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The advances in the Internet of Things (loT) involve a technology of interconnected devices that
interact over the internet, providing convenience and efficiency while also posing significant security
risks. Privacy-preserving techniques play a vital role in safeguarding sensitive user data while
maintaining system efficiency. The rising tendency of cybersecurity threats and the need to recognize
harmful activities in heterogeneous but resource-constrained settings have led to the development of
sophisticated intrusion detection systems (IDSs) for quickly identifying intrusion efforts. Conventional
IDSs are becoming more inefficient in classifying new attacks (zero-day attacks) whose designs

are similar to any threat signatures. To reduce these restrictions, projected IDS depend on deep
learning (DL). Due to DL techniques learning from vast amounts of data, they can identify novel,
emerging attacks, making them an alternative method to classical cybersecurity. This study proposes
an Optimised Multi-Head Self-Attention Model for an Intelligent Intrusion Detection Framework
Using Plant Rhizome Growth Optimisation (OMHSA-IDPRGO) method to advance loT security. The
primary focus is on developing an automated cyberattack detection system for an loT environment
by employing advanced techniques. Initially, the mean normalization process is used to measure
input data into a structured format. Furthermore, the Crayfish Optimisation Algorithm (COA) is used
for optimal feature subset selection, identifying the most relevant features from the dataset. For the
cybersecurity detection process, the OMHSA-IDPRGO method uses a hybrid model that encompasses a
convolutional neural network and a bidirectional gated recurrent unit with a multi-head self-attention
mechanism (CNN-BiGRU-MHSAM) technique. Finally, the hyperparameter selection is performed using
the plant rhizome growth optimization (PRGO) approach to enhance classification performance. The
experimentation of the OMHSA-IDPRGO model is examined under Edge-lloT and ToN-loT datasets.
The comparison study of the OMHSA-IDPRGO model showed superior accuracy values of 99.11 and
99.18% compared to existing techniques on the dual datasets.
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Advances in the IoT relate to a system of physical entities, tools, automobiles, and other components equipped
with electronic hardware, circuits, sensors, software, and internet connectivity that enable these elements to
gather and share information'. The IoT permits these items to be monitored and managed remotely through
available network setups, generating possibilities for tighter connection of the physical environment with digital
platforms, ultimately leading to enhanced performance and precision?. The IoT stands as a ground-breaking
advancement that signals the future of digital technology and communication, and its progress relies on evolving
technical breakthroughs in numerous key areas, including wireless detection systems and nanoscale technologies.
The IoT concept offers an infinite amount of availability, accessibility, scalability, integrity, confidentiality, and
other benefits related to connected devices®. Nevertheless, IoT devices are vulnerable to cyber threats due
to a combination of numerous potential vulnerabilities and their relative novelty, resulting in the absence of
established security norms and protocols. A broad spectrum of cyber threats is employed against IoT systems,
based on the specific component being targeted and the attacker’s objectives®.

However, the deployment of 10T systems has also introduced several significant cybersecurity challenges,
whereloopholes and unauthorized access to information and critical infrastructure have become major concerns®.
The IoT represents a global web of smart devices connected to the internet without human intervention, which is
beneficial yet prone to cyberattacks, like any conventional system. Studies focus on integrating machine learning
(ML)- driven solutions with IoT. An IDS is a reliable method for identifying cyberattacks within any system®.
Many modern IDS frameworks employ ML models to detect cyber threats in the system. This IDS alerts the
network administrator about any doubtful behaviour occurring within the network and therefore serves as an
information security mechanism that blocks harmful intrusions’. An intrusion occurs when an individual gains
unauthorized entry to, or manipulates data assets with malicious intent. A tangible entity aiming to extract
information unlawfully, cause harm to others, or perform malicious tasks is referred to as a cybercriminal or an
intruder®. Figure 1 denotes the general architecture of IDSs in IoT.

Cybersecurity threats have expanded rapidly in several fields, including healthcare, smart homes, agriculture,
energy, industrial processes, and automation. Due to its extensive range of services, IoT sensors generate vast
volumes of data, which necessitate privacy, security, and authentication®. Previously, classical techniques were
used to ensure IoT security. The employment of more artificial intelligence (AI) techniques for identifying
cybersecurity threats has become increasingly popular over time. Consequently, there is a substantial body of
investigation concentrated on IoT cybersecurity'?. This encompasses Al strategies for safeguarding IoT systems
against threats, typically by detecting abnormal activities that could indicate an ongoing attack. As interconnected
devices are widely utilized in various sectors, they have created a demand for smarter environments and
automated processes. However, this growth is accompanied by increasingly advanced security threats, which
may compromise data integrity and user privacy. Efficient threat detection methods that can operate in real-
time and on resource-constrained devices are urgently required. Improving security while maintaining system
performance is significant to unlocking the full potential of connected technologies. This drives the development
of innovative, optimized models that balance accuracy, interpretability, and privacy protection in intrinsic
network environments.

This study proposes an Optimised Multi-Head Self-Attention Model for an Intelligent Intrusion Detection
Framework Using Plant Rhizome Growth Optimisation (OMHSA-IDPRGO) method to advance IoT security.
The primary focus is on developing an automated cyberattack detection system for an IoT environment by
employing advanced techniques. Initially, the mean normalization process is used to measure input data into a
structured format. Furthermore, the Crayfish Optimisation Algorithm (COA) is used for optimal feature subset
selection, identifying the most relevant features from the dataset. For the cybersecurity detection process, the
OMHSA-IDPRGO method employs a hybrid model that encompasses a convolutional neural network and
a bidirectional gated recurrent unit with a multi-head self-attention mechanism (CNN-BiGRU-MHSAM)
technique. Finally, the hyperparameter selection is performed using the plant rhizome growth optimization
(PRGO) approach to enhance classification performance. The experimentation of the OMHSA-IDPRGO model
is examined under Edge-IIoT and ToN-IoT datasets. The key contribution of the OMHSA-IDPRGO model is
listed below.

o The OMHSA-IDPRGO method applies mean normalization during pre-processing to convert raw input data
into a uniformly scaled format, thereby improving consistency across features. This enhances training stabili-
ty and learning efficiency. It also assists in better convergence during model optimization.

o The OMHSA-IDPRGO approach utilizes the COA technique to identify the most relevant features, effective-
ly mitigating dimensionality while preserving crucial data. This selection improves detection accuracy and
mitigates computational complexity. As a result, the model becomes more efficient and reliable in processing
IoT data.

o The OMHSA-IDPRGO methodology employs a hybrid CNN-BiGRU architecture integrated with the MH-
SAM model for capturing intrinsic temporal and spatial patterns in IoT network data. This enhances the
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Fig. 1. General structure of intrusion detection in IoT.

model’s ability to detect a wide range of cyber threats accurately. It significantly improves intrusion detection
performance in dynamic environments.

The OMHSA-IDPRGO technique implements the PRGO model to fine-tune hyperparameters, improving
learning efficiency and predictive accuracy automatically. This optimization reduces manual tuning efforts
and accelerates convergence. Consequently, it enhances overall model performance in complex IoT scenarios.
The integration of COA-based FS with the CNN-BiGRU-MHSAM model, optimized through PRGO, pre-
sents a novel and efficient solution for intelligent threat detection. This incorporation uniquely balances di-
mensionality reduction, deep temporal-spatial feature extraction, and automated hyperparameter tuning. It
significantly improves detection accuracy and computational efficiency in complex IoT environments, setting
it apart from existing methods.

Related works
Alzahrani'! proposed a gorilla troops optimizer and DL-assisted BAD (GTODL-BADC) method. This method
utilizes feature selection (FS) in conjunction with fine-tuned DL-aided classification to achieve security within
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the IoT landscape. The min-max data normalization technique was employed for data pre-processing, and the
GTO framework for FS selects the optimal feature subclasses. Furthermore, the multi-head attention-driven
LSTM model is used for BAD. Sekhar et al.!? provided an effective model for identifying and classifying cyber
intrusions. The authors employed a new model with honeybees mating optimization (HBMO) and stochastic
gradient boosted distributed decision trees (SGB-DDT) techniques. To advance the recognition precision, an
SGD-DDT is a learning approach that is effective and scalable. Alotaibi'® suggested an innovative structure,
which integrates DL, blockchain (BL), and software-defined networking (SDN) technologies for improving
IoT cybersecurity. This study aims to identify a potential method for forming a cybersecurity system for IoT-
enabled smart settings to safeguard data privacy, identify appropriate threats, and secure financial transactions.
The suggested method is an amalgamation of numerous state-of-the-art techniques. The SDN control plane
incorporates the SE-driven Bi-LSTM approach for traffic management. In'%, a smart IDS model is presented for
identifying cyber threats in the IoAT. The presented model utilizes the downsized kernel partial least squares
(DKPLS) and reduced kernel approach for extracting and reducing data features to improve the recognition
efficiency. This DRKPLS technique was employed to reduce the dimensions of the kernel matrix produced by
the kernel partial least squares (KPLS) model by selecting relevant features. In', the Ant Colony-Optimised
Artificial Neural-Adaptive Tensorflow (ACO-ANT) approach was recommended for identifying suspicious
software. To highlight the importance of tokens in source duplicate data, the noise data underwent processing
by weighted attribute and tokenization approaches. DL methods are later deployed for detecting source code
duplication. Aljebreen et al.!® developed a new DDoS attack detection method using the snake optimizer and
ensemble learning (DDAD-SOEL) technique in the IoT landscape. The motivation behind this method lies
in the effective and automatic detection of DDoS attacks. To fulfil this, the created method leverages the SO
procedure for selecting a feature subset.

Kumar et al."” combined SDN, digital twin (DT) BC, and DL techniques in the SG network structure.
Specifically, a secure communication network was initially established using an authentication model based on
BC technology, which mitigates some identified security threats. Then, a different DL design, which contains a
softmax classifier, Bi-GRU, and a self-attention mechanism, is proposed to enhance the threat recognition step in
SG networks. In'8, an advanced cybersecurity framework assisted in trucking the heuristic process was introduced
with three methodologies: improved virtual honeypot (IVHD), IDS, and hidden Markov models (HMM) for
segmenting devices into four diverse stages based on their planned task, and observing communication traffic to
identify suspicious edge devices. Saheed, Misra, and Chockalingam'® proposed a model by using an autoencoder
with a deep convolutional neural network (DCNN) and long short-term memory (LSTM) for feature reduction
and anomaly detection in Industrial Control Systems (ICS), enabling accurate, low-cost, and real-time cyber-
attack detection. Thayalan et al.?* presented a collaborative federated learning framework with edge-cloud
architecture using the two-stage attention integrated graph-based multi-source spatio-temporal data fusion
(2S-AGMSTDF) network, including Attention-based LSTM, attention-based knowledge graph convolutional
network (AKGCN), and graph convolutional network-residual network-based transformer (GCN-ResNet
Transformer or GRCMT) method to enhance accurate, scalable, and privacy-preserving predictive security in
IoT consumer applications. Saheed, Abdulganiyu, and Ait Tchakoucht?! presented a framework that integrates a
modified geneticalgorithm (MGA) model for feature selection with a deep LSTM network, optimized via a genetic
algorithm (GA) for hyperparameter tuning, to efficiently detect cyberattacks in IoT networks within an edge
computing environment. Kumar, Jolfaei, and Islam?? proposed a DL-based threat hunting framework (DLTHF)
technique by using an LSTM contractive sparse autoencoder (LSTM-CSAE) model for feature extraction and
a multi-head self-attention bidirectional recurrent neural network (MhSaBiGRNN) methodology for accurate
cyber threat detection in Software Defined-1oT (SD-IoT) networks. Paul et al.”> presented a model to enhance
cybersecurity in deep web environments, utilizing a novel framework that integrates federated learning (FL),
graph-based analysis, and a hybrid web crawler with an ontology-based scoring system to detect threats and
safeguard sensitive data across cloud, fog, and edge systems.

Kathole et al.>* developed a secure attack detection framework for Vehicular Ad-Hoc Networks (VANETS)
using a modernized random parameter-based green anaconda optimization (MRP-GAO) model for feature
selection and an ensemble ML model (EMLM) integrating multi-layer perceptron (MLP), support vector
machine (SVM), AdaBoost, and Bayesian network for effective intrusion detection and classification. Amer,
Al-Rimy, and El-Sappagh?® proposed the Modbus-NFA Behaviour Distinguisher (MNBD) model, which applies
a non-deterministic finite automaton (NFA) framework to analyze Modbus frame sequences and identify
abnormal device behaviour with high accuracy and generalization. Sardar et al.?® introduced a model by using
a graph neural network (GNN) model trained on various datasets and evaluated via NS2 simulations. Kathole
et al.”” presented an ensemble DL model (EDLM) technique that integrates multiple DL models to improve
detection accuracy, reduce false alarms, and strengthen network security by averaging prediction scores for
robust anomaly detection. Saheed and Chukwuere?® developed a robust cyber-attack detection system for
cyber-physical industrial IoT (CPS-IIoT) that utilizes the Pearson correlation coefficient and agglomerative
clustering for privacy preservation, as well as a bidirectional LSTM with scaled dot-product attention (BiLSTM-
SDPA) method for accurate threat detection. Kathole et al.”” developed a secure federated cloud storage system
for Internet of Medical Things (IoMT) using a hybrid Mexican axolot] with energy valley optimizer (HMO-
EVO)-based attribute-based encryption (ABE) for secure data encryption and multi-scale bi-long short-term
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memory and gated recurrent unit (MBiLSTM-GRU) technique with FL for accurate disease prediction. Saheed,
Omole, and Sabit*® developed a model using a genetic algorithm with an attention mechanism and a modified
adaptive moment estimation optimized LSTM (GA-mADAM-IIoT) methodology, incorporating explainability
via Shapley Additive Explanations (SHAP). Saheed and Chukwuere®! developed an explainable AI (XAI)
ensemble transfer learning (TL) model using SHAP and a hybrid bidirectional long short-term memory with
autoencoders (BiLAE) technique for zero-day botnet attack detection, optimized by barnacle mating optimizer
(BMO). Saheed and Misra®? presented an explainable and privacy-preserving deep neural network (DNN)
framework with SHAP for accurate and interpretable anomaly detection in Cyber-Physical Systems enabled IoT
(CPS-10T) networks. Ullah et al.>* developed SecNet-FLIDS, a Blockchain-based FL model with a TOP-K Node
selection scheme and context-aware transformer networks, incorporated with synthetic minority over-sampling
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Fig. 2. Working procedure of the OMHSA-IDPRGO model.

Scientific Reports |

(2025) 15:34233 | https://doi.org/10.1038/s41598-025-16052-y nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

technique (SMOTE) and edited nearest neighbours (ENN) for imbalanced data handling, to enable accurate,
privacy-preserving, and scalable cyberattack detection in the Internet of Vehicles (IoV).

Despite various advanced methods, such as GTO, HBMO, Bi-LSTM, and FL, being applied across IoT,
CPS-1I0T, IoV, and SDN environments, several limitations still exist. Various models rely on large, labelled
datasets, which are often scarce or imbalanced, thereby affecting detection accuracy and generalizability. Trust
among users and security experts is reduced as few models suffer from interpretability issues. Furthermore,
various solutions lack scalability or are computationally intensive, which restricts their real-time deployment on
resource-constrained edge devices. The integration of multiple technologies, such as BC, DL, and optimization
algorithms, remains complex, resulting in increased system overhead. The research gap in addressing these
challenges lies in developing lightweight, explainable, and privacy-preserving IDS that efficiently handle
imbalanced data, optimize feature selection, and adapt to heterogeneous IoT and CPS environments with
minimal human intervention.

Methodology

This study designs and develops an OMHSA-IDPRGO model to advance IoT security. The primary focus of this
novel is to enhance automatic cyberattack detection in IoT environments by employing advanced techniques.
To achieve this, the OMHSA-IDPRGO technique contains numerous stages, namely data pre-processing, FS,
classification model, and parameter tuning process. Figure 2 signifies the overall working flow process of the
OMHSA-IDPRGO technique.

Mean normalization
To achieve this, the proposed method initially executes a mean normalization method to transform the input
data into a structured format®*. This normalization is chosen due to its effective capability in scaling features to
have a mean of zero, which assists in stabilizing and speeding up the training process of ML models. This method
mitigates the impact of outliers by centring the data around zero without strictly bounding it within a fixed
range. This enhances gradient descent convergence, especially in DL methods, by preventing features with large
magnitudes from dominating the learning process. Additionally, mean normalization maintains the relative
distribution of data, which is significant when dealing with complex IoT datasets. Overall, it presents a balanced
approach that enhances model stability and accuracy compared to simpler scaling techniques.

This method signifies a frequently implemented data normalization model in data analysis and ML domains.
It comprises scaling the data so that the mean (average) of the feature becomes 0. This procedure focuses on the
data around the mean, effectually extracting some bias in the value of features. A feature 2’ is specified:

o — &~ mean (z) )

max () — min ()

Now, min (z) and max (z) signify the minimal and maximal values of x, and mean(x) depicts the mean of
feature x.

FS using COA model

Next, the COA approach is employed for the optimal selection of feature subsets®*. This model is chosen for its
robust global search capability and effective balancing. This technique also avoids local optima, ensuring the
selection of the most relevant and informative features. Its bio-inspired nature allows it to adapt dynamically to
complex, high-dimensional IoT datasets, enhancing feature relevance and mitigating redundancy. Furthermore,
COA requires relatively low computational resources, making it appropriate for real-time applications. Overall,
COA improves detection accuracy and model efficiency better than many conventional FS models. The
mathematical model for the optimization issue is developed by considering the natural behaviours of crayfish
at diverse phases. COA is a metaheuristic swarm intelligence model. The significant stages of COA are given.

Initialize population

During this initial stage of the model, the crayfish population is described as a matrix X, where X;
(Xs ={Xi1,Xi2,...,Xidim}, with dim depicting the dimension) indicates the location of thelt™ crayfish.
Every X; is constrained within a predefined boundary and represented as a 1 x dim vector, equivalent to a
possible solution. The function f (-) is presented to assess X, offering its fitness value. According to the size of
population N and dimension dim, the COA initializes the procedure by arbitrarily generating a set of candidate
solutions X . The location of individual ¢ in dimension Xj ;- is specified:

Xi; =1b; + (ubj - lbj) X rand (2)

Here, ub; and {b; refer to the upper and lower bounds, respectively, while rand indicates an arbitrary value.
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Define temperature
Temperature variations influence the behaviour of crayfish, prompting them to enter various phases. The
temperature is specified:

temp = rand X 15+ 20 (3)

While the ambient temperature ranges from 15 to 30 °C, particularly at 25 °C, crayfish display searching
behaviour. The feeding amount is assessed by employing the expression specified in Eq. (4).

1 temp — p)?
p:Cl X |:27T><U X exp (_W>:| (4)

Here, 1 depicts the optimum feeding temperature. The crayfish’s food intake is influenced by the parameters C'y
and o, and set to 3 and 0.2, respectively.

Summer resort and competition stage
The temperature temp is greater than 30 during these dual stages, and the cave X nqqe is deliberated as:

Xshade = (XG + XL) /2 (5)

Now, X1 and X¢ refer to the optimal locations attained through iterative calculations for individuals and
populations.

While rqnd < 0.5, no other individuals participate in the competition, and the crayfish immediately enters
the cave, upgrading its location.

X = X{; 4+ Cy x rand x (Xehaae — Xi ;) (6)

Now ¢ and ¢ + 1 indicate the next and existing iteration stages. C is specified:

Ch=2— (%) %)

Here, T specifies the upper limit of iterations. While rand > 0.5, other individuals are also interested in the cave,
inducing competition, and their locations are upgraded accordingly.

Xv,tjl = Xz?g,j - X;,j + Xshade (8)

Now, z refers to an arbitrarily selected individual from the population.

z = round [rand x (N —1)] +1 9)
Foraging stage
During this phase, the temperature does not exceed 30 °C, and the crayfish will evaluate the dimensions of the

food after positioning it and select diverse feeding approaches. The position of food X f,04 is specified:
Xtood = Xa (10)
The size of food @ is given:
Q = C3 x rand X (fitness;/ fitnesssood) (11)
Here, fitness; and fitnessfooq represent the fitness values of the crayfish and the food, respectively. C'3
represents the food factor, set to a value of 3, correspondingly. The crayfish will assess the size of the food based

on its type. While @ > (C3 + 1) /2, it specifies that the food is huge, inducing the crayfish to tear it apart,
utilizing its primary claw foot.

1
Xfood = €xp (_Q) X Xfood (12)
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Fig. 3. Structure of the CNN-BiGRU-MHSAM technique.

Once the food is torn apart and turns small, the preceding dual paws will alternatively pinch the food to consume
it. This alternative approach is designed by integrating sine and cosine functions. Additionally, food diversity
is achieved by simulating the feeding behaviour of the animals.

Xt = X! + X food x p x [cos (2 x 7 x rand) — sin (2 x e x rand)] (13)

While @ < (C3 + 1) /2, the crayfish might instantly move towards the nutrition and upgrade its location:

ijl = (Xit,j — Xfood) X p—|—p X rand X X,L't’]' (14)

Due to its simplicity, fast convergence speed, and higher computational efficiency, the COA is used to address
the SRB optimizer concern.
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The fitness function (FF) determines the classifier’s precision and the various features chosen. It increases the
classifier’s precision and decreases the size of the desired feature set. Thus, the subsequent FF is used to evaluate
different solutions presented in Eq. (15).

_#SE

Fitness = a * ErrorRate + (1 — a) Al

(15)

Here, Error Rate signifies the rate of classification errors using the chosen features. Error Rate is computed as
the percentage of improperly classified instances to the total number of classifications made, expressed as a value
between 0 and 1. #SF is the number of chosen aspects, and # All _F' is the total number of attributes in the
original dataset. « is utilized to control the significance of subset length and classifier quality.

Hybrid classification model

For the cybersecurity detection process, the hybrid model, named CNN-BiGRU-MHSAM, is used>. This
technique is chosen for its ability to capture both spatial and temporal patterns in complex IoT network data.
CNN layers outperform in extracting local features, while BiGRU handles long-term dependencies in sequential
data. The addition of the MHSAM improves the capability of the technique in concentrating on the most
relevant parts of the input, enhancing detection accuracy. Compared to standalone models, this hybrid approach
mitigates overfitting and increases robustness against diverse cyber threats. It also presents better interpretability
and scalability, making it superior to conventional ML and simpler DL methods. Figure 3 represents the structure
of the CNN-BiGRU-MHSAM technique.

CNN reduces the parameter counts and sizes of the data by removing spatial features from the input
data through methods such as pooling, weight sharing, and local connections. These processes improve the
analytical capabilities and computational efficiency of the CNN. The network includes pooling, input, output,
convolutional, and fully connected (FC) layers. As a fundamental module of CNN, the convolutional process
focuses on capturing spatial relationships and various patterns. This framework combines dual convolutional
components—the first layer uses 16 3x3 kernel filters, whereas the subsequent layer uses 32 3x5. dimensional
matrices to analyze the combined input resources. The pooling layer decreases the input data dimensionality,
improving CNN calculation speed and alleviating overfitting. Normal pooling techniques include stochastic
pooling, max pooling, and mean pooling. The FC layer connects every neuron to each neuron in the previous
layer.

The GRU method effectively transfers its capability to process time-series data, successfully addressing
problems such as exploding and vanishing gradients. In comparison with LSTM, the GRU requires fewer
parameters, provides faster training, and reduces overfitting, making it particularly effective for time-series
prediction. This method is primarily composed of two segments: the gate of reset r; and the gate of update z;.
The data processing process executed by the GRU model is as demonstrated:

(i) The update gate z; controls the extent to which the data from the preceding instant is preserved at present
moments. The greater the update gate’s output value z;, the additional data from the prior instant is pre-
served. The evaluation equation of the update gate 2. is as stated in Eq. (16).

2t = 0 (wy - [hy_1rme] + bs) (16)

Here, o (-) refers to the sigmoid function, w. denotes the update gate weight, h:—1 signifies the hidden layer
(HL) of the preceding moment, x; stands for the present moment input, and b.. Means the bias value.

(ii) The reset gat r;. Controls the extent to which the data from the preceding moment is maintained on the
present moment candidate HL k. The greater the reset gate’s output value, s 7. The more additional data
from the prior instant is kept in the candidate HL, A. The prediction formula for the reset gate, r+, is rep-
resented in Eq. (17).

re = o (wr - [hy—172¢] + br) (17)

N, w,.. denot reset gate weight, and b, signifies bias value.
(iii) 'The upgrade of the ndidate HL information R is as stated in Eq. (18).

h: = tanh (wh - [re ® he—1,x¢] + ba) (18)

Whereas, tanh (-) symbolizes activation function, wp, characteristics ndidate HL weight, and by denotes bias
value of the candidate HL.
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Component Hyperparameters Values

CNN Filters, kernel size, activation 64, 3x 3, ReLU
BiGRU Units, layers, dropout 128,2,0.3
MHSAM Attention heads, attention dimension 8, 64

Training settings | Optimizer, learning rate, batch size, epochs | Adam, 0.001, 64, 50

Table 1. Key hyperparameters used in the proposed attention-based DL model for intelligent threat detection
in IoT networks.

(iv) Compute the present moment HL h; according to ﬁt and hi_1:
he = (1 _Zt)@ht—1+zt@ilt (19)

This model successfully takes the forward characteristics. Nevertheless, time series data are also affected by
previous data, not only upcoming values. To address either forward or backwards dependencies, the BiGRU
model is presented. This method combines either forward or backwards GRU elements to well-examine the
relationships in time-series data. This model comprises a forward GRU, an input, an output and a reverse GRU.
The forward and reverse GRUs extract data from the relevant reverse and forward sequences of the input data.

fl = f (.Tﬂﬁt-l) (20)
— —
h=[f\|zv h (21)
t t—1
-7 — =
Q¢ = Wh+ w h +b; (22)
t

Here, w and w. represent output weights of the forward and backwards GRU HLs, individually, and b; denotes
the bias value of the Bi-GRU method.

The MHSA model creates numerous data sequences by using dissimilar linear projections. Every prediction,
or “head”, captures different data features. These sequences are then concatenated and passed through additional
linear projections to form the final sequence. For the input sequence of data X = [z1, z2,x3, - - , T, multiply
the put sequence of data by the matrices of linear transformation WjQ7 W*, and W}, correspondingly, to get

the vectors Q;, Kj,and Vj, 5 € (1,2,3,--+ , N),and N characterizes head counts. The particular computation
procedure is presented in Egs. (23-25).
Q; = W].Q X (23)
K =w/.-X (24)
V; = WJ-V X (25)

Formerly, the attention computation equation of the jth head is presented in Eq. (26).

KT
head; = Attention (Q;, K;, Vi) = softmazx <Ql\/ﬁK’> Vi (26)

The output is measured by Eq. (27).
Y = Concat (heads, heads, heads, - - - , headn) - W° (27)

Now, W refers to the output weighted matrix. Table 1 describes the key parameters utilized in the CNN-
BiGRU-MHSAM model.

PRGO-based parameter tuning model

Finally, the hyperparameter range is implemented by the PRGO approach?’. This model is chosen for its effective
global search capability, motivated by the natural rhizome growth patterns. This model helps avoid local minima
and find optimal hyperparameter values, thereby efficiently balancing the exploration and exploitation phases.
Compared to conventional tuning methods, such as grid or random search, PRGO requires fewer iterations
and computational resources while achieving better convergence. Its adaptability to complex, high-dimensional
search spaces make it ideal for optimizing DL techniques in IoT environments. Overall, PRGO enhances model
accuracy and training speed, outperforming many conventional optimization techniques.
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In this paper, a method is required to model plant rhizome growth and explain the fundamental meaning of
five terms: soil space, adventitious, fibrous, lateral, and primary roots, in the context of root system development.
Indeterminate and fibre roots serve as searching agents within the solution area and represent primary elements
to discover the solution area. Lateral roots stimulate development by combining food absorbed by earlier fibre
roots with nutrients taken up by the fibre roots. The primary root stimulates development by combining nutrition
formerly absorbed by lateral and fibre roots with food intake by now evolving fibre roots.

Numerical growth method for taproot plants

Assume that taproot plants arbitrarily have N fibrous roots, signified by ({X1, X2 ..., Xn}). Fibrous roots
additionally absorb nutrients from the soil, apart from exploring the nutrition-rich parts of the soil individually;
therefore, all fibrous root is considered as an experimental solution to the optimization issue, and the consistent
soil region is observed as the solution area of the targeted problem.

1. The numerical representation of fibrous root growth.

Seedy = Xf+ o (Xbest — Xﬁ1) (28)

whereas Seed: denote ith fiber root at the t¢th growth time, Xp.s: signifies the optimal fiber root , r1 refers
to randomly generated numbers amongst (1, N), X/, signifies the fiber root ars, & € 2 x rand (0,1) — 0.5
denote randomly generated number applied to produce (—0.5,1.5) intervals, if oy € (0, 1.5), it means that
the arbitrarily chosen fiber root X, f.l advance to the historic finest fiber root Xpest, and if a1 € (—0.5, 0), then
Xpest develops to X!, . The model of this searching mechanism, in addition, guarantees that the historic finest
fibre root Xpes: plays an integral part in directing each fibre root to mature in the best way. It is additionally
guaranteed that a few arbitrary fibre roots X/, direct the remaining fibre roots to carry out arbitrary searching
that may prevent the search from dropping into a local best to the particular area.

2. The numerical modelling of lateral root growth in the soil area.

S€€d2 = X:nean + a2 (X:nean - X:Q) (29)

whereas Seed> means the nutrition capture by lateral roots at the t -+ st development, X, .., represents average
value, 72 refers to a randomly generated number among (1, N) , X7, signifies the fiberous root arbitrarily chosen
from the N fibre roots inside the ¢th development, a2 € 2 X rand (0,1) — 1 signifies randomly generated
numbers applied to create the interval (—1,1). If a2 € (0, 1), it means that the root absorbs nutrients, and if
a2 € (—1,0), it indicates that the root permits organic mixtures to the nearby atmosphere.

3. The numerical modelling of primary root growth in the soil area.

Seeds = Seeds + as (Seed1 — Ry}') (30)

Here Seeds embodies the food absorbs by the primary root at the t 4 1st growing, R;" refers to complete soil
area (for example: the targeted problem search area), v and characterize lower and upper limits of the problem
area, az € € X rand (0,1) 4+ &, & denote randomly generated integer of 0 or 1 produced by randi(0,1)
function, £ stands for reverse of e. If  is selected as 1, as € (0, 1), which specifies that fibre roots do not get
sufficient food intake, and if € is set to 0, a3 = 1, which stipulates that the fibrous roots can get the nutrition.

Edge-IIoT dataset

Type of event Data record
“Normal” 2500
“DDoS-UDP” 2500
“DDoS-ICMP” | 2500
“SQL injection” | 2500

“DDoS-TCP” 2500
“Password” 2500
“DDoS-HTTP” | 2500
“Uploading” 2500
“Backdoor” 2500
“XSSs” 2500
“Ransomware” | 2500

“Fingerprinting” | 2500

Total records 30,000

Table 2. Details of edge-IIoT dataset.
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Normal {Z& 4 Normal 3 9 4 2 2 1 5 2 3 4
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SQL injection SQL injection {3 4 2 alNsl o
DDoS-TCP 7 DDoS-TCP {98 3 3 & 4 5 0 1
E Password 9 E Password {7 4 2 7 6 3 1
S DDosHTTP 8 S DDosHTTP{2 5 4 4 4 0 3
Uploading 5 2 8 Uploading{2 4 2 7 3 4 3 4
Backdoor 8 6 6 Backdoor{2 5 o0 0 6 2 2 7
XSS 8 12 9 XSS IS 2 5 6 6
Ransomware 4 1 5 Ransomware {8 3 1 4 5 0 3 7
Fingerprinting 4 6 4 6 Fingerprinting{2 4 5 3 6 3 2 7
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Fig. 4. Edge-IIoT dataset (a-b) confusion matrices, (c) curve of PR, and (d) curve of ROC.
This randomly generated number rule ensures that 3 is an arbitrary number within the range of (0, 1), which
accurately reflects the actual food intake by the plant root system. Seed1 — R;* characterizes the food intake by
the fibrous roots.
Numerical model of plant growth in the fibre root system
The primary root of the fibrous root system deteriorates during seed germination, and simultaneously, the
adventitious or fibrous root matures at the bottom of the stem. The adventitious root’s growing point X! "' at the
following instant is jointly defined by the present X7, the thick (best) Xipest, Xr3 and X4 inside the soil area,
and this searching method guarantees that X! emerges from the local optimal with a higher possibility. Besides,
while the growth of adventitious roots within the fibre root system is highly arbitrary, each of the adventitious
roots maintains a particular number of aggregations, which allows the adventitious roots to discover additional
nutrition-rich regions. According to the preliminary study, the root growth of fibrous-root plants is demonstrated
as shown.
Qu (Xra + Xora + Xf)
X, = (31
3
t
Seeds = X + (Xipest — X{ + Xz + Xya) (32)
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Class labels ‘ Accuy ‘ Prec, ‘ Reca; ‘ Flscore | GMeasure
TRPHE (70%)

Normal 99.10 94.00 95.34 94.67 94.67
DDoS-UDP 99.09 95.47 93.43 94.44 94.44
DDoS-ICMP | 99.09 95.05 93.85 94.44 94.45
SQL injection | 99.07 94.92 93.72 94.32 94.32
DDoS-TCP 98.94 93.25 94.05 93.65 93.65
Password 99.08 94.55 94.33 94.44 94.44
DDoS-HTTP | 99.24 95.36 95.36 95.36 95.36
Uploading 98.99 93.97 94.02 94.00 94.00
Backdoor 99.15 94.15 95.86 94.99 95.00
XSS 99.10 94.54 95.06 94.80 94.80
Ransomware 99.21 95.48 94.81 95.14 95.14
Fingerprinting | 99.28 95.32 96.08 95.69 95.69
Average 99.11 94.67 94.66 94.66 94.66
TSPHE (30%)

Normal 99.09 93.99 95.01 94.50 94.50
DDoS-UDP 99.14 94.91 95.03 94.97 94.97
DDoS-ICMP | 99.02 95.78 92.51 94.12 94.13
SQL injection | 98.94 93.50 94.11 93.80 93.80
DDoS-TCP 98.98 92.86 95.08 93.96 93.96
Password 98.90 94.80 91.91 93.33 93.34
DDoS-HTTP | 99.22 95.60 95.35 95.48 95.48
Uploading 98.87 92.62 93.39 93.00 93.00
Backdoor 99.03 92.66 95.80 94.20 94.22
XSS 99.11 94.52 93.97 94.24 94.24
Ransomware 99.21 95.89 95.03 95.46 95.46
Fingerprinting | 99.23 95.41 95.28 95.35 95.35
Average 99.06 94.38 94.37 94.37 94.37

Table 3. Intrusion detection of OMHSA-IDPRGO model on edge-IIoT dataset.

whereas X_ signifies the food intake by the present adventitious root X/, directing the remaining portion of the
rhizomes, apart from the thick adventitious root, to mature extensively within the soil, X;pes¢ refers to the global
best for the present fiber root. a4 € o x rand (0, 1), o signifies randomly generated integer of 0 or 1 made by
utilizing the rand ¢ (0,1) function, if 0 = 1, s € (0, 1) specifies that X. has initiated the area comprising
the nutrition by developing extendedly within the soil, if ¢ = 0, a3 = 0 designates that X, failed to detect
the region consisting of the nutrition in Eq. (5) defines the stochastic searching method, with r3 and r4 denote
randomly chosen integers.

The PRGO model creates an FF to achieve enhanced classification performance. It calculates a positive
integer to depict the enhanced performance of the candidate solution. In this manuscript, the minimization of
the classification error rate is deliberated as the FF, as shown in Eq. (33).

fitness (z;) =Classifier Error Rate (z;)

__no. of misclassified samples < 100 (33)
a Total no. of samples

Experimental outcome

The experimental study of the OMHSA-IDPRGO technique is examined under the Edge-IIoT dataset®®. The
dataset comprises 30,000 total records with 12 types of events, as summarised in Table 2. The complete no. of
features is 63, but only 35 were chosen.

Figure 4 represents the classifier results of the OMHSA-IDPRGO technique on the Edge-IIoT dataset.
Figure 4a, b portray the confusion matrices, which precisely classify all classes under a 70:30 ratio. Figure 4c
exhibits the PR investigation, demonstrating maximum performance for each class. Finally, Fig. 4d exemplifies
the ROC examination, signifying capable outcomes with greater values of ROC.

Table 3 and Fig. 5 denote the intrusion detection result of the OMHSA-IDPRGO model on the Edge-IIoT
dataset. With 70% TRPHE, the OMHSA-IDPRGO model provides average accuy, precn, recar, F'lscore, and
G easure Of 99.11%, 94.67%, 94.66%, 94.66%, and 94.66%, respectively. Moreover, under 30%TSPHE, the
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Fig. 5. Average values of the OMHSA-IDPRGO model on the Edge-IIoT dataset.

0.9

0.8

Accuracy

8.7+

0.6

Training and Validation Accuracy - Edge-lloT Dataset Training and Validation Loss - Edge-lloT Dataset
1.8
—— Training —— Training
—e— Validation 1.6+ —e— Validation

Loss

Epochs Epochs

(a) (b)

Fig. 6. (a) Accuracy curve and (b) loss curve on Edge-IIoT dataset.

OMHSA-IDPRGO method provides average accuy, precn, recar, Flscore, and Gareasure of 99.06%, 94.38%,
94.37%, 94.37%, and 94.37%, correspondingly.

Figure 6 depicts the classifier outcomes of the OMHSA-IDPRGO model on the Edge-IIoT dataset. Figure 6a
presents the accuracy study of the OMHSA-IDPRGO model. The figure indicates that the OMHSA-IDPRGO
model yields increasing values across successive epochs. Furthermore, the rising validation over training
demonstrates that the OMHSA-IDPRGO method proficiently learns from the test dataset. Finally, Fig. 6b
illustrates the loss analysis. The findings indicate that the OMHSA-IDPRGO method achieves similar validation
and training loss values.

Also, the OMHSA-IDPRGO technique is examined under the ToN-IoT dataset®. The dataset contains a total
of 119,957 samples across nine classes. The complete details are presented in Table 4 below. The no. of attributes
present in this dataset is 42, but only 31 were selected.
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ToN-IoT dataset

Class No. of instances
“Normal” 78,369
“MiTM” 336
“DoS” 5440
“DDoS” 5987
“Password” 6016
“Injection” 5867
“XSS” 5951
“Ransomware” | 5976
“Backdoor” 6015
Total instances | 119,957

Table 4. Details of ToN-IoT dataset.

Training Phase (70%) - ToN-loT Dataset Testing Phase (30%) - ToN-loT Dataset
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DDoS 3843| 23 30 DDoS
s e s
2 Password 2 |3819 3 Password
Q Qo
p - 2 | IS 2 o
Injection “ | 2 20 Injection
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Fig. 7. ToN-IoT dataset (a-b) confusion matrices, (c) curve of PR, and (d) curve of ROC.

Figure 7 displays the classifier results of the OMHSA-IDPRGO model on the ToN-IoT dataset. Figure 7a,
b illustrate the confusion matrices with precise classification across all classes under a 70:30 ratio. Figure 7c
illustrates the PR investigation, which specifies the maximum performance for all class labels. Lastly, Fig. 7d
exemplifies the ROC study, representing skilful outcomes with increased ROC values.

Table 5 and Fig. 8 signify the intrusion detection result of the OMHSA-IDPRGO technique on the ToN-IoT
dataset. Under 70%TRPHE, the OMHSA-IDPRGO model gives average accuy, precy, reca;, Flscore, and
G Measure 0£99.18%,91.34%, 84.72%, 86.47%, and 87.18%, respectively. Furthermore, depending on 30%TSPHE,
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TRPHE (70%)

Normal 98.07 98.01 99.06 98.53 98.53
MiTM 99.76 72.46 21.28 32.89 39.27
DosS 99.47 94.26 94.19 94.23 94.23
DDoS 99.24 92.65 92.07 92.36 92.36
Password 99.24 92.90 91.67 92.28 92.28
Injection 99.17 91.89 91.29 91.58 91.59
XSS 99.12 92.74 89.49 91.09 91.10
Ransomware | 99.26 93.33 91.43 92.37 92.38
Backdoor 99.30 93.85 91.97 92.90 92.90
Average 99.18 91.34 84.72 86.47 87.18
TSPHE (30%)

Normal 98.07 97.93 99.14 98.53 98.53
MiTM 99.76 75.00 23.76 36.09 42.22
DoS 99.45 94.05 93.70 93.87 93.87
DDoS 99.26 93.09 92.11 92.60 92.60
Password 99.15 93.47 89.78 91.59 91.61
Injection 99.17 91.95 90.78 91.36 91.36
XSS 99.14 92.03 90.19 91.10 9111
Ransomware | 99.26 93.48 91.97 92.72 92.72
Backdoor 99.24 93.32 91.47 92.39 92.39
Average 99.17 91.59 84.77 86.70 87.38

Table 5. Intrusion detection outcome of the OMHSA-IDPRGO model on the ToN-IoT dataset.

ToN-loT Dataset

99.18 | 99.17

Avg.Values (%)

87.18 87.38

84.72 | 84.77

ACCURACY PRECISION RECALL F1-SCORE G-MEASURE
D Training Phase (70%) OTesting Phase (30%)

Fig. 8. Average values of the OMHSA-IDPRGO model on the ToN-IoT dataset.
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Fig. 9. (a) Accuracy curve and (b) loss curve on ToN-IoT dataset.

Technique ‘ Accuy ‘ Prec, ‘ Reca; ‘ Flscore
Edge-TIoT dataset

LSTM-CSAE 96.35 89.58 93.79 93.55
MhSaBiGRNN 98.19 91.63 93.21 89.67
FL 95.32 94.00 93.62 89.92
EECA-LSTM 91.35 90.47 92.98 93.90
LSTM-KPCA 95.81 89.02 93.23 93.04
ML-PCC and IF 98.60 90.95 92.53 89.09
Shallow ANN 94.76 93.81 92.97 89.34
Baseline DNN 98.65 93.75 92.18 89.49
DAE-LSTM 91.56 93.87 90.05 91.58
XCT-DF 89.04 90.59 92.02 93.61

OMHSA-IDPRGO | 99.11 94.67 94.66 94.66
ToN-IoT dataset

MNBD 90.56 90.76 83.71 82.34
NFA 98.26 89.83 82.88 80.69
GNN 90.46 91.36 84.31 82.84
CNN method 90.05 90.24 83.20 81.60
DNN algorithm 97.59 89.13 82.36 80.08
LSTM 89.76 90.59 83.64 82.19
Decision tree 98.15 89.03 80.75 80.29
kNN algorithm 97.18 90.03 80.76 84.44
PCA model 89.23 90.01 80.14 80.54
Naive Bayes 96.29 89.92 82.53 85.11

OMHSA-IDPRGO | 99.18 91.34 84.72 86.47

Table 6. Comparative analysis of OMHSA-IDPRGO model on Edge-1IoT and ToN-IoT datasets?22325:26:40-43,

the OMHSA-IDPRGO model provides an average accuy, precn, recar, Flscore, and Gareasure 0f 99.17%,
91.59%, 84.77%, 86.70%, and 87.38%, respectively.

Figure 9 establishes the classifier outcomes of the OMHSA-IDPRGO method on the ToN-IoT dataset.
Figure 9a determines the accuracy of the OMHSA-IDPRGO method. The figure indicates that the OMHSA-
IDPRGO method yields increasing values over successive epochs. Additionally, the growing validation over
training exhibits that the proposed approach learns efficiently on the testing dataset. Lastly, Fig. 9b illustrates
the loss examination of the OMHSA-IDPRGO model. The outcomes denote that the OMHSA-IDPRGO model
accomplishes close values of training and validation loss.

Table 6 presents a comparative study of the OMHSA-IDPRGO model on Edge-IIoT and ToN-IoT datasets,
evaluating various measures against existing techniques?»2>2%-26:40-43,
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Fig. 10. Comparative analysis of the OMHSA-IDPRGO model on the edge-IloT dataset.

Figure 10 shows the comparison findings of the OMHSA-IDPRGO model on the Edge-IIoT dataset. The
results highlighted that the LSTM-CSAE, MhSaBiGRNN, FL, EECA-LSTM, LSTM-KPCA, ML-PCC, IE, Shallow
ANN, Baseline DNN, DAE-LSTM, and XCT-DF methods performed the worst. Additionally, the OMHSA-
IDPRGO model demonstrated enriched performance with maximum accuy, prec,, reca;, and Flgcore of
99.11%, 94.67%, 94.66%, and 94.66%, respectively.

The comparative exploration of the OMHSA-IDPRGO approach on the ToN-IoT dataset with current
approaches is displayed in Fig. 11. The OMHSA-IDPRGO approach achieves the highest performance, with
QCCUy, Precn, Tecar, and Flgcore of 99.18%, 91.34%, 84.72%, and 86.47%, correspondingly. Whereas the
present models, namely MNBD, NFA, GNN, CNN, DNN, LSTM, DT, kNN, PCA, and NB, obtain lesser values
across diverse metrics.

Conclusion

This study designs and develops an OMHSA-IDPRGO model to advance IoT security. The primary focus of
this novel is improving the automatic cyberattack detection in an IoT environment by employing advanced
techniques. To achieve this, the OMHSA-IDPRGO method executes a mean normalization method to transform
the raw data into a structured format. Following this, the COA approach is employed to select the optimal feature
subset, thereby identifying the most relevant features from a dataset. For the cybersecurity detection process, the
OMHSA-IDPRGO method uses a hybrid model named CNN-BiGRU-MHSAM. Finally, the hyperparameter
selection is implemented by the PRGO approach to enhance the classification performance. The experimentation
of the OMHSA-IDPRGO model is examined under Edge-IIoT and ToN-IoT datasets. The comparison study
of the OMHSA-IDPRGO model yielded superior accuracy values of 99.11 and 99.18% compared to existing
techniques on the dual datasets. The limitations of the OMHSA-IDPRGO model comprise the use of static
datasets, which may not fully capture the real-time dynamics of evolving network environments. The model also
faces scalability threats when deployed in large-scale or heterogeneous networks. Additionally, the absence of
real-world deployment restricts practical validation. Environmental factors, such as varying mobility patterns
or interference, were not extensively considered. The framework may require frequent updates to keep pace
with newly emerging threats. Future work may explore real-time adaptive systems with continuous learning
capabilities. Expanding the model to handle multi-domain and cross-platform data sources will also improve its
robustness and applicability.
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Fig. 11. Comparative analysis of the OMHSA-IDPRGO model on the ToN-IoT dataset.

Data availability
The data that support the findings of this study are openly available in the Kaggle repository at https://www.kaggl
e.com/datasets/mohamedamineferrag/edgeiiotset-cyber-security-dataset-of-iot-iiot, https://www.kaggle.com/d

atasets/dhoogla/cictoniot reference numbers®

39

Received: 13 May 2025; Accepted: 12 August 2025
Published online: 01 October 2025

References

1.
2.

3.

10.

11.

12.

13.

14.

Lee, I. Internet of things (IoT) cybersecurity: Literature review and IoT cyber risk management. Future Internet 12(9), 157 (2020).
Kuzlu, M., Fair, C. & Guler, O. Role of artificial intelligence in the internet of things (IoT) cybersecurity. Discov. Internet Things
1(1), 7 (2021).

Andrade, R. O,, Yoo, S. G., Tello-Oquendo, L. & Ortiz-Garcés, I. A comprehensive study of the IoT cybersecurity in smart cities.
IEEE Access 8, 228922-228941 (2020).

. Raimundo, R. J. & Rosdrio, A. T. Cybersecurity in the internet of things in industrial management. Appl. Sci. 12(3), 1598 (2022).
. AlSalem, T. S., Almaiah, M. A. & Lutfi, A. Cybersecurity risk analysis in the IoT: A systematic review. Electronics 12(18), 3958

(2023).

. Altulaihan, E., Almaiah, M. A. & Aljughaiman, A. Cybersecurity threats, countermeasures and mitigation techniques on the IoT:

Future research directions. Electronics 11(20), 3330 (2022).

. Jun, Y, Craig, A., Shafik, W. & Sharif, L. Artificial intelligence application in cybersecurity and cyberdefense. Wirel. Commun. Mob.

Comput. 2021(1), 3329581 (2021).

. Abdullahi, M. et al. Detecting cybersecurity attacks in internet of things using artificial intelligence methods: A systematic

literature review. Electronics 11(2), 198 (2022).

. Zeadally, S., Adi, E., Baig, Z. & Khan, I. A. Harnessing artificial intelligence capabilities to improve cybersecurity. IEEE Access 8,

23817-23837 (2020).

Abdalla Musa, A.I. & Al-Hagery, M.A., Integrating machine learning with two-person intuitionistic neutrosophic soft games for
cyberthreat detection in blockchain environment. Int. J. Neutros. Sci. (IINS), 25(2) (2025).

Alzahrani, A., An optimized approach to deep learning for botnet detection and classification for cybersecurity in internet of
things environment. Comput. Mater. Continua 80(2) (2024).

Sekhar, J.C., Priyanka, R., Nanda, A.K,, Josephson, PJ., Ebinezer, M.].D. & Devi, T.K., Stochastic gradient boosted distributed
decision trees security approach for detecting cyber anomalies and classifying multiclass cyber-attacks. Comput. Secur., p. 104320.
(2025).

Alotaibi, J. A hybrid software-defined networking approach for enhancing IoT cybersecurity with deep learning and blockchain in
smart cities. Peer-to-Peer Netw. Appl. 18(3), 123 (2025).

Zidi, K., Abdellafou, K. B., Aljuhani, A., Taouali, O. & Harkat, M. F. Novel intrusion detection system based on a downsized kernel
method for cybersecurity in smart agriculture. Eng. Appl. Artif. Intell. 133, 108579 (2024).

Scientific Reports |

(2025) 15:34233 | https://doi.org/10.1038/s41598-025-16052-y nature portfolio


https://www.kaggle.com/datasets/mohamedamineferrag/edgeiiotset-cyber-security-dataset-of-iot-iiot
https://www.kaggle.com/datasets/mohamedamineferrag/edgeiiotset-cyber-security-dataset-of-iot-iiot
https://www.kaggle.com/datasets/dhoogla/cictoniot
https://www.kaggle.com/datasets/dhoogla/cictoniot
http://www.nature.com/scientificreports

www.nature.com/scientificreports/

15. Sadu, V.B., Abhishek, K., Al-Omari, O.M., Nallola, S.R., Sharma, R.K. & Khan, M.S., Enhancement of cyber security in IoT based
on ant colony optimized artificial neural adaptive tensor flow. Netw. Comput. Neural Syst., pp.1-17. (2024).

16. Aljebreen, M. et al. Enhancing DDoS attack detection using snake optimizer with ensemble learning on internet of things
environment. IEEE Access 11, 104745-104753 (2023).

17. Kumar, P. et al. Digital twin-driven SDN for smart grid: A deep learning integrated blockchain for cybersecurity. Sol. Energy 263,
111921 (2023).

18. Lamir, LM, Gital, A.Y.U,, Ibrahim, K.M., Lawal, M.A., Danlami, M. and Yakubu, I.Z., Improved cybersecurity framework based
on truckingc heuristics algorithm for detecting malicious devices in fog computing and internet of things (IoT) environments. In:
2023 IEEE Fifth International Conference on Advances in Electronics, Computers and Communications (ICAECC) pp. 1-9. IEEE.
(2023).

19. Saheed, Y.K., Misra, S. and Chockalingam, S., Autoencoder via DCNN and LSTM models for intrusion detection in industrial
control systems of critical infrastructures. In: 2023 IEEE/ACM 4th International Workshop on Engineering and Cybersecurity of
Critical Systems (EnCyCriS) pp. 9-16. IEEE. (2023).

20. Thayalan, S., Radhakrishnan, N., Ramana, T.V,, Devarajan, G.G., Karuppiah, M. and Al Dabel, M.M., Real-time threat detection
and Al-driven predictive security for consumer applications. IEEE Trans. Consumer Electron. (2025).

21. Saheed, Y. K., Abdulganiyu, O. H. & Ait Tchakoucht, T. Modified genetic algorithm and fine-tuned long short-term memory
network for intrusion detection in the internet of things networks with edge capabilities. Appl. Soft Comput. 155, 111434 (2024).

22. Kumar, P, Jolfaei, A. & Islam, A. N. An enhanced deep-learning empowered threat-hunting framework for software-defined
internet of things. Comput. Secur. 148, 104109 (2025).

23. Paul, S., Mitra, A., Shambhavi, S., Ghosh, S. & Bandyopadhyay, A. Holistic cyber security framework for deep web using federated
learning in healthcare and distributed computing. Proc. Comput. Sci. 258, 2405-2414 (2025).

24. Kathole, A. B. et al. Enhanced security mechanism in vehicular networks using ensemble machine learning to detect malicious
activity in VANETS. J. Discret. Math. Sci. Cryptogr. 27(7), 2005-2014 (2024).

25. Amer, E., Al-rimy, B. A. S. & El-Sappagh, S. Strengthening ICS defense: Modbus-NFA behavior model for enhanced anomaly
detection. J. Inf. Secur. 89, 103990 (2025).

26. Sardar, T. H. et al. Enhancing security in MANETSs with deep learning-based intrusion detection. Proc. Comput. Sci. 259, 120-129
(2025).

27. Kathole, A. B. et al. A novel approach to IoT security for intrusion detection system using ensemble network and heuristic-assisted
feature fusion. J. Discret. Math. Sci. Cryptogr. 27(7), 2207-2217 (2024).

28. Saheed, Y.K. and Chukwuere, J.E., 2025. CPS-1IoT-P2 attention: Explainable privacy-preserving with scaled dot-product attention in
cyber physical system-industrial IoT network. IEEE Access.

29. Kathole, A.B., Vhatkar, K.N., Goyal, A., Kaushik, S., Mirge, A.S., Jain, P., Soliman, M.S. and Islam, M.T., 2024. Secure federated
cloud storage protection strategy using hybrid heuristic attribute-based encryption with permissioned blockchain. IEEE Access.

30. Saheed, Y. K., Omole, A. I. & Sabit, M. O. GA-mADAM-IIoT: A new lightweight threats detection in the industrial IoT via genetic
algorithm with attention mechanism and LSTM on multivariate time series sensor data. Sens. Int. 6, 100297 (2025).

31. Saheed, Y. K. & Chukwuere, J. E. Xaiensembletl-iov: A new explainable artificial intelligence ensemble transfer learning for zero-
day botnet attack detection in the internet of vehicles. Results Eng. 24, 103171 (2024).

32. Saheed, Y. K. & Misra, S. CPS-IoT-PPDNN: A new explainable privacy preserving DNN for resilient anomaly detection in cyber-
physical systems-enabled IoT networks. Chaos Solitons Fractals 191, 115939 (2025).

33. Ullah, L, Deng, X,, Pei, X., Mushtaq, H. & Khan, Z. Securing internet of vehicles: A blockchain-based federated learning approach
for enhanced intrusion detection. Clust. Comput. 28(4), 256 (2025).

34. Kim, Y. S. et al. Investigating the impact of data normalization methods on predicting electricity consumption in a building using
different artificial neural network models. Sustain. Cities Soc. 118, 105570 (2025).

35. Chen, S., Huang, X, Jiang, Z. and Ma, M., Reliability-Based Design Optimization of Spherical Roller Bearing for Wind Turbines.
Available at SSRN 5222291.

36. Mao, J., Zhao, J., Zhang, H. & Gu, B. A novel hybrid deep learning model for day-ahead wind power interval forecasting.
Sustainability 17(7), 3239 (2025).

37. Zhang, ], Yan, E & Yang, J. Binary plant rhizome growth-based optimization algorithm: An efficient high-dimensional feature
selection approach. J. Big Data 12(1), 13 (2025).

38. https://www.kaggle.com/datasets/mohamedamineferrag/edgeiiotset-cyber-security-dataset-of-iot-iiot

39. https://www.kaggle.com/datasets/dhoogla/cictoniot

40. Bukhari, S. M. S. et al. Enhancing cybersecurity in Edge IIoT networks: An asynchronous federated learning approach with a deep
hybrid detection model. Internet Things 27, 101252 (2024).

41. Tzuazu, U. U, Nwakanma, C. I, Kim, D. S. & Lee, J. M. Explainable and perturbation-resilient model for cyber-threat detection in
industrial control systems networks. Discov. Internet Things 5(1), 9 (2025).

42. Kalaria, R., Kayes, A. S. M., Rahayu, W.,, Pardede, E. & Salehi, A. IoTPredictor: A security framework for predicting IoT device
behaviours and detecting malicious devices against cyber attacks. Comput. Secur. 146, 104037 (2024).

43. Li, J., Chen, H., Shahizan, M. O. & Yusuf, L. M. Enhancing IoT security: A comparative study of feature reduction techniques for
intrusion detection system. Intell. Syst. Appl. 23, 200407 (2024).

Acknowledgments

Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2025R755),
Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia. Ongoing Research Funding program,
(ORF-2025-537), King Saud University, Riyadh, Saudi Arabia. The authors extend their appreciation to North-
ern Border University, Saudi Arabia, for supporting this work through project number “NBU-CRP-2025-1564.
The authors are thankful to the Deanship of Graduate Studies and Scientific Research at University of Bisha for
supporting this work through the Fast-Track Research Support Program. The author would like to acknowledge
the support of Prince Sultan University for paying the Article Processing Charges (APC) of this publication and
for their support.

Author contributions

Mimouna Abdullah Alkhonaini: Conceptualization, methodology, validation, investigation, writing—original
draft preparation, funding Sara Abdelwahab Ghorashi: Conceptualization, methodology, writing—original draft
preparation, writing—review and editing Ghalib H. Alshammri: methodology, validation, writing—original
draft preparation Saied Alshahrani: software, visualization, validation, data curation, writing—review and edit-
ing Shouki A. Ebad: Project administration, validation, original draft preparation, writing—review and editing
Sami Saad Albouq: methodology, validation, Conceptualization, writing—review and editing Fahad Alzahrani:
methodology, validation, original draft preparation. Menwa Alshammeri: validation, original draft preparation,

Scientific Reports|  (2025) 15:34233 | https://doi.org/10.1038/s41598-025-16052-y nature portfolio


https://www.kaggle.com/datasets/mohamedamineferrag/edgeiiotset-cyber-security-dataset-of-iot-iiot
https://www.kaggle.com/datasets/dhoogla/cictoniot
http://www.nature.com/scientificreports

www.nature.com/scientificreports/

writing—review and editing.
Declarations

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to S.A.E.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives
4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in
any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide
a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have
permission under this licence to share adapted material derived from this article or parts of it. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence
and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommo
ns.org/licenses/by-nc-nd/4.0/.

© The Author(s) 2025

Scientific Reports |

(2025) 15:34233 | https://doi.org/10.1038/s41598-025-16052-y nature portfolio


http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.nature.com/scientificreports

	﻿Advances in IoT networks using privacy-preserving techniques with optimized multi-head self-attention model for intelligent threat detection based on plant rhizome growth optimization
	﻿Related works
	﻿Methodology
	﻿Mean normalization
	﻿FS using COA model
	﻿Initialize population
	﻿Define temperature
	﻿Summer resort and competition stage
	﻿Foraging stage
	﻿Hybrid classification model
	﻿PRGO-based parameter tuning model
	﻿Numerical growth method for taproot plants
	﻿Numerical model of plant growth in the fibre root system

	﻿Experimental outcome
	﻿Conclusion
	﻿References


