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The advances in the Internet of Things (IoT) involve a technology of interconnected devices that 
interact over the internet, providing convenience and efficiency while also posing significant security 
risks. Privacy-preserving techniques play a vital role in safeguarding sensitive user data while 
maintaining system efficiency. The rising tendency of cybersecurity threats and the need to recognize 
harmful activities in heterogeneous but resource-constrained settings have led to the development of 
sophisticated intrusion detection systems (IDSs) for quickly identifying intrusion efforts. Conventional 
IDSs are becoming more inefficient in classifying new attacks (zero-day attacks) whose designs 
are similar to any threat signatures. To reduce these restrictions, projected IDS depend on deep 
learning (DL). Due to DL techniques learning from vast amounts of data, they can identify novel, 
emerging attacks, making them an alternative method to classical cybersecurity. This study proposes 
an Optimised Multi-Head Self-Attention Model for an Intelligent Intrusion Detection Framework 
Using Plant Rhizome Growth Optimisation (OMHSA-IDPRGO) method to advance IoT security. The 
primary focus is on developing an automated cyberattack detection system for an IoT environment 
by employing advanced techniques. Initially, the mean normalization process is used to measure 
input data into a structured format. Furthermore, the Crayfish Optimisation Algorithm (COA) is used 
for optimal feature subset selection, identifying the most relevant features from the dataset. For the 
cybersecurity detection process, the OMHSA-IDPRGO method uses a hybrid model that encompasses a 
convolutional neural network and a bidirectional gated recurrent unit with a multi-head self-attention 
mechanism (CNN-BiGRU-MHSAM) technique. Finally, the hyperparameter selection is performed using 
the plant rhizome growth optimization (PRGO) approach to enhance classification performance. The 
experimentation of the OMHSA-IDPRGO model is examined under Edge-IIoT and ToN-IoT datasets. 
The comparison study of the OMHSA-IDPRGO model showed superior accuracy values of 99.11 and 
99.18% compared to existing techniques on the dual datasets.
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Advances in the IoT relate to a system of physical entities, tools, automobiles, and other components equipped 
with electronic hardware, circuits, sensors, software, and internet connectivity that enable these elements to 
gather and share information1. The IoT permits these items to be monitored and managed remotely through 
available network setups, generating possibilities for tighter connection of the physical environment with digital 
platforms, ultimately leading to enhanced performance and precision2. The IoT stands as a ground-breaking 
advancement that signals the future of digital technology and communication, and its progress relies on evolving 
technical breakthroughs in numerous key areas, including wireless detection systems and nanoscale technologies. 
The IoT concept offers an infinite amount of availability, accessibility, scalability, integrity, confidentiality, and 
other benefits related to connected devices3. Nevertheless, IoT devices are vulnerable to cyber threats due 
to a combination of numerous potential vulnerabilities and their relative novelty, resulting in the absence of 
established security norms and protocols. A broad spectrum of cyber threats is employed against IoT systems, 
based on the specific component being targeted and the attacker’s objectives4.

However, the deployment of IoT systems has also introduced several significant cybersecurity challenges, 
where loopholes and unauthorized access to information and critical infrastructure have become major concerns5. 
The IoT represents a global web of smart devices connected to the internet without human intervention, which is 
beneficial yet prone to cyberattacks, like any conventional system. Studies focus on integrating machine learning 
(ML)- driven solutions with IoT. An IDS is a reliable method for identifying cyberattacks within any system6. 
Many modern IDS frameworks employ ML models to detect cyber threats in the system. This IDS alerts the 
network administrator about any doubtful behaviour occurring within the network and therefore serves as an 
information security mechanism that blocks harmful intrusions7. An intrusion occurs when an individual gains 
unauthorized entry to, or manipulates data assets with malicious intent. A tangible entity aiming to extract 
information unlawfully, cause harm to others, or perform malicious tasks is referred to as a cybercriminal or an 
intruder8. Figure 1 denotes the general architecture of IDSs in IoT.

Cybersecurity threats have expanded rapidly in several fields, including healthcare, smart homes, agriculture, 
energy, industrial processes, and automation. Due to its extensive range of services, IoT sensors generate vast 
volumes of data, which necessitate privacy, security, and authentication9. Previously, classical techniques were 
used to ensure IoT security. The employment of more artificial intelligence (AI) techniques for identifying 
cybersecurity threats has become increasingly popular over time. Consequently, there is a substantial body of 
investigation concentrated on IoT cybersecurity10. This encompasses AI strategies for safeguarding IoT systems 
against threats, typically by detecting abnormal activities that could indicate an ongoing attack. As interconnected 
devices are widely utilized in various sectors, they have created a demand for smarter environments and 
automated processes. However, this growth is accompanied by increasingly advanced security threats, which 
may compromise data integrity and user privacy. Efficient threat detection methods that can operate in real-
time and on resource-constrained devices are urgently required. Improving security while maintaining system 
performance is significant to unlocking the full potential of connected technologies. This drives the development 
of innovative, optimized models that balance accuracy, interpretability, and privacy protection in intrinsic 
network environments.

This study proposes an Optimised Multi-Head Self-Attention Model for an Intelligent Intrusion Detection 
Framework Using Plant Rhizome Growth Optimisation (OMHSA-IDPRGO) method to advance IoT security. 
The primary focus is on developing an automated cyberattack detection system for an IoT environment by 
employing advanced techniques. Initially, the mean normalization process is used to measure input data into a 
structured format. Furthermore, the Crayfish Optimisation Algorithm (COA) is used for optimal feature subset 
selection, identifying the most relevant features from the dataset. For the cybersecurity detection process, the 
OMHSA-IDPRGO method employs a hybrid model that encompasses a convolutional neural network and 
a bidirectional gated recurrent unit with a multi-head self-attention mechanism (CNN-BiGRU-MHSAM) 
technique. Finally, the hyperparameter selection is performed using the plant rhizome growth optimization 
(PRGO) approach to enhance classification performance. The experimentation of the OMHSA-IDPRGO model 
is examined under Edge-IIoT and ToN-IoT datasets. The key contribution of the OMHSA-IDPRGO model is 
listed below.

•	 The OMHSA-IDPRGO method applies mean normalization during pre-processing to convert raw input data 
into a uniformly scaled format, thereby improving consistency across features. This enhances training stabili-
ty and learning efficiency. It also assists in better convergence during model optimization.

•	 The OMHSA-IDPRGO approach utilizes the COA technique to identify the most relevant features, effective-
ly mitigating dimensionality while preserving crucial data. This selection improves detection accuracy and 
mitigates computational complexity. As a result, the model becomes more efficient and reliable in processing 
IoT data.

•	 The OMHSA-IDPRGO methodology employs a hybrid CNN-BiGRU architecture integrated with the MH-
SAM model for capturing intrinsic temporal and spatial patterns in IoT network data. This enhances the 
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model’s ability to detect a wide range of cyber threats accurately. It significantly improves intrusion detection 
performance in dynamic environments.

•	 The OMHSA-IDPRGO technique implements the PRGO model to fine-tune hyperparameters, improving 
learning efficiency and predictive accuracy automatically. This optimization reduces manual tuning efforts 
and accelerates convergence. Consequently, it enhances overall model performance in complex IoT scenarios.

•	 The integration of COA-based FS with the CNN-BiGRU-MHSAM model, optimized through PRGO, pre-
sents a novel and efficient solution for intelligent threat detection. This incorporation uniquely balances di-
mensionality reduction, deep temporal-spatial feature extraction, and automated hyperparameter tuning. It 
significantly improves detection accuracy and computational efficiency in complex IoT environments, setting 
it apart from existing methods.

Related works
Alzahrani11 proposed a gorilla troops optimizer and DL-assisted BAD (GTODL-BADC) method. This method 
utilizes feature selection (FS) in conjunction with fine-tuned DL-aided classification to achieve security within 

Fig. 1.  General structure of intrusion detection in IoT.
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the IoT landscape. The min–max data normalization technique was employed for data pre-processing, and the 
GTO framework for FS selects the optimal feature subclasses. Furthermore, the multi-head attention-driven 
LSTM model is used for BAD. Sekhar et al.12 provided an effective model for identifying and classifying cyber 
intrusions. The authors employed a new model with honeybees mating optimization (HBMO) and stochastic 
gradient boosted distributed decision trees (SGB-DDT) techniques. To advance the recognition precision, an 
SGD-DDT is a learning approach that is effective and scalable. Alotaibi13 suggested an innovative structure, 
which integrates DL, blockchain (BL), and software-defined networking (SDN) technologies for improving 
IoT cybersecurity. This study aims to identify a potential method for forming a cybersecurity system for IoT-
enabled smart settings to safeguard data privacy, identify appropriate threats, and secure financial transactions. 
The suggested method is an amalgamation of numerous state-of-the-art techniques. The SDN control plane 
incorporates the SE-driven Bi-LSTM approach for traffic management. In14, a smart IDS model is presented for 
identifying cyber threats in the IoAT. The presented model utilizes the downsized kernel partial least squares 
(DKPLS) and reduced kernel approach for extracting and reducing data features to improve the recognition 
efficiency. This DRKPLS technique was employed to reduce the dimensions of the kernel matrix produced by 
the kernel partial least squares (KPLS) model by selecting relevant features. In15, the Ant Colony-Optimised 
Artificial Neural-Adaptive Tensorflow (ACO-ANT) approach was recommended for identifying suspicious 
software. To highlight the importance of tokens in source duplicate data, the noise data underwent processing 
by weighted attribute and tokenization approaches. DL methods are later deployed for detecting source code 
duplication. Aljebreen et al.16 developed a new DDoS attack detection method using the snake optimizer and 
ensemble learning (DDAD-SOEL) technique in the IoT landscape. The motivation behind this method lies 
in the effective and automatic detection of DDoS attacks. To fulfil this, the created method leverages the SO 
procedure for selecting a feature subset.

Kumar et al.17 combined SDN, digital twin  (DT) BC, and DL techniques in the SG network structure. 
Specifically, a secure communication network was initially established using an authentication model based on 
BC technology, which mitigates some identified security threats. Then, a different DL design, which contains a 
softmax classifier, Bi-GRU, and a self-attention mechanism, is proposed to enhance the threat recognition step in 
SG networks. In18, an advanced cybersecurity framework assisted in trucking the heuristic process was introduced 
with three methodologies: improved virtual honeypot (IVHD), IDS, and hidden Markov models (HMM) for 
segmenting devices into four diverse stages based on their planned task, and observing communication traffic to 
identify suspicious edge devices. Saheed, Misra, and Chockalingam19 proposed a model by using an autoencoder 
with a deep convolutional neural network (DCNN) and long short-term memory (LSTM) for feature reduction 
and anomaly detection in Industrial Control Systems (ICS), enabling accurate, low-cost, and real-time cyber-
attack detection. Thayalan et al.20 presented a collaborative federated learning framework with edge-cloud 
architecture using the two-stage attention integrated graph-based multi-source spatio-temporal data fusion 
(2S-AGMSTDF) network, including Attention-based LSTM, attention-based knowledge graph convolutional 
network (AKGCN), and graph convolutional network-residual network-based transformer (GCN-ResNet 
Transformer or GRCMT) method to enhance accurate, scalable, and privacy-preserving predictive security in 
IoT consumer applications. Saheed, Abdulganiyu, and Ait Tchakoucht21 presented a framework that integrates a 
modified genetic algorithm (MGA) model for feature selection with a deep LSTM network, optimized via a genetic 
algorithm (GA) for hyperparameter tuning, to efficiently detect cyberattacks in IoT networks within an edge 
computing environment. Kumar, Jolfaei, and Islam22 proposed a DL-based threat hunting framework (DLTHF) 
technique by using an LSTM contractive sparse autoencoder (LSTM-CSAE) model for feature extraction and 
a multi-head self-attention bidirectional recurrent neural network (MhSaBiGRNN) methodology for accurate 
cyber threat detection in Software Defined-IoT (SD-IoT) networks. Paul et al.23 presented a model to enhance 
cybersecurity in deep web environments, utilizing a novel framework that integrates federated learning (FL), 
graph-based analysis, and a hybrid web crawler with an ontology-based scoring system to detect threats and 
safeguard sensitive data across cloud, fog, and edge systems.

Kathole et al.24 developed a secure attack detection framework for Vehicular Ad-Hoc Networks (VANETs) 
using a modernized random parameter-based green anaconda optimization (MRP-GAO) model for feature 
selection and an ensemble ML model (EMLM) integrating multi-layer perceptron (MLP), support vector 
machine (SVM), AdaBoost, and Bayesian network for effective intrusion detection and classification. Amer, 
Al-Rimy, and El-Sappagh25 proposed the Modbus-NFA Behaviour Distinguisher (MNBD) model, which applies 
a non-deterministic finite automaton (NFA) framework to analyze Modbus frame sequences and identify 
abnormal device behaviour with high accuracy and generalization. Sardar et al.26 introduced a model by using 
a graph neural network (GNN) model trained on various datasets and evaluated via NS2 simulations. Kathole 
et al.27 presented an ensemble DL model (EDLM) technique that integrates multiple DL models to improve 
detection accuracy, reduce false alarms, and strengthen network security by averaging prediction scores for 
robust anomaly detection. Saheed and Chukwuere28 developed a robust cyber-attack detection system for 
cyber-physical industrial IoT (CPS-IIoT) that utilizes the Pearson correlation coefficient and agglomerative 
clustering for privacy preservation, as well as a bidirectional LSTM with scaled dot-product attention (BiLSTM-
SDPA) method for accurate threat detection. Kathole et al.29 developed a secure federated cloud storage system 
for Internet of Medical Things (IoMT) using a hybrid Mexican axolotl with energy valley optimizer (HMO-
EVO)-based attribute-based encryption (ABE) for secure data encryption and multi-scale bi-long short-term 
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memory and gated recurrent unit (MBiLSTM-GRU) technique with FL for accurate disease prediction. Saheed, 
Omole, and Sabit30 developed a model using a genetic algorithm with an attention mechanism and a modified 
adaptive moment estimation optimized LSTM (GA-mADAM-IIoT) methodology, incorporating explainability 
via Shapley Additive Explanations (SHAP). Saheed and Chukwuere31 developed an explainable AI (XAI) 
ensemble transfer learning (TL) model using SHAP and a hybrid bidirectional long short-term memory with 
autoencoders (BiLAE) technique for zero-day botnet attack detection, optimized by barnacle mating optimizer 
(BMO). Saheed and Misra32 presented an explainable and privacy-preserving deep neural network (DNN) 
framework with SHAP for accurate and interpretable anomaly detection in Cyber-Physical Systems enabled IoT 
(CPS-IoT) networks. Ullah et al.33 developed SecNet-FLIDS, a Blockchain-based FL model with a TOP-K Node 
selection scheme and context-aware transformer networks, incorporated with synthetic minority over-sampling 

Fig. 2.  Working procedure of the OMHSA-IDPRGO model.
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technique (SMOTE) and edited nearest neighbours (ENN) for imbalanced data handling, to enable accurate, 
privacy-preserving, and scalable cyberattack detection in the Internet of Vehicles (IoV).

Despite various advanced methods, such as GTO, HBMO, Bi-LSTM, and FL, being applied across IoT, 
CPS-IIoT, IoV, and SDN environments, several limitations still exist. Various models rely on large, labelled 
datasets, which are often scarce or imbalanced, thereby affecting detection accuracy and generalizability. Trust 
among users and security experts is reduced as few models suffer from interpretability issues. Furthermore, 
various solutions lack scalability or are computationally intensive, which restricts their real-time deployment on 
resource-constrained edge devices. The integration of multiple technologies, such as BC, DL, and optimization 
algorithms, remains complex, resulting in increased system overhead. The research gap in addressing these 
challenges lies in developing lightweight, explainable, and privacy-preserving IDS that efficiently handle 
imbalanced data, optimize feature selection, and adapt to heterogeneous IoT and CPS environments with 
minimal human intervention.

Methodology
This study designs and develops an OMHSA-IDPRGO model to advance IoT security. The primary focus of this 
novel is to enhance automatic cyberattack detection in IoT environments by employing advanced techniques. 
To achieve this, the OMHSA-IDPRGO technique contains numerous stages, namely data pre-processing, FS, 
classification model, and parameter tuning process. Figure 2 signifies the overall working flow process of the 
OMHSA-IDPRGO technique.

Mean normalization
To achieve this, the proposed method initially executes a mean normalization method to transform the input 
data into a structured format34. This normalization is chosen due to its effective capability in scaling features to 
have a mean of zero, which assists in stabilizing and speeding up the training process of ML models. This method 
mitigates the impact of outliers by centring the data around zero without strictly bounding it within a fixed 
range. This enhances gradient descent convergence, especially in DL methods, by preventing features with large 
magnitudes from dominating the learning process. Additionally, mean normalization maintains the relative 
distribution of data, which is significant when dealing with complex IoT datasets. Overall, it presents a balanced 
approach that enhances model stability and accuracy compared to simpler scaling techniques.

This method signifies a frequently implemented data normalization model in data analysis and ML domains. 
It comprises scaling the data so that the mean (average) of the feature becomes 0. This procedure focuses on the 
data around the mean, effectually extracting some bias in the value of features. A feature x’ is specified:

	
x′ = x − mean (x)

max (x) − min (x) � (1)

Now, min (x) and max (x) signify the minimal and maximal values of x, and mean(x) depicts the mean of 
feature x.

FS using COA model
Next, the COA approach is employed for the optimal selection of feature subsets35. This model is chosen for its 
robust global search capability and effective balancing. This technique also avoids local optima, ensuring the 
selection of the most relevant and informative features. Its bio-inspired nature allows it to adapt dynamically to 
complex, high-dimensional IoT datasets, enhancing feature relevance and mitigating redundancy. Furthermore, 
COA requires relatively low computational resources, making it appropriate for real-time applications. Overall, 
COA improves detection accuracy and model efficiency better than many conventional FS models. The 
mathematical model for the optimization issue is developed by considering the natural behaviours of crayfish 
at diverse phases. COA is a metaheuristic swarm intelligence model. The significant stages of COA are given.

Initialize population
During this initial stage of the model, the crayfish population is described as a matrix X , where Xi 
(Xi = {Xi,1, Xi,2, . . . , Xi,dim} , with dim depicting the dimension) indicates the location of thelth crayfish. 
Every Xi is constrained within a predefined boundary and represented as a 1 × dim vector, equivalent to a 
possible solution. The function f (·) is presented to assess Xi, offering its fitness value. According to the size of 
population N  and dimension dim, the COA initializes the procedure by arbitrarily generating a set of candidate 
solutions X . The location of individual i in dimension Xi,j· is specified:

	 Xi,j = lbj + (ubj − lbj) × rand� (2)

Here, ubj  and lbj  refer to the upper and lower bounds, respectively, while rand indicates an arbitrary value.
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Define temperature
Temperature variations influence the behaviour of crayfish, prompting them to enter various phases. The 
temperature is specified:

	 temp = rand × 15 + 20� (3)

While the ambient temperature ranges from 15 to 30  °C, particularly at 25  °C, crayfish display searching 
behaviour. The feeding amount is assessed by employing the expression specified in Eq. (4).

	
p = C1 ×

[
1√

2π × σ
× exp

(
− (temp − µ)2

2σ2

)]
� (4)

Here, µ depicts the optimum feeding temperature. The crayfish’s food intake is influenced by the parameters C1 
and σ, and set to 3 and 0.2, respectively.

Summer resort and competition stage
The temperature temp is greater than 30 during these dual stages, and the cave Xshade is deliberated as:

	 Xshade = (XG + XL) /2� (5)

Now, XL and XG refer to the optimal locations attained through iterative calculations for individuals and 
populations.

While rand < 0.5, no other individuals participate in the competition, and the crayfish immediately enters 
the cave, upgrading its location.

	 Xt+1
i,j = Xt

i,j + C2 × rand ×
(
Xshade − Xt

i,j

)
� (6)

Now t and t + 1 indicate the next and existing iteration stages. C2 is specified:

	
C2 = 2 −

(
t

T

)
� (7)

Here, T  specifies the upper limit of iterations. While rand ≥ 0.5, other individuals are also interested in the cave, 
inducing competition, and their locations are upgraded accordingly.

	 Xt+1
i,j = Xt

i,j − Xt
z,j + Xshade� (8)

Now, z refers to an arbitrarily selected individual from the population.

	 z = round [rand × (N − 1)] + 1� (9)

Foraging stage
During this phase, the temperature does not exceed 30 °C, and the crayfish will evaluate the dimensions of the 
food after positioning it and select diverse feeding approaches. The position of food Xfood is specified:

	 Xfood = XG� (10)

The size of food Q is given:

	 Q = C3 × rand × (fitnessi/fitnessfood)� (11)

Here, fitnessi and fitnessfood represent the fitness values of the crayfish and the food, respectively. C3 
represents the food factor, set to a value of 3, correspondingly. The crayfish will assess the size of the food based 
on its type. While Q > (C3 + 1) /2, it specifies that the food is huge, inducing the crayfish to tear it apart, 
utilizing its primary claw foot.

	
Xfood = exp

(
− 1

Q

)
× Xfood� (12)
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Once the food is torn apart and turns small, the preceding dual paws will alternatively pinch the food to consume 
it. This alternative approach is designed by integrating sine and cosine functions. Additionally, food diversity 
is achieved by simulating the feeding behaviour of the animals.

	 Xt+1
i,j = Xt

i,j + Xfood × p × [cos (2 × π × rand) − sin (2 × e × rand)]� (13)

While Q ≤ (C3 + 1) /2, the crayfish might instantly move towards the nutrition and upgrade its location:

	 Xt+1
i,j =

(
Xt

i,j − Xfood

)
× p + p × rand × Xt

i,j � (14)

Due to its simplicity, fast convergence speed, and higher computational efficiency, the COA is used to address 
the SRB optimizer concern.

Fig. 3.  Structure of the CNN-BiGRU-MHSAM technique.
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The fitness function (FF) determines the classifier’s precision and the various features chosen. It increases the 
classifier’s precision and decreases the size of the desired feature set. Thus, the subsequent FF is used to evaluate 
different solutions presented in Eq. (15).

	
F itness = α ∗ ErrorRate + (1 − α) ∗ #SF

#All_F
� (15)

Here, ErrorRate signifies the rate of classification errors using the chosen features. ErrorRate is computed as 
the percentage of improperly classified instances to the total number of classifications made, expressed as a value 
between 0 and 1. #SF  is the number of chosen aspects, and #All_F  is the total number of attributes in the 
original dataset. α is utilized to control the significance of subset length and classifier quality.

Hybrid classification model
For the cybersecurity detection process, the hybrid model, named CNN-BiGRU-MHSAM, is used36. This 
technique is chosen for its ability to capture both spatial and temporal patterns in complex IoT network data. 
CNN layers outperform in extracting local features, while BiGRU handles long-term dependencies in sequential 
data. The addition of the MHSAM improves the capability of the technique in concentrating on the most 
relevant parts of the input, enhancing detection accuracy. Compared to standalone models, this hybrid approach 
mitigates overfitting and increases robustness against diverse cyber threats. It also presents better interpretability 
and scalability, making it superior to conventional ML and simpler DL methods. Figure 3 represents the structure 
of the CNN-BiGRU-MHSAM technique.

CNN reduces the parameter counts and sizes of the data by removing spatial features from the input 
data through methods such as pooling, weight sharing, and local connections. These processes improve the 
analytical capabilities and computational efficiency of the CNN. The network includes pooling, input, output, 
convolutional, and fully connected (FC) layers. As a fundamental module of CNNs, the convolutional process 
focuses on capturing spatial relationships and various patterns. This framework combines dual convolutional 
components—the first layer uses 16 3x3 kernel filters, whereas the subsequent layer uses 32 3x5. dimensional 
matrices to analyze the combined input resources. The pooling layer decreases the input data dimensionality, 
improving CNN calculation speed and alleviating overfitting. Normal pooling techniques include stochastic 
pooling, max pooling, and mean pooling. The FC layer connects every neuron to each neuron in the previous 
layer.

The GRU method effectively transfers its capability to process time-series data, successfully addressing 
problems such as exploding and vanishing gradients. In comparison with LSTM, the GRU requires fewer 
parameters, provides faster training, and reduces overfitting, making it particularly effective for time-series 
prediction. This method is primarily composed of two segments: the gate of reset rt and the gate of update zt. 
The data processing process executed by the GRU model is as demonstrated:

	 (i)	  The update gate zt controls the extent to which the data from the preceding instant is preserved at present 
moments. The greater the update gate’s output value zt, the additional data from the prior instant is pre-
served. The evaluation equation of the update gate zt. is as stated in Eq. (16).

	 zt = σ (wz · [ht−1′ xt] + bz) � (16)

	Here, σ (·) refers to the sigmoid function, wz  denotes the update gate weight, ht−1 signifies the hidden layer 
(HL) of the preceding moment, xt stands for the present moment input, and bz . Means the bias value.

	(ii)	  The reset gat rt. Controls the extent to which the data from the preceding moment is maintained on the 
present moment candidate HL h̃t. The greater the reset gate’s output value, s rt. The more additional data 
from the prior instant is kept in the candidate HL, h̃t. The prediction formula for the reset gate, rt, is rep-
resented in Eq. (17).

	 rt = σ (wr · [ht−1′ xt] + br)� (17)

	N, wr . denot reset gate weight, and br  signifies bias value.

	(iii)	  The upgrade of the ndidate HL information h̃t is as stated in Eq. (18).

	 h̃t = tanh (wh · [rt ⊙ ht−1, xt] + bh)� (18)

	Whereas, tanh (·) symbolizes activation function, wh characteristics ndidate HL weight, and bh denotes bias 
value of the candidate HL.
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	(iv)	  Compute the present moment HL ht according to h̃t and ht−1:

	 ht = (1 − zt) ⊙ ht−1 + zt ⊙ h̃t� (19)

This model successfully takes the forward characteristics. Nevertheless, time series data are also affected by 
previous data, not only upcoming values. To address either forward or backwards dependencies, the BiGRU 
model is presented. This method combines either forward or backwards GRU elements to well-examine the 
relationships in time-series data. This model comprises a forward GRU, an input, an output and a reverse GRU. 
The forward and reverse GRUs extract data from the relevant reverse and forward sequences of the input data.

	 h⃗ = f
(
xt′ h⃗t−1

)
� (20)

	

←
h
t

= f

(
xt′

←
h

t−1

)
� (21)

	
Qt = w⃗h⃗ +

←
w

←
h
t

+bt� (22)

Here, w⃗ and 
←
w. represent output weights of the forward and backwards GRU HLs, individually, and bt denotes 

the bias value of the Bi-GRU method.
The MHSA model creates numerous data sequences by using dissimilar linear projections. Every prediction, 

or “head”, captures different data features. These sequences are then concatenated and passed through additional 
linear projections to form the final sequence. For the input sequence of data X = [x1, x2, x3, · · · , xm], multiply 
the put sequence of data by the matrices of linear transformation W Q

j , W K
j , and W V

j , correspondingly, to get 
the vectors Qj , Kj , and Vj , j ∈ (1, 2, 3, · · · , N), and N  characterizes head counts. The particular computation 
procedure is presented in Eqs. (23–25).

	 Qj = W Q
j · X � (23)

	 Kj = W K
j · X � (24)

	 Vj = W V
j · X � (25)

Formerly, the attention computation equation of the jth head is presented in Eq. (26).

	
headi = Attention (Qi, Ki, Vi) = softmax

(
Qi · KT

i√
N

)
· Vi� (26)

The output is measured by Eq. (27).

	 Y = Concat (head1, head2, head3, · · · , headN ) · W o� (27)

Now, W o refers to the output weighted matrix. Table  1 describes the key parameters utilized in the CNN-
BiGRU-MHSAM model.

PRGO-based parameter tuning model
Finally, the hyperparameter range is implemented by the PRGO approach37. This model is chosen for its effective 
global search capability, motivated by the natural rhizome growth patterns. This model helps avoid local minima 
and find optimal hyperparameter values, thereby efficiently balancing the exploration and exploitation phases. 
Compared to conventional tuning methods, such as grid or random search, PRGO requires fewer iterations 
and computational resources while achieving better convergence. Its adaptability to complex, high-dimensional 
search spaces make it ideal for optimizing DL techniques in IoT environments. Overall, PRGO enhances model 
accuracy and training speed, outperforming many conventional optimization techniques.

Component Hyperparameters Values

CNN Filters, kernel size, activation 64, 3 × 3, ReLU

BiGRU Units, layers, dropout 128, 2, 0.3

MHSAM Attention heads, attention dimension 8, 64

Training settings Optimizer, learning rate, batch size, epochs Adam, 0.001, 64, 50

Table 1.  Key hyperparameters used in the proposed attention-based DL model for intelligent threat detection 
in IoT networks.
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In this paper, a method is required to model plant rhizome growth and explain the fundamental meaning of 
five terms: soil space, adventitious, fibrous, lateral, and primary roots, in the context of root system development. 
Indeterminate and fibre roots serve as searching agents within the solution area and represent primary elements 
to discover the solution area. Lateral roots stimulate development by combining food absorbed by earlier fibre 
roots with nutrients taken up by the fibre roots. The primary root stimulates development by combining nutrition 
formerly absorbed by lateral and fibre roots with food intake by now evolving fibre roots.

Numerical growth method for taproot plants
Assume that taproot plants arbitrarily have N  fibrous roots, signified by ({X1, X2 . . . , XN }). Fibrous roots 
additionally absorb nutrients from the soil, apart from exploring the nutrition‐rich parts of the soil individually; 
therefore, all fibrous root is considered as an experimental solution to the optimization issue, and the consistent 
soil region is observed as the solution area of the targeted problem.

	1. 	 The numerical representation of fibrous root growth.

	 Seed1 = Xt
i + α1

(
Xbest − Xt

r1
)

� (28)

whereas Seed1 denote ith fiber root at the tth growth time, Xbest signifies the optimal fiber root , r1 refers 
to randomly generated numbers amongst (1, N), Xt

r1 signifies the fiber root ars, α1 ∈ 2 × rand (0, 1) − 0.5 
denote randomly generated number applied to produce (−0.5, 1.5) intervals, if α1 ∈ (0, 1.5), it means that 
the arbitrarily chosen fiber root Xt

r1 advance to the historic finest fiber root Xbest, and if α1 ∈ (−0.5, 0), then 
Xbest develops to Xt

r1. The model of this searching mechanism, in addition, guarantees that the historic finest 
fibre root Xbest plays an integral part in directing each fibre root to mature in the best way. It is additionally 
guaranteed that a few arbitrary fibre roots Xt

r1 direct the remaining fibre roots to carry out arbitrary searching 
that may prevent the search from dropping into a local best to the particular area.

	2. 	 The numerical modelling of lateral root growth in the soil area.

	 Seed2 = Xt
mean + α2

(
Xt

mean − Xt
r2

)
� (29)

whereas Seed2 means the nutrition capture by lateral roots at the t + lst development, Xt
mean represents average 

value, r2 refers to a randomly generated number among (1, N) , Xt
r2 signifies the fiberous root arbitrarily chosen 

from the N  fibre roots inside the tth development, α2 ∈ 2 × rand (0, 1) − 1 signifies randomly generated 
numbers applied to create the interval (−1, 1). If α2 ∈ (0, 1), it means that the root absorbs nutrients, and if 
α2 ∈ (−1, 0), it indicates that the root permits organic mixtures to the nearby atmosphere.

	3. 	 The numerical modelling of primary root growth in the soil area.

	 Seed3 = Seed2 + α3 (Seed1 − Ru
l )� (30)

Here Seed3 embodies the food absorbs by the primary root at the t + 1st growing, Ru
l  refers to complete soil 

area (for example: the targeted problem search area), u and  characterize lower and upper limits of the problem 
area, α3 ∈ ε × rand (0, 1) + ε̃, ε denote randomly generated integer of 0 or 1 produced by randi (0, 1) 
function, ε̃ stands for reverse of ε. If ε is selected as 1, α3 ∈ (0, 1), which specifies that fibre roots do not get 
sufficient food intake, and if ε is set to 0, α3 = 1, which stipulates that the fibrous roots can get the nutrition. 

Edge-IIoT dataset

Type of event Data record

“Normal” 2500

“DDoS-UDP” 2500

“DDoS-ICMP” 2500

“SQL injection” 2500

“DDoS-TCP” 2500

“Password” 2500

“DDoS-HTTP” 2500

“Uploading” 2500

“Backdoor” 2500

“XSS” 2500

“Ransomware” 2500

“Fingerprinting” 2500

Total records 30,000

Table 2.  Details of edge-IIoT dataset.
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This randomly generated number rule ensures that α3 is an arbitrary number within the range of (0, 1), which 
accurately reflects the actual food intake by the plant root system. Seed1 − Ru

l  characterizes the food intake by 
the fibrous roots.

Numerical model of plant growth in the fibre root system
The primary root of the fibrous root system deteriorates during seed germination, and simultaneously, the 
adventitious or fibrous root matures at the bottom of the stem. The adventitious root’s growing point Xt+1

i  at the 
following instant is jointly defined by the present Xt

i , the thick (best) Xlbest, Xr3 and Xr4 inside the soil area, 
and this searching method guarantees that Xt

i  emerges from the local optimal with a higher possibility. Besides, 
while the growth of adventitious roots within the fibre root system is highly arbitrary, each of the adventitious 
roots maintains a particular number of aggregations, which allows the adventitious roots to discover additional 
nutrition‐rich regions. According to the preliminary study, the root growth of fibrous-root plants is demonstrated 
as shown.

	
Xc =

α4
(
Xr3 + Xr4 + Xt

i

)
3

� (31)

	 Seed4 = Xc +
(
Xlbest − Xt

i + Xr3 + Xr4
)

� (32)

Fig. 4.  Edge-IIoT dataset (a–b) confusion matrices, (c) curve of PR, and (d) curve of ROC.
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whereas Xc signifies the food intake by the present adventitious root Xt
i , directing the remaining portion of the 

rhizomes, apart from the thick adventitious root, to mature extensively within the soil, Xlbest refers to the global 
best for the present fiber root. α4 ∈ σ × rand (0, 1), σ signifies randomly generated integer of 0 or 1 made by 
utilizing the rand i (0, 1) function, if σ = 1, α4 ∈ (0, 1) specifies that Xc has initiated the area comprising 
the nutrition by developing extendedly within the soil, if σ = 0, α3 = 0 designates that Xc failed to detect 
the region consisting of the nutrition in Eq. (5) defines the stochastic searching method, with r3 and r4 denote 
randomly chosen integers.

The PRGO model creates an FF to achieve enhanced classification performance. It calculates a positive 
integer to depict the enhanced performance of the candidate solution. In this manuscript, the minimization of 
the classification error rate is deliberated as the FF, as shown in Eq. (33).

	

fitness (xi) =Classifier Error Rate (xi)

= no. of misclassified samples

T otal no. of samples
× 100

� (33)

Experimental outcome
The experimental study of the OMHSA-IDPRGO technique is examined under the Edge-IIoT dataset38. The 
dataset comprises 30,000 total records with 12 types of events, as summarised in Table 2. The complete no. of 
features is 63, but only 35 were chosen.

Figure  4 represents the classifier results of the OMHSA-IDPRGO technique on the Edge-IIoT dataset. 
Figure 4a, b portray the confusion matrices, which precisely classify all classes under a 70:30 ratio. Figure 4c 
exhibits the PR investigation, demonstrating maximum performance for each class. Finally, Fig. 4d exemplifies 
the ROC examination, signifying capable outcomes with greater values of ROC.

Table 3 and Fig. 5 denote the intrusion detection result of the OMHSA-IDPRGO model on the Edge-IIoT 
dataset. With 70%TRPHE, the OMHSA-IDPRGO model provides average accuy , precn, recal, F 1Score, and 
GMeasure of 99.11%, 94.67%, 94.66%, 94.66%, and 94.66%, respectively. Moreover, under 30%TSPHE, the 

Class labels Accuy Pr ecn Recal F 1Score GMeasure

TRPHE (70%)

 Normal 99.10 94.00 95.34 94.67 94.67

 DDoS-UDP 99.09 95.47 93.43 94.44 94.44

 DDoS-ICMP 99.09 95.05 93.85 94.44 94.45

 SQL injection 99.07 94.92 93.72 94.32 94.32

 DDoS-TCP 98.94 93.25 94.05 93.65 93.65

 Password 99.08 94.55 94.33 94.44 94.44

 DDoS-HTTP 99.24 95.36 95.36 95.36 95.36

 Uploading 98.99 93.97 94.02 94.00 94.00

 Backdoor 99.15 94.15 95.86 94.99 95.00

 XSS 99.10 94.54 95.06 94.80 94.80

 Ransomware 99.21 95.48 94.81 95.14 95.14

 Fingerprinting 99.28 95.32 96.08 95.69 95.69

Average 99.11 94.67 94.66 94.66 94.66

 TSPHE (30%)

 Normal 99.09 93.99 95.01 94.50 94.50

 DDoS-UDP 99.14 94.91 95.03 94.97 94.97

 DDoS-ICMP 99.02 95.78 92.51 94.12 94.13

 SQL injection 98.94 93.50 94.11 93.80 93.80

 DDoS-TCP 98.98 92.86 95.08 93.96 93.96

 Password 98.90 94.80 91.91 93.33 93.34

 DDoS-HTTP 99.22 95.60 95.35 95.48 95.48

 Uploading 98.87 92.62 93.39 93.00 93.00

 Backdoor 99.03 92.66 95.80 94.20 94.22

 XSS 99.11 94.52 93.97 94.24 94.24

 Ransomware 99.21 95.89 95.03 95.46 95.46

 Fingerprinting 99.23 95.41 95.28 95.35 95.35

Average 99.06 94.38 94.37 94.37 94.37

Table 3.  Intrusion detection of OMHSA-IDPRGO model on edge-IIoT dataset.
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OMHSA-IDPRGO method provides average accuy , precn, recal, F 1Score, and GMeasure of 99.06%, 94.38%, 
94.37%, 94.37%, and 94.37%, correspondingly.

Figure 6 depicts the classifier outcomes of the OMHSA-IDPRGO model on the Edge-IIoT dataset. Figure 6a 
presents the accuracy study of the OMHSA-IDPRGO model. The figure indicates that the OMHSA-IDPRGO 
model yields increasing values across successive epochs. Furthermore, the rising validation over training 
demonstrates that the OMHSA-IDPRGO method proficiently learns from the test dataset. Finally, Fig.  6b 
illustrates the loss analysis. The findings indicate that the OMHSA-IDPRGO method achieves similar validation 
and training loss values.

Also, the OMHSA-IDPRGO technique is examined under the ToN-IoT dataset39. The dataset contains a total 
of 119,957 samples across nine classes. The complete details are presented in Table 4 below. The no. of attributes 
present in this dataset is 42, but only 31 were selected.

Fig. 6.  (a) Accuracy curve and (b) loss curve on Edge-IIoT dataset.

 

Fig. 5.  Average values of the OMHSA-IDPRGO model on the Edge-IIoT dataset.

 

Scientific Reports |        (2025) 15:34233 14| https://doi.org/10.1038/s41598-025-16052-y

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Figure 7 displays the classifier results of the OMHSA-IDPRGO model on the ToN-IoT dataset. Figure 7a, 
b illustrate the confusion matrices with precise classification across all classes under a 70:30 ratio. Figure 7c 
illustrates the PR investigation, which specifies the maximum performance for all class labels. Lastly, Fig. 7d 
exemplifies the ROC study, representing skilful outcomes with increased ROC values.

Table 5 and Fig. 8 signify the intrusion detection result of the OMHSA-IDPRGO technique on the ToN-IoT 
dataset. Under 70%TRPHE, the OMHSA-IDPRGO model gives average accuy , precn, recal, F 1Score, and 
GMeasure of 99.18%, 91.34%, 84.72%, 86.47%, and 87.18%, respectively. Furthermore, depending on 30%TSPHE, 

Fig. 7.  ToN-IoT dataset (a–b) confusion matrices, (c) curve of PR, and (d) curve of ROC.

 

ToN-IoT dataset

Class No. of instances

“Normal” 78,369

“MiTM” 336

“DoS” 5440

“DDoS” 5987

“Password” 6016

“Injection” 5867

“XSS” 5951

“Ransomware” 5976

“Backdoor” 6015

Total instances 119,957

Table 4.  Details of ToN-IoT dataset.
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Fig. 8.  Average values of the OMHSA-IDPRGO model on the ToN-IoT dataset.

 

Class labels Accuy Pr ecn Recal F 1Score GMeasure

TRPHE (70%)

 Normal 98.07 98.01 99.06 98.53 98.53

 MiTM 99.76 72.46 21.28 32.89 39.27

 DoS 99.47 94.26 94.19 94.23 94.23

 DDoS 99.24 92.65 92.07 92.36 92.36

 Password 99.24 92.90 91.67 92.28 92.28

 Injection 99.17 91.89 91.29 91.58 91.59

 XSS 99.12 92.74 89.49 91.09 91.10

 Ransomware 99.26 93.33 91.43 92.37 92.38

 Backdoor 99.30 93.85 91.97 92.90 92.90

 Average 99.18 91.34 84.72 86.47 87.18

TSPHE (30%)

 Normal 98.07 97.93 99.14 98.53 98.53

 MiTM 99.76 75.00 23.76 36.09 42.22

 DoS 99.45 94.05 93.70 93.87 93.87

 DDoS 99.26 93.09 92.11 92.60 92.60

 Password 99.15 93.47 89.78 91.59 91.61

 Injection 99.17 91.95 90.78 91.36 91.36

 XSS 99.14 92.03 90.19 91.10 91.11

 Ransomware 99.26 93.48 91.97 92.72 92.72

 Backdoor 99.24 93.32 91.47 92.39 92.39

 Average 99.17 91.59 84.77 86.70 87.38

Table 5.  Intrusion detection outcome of the OMHSA-IDPRGO model on the ToN-IoT dataset.
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the OMHSA-IDPRGO model provides an average accuy , precn, recal, F 1Score, and GMeasure of 99.17%, 
91.59%, 84.77%, 86.70%, and 87.38%, respectively.

Figure  9 establishes the classifier outcomes of the OMHSA-IDPRGO method on the ToN-IoT dataset. 
Figure 9a determines the accuracy of the OMHSA-IDPRGO method. The figure indicates that the OMHSA-
IDPRGO method yields increasing values over successive epochs. Additionally, the growing validation over 
training exhibits that the proposed approach learns efficiently on the testing dataset. Lastly, Fig. 9b illustrates 
the loss examination of the OMHSA-IDPRGO model. The outcomes denote that the OMHSA-IDPRGO model 
accomplishes close values of training and validation loss.

Table 6 presents a comparative study of the OMHSA-IDPRGO model on Edge-IIoT and ToN-IoT datasets, 
evaluating various measures against existing techniques22,23,25,26,40–43.

Technique Accuy Pr ecn Recal F 1Score

Edge-IIoT dataset

 LSTM-CSAE 96.35 89.58 93.79 93.55

 MhSaBiGRNN 98.19 91.63 93.21 89.67

 FL 95.32 94.00 93.62 89.92

 EECA-LSTM 91.35 90.47 92.98 93.90

 LSTM-KPCA 95.81 89.02 93.23 93.04

 ML-PCC and IF 98.60 90.95 92.53 89.09

 Shallow ANN 94.76 93.81 92.97 89.34

 Baseline DNN 98.65 93.75 92.18 89.49

 DAE-LSTM 91.56 93.87 90.05 91.58

 XCT-DF 89.04 90.59 92.02 93.61

 OMHSA-IDPRGO 99.11 94.67 94.66 94.66

ToN-IoT dataset

 MNBD 90.56 90.76 83.71 82.34

 NFA 98.26 89.83 82.88 80.69

 GNN 90.46 91.36 84.31 82.84

 CNN method 90.05 90.24 83.20 81.60

 DNN algorithm 97.59 89.13 82.36 80.08

 LSTM 89.76 90.59 83.64 82.19

 Decision tree 98.15 89.03 80.75 80.29

 kNN algorithm 97.18 90.03 80.76 84.44

 PCA model 89.23 90.01 80.14 80.54

 Naïve Bayes 96.29 89.92 82.53 85.11

 OMHSA-IDPRGO 99.18 91.34 84.72 86.47

Table 6.  Comparative analysis of OMHSA-IDPRGO model on Edge-IIoT and ToN-IoT datasets22,23,25,26,40–43.

 

Fig. 9.  (a) Accuracy curve and (b) loss curve on ToN-IoT dataset.
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Figure 10 shows the comparison findings of the OMHSA-IDPRGO model on the Edge-IIoT dataset. The 
results highlighted that the LSTM-CSAE, MhSaBiGRNN, FL, EECA-LSTM, LSTM-KPCA, ML-PCC, IF, Shallow 
ANN, Baseline DNN, DAE-LSTM, and XCT-DF methods performed the worst. Additionally, the OMHSA-
IDPRGO model demonstrated enriched performance with maximum accuy, precn, recal, and F 1score of 
99.11%, 94.67%, 94.66%, and 94.66%, respectively.

The comparative exploration of the OMHSA-IDPRGO approach on the ToN-IoT dataset with current 
approaches is displayed in Fig.  11. The OMHSA-IDPRGO approach achieves the highest performance, with 
accuy, precn, recal, and F 1score of 99.18%, 91.34%, 84.72%, and 86.47%, correspondingly. Whereas the 
present models, namely MNBD, NFA, GNN, CNN, DNN, LSTM, DT, kNN, PCA, and NB, obtain lesser values 
across diverse metrics.

Conclusion
This study designs and develops an OMHSA-IDPRGO model to advance IoT security. The primary focus of 
this novel is improving the automatic cyberattack detection in an IoT environment by employing advanced 
techniques. To achieve this, the OMHSA-IDPRGO method executes a mean normalization method to transform 
the raw data into a structured format. Following this, the COA approach is employed to select the optimal feature 
subset, thereby identifying the most relevant features from a dataset. For the cybersecurity detection process, the 
OMHSA-IDPRGO method uses a hybrid model named CNN-BiGRU-MHSAM. Finally, the hyperparameter 
selection is implemented by the PRGO approach to enhance the classification performance. The experimentation 
of the OMHSA-IDPRGO model is examined under Edge-IIoT and ToN-IoT datasets. The comparison study 
of the OMHSA-IDPRGO model yielded superior accuracy values of 99.11 and 99.18% compared to existing 
techniques on the dual datasets. The limitations of the OMHSA-IDPRGO model comprise the use of static 
datasets, which may not fully capture the real-time dynamics of evolving network environments. The model also 
faces scalability threats when deployed in large-scale or heterogeneous networks. Additionally, the absence of 
real-world deployment restricts practical validation. Environmental factors, such as varying mobility patterns 
or interference, were not extensively considered. The framework may require frequent updates to keep pace 
with newly emerging threats. Future work may explore real-time adaptive systems with continuous learning 
capabilities. Expanding the model to handle multi-domain and cross-platform data sources will also improve its 
robustness and applicability.

Fig. 10.  Comparative analysis of the OMHSA-IDPRGO model on the edge-IIoT dataset.
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Data availability
The data that support the findings of this study are openly available in the Kaggle repository at ​h​t​t​p​s​:​​/​/​w​w​w​.​​k​a​g​g​l​
e​​.​c​o​m​/​d​​a​t​a​s​e​​t​s​/​m​o​h​​a​m​e​d​a​m​​i​n​e​f​e​r​​r​a​g​/​e​​d​g​e​i​i​o​​t​s​e​t​-​c​​y​b​e​r​-​s​​e​c​u​r​i​t​y​-​d​a​t​a​s​e​t​-​o​f​-​i​o​t​-​i​i​o​t, ​h​t​t​p​s​:​/​/​w​w​w​.​k​a​g​g​l​e​.​c​o​m​/​d​
a​t​a​s​e​t​s​/​d​h​o​o​g​l​a​/​c​i​c​t​o​n​i​o​t​​​​ reference numbers38,39.
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