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Wood-based substrates—known for their renewability, abundance, and surface functionalization 
potential—have recently gained attention as polymers for laser-induced graphene (LIG) synthesis 
because of their environmentally friendly attributes. These environment-friendly properties also 
make them pollution-free and easy to dispose of after use. However, the formation of LIG on wood 
substrates lacks robust theoretical support, and molecular dynamics (MD) simulations, which are 
a potential theoretical framework, are time-consuming and computationally intensive. Herein, we 
employed temperature-dependent MD simulations to explore LIG formation on wood-based materials, 
validating our findings through a comparative analysis with atomic-scale characterization results. 
To address the high computational requirements of MD simulations, machine learning (ML) models, 
including long short-term memory (LSTM) networks, support vector regression (SVR), and multilayer 
perceptrons (MLP), were implemented to extrapolate predictions beyond direct simulation conditions. 
Each model exhibited high data explanatory power (R2 values ≥ 0.9), and the computational time was 
significantly reduced compared to the MD simulations. ML-based predictions revealed a substantial 
correlation between the temperature and LIG formation extent, establishing an efficient framework 
for optimizing LIG synthesis from wood-based materials under various laser processing conditions. 
This framework has considerable potential for applications in energy storage devices, high-sensitivity 
sensors, and advanced catalytic materials.
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Laser-induced graphene (LIG) has recently gained prominence as a scalable and efficient technique for 
synthesizing graphene-like structures directly from carbon precursors1–5, presenting a valuable alternative to 
conventional time- and energy-intensive methods such as chemical vapor deposition (CVD) and physical vapor 
deposition (PVD)6–11. The LIG process uses focused or unfocused laser beams to induce localized pyrolysis of 
carbon-based substrates, resulting in the formation of graphene-like carbon structures. This approach has been 
successfully demonstrated using various substrates, including polyimide (PI), biomass, and lignocellulose-based 
materials12–16. Polymer films containing PI have been extensively studied because of their high carbon content, 
excellent thermal stability, and ease of processing17,18. However, commercial polymer films have environmental 
and economic drawbacks owing to their nonbiodegradable nature, raising concerns about their sustainability 
and cost-effectiveness19.

In response to these challenges, renewable lignin-based substrates, including wood, paper, and cork, have 
emerged as promising alternatives for LIG synthesis20,21. These materials offer advantages, such as low cost, 
availability, unique hierarchical structures, and the presence of functional groups that facilitate tunable porosity 
and surface modifications13. The unique composition of wood substrates, primarily cellulose, hemicellulose, and 
lignin, introduces distinct challenges and opportunities for the LIG process because these components undergo 
complex structural transformations under laser-induced pyrolysis. The formation of LIG typically occurs when 
carbon-based precursors are pyrolyzed at localized high temperatures (generally exceeding 2500 K)22,23. This 
high-temperature environment allows carbon atoms within the precursor to reorganize into a graphene-like 
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structure, with the potential to further improve the layer quality and uniformity through the application of 
controlled atmospheric or inert gas environments during laser irradiation14.

Despite significant advancements in the understanding of LIG formation mechanisms24–28, there remains a 
lack of theoretical support for LIG synthesis from renewable materials. Molecular dynamics (MD) simulations 
using the reactive force field (ReaxFF) method offer a promising way to fill this gap29, as they can represent 
the formation and destruction of interatomic chemical bonds. This provides detailed atomic-scale insight into 
these processes and allows for the tuning of laser parameters, such as temperature and pressure, to understand 
the mechanisms of short-time, microscopic reactions that are difficult to determine through conventional 
experiments. ReaxFF is particularly suited to capturing the complex processes of bond breaking and formation 
inherent in organic material pyrolysis as well as hybridization states and π-electron interactions essential for 
carbon-based systems30,31. These properties have enabled ReaxFF simulations to analyze the LIG formation 
process in carbon precursors effectively23. However, the high computational cost associated with ReaxFF 
simulations limits their practical applicability, particularly when exploring a wide range of processing parameters.

To address these limitations, this study integrated ReaxFF simulations with machine learning (ML) techniques 
to improve the computational efficiency and extend the predictive capabilities32. Temperature-dependent MD 
simulations can be applied to model LIG formation in the 2D carbon structures of wood substrates exposed to 
high-energy laser irradiation. The high computational load of the simulations can be overcome by training the 
simulation data with machine learning models and effectively predicting the carbonization process of wood 
substrates over time at different temperatures33.

Three ML models—long short-term memory (LSTM), support vector regression (SVR)34–36, and multilayer 
perceptron (MLP)37–39—were evaluated.

The results showed that the computation time for each model was up to 4  s, which was lesser than that 
of traditional MD simulations, and that the models were highly reliable, with an R2 > 0.95, indicating that the 
results agreed well with the simulated values. This allowed us to identify the temperature range in which effective 
wood LIG could be achieved using pulsed laser processing. This framework, which combines MD simulations 
and ML, provides a comprehensive understanding of the underlying mechanisms driving LIG synthesis in 
renewable wood-based substrates and has the potential to optimize LIG applications under different laser 
processing conditions.

Materials and methods
Materials
Graphitized patterns on Meranti wood (Meranti wood, Indonesia) were created using a direct laser writing 
(DLW) technique. A 450 nm pulsed laser system (Laserpecker 2, Laserpecker, Shenzhen, China) was used with a 
scanning speed of 150 mm/s and repeated five times to generate the patterns. The specific laser specifications are 
presented in Table 1. Characterization of the patterns was conducted using Raman spectroscopy (RAMANtouch, 
Nanophoton, Tokyo, Japan). Atomic-scale analysis of the LIG structures was performed with a Cs-corrected 
scanning transmission electron microscope (Cs-STEM).

Molecular modeling
A molecular model that mimicked the structural characteristics of wood was developed by combining its three 
primary components: cellulose, hemicellulose, and lignin. A composite molecular model was constructed 
using the actual 5:2:3 mass ratio of cellulose, hemicellulose, and lignin to replicate the natural composition 
of hardwood40. Each molecular structure was geometrically optimized to minimize the energy and ensure 
structural stability before initiating molecular dynamics (MD) simulations.

Molecular dynamics simulation using ReaxFF
In this study, simulations were performed based on ReaxFF, using a parameter set applicable to C–H–O–N 
organic compounds used by Rahaman et al.41 This parameter set can stably simulate the behavior of chemical 
reactions, bond formation and destruction, hydrogen bonding, dehydration reactions in various organic systems. 
Therefore the ReaxFF was used to model laser-induced pyrolysis and the subsequent formation of carbon ring 
structures in wood materials. The general energy equation is42

	 Esystem = Ebond + Elp + Eval + Eover + Eunder + Ecoulomb + EV dW aals,� (1)

 where Ebond denotes the bond energies, Elp represents the lone pair energies, Eval represents the energies related 
to the valence angles, and Eover and Eunder are the energies necessary to correct the over- and under-coordination 

Laser type NICHIA diode laser

Laser power 5 W

Laser wavelength 450 nm

Pulse frequency 2.5 kHz

Pulse width 5 ns

Laser spot size diameter 0.05 mm

Table 1.  Detailed laser specification.
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of the atoms, respectively. Ecoulomb represents the non-bonded Coulomb energy, and EVdWaals represents the van 
der Waals interactions.

The simulations were performed at a temperature range of 1000–4000 K within a simulation cell of dimensions 
24.57 × 24.66 × 24.38 Å. The molecular dynamics simulations used a time step of 0.05  fs to fully capture the 
pyrolysis and carbonization processes, with each simulation running for 1 ns. During these simulations, the 
degradation of the cellulose, hemicellulose, and lignin matrices and the formation of carbon-based structures 
were monitored. The ReaxFF-based MD simulations were performed on the NURION system at the KISTI 
National Supercomputing Center.

Machine learning model for predicting graphene formation
In this study, LSTM, MLP, and SVR models were designed to predict outcomes based on time-series data 
generated from MD simulations. Since the task involves predicting the temporal evolution of molecular 
structures in response to temperature changes, a model that can intrinsically learn such time dependence is 
required. Although Convolutional Neural Network (CNN) could be considered as an alternative for time series 
prediction, CNN is primarily suited for spatial pattern recognition43. While LSTM, with its ability to model 
long-term dependencies, was selected as the primary model, its performance advantage over simpler models 
was found to be limited in practice.

To assess the necessity of temporal modeling, MLP and SVR—models that treat inputs as static feature sets—
were included as computationally efficient baselines. These models offer fast training and simple implementation, 
making them suitable for comparison in scenarios where model interpretability and resource constraints are 
important. Compared to more complex algorithms such as XGBoost or random forests, which often require 
extensive tuning and longer training times, MLP and SVR provide a lightweight and practical alternative for 
initial benchmarking.

The primary variables were the results, temperature, and time step. The results are the surface areas of 
graphene obtained from the simulations, which are influenced by temperature and time.

The simulation data were analyzed independently under seven different temperature conditions with 2,001 
time-series data points for each temperature. The model was validated using the k-fold method (k = 5) to ensure 
its reliability. k = 5 is a commonly used setting for small or medium-sized time series datasets, providing an 
appropriate balance between model learning stability and validation reliability. The data from the previous eight 
time steps for each temperature condition were used as the input characteristics, and the resulting value at the 
next time point was set as the prediction target. In addition, temperature data were integrated as auxiliary input 
variables into the LSTM model, which can be expressed as follows:

	 Xt = f(Xt−1, Xt−2, Xt−3, Xt−4, Xt−5, Xt−6, Xt−7, Xt−8, Ut� (2)

The entire dataset was divided into training, validation, and test sets in a ratio of 64:16:20. The input features 
are composed of graphene area units and were scaled to 0–1 using min-max normalization. Dimensionality 
reduction was not applied. The training data were used to train the model, the validation data were used for 
hyperparameter tuning and model optimization, and the test data were used to evaluate the generalization 
performance of the trained model.

Tables S1, S2, and S3 show the specific hyperparameter optimization processes for the LSTM, MLP, and SVR, 
respectively, obtained through the empirical experiments. The LSTM network consisted of three LSTM layers 
with 128, 128, and 128 neurons. The temperature input was combined with the output from the LSTM layers, 
and a linear activation function was employed to produce the final predictions. The performance of the model 
was assessed through 5-fold cross-validation with an epoch set to 50 by comparing the predicted and simulated 
results. A learning rate schedule of 0.05 was applied to fine-tune the optimization. The MLP used activation 
ReLU and set the random state to 512 and the maximum iteration to 500. SVR was used with Radial Basis 
Function (RBF) kernel.

Error analysis and evaluation
Three metrics, root mean square error (RMSE), mean square error (MSE), and Pearson correlation coefficient 
(PCC), which are widely used in regression model evaluations, were used for the evaluation.

RMSE is defined as follows:

	
RMSE =

√
1
N

∑
N
i=1(ypi − yi)2,� (3)

 where yi is the target value for each sample set, ypi is the predicted output, and N is the total number of sample 
points.

MSE is defined as follows:

	
MSE = 1

N

∑
N
i=1(ypi − yi)2.� (4)

In addition, the mean absolute error (MAE) represents the average of the absolute values of the errors and is used 
to intuitively evaluate a regression model. It can be expressed as follows:

	
MAE = 1

N

∑
N
i=1 |ypi − yi|� (5)
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The performance of each model was evaluated using PCC44, which measures the linear relationship between the 
predicted and simulated values. PCC values are between − 1 and 1, with values closer to 1 indicating a stronger 
correlation between the prediction and simulated data. PCC is defined as

	

r =
∑ n

i=1(Xi−
−
X)(Yi−

−
Y )√∑ n

i=1(Xi−
−
X)

2
√∑ n

i=1(Yi−
−
Y )

2 � (6)

 where r denotes the PCC, Xi represents the standard score for the target data, Yi is the score for the output 
data, 

−
X  is the targeted data mean, and 

−
Y  is the output data mean. An overview of the entire process is presented 

in Fig. 1.

Results and discussion
Figure 2 shows the results of the molecular dynamics (MD) simulations of graphene formation at different 
temperatures (1000, 1500, 2000, 2500, 3000, 3500 and 4000 K). Video S1 shows the evolution of wood molecules 
over time at 3000 K. Each row corresponds to each temperature and shows the progression of carbon structure 
formation during laser-induced processing of a cellulose-hemicellulose-lignin model. In all temperature regions 
where sp2 structures were formed, a transition from the initial molecule to amorphous carbon and back to 
graphene occurred for 1 ns. At a temperature of up to 1500 K, the carbon structure remained largely disordered 
through pyrolysis, and localized ring formation was observed, suggesting that there could be a temperature 
threshold for LIG formation using a pulsed laser. At 2000 K, regions with more organized ring structures began 
to form, indicating early stages of graphitization, whereas at 2500 K, larger and more distinct graphene regions 
were observed, with distinct and broadly varying ring planes throughout the structure. At 3000 K, well-defined 
amorphous graphene-like sheets were widespread, indicating that the graphitization process was significantly 
advanced and that extensive hexagonal carbon rings had formed. The progression up to 3000 K indicates that 
the temperature plays an important role in promoting the formation and stabilization of graphene within 
the molecular matrix, demonstrating a clear progression from disordered carbon structures to well-ordered 
graphene layers as the temperature increased. This indicates that as the temperature increases, the energy for 

Fig. 1.  Schematic of the fabrication process of wood-based LIG: (a) pulsed laser irradiates the wood surface, 
inducing the formation of graphene-like structures, (b) molecular dynamics (MD) simulations are performed 
to analyze the structural evolution, and (c) machine learning methods are employed to predict outcomes. The 
figure was created by the authors using Blender 4.2 (Blender Foundation, https://www.blender.org/).
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sp2 hybridization increases. Since π-bonding occurred in this case, it could be expected that optimal electrical 
properties would be obtained at that temperature45.

At 3500 K, the graphitization process continued, and a more localized sp3 structure was observed than that at 
3000 K. This indicates that temperatures above 3000 K exceed the optimum temperature for graphitization and 
that excess energy can lead to sp3 hybridization. The process results in fewer π-bonds and more σ-bonds, which 

Fig. 2.  ReaxFF simulation result showing the temperature-dependent evolution of graphene formation in 
a cellulose-lignin model under laser processing. The images represent the progression of carbon structure 
formation at temperatures of 1000, 1500, 2000, 2500, 3000, 3500, and 4000 K.
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destabilizes the two-dimensional carbon network and leads to the formation of an amorphous carbon structure. 
However, at 4000 K, the expected graphene structure hardly formed, and the carbon atoms aggregated to form a 
three-dimensional carbon structure. This phenomenon is consistent with the carbon pattern formation process 
described by Lee et al.46. These results show that high temperature conditions are not necessarily favorable for 
graphene structure formation, and based on molecular dynamics, we show that above 3500 K, the sp2 carbon 
ring structure decreases and sp³-based amorphous carbons predominate instead. These results provide new 
physical insights and suggest the importance of setting the proper fluence range for laser process optimization.

Figures 3a and S3 show the nanostructures of the isolated LIG flakes, with Cs-STEM images showing the 
polycrystalline structure of the wood LIG. The LIG flakes isolated from the substrate had a layered and corrugated 
morphology, with an abundance of five- and seven-membered rings as well as a six-membered ring structure 
of graphene. The rapid formation and cooling of this amorphous graphene using a pulsed laser resulted in the 
formation of a high-energy state structure. This process is referred to as kinetic graphene formation12. Figure 
S3b shows the characterization of the LIG. It shows several layers of structure with a d-space of 3.42 Å between 
graphene clusters. The morphology shown in Fig. 3b, which shows multiple carbon ring structures, is the result 
of the MD simulation of the sp2 structure formation exposed to a temperature of 3000 K for 1 ns using a pulsed 
laser. Figure 3c is a magnified image of Fig. 3a obtained using Cs-STEM, showing the polycrystalline nature of 
the irregular LIG flakes. In particular, the five- and seven-membered rings observed in the simulation matches 
the defect structure in the TEM image, suggesting that ReaxFF qualitatively reproduces the microstructure 
formation and defect characteristics of carbon-based materials. This similarity provides a basis for ReaxFF to 
reliably simulate the graphitization process of wood-based precursors. These carbon rings are believed to be 
responsible for the D peaks observed in the Raman spectra. The presence of rings and defects enhances the 
electrical conductivity of graphene, supporting theoretical predictions for the manufacturability of LIG47.

A large surface area is important for the effective application of LIG in sensors and catalysts. MD simulations 
were used to quantitatively analyze the structural evolution over time over a wide spectrum of temperatures, as 
shown in Figs. 4 and S1. Figure 4a shows the progression of the five-membered carbon rings, where the carbon 
atoms formed a pentagonal structure during LIG formation. With increasing temperature, the number of five-
membered rings increased significantly, particularly at 3000 K. This increase suggests that certain temperatures 
enhanced the formation of carbon ring structures. However, the decrease in ring formation at 4000 K indicates 
that excessive heat altered the bonding structure of the structural organization, which is consistent with the results 
of studies on the thermal degradation of carbon-based materials under extreme conditions23. This indicates a 
temperature threshold for maintaining the stability of graphene formation and suggests that exceeding this limit 
can lead to defects and structural collapse. The sharp decrease at 4000 K indicates that such high temperatures 
can lead to the destruction of the sp2 structures, suggesting that precise temperature control is required to ensure 
high-quality graphene formation. This is an important consideration when optimizing the laser parameters in 
LIG synthesis to maximize material performance. This variation in the rings with temperature was the same as 
that observed in Fig. 4b.

Fig. 3.  (a) Cs-STEM image illustrating the polycrystalline structure of LIG. (b) Representations of the 
modeled configurations for five-, six-, and seven-membered carbon ring structures. (c) Enlarged view of the 
area outlined by the red rectangle in Fig. 3a.
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In contrast, Fig. 4c shows the formation of seven-membered rings, which occurred less frequently than five- 
and six-membered rings. These rings are often associated with structural defects, as observed in graphene layers 
analyzed using Raman spectroscopy47. The results indicate that higher temperatures promote the formation of 
carbon networks; however, thermal energy can break the π-bonds that form between sp2 carbon atoms. This 
leads to a decrease in the π-electron delocalization and reduces the flow of electrons, which can negatively 
affect the electrical conductivity of the material. LIG is often referred to as 3D graphene because it has a 3D 
graphitization structure owing to the torsion or shear stresses caused by the five- and seven-membered rings. 
Therefore, striking a balance between maximizing hexagonal ring formation and minimizing defects is a key 
challenge in optimizing the LIG process.

Figure 4d shows the change in surface area over time, which was calculated by adding the areas of the five-, six-
, and seven-membered carbon rings at each time step. The increase in the surface area indicates that the carbon 
atoms were reorganized into larger and more extensive graphite layers. However, at 4000 K, the rate of surface 
area expansion decreased, implying that excess energy leads to aggregation rather than further development 
of organized graphene layers. The results indicate that temperatures around 3000  K promote graphitization; 
however, temperatures higher than this range may hinder the desired surface area expansion, thereby reducing 
the efficiency of graphene formation. These findings have important implications for the scalability of LIG 
synthesis, as they suggest the necessity to carefully optimize the processing temperature to balance material 
quality and structural integrity.

The gas molecules arising from the formation of LIG affect the porosity and electrical conductivity of 
graphene30. The molecules in the generated gas were counted based on the MD simulation results. Figures 5 and 
S2 show the temporal evolution of H2 and H2O molecules respectively during the formation of laser-induced 
graphene at different temperatures. Figure 5a shows the generation of H2 molecules over time. It was observed 
that as the temperature increased, the number of H2 molecules increased significantly, particularly at 3000 
and 4000 K, with the highest generation at 3000 K. This suggests that at temperatures above 2000 K, the gas 
produced by promoting the degradation of the cellulose-hemicellulose-lignin matrix increased the formation of 
porous structures. This behavior is consistent with those observed in previous studies where high temperatures 
promoted the degradation of organic components, such as cellulose and lignin, which increased H2 gas 
production during pyrolysis48. Due to the spatial limitations of MD simulations conducted on a nanometer 

Fig. 4.  Time-dependent changes of carbon ring structures and surface area during laser-induced graphene 
(LIG) formation in a cellulose-lignin model at various temperatures (1000, 2000, 3000, and 4000 K). (a) 
Evolution of five-, (b) six-, and (c) seven-membered carbon rings and (d) evolution of the surface area (Å2).
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scale, there are limitations in quantitatively calculating the pore size distribution required for actual applications. 
However, gas molecules generated during the pyrolysis process could cause pore formation within the structure. 
Vashisth et al. confirmed that gas generation during LIG formation is correlated with the creation of porous 
structures23. When this was analyzed in conjunction with the structure shown in Fig. 2, the results show that a 
completely new structural characterization different from that of LIG emerged.

Figure 5b shows the production of H2O molecules over time. In contrast to H2, the number of H2O molecules 
remained relatively stable over the temperature range, with a slight increase observed at 3000 and 4000 K. This 
suggests that temperature has less effect on H2O production during LIG formation. Previous studies support this 
observation, noting that the formation of water during pyrolysis is less sensitive to temperature changes than H2 
gas production, which may be caused by the different chemical pathways of the decomposition of the biomass 
components49.

To validate the effect of the graphene surface area on the wood material, the results were compared with the 
polyimide results at 3000 K. Because of the different cell sizes in the simulations, the volume differences were 
compensated for and calculated. Figure 6 shows a comparison of the time-dependent changes in the carbon ring 
structure and surface area of PI and wood at 3000 K during LIG formation. Figure 6a shows the evolution of 
the five-membered carbon ring over time. For the PI, the results were scaled to the same volume as that in the 
wood simulation. A gradual increase in the number of five-membered rings was observed for both PI and wood, 
with the PI generally exhibiting slightly higher values throughout the simulation. Figure 6b shows the evolution 
of six-membered carbon rings, which play an important role in the formation of graphene. Wood generally has 
a slightly lower number of six-membered rings compared to PI; however, in certain periods of the simulation, 
particularly after 0.5 ns, wood temporarily formed more rings, indicating that although PI tended to form more 
six-membered rings overall, wood exhibited stronger graphitization in certain segments of the process.

Figure 6c shows the evolution of seven-membered carbon rings. These rings were less prevalent in both 
models; however, PI exhibited slightly higher values, suggesting that the PI structure contained more defects. 
Figure 6d shows the evolution of the surface area over time. PI generally exhibits a slightly larger surface area 
than wood. The results show that PI tended to form a larger surface area overall and indicate the potential for 
trees to form LIG with fewer defects.

Figure 7 shows the Raman spectra as functions of laser fluence, with three peaks at 1337, 1573, and 2675 cm−1, 
corresponding to the D, G, and 2D bands, respectively. These spectra indicate the formation of graphene-like 
carbon structures50,51. The D peak, which is related to sp2 carbon bonds, indicated the presence of defects. The 
G peak represented the E2g tangential vibrations of graphitic carbon, and the 2D peak provided evidence of a 
graphene-like flake structure, consistent with previous findings on LIG52. The experiments at all three fluences 
exhibited IG/I2D ratios greater than one, indicating the formation of graphene multilayers. The intensity ratio 
of the ID/IG band is a key indicator of the defect density and is affected by photothermal graphitization, which 
results in a graphene-like structure. As the laser fluence increased, the intensity of the G peak (IG) increased, 
indicating enhanced graphitization under the laser treatment conditions53.

At all fluences, ID/IG exhibited values less than 1, indicating that the LIG structure transitioned from 
amorphous carbon to a more crystalline graphene-like structure45. The increase in the G peak intensity, 
along with the 2D peak, suggests improved graphene quality, characterized by fewer defects and better layer 
alignment. This was supported by the decreases in defect density and ID/IG ratio, which indicated more complete 
photothermal graphitization. The results showed that the laser process successfully converted the precursor 
material into carbon, such as graphitized graphene, particularly at low scanning speeds or high laser fluences.

MD simulation results showed that graphene-like structures (sp2 carbon ring structures) were clearly formed 
in the 2500–3500  K range, with the most developed form observed at 3000  K. Meanwhile, Raman analysis 
indicated that the G and 2D peaks increased with increasing fluence, indicating the formation of graphene 
structures with improved crystallinity. The fluence range at which these graphene characteristics began to be 

Fig. 5.  Temporal evolution of the number of (a) H2 and (b) H2O molecules during laser processing of a 
cellulose-lignin model at various temperatures (1000, 2000, 3000, and 4000 K).
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observed in the Raman spectra qualitatively matches the temperature conditions at which graphene structures 
began to form in simulations (2500 K or higher). This suggests that the results of the experiment and simulation 
are physically compatible.

The performances of the LSTM, MLP, and SVR models after machine learning were evaluated by quantitatively 
analyzing the models using metrics. Table S1-S3 summarizes the normalized performance metrics of the LSTM, 
MLP, and SVR models. Compared to the LSTM models, the MLP models had higher RMSE values and relatively 
lower R2 values, suggesting that although the MLP models performed well, the LSTM models were better at 
capturing time series and complex nonlinear relationships because of their temporal nature. The SVR models 
had the highest RMSE and lowest R2 values among the three models. However, the difference in the performance 
between the models was not significant. This limited performance difference is attributed to the relatively low 
complexity of the training dataset, which consists of a one-dimensional time series structure based on a single 
physical quantity. In addition, the simulation data shows a gradual change over time without abrupt transitions 
and tends to have little noise, resulting in similar performance across various models.

Figure 8 compares the performances of the three machine learning models—LSTM, MLP, and SVR—in 
predicting graphene formation during a laser-induced process. The scatter plot shows the relationship between 
the predicted output and simulated target value, with points closer to the red diagonal indicating more accurate 
predictions. The PCC, which measures the linear correlation between the predicted and target values, showed 
that all the models performed well. In general, the error tended to increase towards the end of time, which 
was attributed to the nature of the training data. In the latter part of the process, graphene was formed at high 
temperatures, and under periodic boundary conditions, graphene spanning the boundary of the cell was not 
counted as a ring and was represented as noise in the data. This caused a error in the scatter plots.

While all models were effective at predicting the data with PCC values greater than 0.97, the MD data used in 
this study was concentrated in specific temperature and time conditions, which limited the diversity of property 

Fig. 6.  Comparison of the temporal evolution of carbon ring formation and surface area expansion of 
polyimide and wood models during laser processing at 3000 K. The graphs show (a) five-, (b) six-, and (c) 
seven-membered rings, and (d) surface area (Å2) over time.
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values, making it difficult to distinguish performance differences between machine learning models. This could 
be explained by distribution bias, which tends to reduce prediction accuracy slightly in untrained conditions. 
Nevertheless, the LSTM model outperformed the other models with a PCC of 0.9794. The superior performance 
of the LSTM model is attributed to its ability to capture complex temporal patterns that are important in the 
laser-induced graphene formation process. Therefore, this predictive ability under limited data demonstrates the 
significant potential of the LSTM model. The MLP model exhibited similarly high PCC values. The SVR model, 
which is better suited to linear relationships, might have limitations in handling the nonlinear aspects of the 
data. Overall, these results show that machine learning is a useful tool for predicting graphene formation under 
different conditions and optimizing laser-induced processes.

These findings highlight the successful graphitization of the precursor material into graphene structures 
under various laser fluences. Based on this, further analysis was conducted to predict the evolution of the LIG 
surface characteristics using machine-learning techniques. Figure 9 shows the evolution of the validation and 
training losses over the course of training. The graph shows that the loss function decreased exponentially and 

Fig. 8.  PCC comparison of machine learning models (a) LSTM, (b) MLP, and (c) SVR in predicting graphene 
formation during laser processing.

 

Fig. 7.  Raman spectra of the LIG irradiated laser at different laser fluences.
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finally stabilized, indicating that it converged without overfitting or underfitting. Figure 10 shows the prediction 
performance of the LSTM model for the LIG surface area evolution at different temperatures by comparing the 
predictions for the training and test datasets and simulation results. The red dots represent the surface-area 
values obtained from molecular dynamics simulations, and the black lines denote the values predicted by the 
LSTM model. This model exhibited impressive generalization ability, particularly for curves where the true data 

Fig. 10.  Comparison of the predictions of the machine learning model LSTM for surface area formation over 
time on train and test data.

 

Fig. 9.  Loss in the training process in the LSTM model.
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curve exhibits variations in each dataset. This indicates that the LSTM model accurately captures the formation 
of a structure over time.

The simulation was run in a configuration that used a total of 68 CPU cores in parallel, and a simulation 
corresponding to 1 ns (a total of 20,000,000 steps) was performed with a time step of 0.05 fs for a system containing 
1,368 atoms. Under these conditions, the computational speed was 600,000 steps/day, resulting in a wall time of 
800 h per temperature condition. This means that a computational resource of 68 cores × 800 h = 54,400 core-
hours was required for a single simulation condition. On the other hand, machine learning-based predictions 
were performed in a general desktop environment (AMD Ryzen 5 3600), and the trained model required only 
about 4  s of computation time to perform one prediction. This has the effect of reducing computation time 
compared to MD simulations and has practical advantages in terms of being able to perform predictions quickly.

Conclusions
This paper presents a novel approach for understanding and optimizing the LIG formation process in wood-
based materials by integrating MD simulations and ML techniques. A molecular model representing the 
natural components of wood (cellulose, hemicellulose, and lignin) was built to accurately simulate temperature-
dependent pyrolysis and model the formation of 2D carbon structures. By precisely modeling the chemical 
reactions occurring during the decomposition of the wood matrix, ReaxFF was able to capture the emergence of 
carbon-based structures over the temperature range of 1000–4000 K. At certain temperatures, the formation of 
graphitic structures was accelerated, with clear evidence of increased formation of characteristic five-, six-, and 
seven-membered carbon rings.

The use of machine learning techniques, particularly the LSTM, SVR, and MLP models, significantly 
improved the efficiency of graphene formation prediction. Although the results were similar across the boards, 
the LSTM model exhibited the best performance, with the lowest RMSE and R2 values compared to the MLP 
and SVR models. It also reduced the calculation time from tens to hundreds of hours in the MD simulation to a 
few seconds. This combination of MD simulations and machine learning is particularly noteworthy compared 
with traditional MD simulations, which are much more computationally expensive. By building a dataset that 
includes various variables, such as temperature, laser pulse cycle, pressure conditions, and material composition 
ratios, and expanding various reaction behaviors, such as gas generation, defect density, and hybridization 
ratio, as predictive variables to build a more high-dimensional and nonlinear dataset, it is expected that the 
characteristics between machine learning models will become clearer.

This integrated framework not only deepens our understanding of LIG formation mechanisms but also 
establishes a balance between MD simulations and machine learning models to ensure a comprehensive 
analysis of chemical reactions and process optimization. By combining the strengths of both methodologies, 
this approach provides a robust and scalable method for synthesizing graphene from renewable materials 
such as wood. The insights gained from this study can be applied to material selection and process parameter 
optimization to expand the applicability of the LIG technique. This study is expected to provide the foundation 
for the development of scalable and efficient graphene.

Data availability
The datasets used and/or analyzed in this study are available from the corresponding author upon reasonable 
request.
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