth the mask 
boundaries. Lastly, a morphological reconstruction algorithm is employed to fill potential gaps within the mask, 
specifically addressing background regions that are inaccessible from the image edges. Figure 4 shows some 
examples of the image segmentation outcomes.

Feature extraction and classification stage
After identifying the ROI, the next step is the feature extraction, which focuses on isolating the most relevant 
information from the images while discarding details irrelevant to classification. In CAD systems for skin cancer 
in dermoscopic images, selecting appropriate features is essential, as it can enhance the accuracy of dermatologists’ 
diagnoses. Previous studies have highlighted that features can be extracted on a global or local scale; however, 
it is crucial to ensure that the selected features contain sufficient information to effectively differentiate between 
multiple classes1,2. Based on this fact, the proposed feature extraction algorithms are designed to capture the 
relevant features from the segmented skin lesions.

In this study, two deep learning-based algorithms are utilized to effectively capture robust feature 
representations from segmented skin lesions. The initial algorithm employs a transfer learning approach, utilizing 
different CNN architectures, to extract powerful feature representations from the input image. The comparative 
performance of these architectures is analyzed in Sect. 4. As illustrated in Fig. 7, the pre-trained HRNet model 
trained on the ImageNet dataset, has been chosen as the backbone CNN module because of its exceptional 
performance on the datasets utilized in this study. HRNet’s first sub-network begins at a high resolution, and 
additional sub-networks are introduced progressively, transitioning from high- to low-resolution branches. This 
parallel configuration of multi-resolution sub-networks allows for comprehensive data fusion across different 
scales, and enhancing the high-resolution feature representations. HRNet maintains high-resolution features 
across four stages, corresponding to four branches and four resolution levels. Following the initial step, two 
convolutional layers (3 × 3) with strides increase the channel width to 64 while reducing the resolution to one-
quarter. The channel number, denoted as C, is set to 32 for HRNet-W32 (where W indicates width) across 
branches, with configurations of C, 2 C, 4 C, and 8 C for each successive branch. The resolution is gradually 
down-sampled in four stages, resulting in feature maps at different resolutions. These multi-scale feature maps 
are then combined to create a richer representation of the input image, which is subsequently processed by the 
attention block, as depicted in Fig. 8.

Fig. 5.  The proposed skin lesion segmentation algorithm.
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Fig. 7.  Illustrates the primary structure of the HRNet model. Rectangular blocks depict the feature maps, 
while “Stem” indicates the down-sampling process.

 

Fig. 6.  A visual depiction of the foreground and background elements generated through the application of 
the GrabCut algorithm.
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The attention block generates distinctive feature attention maps by utilizing features extracted from the HRNet 
network. Initially, the HRNet network generates feature maps, represented by F l. Then, these feature maps 
are subsequently transformed into a new representation, P l using a (3 × 3) depthwise separable convolution 
(DSConv) followed by a (1 × 1) pointwise convolution (PConv). DSConv, which is computationally efficient and 
has a lesser number of parameters, increases the representational power compared to standard convolutions. The 
output of the PConv layer is then fed through Batch Normalization (BN) to improve training stability and enable 
faster convergence. Finally, a rectified linear unit (ReLU) is applied in order to introduce non-linearity. The 
attention block computes the final feature map P l by fusing the feature maps of DSConv and PConv as follows:

	 Pl = Cat
(
DSConv

(
Fl) , ReLU

(
BN

(
PConv

(
Fl))))

� (1)

Here, “Cat” represents the concatenation operation. This attention mechanism is employed to make the 
model pay more attention to useful features in the dermoscopy image. This mechanism selectively amplifies 
informative features and suppresses noisy or irrelevant areas, improving the accuracy and robustness of skin 
lesion classification. The process is implemented as follows:

	1.	 The convolutional layers of the attention block convert the input image to a series of feature maps represent-
ing information at different levels of complexity and detail (See Fig. 8).

	2.	 During the training process, the attention mechanism can learn attention maps that put greater emphasis 
on the most important spatial areas in the feature maps, thereby augmenting the model to concentrate on 
important information and boost classification outcomes.

Finally, to enable precise classification of dermoscopic images, the DRBM as a non-linear classifier is employed 
with two separate sets of visible units29. One set represents the input feature vectors, and the other set interacts 
with a Softmax layer to produce a probability distribution over various skin cancer classes30. This strategy 
effectively models the joint distribution between the input features as well as the corresponding target classes31. 
During the training process of DRBM classifier, the stochastic gradient descent algorithm will maximize the log-
likelihood of the training set. Consequently, the following weight-update rules is be applied:

	
∆wi,j = ε

(⟨
1
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⟩
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⟩
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⟩
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)
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	 ∆ci = ε
(
⟨hj⟩data − ⟨hj⟩model

)
� (4)

Fig. 8.  Illustrates the general structure of the attention block used in the present research.
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In this context, ε represents the learning rate, while ⟨·⟩ data and ⟨·⟩ model correspond to the positive and 
negative phases, respectively. The term bi refers to the bias for the visible units, and ci denotes the bias for the 
hidden units. As is well established, computing ⟨vihj⟩model in Eq. (2) is a challenging task. To address this, the 
contrastive divergence (CD) method32 is utilized to update the parameters of a specific RBM by performing k 
steps of Gibbs sampling from the probability distribution. The procedure for executing a single CD algorithm 
sample is as follows:

	1.	 The training data is used as input ( vi) to estimate the probability distribution of the hidden units ( hj). The 
estimated distribution is then used to draw a sample for the hidden activation vector ( hj).

	2.	 During the positive phase, the outer product of vectors ( vi) and ( hj) is calculated.
	3.	 The visible units ( vi’) are reconstructed by sampling from ( hj) using the conditional probability 

P (hj = 1|v). Subsequently, the hidden unit activations (j′) are resampled from ( vi’) in a single Gibbs sam-
pling step.

	4.	 In the negative phase, the outer product of ( vi) and ( hj) is recalculated.
	5.	 Finally, the weight matrix and biases are updated using Eqs. (2)–(4).

In many applications of the CD learning algorithm, the value of k is typically set to 1. In this study, weights 
were initialized with small random values drawn from a normal distribution with zero mean and a standard 
deviation of 0.02. During the positive phase of training, the probabilities of the hidden units were calculated 
based on the visible units and weights. This phase is characterized by a high probability of observing the training 
data. Subsequently, in the negative phase, the model generates samples, and the probability of generating these 
samples decreases. A complete cycle of positive and negative phases constitutes one training epoch. Weight 
updates in the training process are performed at the end of each epoch. This involves calculating the difference 
between the generated samples and the actual data vectors. The gradient of the visible unit probability with 
respect to the weights is then computed. This gradient represents the expected difference in the contributions of 
the positive and negative phases, which is subsequently used to adjust the model’s weights.

The second deep learning algorithm employs a DBN trained from scratch. We argue that applying DBNs 
to local feature representations, as opposed to raw image data, can guide the learning process, leading to more 
effective feature learning and faster training. Local features extracted from the attention block of the first 
algorithm are fed into a DBN model to learn additional and complementary feature representations, as illustrated 
in Fig. 1. The DBN architecture employed in this study consists of a stack of three restricted boltzmann machines 
(RBMs), resulting in three hidden layers (see Fig. 9). The first 2 RBMs are trained as generative models, while 
the final RBM, integrated with Softmax units, serves as a discriminative model for multi-class classification. 
The DBN is trained layer-wise in a greedy fashion, with each layer trained sequentially from bottom to top. The 
training of the DBN model is a 3 stage process: pre-training, supervised training, and fine-tuning stage.

	1.	 Pre-training stage: This stage involves training the first two RBMs sequentially in an unsupervised manner 
using a greedy layer-wise algorithm. This involves training each RBM individually, treating the outputs of 
one layer as the inputs to the next. This unsupervised pre-training phase leverages a massive amount of un-
labeled data to improve the model’s generalization ability and prevent overfitting. Additionally, it simplifies 
the training process and accelerates convergence.

Fig. 9.  The main architecture of the developed DBN model.
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	2.	 Supervised Training phase: It involves training the ultimate RBM as a non-linear classifier on labeled data. 
Performance evaluation is conducted at the end of each epoch to monitor the model’s progress and assess its 
classification accuracy.

	3.	 Fine-tuning stage: In the final fine-tuning phase, a top-down backpropagation algorithm is employed to 
optimize the weights of the entire network for optimal classification performance.

Decision fusion stage
The final classification decision of the Skin-DeepNet system is done by fusing the outputs of the introduced 
algorithms explained in Sect.  3.4. When a dermoscopic image is fed into Skin-DeepNet system, multiple 
probability scores are calculated for each class. The most likely class is assigned to the input image. To enhance 
the classification performance even more, this study explores different fusion methods to combine the outputs of 
the introduced classification algorithms. Herein, ensemble learning strategy is employed as a machine learning 
paradigm in which a number of models (referred to as base learners or weak learners) are combined to produce a 
stronger, and more robust predictive model. The principle is that averaging predictions from multiple models can 
give enhanced performance compared to relying on one single model. In this stage, two well-known strategies 
based on boosting (e.g., XGBoost), and stacking (e.g., LR33, RF34, and ET35 are applied. While both boosting and 
stacking belong to the ensemble learning strategy, their operational methodologies are significantly different. 
Boosting follows a sequential model building strategy, successively enhancing predictions by rectifying previous 
errors. Stacking, on the contrary, employs a parallel process, aggregating predictions from independently trained 
models through a meta-learner to achieve greater predictive precision. These fusion techniques are applied in 
this study as below:

	1.	 Data Preparation: For every training instance, both the HRNet-attention block and DBN models predict 
probability scores (for all classes). These two sets of scores are merged together into one feature vector.

	2.	 Training Phase: The new dataset (combined features) is utilized to train either the XGBoost classifier or a 
meta-learner (e.g., LR, RF, and ET) that learns to combine the base model outputs optimally. The XGBoost 
classifier can enhance predictions sequentially by focusing on errors produced from the HRNet-attention 
block and DBN models. Rather than having to give weights manually to the HRNet-attention block and DBN 
models, XGBoost decide the optimal weighting. Alternatively, the meta-learner model identifies the optimal 
weights for a particular classifier based on actual-world classification performance.

	3.	 Inference Phase: The HRNet-attention block and DBN models produce their probability scores for a new 
sample. They are concatenated and fed into the XGBoost classifier or a meta-learner, which produces the 
final prediction. Table 1 lists the hyper-parameters’ values of the employed fusion techniques.

Experimental results
This section gives an extensive description of the experimental arrangement and methodology, along with 
performance measure metrics under which the developed Skin-DeepNet system has been tested. Comparative 
analysis is also drawn to compare the effectiveness and reliability of the developed Skin-DeepNet system with 
the current state-of-the-art skin cancer classification systems.

Implementation details
The Skin-DeepNet system is developed using the Python programming language and implemented within a 
Google Colab environment equipped with a 69 K GPU, 16GB RAM, and on a 64-bit Windows 10 operating 
system with an Intel Core i7 processor. TensorFlow is utilized as the deep learning framework for the development 
of models. To maintain uniformity and compatibility across diverse deep neural network architectures, all initial 
images underwent a pre-processing stage that involved resizing to a standardized resolution of (224 × 224) pixels, 
which is a prevalent input dimension endorsed by numerous pre-trained models. For the ISIC 2019 Challenge, 
the typical dataset split involves allocating 70% of the data for training (17,732 images), 15% for validation 
(3,799 images), and the remaining 15% for testing (3,799 images). The same split rates were applied to the 
HAM10000 dataset. This division strikes a balance between providing sufficient data for model training and 
maintaining representative subsets for validation and testing. Due to the substantial imbalance in the number 
of images across classes, the classification model may exhibit bias towards the majority class. To mitigate this 
issue, data augmentation techniques such as vertical and horizontal shifts, flips, and rotations were employed 
on the smaller classes. Herein, the proposed training methodology involved utilizing the Adam optimizer to 
train all the employed deep learning models. Training parameters were set as follows: an initial learning rate 

Hyper-parameters Models Values

Number of iterations All models 100

Number of estimators XGBoost, Random Forest, and Extra Trees 100

Max depth of the tree XGBoost, Random Forest, and Extra Trees 3 (XGBoost) – 6 (for others)

Learning rate XGBoost 0.01

Penalty Logistic Regression l2

Optimization algorithm Logistic Regression saga

Number of features to consider per split Random Forest, and Extra Trees sqrt

Table 1.  The hyper-parameters’ values of the employed fusion techniques.
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of 0.001, a batch size of 16, weight decay of 0.0002, a dropout rate of 0.5, and momentum of 0.95. To accelerate 
the convergence of the DRBM, its learning rate is increased to 0.01. To prevent overfitting, an early stopping 
procedure is implemented, terminating training when the validation error began to increase. While a maximum 
of 100 epochs is set, the actual number of training epochs varied based on the early stopping procedure. In this 
study, the DBN model employs CD learning algorithm, a structure comprising three RBMs, and a training process 
of 300 epochs for each RBM. The values of other hyper-parameters include a momentum of 0.9, a weight-decay 
of 0.0002, a dropout rate of 0.5, and a batch size of 64. The learning rate is set to 0.001, and the entire network is 
trained top-down using the back-propagation algorithm for 500 epochs. These settings collectively contribute 
to the model’s efficacy, balancing computational efficiency with learning capacity, and ensuring robust feature 
extraction and classification capabilities essential for accurate skin cancer segmentation and classification.

Evaluation metrics
The primary goal of the image segmentation experiment was to identify and localize skin lesions within 
dermoscopic images. This required an automated segmentation process to ensure accurate lesion localization, 
enabling accurate diagnostic classification. We employed several metrics to evaluate the performance of the 
proposed image segmentation procedure, including the Intersection over Union (IOU), Dice coefficient (Dic), 
Jaccard index (Jac), and Accuracy Rate (AR). The Dice coefficient and Jaccard index are commonly used metrics 
to measure the similarity between the segmented lesion and the ground truth annotation. While both metrics 
evaluate overlap, the Jaccard index is optimally used with non-regular segmentation borders whereas the IOU 
is optimally utilized for localized regions with rectangular borders. The following formulas are used to compute 
the evaluation metrics discussed above.

	
IOU = Intersection Area

Union Area
� (5)

	
Dic = 2*TP

(2*TP) + FP + FN
� (6)

	
Jac = TP

TP + FN + FP
� (7)

	
AR = TP + TN

TP + FP + TN + FN
� (8)

Then, the accuracy of the developed Skin-DeepNet system in classifying the dermoscopic images into various 
classes was evaluated. In this assessment process, five popular quantitative metrics were calculated: AR, Precision, 
F1-score, Recall, and AUC.

	1.	 Precision: Precision quantifies the accuracy of positive predictions, indicating the likelihood that a sample 
classified as positive is indeed positive. The Precision is calculated as follow:

	
Precision (Pr.) = TP

FP + TP
� (9)

	2.	 Recall: Recall measures the sensitivity of the model, assessing its ability to correctly identify positive samples 
among all actual positive cases. The Recall is calculated as follow:

	
Recall (Re.) = TP

TP + FN
� (10)

	3.	 F1-score: The F1-score provides a balanced metric that considers both precision and recall, achieving higher 
values when both metrics are high. It is calculated as follows:

	
F1 − score = 2*

Precision*Recall
Precision + Recall

� (11)

	4.	 AUC: The AUC evaluates the model’s overall classification accuracy, with higher values indicating better 
performance. It is particularly useful for assessing model stability. The AUC is calculated as follow:

	
AUC =

∫ 1

x=0
TPR

(
FPR −1 (

x ) ) dx� (12)

	
TPR = TP

TP + FN
, FPR = FP

FP + TN
� (13)

Here, TP represents True Positives, TN represents True Negatives, FP represents False Positives, and FN 
represents False Negatives.

Skin lesion segmentation assessment
In this stage, Mask R-CNN was employed to accurately segment skin lesions within input images. While Mask 
R-CNN demonstrated promising results, it occasionally included background regions in the segmented images, 
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which could negatively impact the system’s accuracy. To address this issue, Mask R-CNN’s output was used as an 
initial seed for the GrabCut algorithm, followed by applying some morphological reconstructions to eliminate 
background noise and fill potential gaps in the segmented mask. Herein, a set of experiments was carried 
out to evaluate the performance of different network backbones (e.g., ResNet34, ResNet50, DenseNet121, 
InceptionV3, and VGG19) with both the standalone Mask R-CNN and the combined Mask R-CNN and 
GrabCut approach. The results summarized in Tables 2 and 3, demonstrate the effectiveness of the proposed 
skin lesion segmentation algorithm. The tables present a comparative analysis of skin lesion segmentation results 
on the ISIC 2019 and HAM1000 datasets, evaluating the performance of various neural network backbones with 
and without the GrabCut algorithm. Across both datasets, the integration of GrabCut algorithm consistently 
enhances segmentation accuracy. For the ISIC 2019 dataset, ResNet34’s IOU improves from 83.12 to 96.11% 
with GrabCut algorithm, while ResNet50’s IOU increases from 88.23 to 99.94%, demonstrating near-perfect 
segmentation results. DenseNet121 and InceptionV3 also show considerable improvements, with IOU values 
rising from 78.34 to 86.56% and from 79.56 to 86.78%, respectively. VGG19, which was at an IOU of 68.92% in 
the first place, is improved to 79.65 using GrabCut. Similarly, on the HAM1000 dataset, ResNet34’s IOU rises 
from 87.72 to 97.34%, and ResNet50’s IOU from 89.93 to 99.91%. DenseNet121 and InceptionV3 improve, 
respectively, from 86.84 to 90.86% and from 87.78 to 91.34%, whereas VGG19’s IOU increases from 89.12 to 
93.56%. Such findings are an indication of GrabCut’s robustness in enhancing segmentation results, as evidenced 
in the universal uplift in Dice and Jaccard coefficients, besides accuracy, in both datasets. This underscores the 
GrabCut algorithm’s effectiveness in significantly improving the accuracy of deep learning models (e.g., Mask 
R-CNN) particularly for skin lesion segmentation tasks, within the medical imaging domain.

Figure 10 illustrates some results of the proposed skin lesion segmentation algorithm on the ISIC 2019 and 
HAM1000 datasets, thereby validating its efficacy through comprehensive visual assessments. Each row contains 
a series of images that include: the original dermoscopic image, the reference mask, the resulting mask, and the 
final resulting segmented image. On the ISIC 2019 dataset, the masks generated exhibit high consistency with 
ground truth masks, leading to segmented images with high adherence to lesion boundaries. The accuracy is 
perceptible with regard to different lesion types and sizes, showing the efficacy of the proposed segmentation 
algorithm. Similarly, the HAM1000 dataset demonstrates that the resulting masks are very accurate in 
comparison to the ground truth, generating segmented images that are very representative of the lesion regions. 
The consistency of performance across the two datasets demonstrates the effectiveness and reliability of the 
proposed segmentation algorithm, thereby helping to highlight its potential for precise and efficient evaluation 
of skin lesions in clinical settings.

Table 4 compares the proposed skin lesion segmentation algorithm with other recently published state-of-
the-art methods on the ISIC 2019 and HAM1000 datasets. The proposed skin lesion segmentation algorithm 
achieves higher results with an IOU of 99.84%, a Dic coefficient of 98.78%, a Jac index of 98.93%, and an 
accuracy of 99.94% on the ISIC 2019 dataset. The metrics here show better performance than other methods, 
such as those proposed by Banerjee et al.36 (IOU of 91%, Dic of 97.13%) and Singh et al.37 (IOU of 97.79%, Dic 
of 95.97%). Similarly, on the HAM1000 dataset, the novel algorithm has an IOU of 99.93%, a Dic of 99.88%, a 
Jac index of 99.97%, and an accuracy of 99.98%, improving over the work of Himel et al.38 (IOU of 96.07%, Dic 
of 98.14%) and Firdaus et al.39 (IOU of 90.37%, accuracy of 95.89%). The reported high performance in both 
datasets highlights the consistency and accuracy of the proposed algorithm for skin lesion segmentation, thus 
indicating its potential to improve diagnostic accuracy in dermatology.

Network backbones

Without GrabCut With GrabCut

IOU Dic Jac AR IOU Dic Jac AR

ResNet34 87.72 86.86 86.88 88.34 97.34 96.36 96.49 97.61

ResNet50 89.93 89.79 89.89 90.65 99.91 99.88 99.97 99.98

DenseNet121 86.84 87.23 86.89 87.18 90.86 90.58 90.45 91.12

InceptionV3 87.78 88.67 87.45 88.89 91.34 90.67 90.45 91.55

VGG19 89.12 88.36 86.89 89.22 93.56 94.12 93.34 94.14

Table 3.  Skin lesion segmentation results on HAM1000 dataset.

 

Network backbones

Without GrabCut With GrabCut

IOU Dic Jac AR IOU Dic Jac AR

ResNet34 83.12 81.56 83.78 83.29 95.34 94.56 93.89 96.11

ResNet50 88.23 84.78 83.83 85.45 99.84 98.78 98.93 99.94

DenseNet121 78.34 77.23 76.89 79.23 86.56 85.78 85.45 86.67

InceptionV3 79.56 77.66 76.67 79.11 86.78 86.23 87.12 87.34

VGG19 68.92 69.76 68.88 69.12 79.65 79.32 80.67 80.23

Table 2.  Skin lesion segmentation results on ISIC 2019 dataset.
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Approaches

ISIC 2019 HAM1000

IOU Dic Jac AR IOU Dic Jac AR

Banerjee et al.40 90 88.79 79.84 93.98 – – – –

Monica41 – – – – – 98 97 –

Banerjee et al.36 91 97.13 94.42 98.50 – – – –

Singh et al.37 97.79 95.97 95.12 97.86 – – – –

Krishnan et al.42 88.21 89.29 – – 88.83 89.60 – –

Himel et al.38 – – – – 96.07 98.14 – 97.13

Firdaus et al.39 – – – – 90.37 – – 95.89

Our algorithm 99.84 98.78 98.93 99.94 99.93 99.88 99.97 99.98

Table 4.  Comparative study of the performance of the suggested skin lesion segmentation algorithm with the 
latest state-of-the-art techniques on ISIC 2019 and HAM1000 dataset.

 

Fig. 10.  Skin lesion segmentation results achieved by the proposed algorithm on both datasets.
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Evaluating skin lesion classification models
To overcome the difficulties involved in multi-class classification of dermoscopic images, a transfer learning 
approach was used. It takes pre-trained CNN models as a starting point, and this is a less computationally 
intensive choice than training a CNN model from scratch. To optimize performance, we are precisely fine-tuned 
the hyper-parameters of these pre-trained CNN models. We evaluated the efficacy of numerous pre-trained 
CNN architectures, originally trained on the ImageNet dataset, as feature extractors for classifying dermoscopic 
images into multiple classes. Table 5 demonstrates the performance of the first classification algorithm, which 
integrates diverse pretrained CNN models, an attention block, and a DRBM classifier. The findings demonstrate 
that the HRNet model utilized in this study delivers the highest overall performance on both datasets. On the 
ISIC 2019 dataset, HRNet model attains an accuracy of 97.54%, Precision of 97.73%, Recall of 98.14%, F1-
score of 97.93%, and AUC of 97.28%, outperforming other backbones like ResNet101 (accuracy 95.94%) and 
EfficientNetB0 (accuracy 96.74%). Similarly, on the HAM1000 dataset, HRNet model again outperforms with 
an accuracy of 98.34%, Precision of 98.56%, Recall of 98.51%, F1-score of 98.53%, and an AUC of 98.23%, 
demonstrating its robustness and superior classification ability. EfficientNetB0 model has also performed well 
by recording Precision of 98.13% and 98.89% on ISIC 2019 and HAM10000 datasets, respectively. In contrast, 
the worst performance on both datasets is recorded by ResNet34, with accuracy of 75.67% and AUC of 79.99% 
on ISIC 2019 dataset. These findings highlight HRNet’s superior performance in skin lesion classification tasks, 
indicating its potential for precise and trustworthy diagnosis in medical images. In contrast, the performance 
of the second proposed classification algorithm was assessed using four distinct DBN architectures, with results 
presented in Table  6. Training a DBN model from scratch is a complex process, requiring careful tuning of 
numerous hyper-parameters, such as the number of RBMs, the units per RBM, the training epochs, and the 
learning rate. These hyper-parameters are inter-dependent, and thus the fine-tuning is computationally expensive. 
For hyper-parameter optimization, a coarse search procedure was conducted using the training method outlined 
in Sect. 3.4. The DBN model was trained greedily layer wise, with each RBM being trained individually and its 
weights preserved. Then, the activations of the trained RBM were used as input to train the next RBM in the 
stack such that there is layer-by-layer learning process. Table  6 presents the comparative evaluation of skin 
lesion classification performance on various DBN architectures on ISIC 2019 and HAM1000 datasets. Among 
the architectures experimented, the DBN ([1024-2048-1024]) model performed better and competitive results 
across five key metrics were obtained. Specifically, this model obtained nearly perfect F1-scores (98.51% on ISIC 
2019 and 99.15% on HAM1000) and good AUC values (98.88% and 99.57%, respectively), pointing to very good 
discriminative power and generalizability. Even though higher configurations (e.g., DBN [1024-2048-2048]) 
had slight improvements in some measures, the (DBN [1024-2048-1024]) model generally struck a balance 
between performance and complexity, avoiding overfitting while maintaining high diagnostic accuracy. This 
validation supported its designation as the ultimately selected model for subsequent classification tasks, thereby 
guaranteeing dependable and effective detection of skin cancer across various datasets.

Table 7 provides a comparative analysis of various fusion approaches that have been utilized for skin lesion 
classification on the ISIC 2019 and HAM1000 datasets. The results demonstrate the efficacy of fusing the 
decisions of various classification models for obtaining overall greater accuracy. Most notably, the XGBoost 
approach consistently provides the better performance in both datasets. On the ISIC 2019 dataset, XGBoost 
approach achieves an accuracy, precision, recall, F1-score, and AUC of 99.65%, 99.51%, 99.56%, 99.54%, and 

Network backbones

ISIC 2019 HAM1000

AR Pr. Re. F1 AUC AR Pr. Re. F1 AUC

(512-1024-512) 86.87 85.88 85.37 85.62 83.96 87.56 87.79 86.98 87.38 87.66

(512-1024-1024) 96.26 98.85 96.63 97.73 93.43 98.96 98.87 98.73 98.80 99.63

(1024-2048-1024) 98.66 98.78 98.24 98.51 98.88 99.24 98.81 99.49 99.15 99.57

(1024-2048-2048) 92.94 92.88 93.85 93.36 93.51 94.67 94.89 95.45 95.17 94.56

Table 6.  Performance of different DBN models on ISIC 2019 and HAM1000 dataset in classification task.

 

Network Backbones

ISIC 2019 HAM1000

AR Pr. Re. F1 AUC AR Pr. Re. F1 AUC

ResNet34 75.67 75.78 74.87 75.32 79.99 80.41 78.89 77.97 78.45 75.59

ResNet50 87.56 87.67 88.23 87.94 86.23 88.96 88.87 88.73 88.80 88.33

ResNet101 95.94 95.23 96.94 96.07 96.78 97.14 97.12 96.84 96.98 97.18

DenseNet121 91.34 93.34 95.45 94.38 91.56 94.55 94.45 95.19 94.82 94.28

InceptionV3 88.89 88.34 87.23 87.78 85.23 90.67 91.61 91.78 91.69 91.34

HRNet 97.54 97.73 98.14 97.93 97.28 98.34 98.56 98.51 98.53 98.23

EfficientNetB0 96.74 98.13 96.64 97.38 96.18 97.67 98.89 96.98 97.93 97.77

ConvNeXtBase 95.14 95.13 96.14 95.63 96.88 97.78 97.92 97.23 97.57 97.45

Table 5.  Comparison of the performance of various CNN backbones on ISIC 2019 and HAM10000 datasets.
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99.94%, respectively. Similarly, on the HAM1000 dataset, XGBoost achieves a perfect accuracy rate of 100% 
and near-optimal values for all other metrics. It is interesting to note that RF also performs incredibly well, with 
a recall rate of 99.68% on ISIC 2019, which demonstrates its capability in detecting true positives. Conversely, 
less complex fusion approaches, such as LR and ET exhibit inferior performance, particularly for recall and F1 
scores. These findings emphasize the effectiveness of ensemble-based fusion approaches, such as XGBoost and 
RF, for enhancing classification accuracy and stability in dermatological image analysis tasks. Overall, the results 
suggest that advanced fusion approaches are extremely suitable for boosting diagnostic accuracy in skin lesion 
classification, with XGBoost being the most promising approach in both datasets.

To give a clear view of class-wise performance and determine if there is any remaining bias, we assessed the 
proposed Skin-DeepNet system using per-class precision, recall (sensitivity), specificity, and F1-score, presented 
in Tables 8 and 9. Normalized confusion matrices for both the ISIC 2019 and HAM10000 datasets are also shown 
in Fig. 11. On the ISIC 2019 dataset, the proposed Skin-DeepNet system performed highly on most classes. 
Melanocytic nevi and benign keratosis, for instance, obtained recall values of 99.9% and 97.4%, respectively. This 
is consistent with their overwhelming representation in the dataset. However, performance was relatively low on 
under-represented classes. For instance, Squamous cell carcinoma (SCC) obtained a recall of 79.2%, and vascular 
lesions obtained 81.5%. These results are consistent with the inherent difficulty of recognizing rare classes with 
few samples and inter-class visual similarities. The confusion matrix indicates that SCC was sometimes confused 
with AKIEC or BKL, which are morphologically similar (See Fig.  11a). Vascular lesions were confused into 
DF, SCC, and BKL, indicating overlapping features in dermoscopic appearance. In spite of these difficulties, 
precision was still high for both SCC (96.5%) and vascular lesions (94.6%), suggesting that the model does not 
have a tendency for frequent false positives for minority classes. The results overall demonstrate that the use of 
class-balanced focal loss and ensemble fusion (through XGBoost) is effective in enhancing performance on all 
classes without sacrificing good generalization.

On the HAM10000 dataset, the proposed Skin-DeepNet system performed almost perfect classification. All 
classes had recall and precision over 98.9%, with melanoma, vascular lesions, and melanocytic nevi having 100% 

Class Pr. Re. Specificity F1

Melanoma 99.8 100 99.7 99.9

Melanocytic nevi 100 100 99.9 100

Basal cell carcinoma 99.9 99.8 99.9 99.8

Squamous (AKIEC) 99.7 99.6 99.8 99.6

Vascular lesions 100 100 100 100

Dermatofibroma 99.5 98.9 99.8 99.2

Benign keratosis 99.9 99.6 99.9 99.7

Table 9.  Performance metrics for each individual class in the HAM1000 dataset using the Skin-DeepNet 
system.

 

Class Pr. Re. Specificity F1

Melanoma 98.1 97.5 99.8 97.8

Melanocytic nevi 99.7 99.9 99.2 99.8

Basal cell carcinoma 99.4 98.9 99.6 99.1

Squamous cell carcinoma 96.5 79.2 99.5 87.1

Vascular lesions 94.6 81.5 99.4 87.5

Dermatofibroma 97.3 86.4 99.7 91.5

Actinic keratosis 96.1 89.7 99.3 92.8

Benign keratosis 98.8 97.4 99.1 98.1

Table 8.  Performance metrics for each individual class in the ISIC 2019 dataset using the Skin-DeepNet 
system.

 

Fusion Rules

ISIC 2019 HAM1000

AR Pr. Re. F1 AUC AR Pr. Re. F1 AUC

ET 98.96 98.94 97.67 98.30 99.78 99.66 99.38 100 99.69 99.97

LR 99.12 99.16 98.84 98.99 99.89 99.72 99.44 99.59 99.51 99.73

RF 98.86 98.88 99.68 99.21 98.98 99.84 99.96 99.34 99.65 99.76

XGBoost 99.65 99.51 99.56 99.54 99.94 100 99.92 100 99.96 99.97

Table 7.  Performance of different fusion rules on ISIC 2019 and HAM1000 dataset in classification task.
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recall. The confusion matrix shows small off-diagonal values, indicating consistent classification accuracy for all 
types of lesions (See Fig. 11b). This was due to the more even class distribution in HAM10000 than in ISIC 2019. 
The class-wise in-depth analysis corroborates that although high overall accuracy is retained, biases at a class 
level remain, especially under highly imbalanced conditions. The results validate the incorporation of per-class 
analysis within performance measurement and direct future research towards enhancing the representation of 
rare classes through focused synthetic augmentation and data-aware sampling techniques.

Table  10 provides the comparative analysis of the developed Skin-DeepNet system with various state-of-
the-art systems on the ISIC 2019 and HAM1000 datasets. On the ISIC 2019 dataset, the Skin-DeepNet system 
achieves outstanding results, with an accuracy of 99.65%, precision of 99.51%, recall of 99.56%, an F1 score of 
99.54%, and an AUC of 99.94%. These metrics surpass those reported by most competing approaches, such 
as Singh et al.37 (accuracy of 98.04%, recall of 96.67%, and F1 score of 96.24%) and Radhika and Chandana43 
(accuracy of 98.77%, recall of 98.42%, and F1 score of 98.76%). On the HAM1000 dataset, the Skin-DeepNet 
system demonstrates near-perfect performance, achieving perfect accuracy of 100%, precision of 99.92%, recall 
of 100%, an F1 score of 99.96%, and an AUC of 99.97%. This outperforms other methods like Monica et al.41 
(accuracy of 99.98%, precision of 99.97%, and F1 score of 99.90%). The consistent and near-perfect metrics of 
the developed Skin-DeepNet system highlight its robustness and reliability, making it a highly advantageous 
system for real clinical practice. Its precision and accuracy are high, which can significantly boost diagnostic 

Approaches

ISIC 2019 HAM1000

AR Pr. Re. F1 AUC AR Pr. Re. F1 AUC

Adegun and Viriri44 – – – – – 98.3 98 98.5 98 99

Banerjee et al.36 97.86 94.99 96.06 – – – – – – –

Singh et al.37 98.04 95.82 96.67 96.24 97.59 – – – – –

Krishnan et al.42 96.03 96.68 96.03 96.03 – 96.36 97.07 96.36 96.44 –

Monica et al.41 – – – – – 99.98 99.97 99.90 –

Imranet al.18 93.50 94 87 92 – – – – – –

Radhika and Chandana43 98.77 98.56 98.42 98.76 – – – – – –

Naeem and Anees45 98.32 98.23 98.23 98.19 98.90 – – – – –

Himel et al.38 – – – – – 96.15 96.95 95.30 96.12 99.49

Alwakid et al.46 – – – – – 86 84 86 86

Ali et al.47 – – – – – 87.91 88 88 87 97.53

Kousis et al.48 – – – – – 92.25 92.95 93.59 93.27 –

Skin-DeepNet system 99.65 99.51 99.56 99.54 99.94 100 99.92 100 99.96 99.97

Table 10.  A comparative evaluation analysis of the developed Skin-DeepNet architecture against state-of-the-
art systems on the ISIC 2019 and HAM1000 datasets.

 

Fig. 11.  Normalized confusion matrix for (a) ISIC 2019 and (b) HAM1000 datasets using the Skin-DeepNet 
system.
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confidence, reduce the rates of misdiagnosis, and improve patient outcomes by providing clinicians with a 
very reliable tool for skin lesion classification. Finally, its improved performance can be attributed to its novel 
architectural design, which is assumed to enhance feature extraction and decision-making capability compared 
to existing state-of-the-art systems.

Conclusions and future work
This research proposes Skin-DeepNet, a new deep learning framework with notable efficacy in the automatic 
early detection and classification of skin cancer lesions from dermoscopy images. Through the incorporation of 
cutting-edge methodologies, including AGCWD approach for image enhancement, hybrid Mask R-CNN and 
GrabCut segmentation algorithm for an accurate skin lesion detection, and a dual-feature extraction approach 
combining HRNet-attention block and DBN models, the Skin-DeepNet system realizes state-of-the-art results 
on the ISIC 2019 and HAM1000 datasets. Novel decision fusion methodologies of the system, including 
XGBoost, offer excellent classification metrics with approximately perfect rates in accuracy, precision, recall, 
F1-score, and AUC on both datasets. These outstanding results demonstrate the potential of the developed Skin-
DeepNet system to significantly enhance the diagnostic precision and consistency in a clinical setting and offer 
dermatologists a powerful tool for skin cancer detection and treatment planning. All future research must focus 
on the comparison of novel deep learning architectures, the development of attention mechanisms, the creation 
of user-friendly applications, and conducting large-scale clinical trials to establish real-world effectiveness, 
thereby leading to the evolution of more precise and available AI-supported healthcare interventions.

Data availability
In this study, the employed datasets from these links: (ISIC 2019 dataset) ​h​t​t​p​s​:​/​/​c​h​a​l​l​e​n​g​e​.​i​s​i​c​-​a​r​c​h​i​v​e​.​c​o​m​/​d​a​t​
a​/​#​2​0​1​9​​​​ and (HAM10000 dataset) https://datasetninja.com/skin-cancer-ham10000 (accessed on 25 June 2024).
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