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Thyroid cancer is one of the most common types of cancer, pathological diagnosis based on Fine 
Needle Aspiration Cytology is clinically used as the standard for assessing thyroid cancer. However, 
the complex structure and large-scale data volume of thyroid pathology images pose challenges 
in terms of accuracy and efficiency for automatic diagnosis. To address this practical problem, this 
paper proposes a knowledge distillation method called Multi-Dimensional Knowledge Distillation, 
which involves feature-based distillation and response-based distillation.We employ a 12-layer Vision 
Transformer as the teacher model. Feature-based distillation integrates feature information from 
spatial, channel, and class token, while response-based distillation is achieved through alignment 
with targets. We integrate information from these diverse dimensions and compress the knowledge 
into a 3-layer Vision Transformer, which serves as the student model. The student model is trained 
and evaluated using a dataset containing 22,111 thyroid cytopathological patches. Ultimately, our 
student model attains a Top-1 classification accuracy of 94.87%. Compared with the teacher model, 
there is only a 0.55% gap in accuracy, while the computational complexity of the model has decreased 
by approximately a factor of four. In addition, our method is capable of substantially inheriting 
the generalization advantages of the teacher model. These results collectively demonstrate the 
effectiveness of Multi-Dimensional Knowledge Distillation in knowledge transfer.
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 Thyroid nodules are a common disorder that refers to localized lesions in the thyroid gland caused by abnormal, 
focal growth of thyroid cells. Studies have shown that 7–15% of thyroid nodules may develop into thyroid cancer1. 
According to the National Cancer Report 2022 released by the National Cancer Center, the incidence of thyroid 
cancer in China is on the rise, especially among the female population2. Therefore, how to accurately screen 
thyroid cancer patients from the thyroid nodule population has become an important challenge in the clinical 
diagnosis and treatment of thyroid nodules. At present, research endeavors within the realm of thyroid cancer 
are predominantly focused on modalities such as ultrasonography and molecular testing. However, according 
to guideline recommendations3, pathological diagnosis through Fine Needle Aspiration Cytology (FNAC) is 
the most significant basis for diagnosing thyroid cancer. Specifically, FNAC refers to the ultrasound-guided 
aspiration of a small number of thyroid cells via fine-needle aspiration for pathological diagnosis. Nevertheless, 
due to the acute shortage of qualified pathologists and the excessive time consumption involved, the pathological 
diagnosis of thyroid nodules is currently facing a challenging predicament.

The advancement of deep learning has offered viable approaches for resolving this issue. Researchers can 
generate Whole Slide Images (WSI) by scanning thyroid cytopathological smears. These WSIs are subsequently 
employed for the training of deep learning models, enabling intelligent diagnosis. Due to the complex features 
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of thyroid nodule cell pathological images, such as diverse cell morphology, labeling costs, many studies5–7 limit 
the identification of thyroid nodules to the binary classification range, namely malignant and benign. In fact, 
although binary classification models can achieve favorable recognition accuracy, they fail to accurately reflect 
the degree of malignancy risk for nodules, especially those nodules in the transitional state between benign and 
malignant, which posing a significant risk of misdiagnosis in clinical practice.To better meet clinical needs, 
researchers have gradually chosen to use the six risk grades of the Bethesda System for Reporting Thyroid 
Cytopathology (TBSRTC)4 as the predictive classes. Wang et al.8 conducted a large-scale TBSRTC multi-center 
study on FNAC pathological images of thyroid nodules. Mitsuyoshi et al.9 established a database comprising 
148,395 thyroid cytopathological patches and conducted pathological diagnosis research using EfficientNet. 
However, their respective researches have consistently revealed that as the predicted categories are further 
refined, the model’s recognition accuracy exhibits a downward trend. Convolutional neural network (CNN) is 
no longer capable of meeting the classification accuracy demands posed by large-scale image datasets.

In the past few years, deep neural network (DNN) has revolutionized the field of computer vision, such as 
Vision Transformer (ViT)10, a landmark achievement of deep neural networks, which has more advantages in 
terms of accuracy and generalization in the classification of cytopathological images compared to CNN11–13. 
However, the powerful performance of ViT based on the Self-Attention mechanism10, which leads to high 
computational and storage costs. This is hard to accept in cytopathology detection that demand both high 
precision and high efficiency. Therefore, how to lighten the model has become a prerequisite for applying ViT to 
thyroid pathology diagnosis.

Knowledge Distillation (KD) is a potential method for model compression, aiming to transfer the knowledge 
of a teacher model into a lightweight student model. The first proposed KD uses the response-based distillation 
framework14 to realize knowledge transfer by aligning the output targets of the teacher-student model. As 
research progresses, researchers have found that relying solely on the target dimension for KD cannot adequately 
facilitate knowledge transfer between models with substantial differences15,16. In addition to the response-
based distillation, researchers found that the information extracted from the feature layer of the model can 
convey more advanced knowledge. For this purpose, FitNets17 first proposes feature-based distillation, which 
is subsequently expanded by methods such as Variational Information KD18, Progressive Blockwise KD19, 
Contrastive Representation KD20. However, the problems in response-based distillation also occur in feature-
based distillation. It is difficult for single-dimensional distillation to meet the lightweight requirements of 
the teacher-student model with large differences. The relevant research on multi-teacher KD21 shows that by 
increasing the number of teacher models and providing the student with learning information from different 
perspectives, the effect can be improved. The study by Huang et al.32 found that decoupling the model’s targets 
into inter-class relation and intra-class relation for KD yields superior results. In Relational KD 22, constraining 
the student model with multiple distance dimensions can also improve the distillation performance. In fact, the 
limitations of single-dimensional distillation can be explained as the incomplete knowledge transmission of the 
teacher model and the inability of the student model to fully understand the knowledge.

Based on the issues mentioned above, we propose a method named Multi-Dimensional Knowledge Distillation 
(Multi-Dimensional KD). This method leverages information from the spatial, channel, class token, and target 
dimensions to transfer knowledge from a 12-layer ViT to a 3-layer ViT. We utilize a dataset comprising 22,111 
thyroid cytopathological patches for model training and validation. The experimental data demonstrate that 
Multi-Dimensional KD achieves a four-fold reduction in computational complexity at the cost of only a 0.55% 
decrease in the Top-1 score. Additionally, through visualization analysis, we find that Multi-Dimensional KD 
can largely preserve the advantages of the teacher model with respect to attention and generalization capabilities. 
The above results substantiate the effectiveness of our method.

Method
Thyroid nodule cell pathology image dataset
To thoroughly validate the effectiveness of Multi-Dimensional KD, this study collected 600 WSIs of thyroid 
FNAC specimens from the Department of Endocrinology and Metabolism (Shanghai Sixth People’s Hospital) 
between 2023 and 2024. These WSIs were segmented into 42,032 well-formed patches at 20x magnification using 
a Leica Aperio AT2 scanner, and were subsequently screened by pathologists. Ultimately, based on the TBSRTC 
classification, 22,111 patches containing thyroid cytopathologic images from Grade I to Grade VI were labeled, 
with each patch measuring 224 × 224 pixels. Of these, 22,111 patches were used for the experiment of the model. 
Among them, 12,235 patches were employed for the training and testing, while 9,876 patches were utilized for 
validation.

It is necessary to declare that the collection and processing of all data used in this experiment are in accordance 
with relevant regulations, and all the parties or their legal guardians have given informed consent. Moreover, the 
methodological procedures described subsequently are based on previous work experiences5–7. Furthermore, we 
have obtained ethical approval from Shanghai Sixth People’s Hospital affiliated to Shanghai Jiao Tong University.

Overall framework
We use ViT as the foundation for KD, where the teacher model comprises 12 transformer blocks, and the student 
model has 3 transformer blocks. The overview of the proposed Multi-Dimensional KD is shown in Fig. 1, which 
is divided into two parts: (1) Response-based distillation, which employs a temperature scaling operation to 
soften hard-targets for calculating the soft-targets loss. The loss between hard-targets and ground truth labels 
serves as the initial loss for ViT. (2) Feature-based distillation, encompasses spatial-wise KD, which focuses on 
spatial weight information; Class token KD, which is employed to extract information from the decoupled class 
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token. Additionally, we employ position-local attention, which incorporates relative position information, to 
constrain the Self-Attention weight matrix within a banded range.

Response-based distillation
The common denominator in classification problems is that the model output logits. In this paper, logits LT are 
obtained from pathological image data through a teacher model that consists of 12 transformer blocks, while 
logits LS are derived simultaneously from a student model with only 3 transformer blocks. Typically, when the 
logits are normalized by the softmax function, a set of hard-targets is generated, each hard-target containing the 
probabilities for all categories, and the category with the highest probability is selected as the final prediction. 
But in fact, each probability value in the hard-targets is not zero, and the discarded parts still contain some 
similarity information. To endow the student model with the ability to extract this information, we replace the 
hard-targets with a soft-targets using a temperature coefficient t, and calculate the Mean Squared Error (MSE) 
between them to obtain the KD loss at the output layer, which is expressed as:

	 Lsoft = MSE
(
θ

(
LS

)
, θ

(
LT

))
.� (1)

Where θ(∙) denotes the softmax function, which is responsible for converting logits into a probability distribution 
as shown below:

	
θ (Li) = e

Li
t

∑ N

i=1e
Li
t

� (2)

In the formula, i represents the index in the sequence of logits that corresponds to each predicted category, 
with the maximum value being N, which is the number of categories. As the value of t increases, the softmax 
output exhibits a more homogeneous distribution, which enables the student model to fully extract the hidden 

Fig. 1.  The overall architecture of our proposed method. Multi-Dimensional KD. Multi-Dimensional KD is 
applied between two ViT models, where the teacher model consists of 12 transformer blocks, and the student 
model consists of 3 transformer blocks.
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information in targets. Besides the increase in information content, using soft-targets for training also leads to 
a smaller variance in model gradients, allowing for the use of larger learning rates during training to accelerate 
convergence. Finally, the soft-targets of the teacher model are taken as the true label, while the soft-targets of the 
student model are taken as the predicted label. The loss calculation is expressed as:

	
MSE

(
θ

(
LS

)
, θ

(
LT

))
= 1

N

∑
N
i=1(θ

(
LT

i

)
− θ

(
LS

i

)
)2� (3)

Class token knowledge distillation
The feature map structure of ViT is different from that of CNN, with its uniqueness stemming from class token 
and Self-Attention weight calculations. Therefore, when performing feature-based distillation on ViT, decoupling 
the feature maps is first required. The dimensional information is represented as:

	 [Batch , num_patches + class_token , embed_dim]

In the second dimension, Class_Token is separated as an embedding representation from the rest, yielding 
a feature map F with dimensions of (169 × 768). Subsequently, F is reshaped to (768 × 14 × 14) to match the 
C×W×H format.

In the processing of ViT feature maps, class token10 learns global information about the entire image within 
the encoder and is utilized for the final classification task, closely correlating with the model’s output targets. 
Due to the richer information contained in class token, class distillation can be regarded as a dense branch of 
response-based distillation. Using it as the distillation targets can more evenly distribute the classification loss 
information across the entire model. We employ Kullback-Leibler divergence (KL divergence) to evaluate the 
consistency between the two, where δ represents the vector of the class token:

	
Lossclass = ϕ
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Channel-wise knowledge distillation
Each channel of the feature map corresponds to a visual pattern, but the importance of the visual pattern of each 
channel is different. Since the performance of the teacher is better than that of the student model, we assume 
that the visual patterns captured by the teacher are more accurate. Therefore, this paper introduced Channel-
wise Knowledge Distillation (CWD)23 for channel-by-channel KD, extracted the attention information of each 
channel of the feature map with the teacher, and summarized it into knowledge transfer to student models. FS 
and FT are used to respectively represent the feature graphs of the student model and the teacher model, then 
the loss can be described as:

	 LCW D = ϕ
(
θ

(
F S

)
, θ

(
F T

))
.� (5)

Similarly, the softmax function θ(∙) is used to convert feature values into a probability distribution as shown 
below:

	
θ (Fc) = e

Fc,i
t

∑ W ˙H
i=1 e

Fc,i
t

� (6)

In this context, c represents the index of each channel in the feature map, and i represents the spatial position 
within the indexed channel. Similar to the method described in response-based distillation, CWD also adopts 
temperature-scaling approach. As t increases, the probability distribution becomes smoother, and the differences 
between positions within a channel decrease, allowing the hidden relationship between channels to be fully 
revealed. Due to the uniform feature map size in ViT, we use KL divergence to evaluate the difference in channel 
feature distribution between the teacher model and student model. This is expressed as:
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During the distillation process, when the amount of information in the teacher model’s feature map is significantly 
greater than that of the student model, the logarithm function in the KL divergence calculation will yield a 
value greater than zero, which manifests as a relatively large loss value. As the training progresses, the feature 
differences between the teacher and student models decrease. Consequently, the logarithm values move closer 
to zero, resulting in a gradual decrease in the loss value. This process has the effect of suppressing less significant 
channels, indicating that the student model’s visual attention in the channel dimension is converging towards 
that of the teacher model.

Spatial-wise knowledge distillation
Although CWD replaces the traditional spatial-focused strategy in feature-based distillation, it inevitably 
neglects spatial features. Several studies24–26 have shown that a one-sided focus on channel-level distillation 
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methods can impair the interaction among spatial information, especially for data with small feature regions 
such as thyroid pathological images. Multi-scale attention information is more capable of guiding the student 
model to focus on the correct locations. To make up for the gap in spatial knowledge, this study presents Spatial-
wise Knowledge Distillation (SWD), inspired by the spatial attention module. It is described as follows:

	 LSW D = MSE
(
∂

(
F S

)
, ∂

(
F T

))
.� (8)

In this context, ∂(∙) represents a process that compresses the number of feature map channels C down to 1 
through calculating the mean of the feature map. Subsequently, the sigmoid function is applied to convert it into 
a spatial-wise:

	
∂ (F ) = 1

1 + e
1

Ct

∑ C

c=1
Fc

.� (9)

Traditional spatial attention uses both the mean and maximum values to generate a 2-channel attention map. 
However, as a loss function, SWD cannot utilize convolutional operations to further fuse this information. In 
our experiments, we found that the loss information derived from the maximum value without convolutional 
operations significantly hindered gradient descent, leading to rapid degradation of the model. Therefore, SWD 
only uses the relatively smooth mean-based information to constrain spatial differences, ensuring that the loss 
values are distributed within a reasonable range. Additionally, within ∂(∙), there is also a temperature parameter 
t that achieves a soft distribution of spatial attention. The larger t is, the more evenly the attention is distributed 
across each spatial location, creating an adversarial relationship between the teacher model and student model, 
while enhancing the robustness of the models.

Combining Eq. (1) to (9), the total optimization loss is expressed as:

	 L = λ Lhard + (1 − λ )(Lsoft + LCW D + LSW D + LClass)� (10)

Where λ is used to control the proportion of the KD loss in the overall loss, and it is suggested to be set at 0.8 in 
this paper.

Position-local attention
Self-Attention requires calculating the correlation between any two tokens in the sequence, resulting in a 
quadratic computational complexity for the Attention weight matrix and incurring significant computational 
costs. Therefore, we introduce the concept of local attention27 to restrict the calculation of attention weights 
for each element in the sequence within a certain range. Formally, local attention can be expressed as only 
calculating the attention between each element and the neighboring n elements. The mathematical formulation 
of local attention is expressed as:

	
Ai = qi[ki− n

2
, k

i− n−2
2

, k
i− n−4

2
, . . . , k

i− n−2n
2

]� (11)

In this context, Ai represents the attention weight matrix formed by the product of the query value (denoted 
as q) of the i-th element and the key (denoted as k) values of neighboring n elements. This approach limits the 
computational load while preserving the ability to connect contextual information. In practice, ViT focuses on 
global data analysis. However, in thyroid nodule cytopathology images, structures such as papillary follicles and 
colloidal follicles exhibit unique local features, which are also crucial criteria for pathological diagnosis28. In this 
regard, some variants of ViT, such as TNT29 and Swin Transformer30, have incorporated locality. In this paper, 
this role is undertaken by local attention, which also establishes a global field of view through overlapping local 
regions. Additionally, due to the loss of positional information caused by the reduction of Self-Attention, we 
propose a relative positional encoding to highlight the positional relationship between q and k, which can be 
expressed as:

	
Locali = [

3n
2 − i

2n
Ai,1,

3n
2 − i − 1

2n
Ai,2,

3n
2 − i − 2

2n
Ai,3, . . . ,

3n
2 − i − (n − 1)

2n
Ai,n]� (12)

Relative positional encoding derives relative positional parameters based on the positions of q and k when 
calculating attention weights. The larger the parameter value, the closer the relationship between the two 
positions.

Knowledge distillation methods for comparison
To validate the effectiveness of Multi-Dimensional KD, we compared our method with KD methods listed below:

•	 DKD31: This method decouples classical KD into target class KD and non-target class KD, and calculates 
losses separately to minimize the differences in the output layer.

•	 DIST32: This method focuses on both Inter-class relations and Intra-class relations in the output layer, con-
ducting KD from two perspectives.

•	 TAKD16: This method utilizes a medium-sized teacher assistant model to bridge the large gap between the 
teacher and student models.
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In this research, our objective is to compress the teacher model (12-layer ViT) into a student model (3-layer 
ViT) through KD, aiming to enable the student model’s performance to closely match that of the teacher model. 
Consequently, we evaluate and compare the performance of the student model under different KD approaches, 
and take the 3-layer ViT that is directly trained without any KD as the baseline model.

Since the feature layer of ViT differs from traditional neural networks, we selected the feature map after 
separating the class token as the targets for feature-based distillation. Regarding TAKD, we followed the protocol 
outlined in the literature16, where the 12-layer ViT is first distilled into a 7-layer ViT via targets, and subsequently 
it undergoes a further distillation process to be transformed into a 3-layer ViT. As for DKD, we divide the targets 
into non-target and target classes, and then calculate the KD loss for each class respectively. In addition, We 
achieve DIST by calculating the losses of Intra-class and Inter-class relations within the target.

We apply these methods to the same dataset. Model training is conducted on a single NVIDIA RTX 4090 
graphics card. The batch size is set to 16, the number of training epochs is set to 600, the learning rate is set to 
0.01, and we employ the Stochastic Gradient Descent optimizer.

Evaluation metrics
To assess the performance and efficiency of the Multi-Dimensional KD for thyroid nodule cytopathology image 
recognition, we employ Top-1, Precision, Recall, and F2 Score to evaluate the classification capabilities of all 
models. Additionally, we calculate the Floating-point Operations Per Second (FLOPs) and Frames Per Second 
(FPS) to assess the operational efficiency of the models.

Results
Comparison
The final comparative experimental results are shown in Table 1. Compared with the baseline model that is 
directly trained without KD, all distillation methods can improve the performance of the student, but Multi-
Dimensional KD achieves the best scores. Compared to the 12-layer ViT, our method only exhibits a 0.55% 
performance difference, while significantly reducing the model’s computational complexity from 16.89 GMac to 
4.31 GMac. Simultaneously, the model weight drops from 327 MB to 84 MB and the time for processing a single 
image reduces from 0.014s to 0.0037s. It is noteworthy that the Precision, Recall, and F2 Score of our method 
are relatively close to each other. This indicates that the model is free from the risks of overfitting or underfitting, 
demonstrating favorable generalization ability. In the context of explaining KD, this can be understood as a 
relatively thorough knowledge transfer. Clinically, it implies a lower rate of misdiagnosis.

We have generated a confusion matrix for the model’s classification results, as shown in Fig.  2a. It can 
be observed that classification errors are mainly concentrated between Grade III (Atypia of undetermined 
significance or follicular lesion of undetermined significance) and Grade IV (Follicular neoplasm or suspicious 
for follicular neoplasm) cells. In fact, due to the high similarity in cytological features between these two grades, 
even deep ViT models tend to make numerous classification errors. Clinically, repeated FNAC or molecular 
testing may be required to further confirm the diagnosis3.

Under different KD loss weight λ, the distillation temperature is adjusted to t. The experimental results are 
shown in Fig.  2b. It is found that that increasing t within a certain range can make the output distribution 
softer, thus improving model performance, but if t continues to increase beyond this range, the performance will 
decline, which can be explained by the model’s excessive attention to some small hidden features. When λ = 0.6 
and t = 2, the model achieves the best performance.

We utilized Grad-CAM to provide attention visualization for the student model of each KD method, with 
the results presented in the form of heatmaps in Fig. 3. The attention of the baseline model and the comparative 
methods tends to exhibit either excessive sparsity or density, which implies that the models lose key information 
or incorporate noise during the recognition process. In contrast, Multi-Dimensional KD enables the student 
model to focus its attention on regions densely populated with thyroid cells, demonstrating the model’s full 
utilization of spatial dimensional information. Additionally, the predominantly red colors within the model’s 
high level of attention to channel-dimensional information. All of the above evidence demonstrates our method’s 
precise knowledge transfer capability in both spatial and channel dimensions.

To further validate the performance of Multi-Dimensional KD, we referred to the pseudo-gland test to 
evaluate the generalization ability of the student model, with the results shown in Fig. 4. For the original images, 
the student model’s attention is well-focused on the regions where thyroid cells aggregated. Subsequently, we 
add some additional thyroid cells of the same grade to the original images, labeled them as pseudo cells, and 
had the student model identify them. Through the heatmaps, it can be found that the model’s attention could 
comprehensively cover the pseudo cells, indicating that the model exhibited strong sensitivity to the additional 

Method Top-1 Precision Recall F2

Teacher 0.9547 0.9549 0.9558 0.9535

Baseline 0.9168 0.9221 0.9196 0.9183

TAKD 0.9461 0.9475 0.9471 0.9486

DKD 0.9462 0.9469 0.9471 0.9469

DIST 0.9399 0.9430 0.9410 0.9402

Ours 0.9487 0.9501 0.9497 0.9494

Table 1.  Comparison between Multi-Dimensional KD and other KD methods.
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data. This demonstrates that Multi-Dimensional KD can effectively preserve the generalization advantages of 
the teacher model.

Ablation study
To validate the contribution of each loss function in enhancing model fitting, we conducted a ablation study. We 
employed 3-layer ViT as basic student model, equipped with Losshard. Table 2 presents the ablation data for Multi-
Dimensional KD. The results indicate that each KD function improves the model’s performance, as evidenced by 
an increase in the Top-1 accuracy from 93.23 to 94.87%, demonstrating the effectiveness of Multi-Dimensional 
KD in bridging the performance gap between the teacher and student models. Among them, LossCWD and 
LossSWD make the most significant contributions to performance improvement, and this improvement is 
greater than the sum of their individual contributions. This indicates that there exists both complementary and 

Fig. 3.  Visual comparison using Grad-CAM. Grad-CAM shows the contribution of different regions in the 
input image to the model prediction through a heatmap. The colors in the heatmaps represent the distribution 
of the model’s attention, with a gradient from blue to red indicating a transition from sparse to dense attention 
distribution.

 

Fig. 2.  (a) Confusion matrix. (b) Top-1 score of the model with different λ and t.
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competitive relationships between Channel-wise KD and Spatial-wise KD. When the weights of the two reach 
a balance, the effectiveness of KD can be maximally enhanced. The incorporation of position-local attention 
further boosts the model’s image processing speed by 10%, with only a slight decrease in Top-1.

We compared the training losses of the basic student model and Multi-Dimensional KD, as illustrated in 
Fig. 5. We observed that due to the inclusion of more significant differences in feature distributions, the initial 
loss of Multi-Dimensional KD curve was higher, but the loss of Multi-Dimensional KD decreased at a faster rate 
during training. This indicating that multi-dimensional supervisory information more effectively promotes the 
convergence of the student model, and Multi-Dimensional KD has stronger adaptability and generalization to 
the training data.

Losshard Losssoft LossCWD LossSWD Lossclass Position-Local Attention Top−1 FPS

✓ 93.23 300

✓ ✓ 93.94 301

✓ ✓ ✓ 94.55 300

✓ ✓ ✓ 94.20 300

✓ ✓ ✓ 94.51 301

✓ ✓ ✓ ✓ ✓ 94.95 301

✓ ✓ ✓ ✓ ✓ ✓ 94.87 271

Table 2.  Ablation study.

 

Fig. 4.  Generalization Testing. The areas within the green boxes represent the pseudo cells that are manually 
added to the origin patches.
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Conclusions
In this study, we propose a novel KD method, Multi-Dimensional KD, which is trained on a dataset comprising 
12,235 thyroid cytopathology patches. It facilitates the transfer of knowledge from a 12-layer ViT to a 3-layer 
ViT, with classification carried out in accordance with TBSRTC. Additionally, we collected an extra 9,876 patches 
to validate the student model. The experimental results demonstrate that we have successfully reduced the 
computational complexity of the model from 16.89 GMac to 4.31 GMac, and the recognition time for a single 
patch has decreased from 0.014 s to 0.0037 s, all while incurring only a minor accuracy loss of 0.55%.

The effectiveness of Multi-Dimensional KD can be attributed to multiple factors. Firstly, during the 
extraction of target information, the unique architecture of the ViT is leveraged to decouple the class token, 
which supplements the target and ensures the integrity of the KD information. Secondly, by calculating the 
channel-wise in the feature maps, Channel-wise KD is achieved, and Spatial-wise KD is employed to compensate 
for spatial information. As observed from the heatmaps, Multi-Dimensional KD enables the student model’s 
attention to be compactly distributed in the thyroid cell regions and allows it to inherit the generalization 
advantages of the teacher model. This is precisely due to the synergy between channel-wise and spatial-wise. 
Thirdly, we utilize a temperature parameter to perform a temperature-raising operation on the entire KD system, 
making the KD process smoother. This not only reveals hidden information but also enhances the model’s 
robustness. Finally, we introduce local attention to further lighten the model and incorporate relative positional 
encoding to emphasize positional relationships. As a result, the FPS of the student model decreases by 9.7%.

However, this study has certain limitations. We have found that our method exhibits suboptimal performance 
in classifying thyroid nodule cytopathology patches of Grade III and Grade IV. In fact, due to their similar 
morphological characteristics, even in clinical practice, these two grades are distinguished with the assistance 
of ultrasound and molecular testing. To enhance the potential of our KD system for clinical applications, in the 
future, we will integrate multi-modal data, including ultrasound and molecular testing results, to address the 
challenges in pathological recognition. Additionally, although our method can reduce the overall computational 
load of the model by a factor of four, it still falls short of meeting the requirements for WSI recognition. We have 

Fig. 5.  Training loss curves for the Basic Student Model and Multi-Dimensional KD. Since both student 
models have the same architecture, we load identical pre-trained weights in both experiments to shorten 
experimental cycles.

 

Scientific Reports |        (2025) 15:30059 9| https://doi.org/10.1038/s41598-025-15728-9

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


observed that many regions within a WSI do not contain useful diagnostic information. Therefore, we plan to 
filter out the ineffective regions of the WSI under low magnification and then apply our method for recognition 
to fulfill the clinical demands for WSI diagnosis. When dealing with small-scale datasets, we have noticed that 
the complex architecture of Multi-Dimensional KD is prone to overfitting. To address this issue, we will optimize 
the loss functions for each dimension at the mathematical level, thereby extending the application scenarios of 
Multi-Dimensional KD to few-shot detection.

Data availability
Due to the policy of the Sixth People’s Hospital of Shanghai Jiao Tong University School of Medicine prohibits 
public uploads of any patient’s private data, the dataset analyzed and generated in this study is not publicly avail-
able. However, partial dataset is available from the appropriate authors upon reasonable request. The source code 
used in this paper has been publicly released at ​h​t​t​​​​p​s​:​​/​​/​g​i​t​h​u​b​​.​​c​o​​m​/​​z​​h​​e​z​h​​e​d​e​p​e​n​y​o​u​/​m​y​-​c​o​d​e​/​t​r​e​e​/​m​a​i​n​/​M​u​l​t​
i​-​D​i​m​e​n​s​i​o​n​a​l​. Please contact the corresponding author at hajfs@126.com for further information.
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