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This paper presents an enhanced approach to Minimum Variance Unbiased (MVU) velocity estimation 
in Heterogeneous-Networks (HetNets) by addressing horizontal and vertical handoffs. In HetNets, 
the abundance of base stations (BSs) results in frequent unnecessary handoffs and service disruptions 
for mobile users, posing challenges for mobility management. Accurate velocity estimation is 
crucial for effective mobility management. Our proposed strategy involves tracking vertical and 
horizontal handoffs over a specified time interval. Through mathematical modeling, we approximate 
the analytical expression of the handover count probability-mass-function in HetNets as Rayleigh 
distributed and calculate its scale parameter based on velocity, BS density, and measurement time 
span. We derive the Cramer-Rao lower bound (CRLB) and utilize the Neyman-Fisher factorization 
method to obtain the sufficient statistics. Leveraging the Rao-Blackwell-Lehmann-Scheffe (RBLS) 
theorem, we derive the MVU estimator. Our results demonstrate a close alignment between the 
proposed estimator’s variance and the CRLB. Furthermore, we observe that increased user velocity 
leads to higher velocity estimation variance, indicating greater challenges in accurate estimation 
for faster-moving users. Simulation results show that a higher BS density and longer handover 
measurement periods can substantially reduce velocity estimation errors, highlighting the benefits 
of an improved HetNet infrastructure and extended measurement durations for precise velocity 
estimation.
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In the last few decades, wireless communication systems have undergone remarkable advancements1. The 
proliferation of data-intensive applications in modern mobile devices has resulted in an exponential surge in 
cellular data traffic2. Technological innovations have also led to a significant increase in mobile data traffic 
generated by the latest wireless devices3. To meet the escalating demand for high data rates and seamless mobility, 
future wireless networks must be designed to accommodate large numbers of users. These networks should be 
capable of efficiently handling the increasing data traffic while ensuring uninterrupted connectivity and fast data 
transfer speeds4.

Researchers are actively developing technologies to overcome future challenges in cellular network 
deployment. These technologies can be categorized into several areas:
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•	 Spatial Reuse through Network Densification: This involves maximizing spatial reuse by deploying small cell 
BSs alongside existing macrocellular network infrastructure. By increasing the number of base stations, net-
work coverage and capacity can be significantly improved5.

•	 Exploration of Higher Usable Bandwidths: Researchers are exploring the use of higher carrier frequencies 
within both licensed and unlicensed spectrum. By utilizing these higher frequencies, networks can benefit 
from larger bandwidths, resulting in increased data rates and improved network capacity6.

•	 Spectral Efficiency Improvement Techniques: Several techniques are being researched to enhance spectral 
efficiency like Orthogonal Frequency Division Multiplexing (OFDM)7, Cooperative Communication, Dy-
namic Time Division Duplexing (TDD)8, Massive Multiple Input Multiple Output (MIMO)9; etc.

Network densification, specifically through spatial reuse, is emerging as a highly promising solution to address 
the escalating demands of rapidly increasing data traffic10. In order to achieve spatial reuse, network providers 
are strategically deploying small BSs in the existing macro-cell networks. This approach effectively increases the 
spectrum efficiency of the network. The deployment of small cell BSs alongside macro cell BSs creates a HetNet, 
where both types of BSs coexist harmoniously. This HetNet configuration enables a more efficient utilization of 
resources, resulting in enhanced network performance and capacity11,12.

Small cells are wireless networks that operate in both licensed and unlicensed spectrum and have shorter 
ranges compared to high-power macro cell BSs. These small cells are designed to provide wireless service both 
indoors and outdoors, particularly in areas with high data traffic13. Macro cell BSs, on the other hand, offer 
larger coverage areas14. In addition to varying transmission power levels, heterogeneous networks (HetNets) 
also feature different radio access technologies. These can include Bluetooth, Wireless Fidelity (Wi-Fi), 3G, Long 
term evaluation (LTE), 4G, 5G, and 6G. The deployment of macro BSs involves careful planning that takes into 
consideration geographic locations and coverage requirements. On the contrary, small cell BSs are deployed 
within macrocellular networks to address coverage gaps and areas with high traffic demands. As a result, small 
cell BSs are often deployed randomly, leading to dense local frequency reuse and improved network capacity15.

HetNets have demonstrated significant potential in contributing to the ambitious goal of achieving a 1000-
fold increase in the capacity of next-generation cellular networks16. However, as BSs become more densely 
distributed, mobile users often experience service disruptions, posing a critical challenge for effective mobility 
management in HetNets17. Handover represents the most effective mechanism for addressing mobility issues by 
transferring ongoing calls from one BS to another without call drops. There are two primary types of handovers: 
horizontal and vertical. Horizontal handover pertains to the transfer of a mobile device’s connection within the 
same type of network. In contrast, vertical handover entails transitioning between different types of networks, 
such as transitioning from a cellular network to a Wi-Fi network, or from a Wi-Fi network to another type of 
network18.

The velocity of mobile users plays a vital role in the handover process, making it essential to gather this 
information for successful mobility management. Additionally, user velocity data can be leveraged for various 
purposes, including load balancing, scheduling, and energy management19. By utilizing user velocity data 
intelligently, network operators can optimize network performance and enhance the overall user experience in 
HetNet deployments.

With the advancements in mobile devices, various sensors such as Global Positioning System (GPS) and Wi-
Fi have become available for velocity estimation20. However, these sensors may not be accessible in all areas. For 
instance, Wi-Fi signals are often unavailable in rural areas, and GPS signals can be weak in cities. Additionally, 
the limited power supply of mobile devices poses a challenge for relying solely on these sensor technologies for 
velocity estimation in HetNets. Another technique for velocity estimation is Doppler estimation21, which utilizes 
the Doppler effect. However, its complexity and standardization issues have hindered its widespread adoption 
in cellular network standards. For accurate velocity estimation in HetNets, it is crucial to have methods that can 
calculate the user’s velocity at the service provider’s location. This research paper aims to explore and evaluate 
such methods, providing insights and serving as a guide for future research in this area. By developing reliable 
velocity estimation techniques at the service provider’s end, HetNets can improve mobility management and 
enhance the overall network performance.

In the context of LTE Advanced, the 3rd Generation Partnership Project (3GPP) has been working on 
improving LTE performance through measures like carrier aggregation and HetNets22. The LTE specifications 
in Release-823 allow service providers to utilize handover-count measurements for estimating and detecting 
mobility states. Several studies in the literature have explored the use of handover-count measurements for 
mobility state detection. In one such study24, the authors conducted a simulation-based analysis to evaluate 
mobility. They assigned different weights to handover counts for macro-to-small-cell and small-to-macro-
cell base station handovers. This approach aimed to enhance the accuracy of user velocity estimation. By 
incorporating such weighted handover count analysis, service providers can improve the estimation of user 
velocity and further optimize mobility management in LTE Advanced systems. These advancements contribute 
to maximizing network performance and enhancing the overall user experience.

In the work presented in25, the authors propose a random waypoint mobility model for regular and 
stochastic geometry-based BS deployments. Based on this model, they derive the mean number of handovers. In 
another study,26, the authors derive closed-form expressions for the handover rate. Their analysis considers an 
independent Poisson-point-process (PPP) with arbitrary transmit power, path-loss exponent, and spatial density 
for each tier. This allows for a comprehensive understanding of handover dynamics in multilayer networks. 
Furthermore, in27, the authors derive a closed-form expression for the cross-tier handover rate in a two-tier 
network, utilizing stochastic geometry. This model specifically focuses on vertical handovers, which occur when 
users move between macro-cell and small cell base stations. The work presented in28 delves into the handover rate 
and coverage probability of users in HetNets, incorporating the consideration of handover failures. This analysis 
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provides valuable insights into the performance of HetNets from a handover perspective. Moreover, studies 
such as29,30, and31 propose the use of handover-count samples for velocity estimation by service providers. These 
approaches aim to leverage the information available from handover counts to estimate user velocity accurately. 
These various studies contribute to enhancing our understanding of handover dynamics, velocity estimation 
techniques, and overall performance analysis in HetNets.

The authors in29,30 proposed and demonstrated the practicality of a handover-count based velocity estimation 
approach in HetNets. This technique approximated the probability mass function (PMF) of vertical handover-
count samples using Gamma and Gaussian distribution functions. Subsequently,32,33 developed a velocity 
estimator based on Gamma distributed handover count measurements. It’s important to note that the maximum 
likelihood (ML) estimator is advantageous in situations where a MVU estimator either does not exist or is 
challenging to investigate. Additionally, the ML estimator is efficient only when a large number of measurements 
are available. The research considered both horizontal and vertical handoff for handover count PMF calculations 
to provide a more realistic representation. From the literature discussed, it can be inferred that there is still a need 
for further investigation into an MVU estimate for user velocity while utilizing handover-count measurements 
that take into account both horizontal and vertical handoff scenarios.

The primary research contribution of this study involves delving into an unexplored domain focused on 
deriving an MVU estimator for user velocity based on handover count PMF, taking into account both horizontal 
and vertical handoffs. The study considers the accumulation of horizontal and vertical handover counts over a 
specified time frame as an indication of velocity and approximates its PMF using the Rayleigh distribution. The 
emphasis on MVU estimation stems from its unbiased nature, ensuring that the mean of the estimate aligns with 
the actual value of the unknown parameter (user velocity) while exhibiting minimal variance compared to other 
unbiased estimators. Furthermore, the utilization of the Rayleigh distribution for approximating the PMF of 
handover-count samples is justified by its low Mean Square Error (MSE) when compared to simulated handover-
count PMF incorporating both horizontal and vertical handovers. Notably, this area of inquiry appears to be 
unprecedented in existing literature. In summary, the key research contribution of this work can be articulated 
as follows:

•	 We develop the system model by drawing on the insights provided in the analyses presented in references29–31, 
while considering the availability of handover count measurements at the service provider end. In our model, 
we make the assumption that unplanned microcell BS locations conform to a PPP, and their corresponding 
coverage areas are represented by a Poisson Voronoi Tessellation34. Furthermore, our calculations for hando-
ver count PMF take into account both horizontal and vertical handoffs.

•	 We estimated the PMF of handover count by employing a Rayleigh distribution and determining the scale 
parameter of the distribution based on the Minimum Mean Square Error (MSE) between the estimated PMF 
and the simulated PMF.

•	 By employing the Neyman-Fisher factorization method, we derive the sufficient statistics required to estimate 
user velocity.

•	 Subsequently, utilizing the RBLS theorem, we introduce an MVU estimator for user velocity based on Ray-
leigh-distributed handover counts in HetNets.

•	 Ultimately, to evaluate the MVU estimate’s performance, we compute its estimator variance and the CRLB on 
the minimum error variance.

Figure 1 shows the workflow chart for estimating user velocity in HetNets. The process begins by creating a 
HetNets scenario in MATLAB, followed by plotting the PMF of handover counts that account for both vertical 
and horizontal handovers. The Rayleigh distribution model is then applied through MATLAB’s curve fitting 
tools to approximate the PMF of the handover count. Next, sufficient statistics for velocity estimation are 
obtained using the Neyman-Fisher factorization theorem. Building on this, the minimum variance unbiased 
velocity estimator is derived after establishing the RBLS theorem. Finally, the CRLB is derived to determine the 
minimum achievable variance for any unbiased estimator, providing a benchmark for the estimation method’s 
performance.

The enhanced MVU velocity estimation approach presented in this manuscript offers significant real-world 
applicability across modern wireless communication systems, especially within HetNets. Accurate user velocity 
information facilitates more efficient mobility management in cellular networks by enabling smarter handover 
decisions, which minimizes unnecessary handoffs and service interruptions: an essential factor for maintaining 
seamless connectivity in environments densely populated with both macro and small cells. This methodology 
also finds utility in urban mobility and intelligent transportation, where its integration into 5G-V2X (Vehicle-
to-Everything) systems supports real-time vehicular safety applications, such as adaptive handover management 
for connected vehicles navigating complex urban landscapes. Furthermore, network planning and optimization 
can benefit from this framework, as service providers are empowered to optimize base station placement, adjust 
handover parameters, and improve load balancing strategies, all of which contribute to superior overall network 
performance and a better user experience.

The paper is organized as follows: Sect. 2 provides the system model for deploying small cell BSs within 
macro cells using stochastic geometry, including the approximation of the PMF of handover count considering 
both horizontal and vertical handoffs. In Sect. 3, the Neyman-Fisher factorization method is utilized to derive 
sufficient statistics for computing the estimate of user velocity. Section 4 covers the derivation of a MVU 
estimator based on the approximated PMF of handover count through the RBLS theorem. Additionally, Sect. 
5 calculates the Cramer-Rao lower bound for the velocity estimator based on horizontal and vertical handover 
counts samples. The proposed velocity estimation approach is validated through numerical results in Sect. 6, 
followed by a conclusion in Sect. 7.
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System model
Due to the lack of an exact PMF of handover-count in literature and the challenges associated with the 
mathematical solution, a handover-based estimator requires an approximate PMF of the handover-count over 
a pre-defined time span. Here we are modeling the statistics on the number of handover-count in HetNet. The 
location of BS in HetNets is a 2D random process, so the measurements are also random, and therefore we use 
statistical modeling to analyze and evaluate performance in HetNets.

The research presented in this paper draws inspiration from the system model proposed in29 and30, which 
posits that macro-cell and small-cell base stations (BSs) operate on different frequency bands. The positioning of 
both types of BSs is depicted using a PPP, where the coverage area of small-cell BSs is independent of macro-cell 
BSs due to the utilization of distinct frequencies. In assessing the number of horizontal and vertical handoffs, the 
dedicated channel deployment of small-cell BSs, represented through Poisson-Voronoi tessellation35, has been 
considered within their respective coverage areas.

Figure 2 illustrates a scenario in HetNets where small-cell BSs are nested within the macro-cell network. The 
locations of the small-cell BSs are represented using a PPP with an intensity of λ BSs/km2, and their coverage is 

Fig. 2.  Stochastic Geometry of HetNets with user trajectory.

 

Fig. 1.  Workflow chart for velocity estimation in heterogeneous networks.
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depicted by Poisson-Voronoi tessellation. User movements are assumed to follow straight trajectories, although 
alternative non-linear paths may be approximated as piecewise linear trajectories. The user’s boundary crossings 
are denoted as handovers, where the handover process involves the seamless transfer of ongoing services to 
another service provider. The handover counting process encompasses both small-cell to small-cell handovers 
(horizontal handovers) and small-cell to macro-cell handovers (vertical handovers). Additionally, small-cell BSs 
are prioritized in user allocation, resulting in most users being associated with the small-cell network.

This paper utilizes stochastic geometry to model the dense deployment of small cells and macro-cell BSs, 
illustrated in Fig. 2. The simulated PMF plot of handover counts (pR

H(hR)), incorporating both horizontal 
and vertical handoffs, is presented in Fig. 3. In this scenario, the BS density is λ = 100BSs/km2 and the 
measurement time-span is T = 8s. The random variable H is used to denote the handover counts.

Utilizing the rayleigh distribution model for approximating handover-count PMF
The Rayleigh distribution model is employed in the Matlab curve fitting process to approximate PMF of the 
handover count as,

	
pR

H (hR) = ψ(hR)
η2 exp

(
−ψ2 (hR)

2η2

)
, for hR ∈ {1, 2, 3, . . .}� (1)

where ψ(hR) denotes a function of hR that represents the count of handovers within a specified time interval. 
In this context, the symbol R signifies the Rayleigh distribution, while η denotes the scaling parameter associated 
with the Rayleigh distribution.

The accuracy of the approximated PMF can be evaluated by computing the MSE between the simulated and 
approximated PMF as,

	
MSE = 1

NhR

NhR∑
hR=1

(
pR

H (hR) − phR (hR)
)2� (2)

where NhR  is the number of points in PMF. The parameter η is computed to minimize MSE between the 
simulated PMF and the Rayleigh approximated PMF, and it can be expressed as follows:

	
η2 = 1

2

(
0.41υT

√
λ + 0.07 +

(
4υT

√
λ

π

)2
)

� (3)

where T represents the time period utilized for handover-count measurement; υ denotes the velocity of users; 
and λ represents the density of BSs. In the following section, we obtain sufficient statistics for velocity by 
leveraging the Neyman-Fisher factorization theorem.

Sufficient statistics for velocity estimation
In order to obtain sufficient statistics for velocity estimation, we analyze the approximated PMF of the handover-
count samples outlined in Eq. (1). Let hR = [hRj : j = 1, 2, 3, . . . , K − 1] represent a vector of K independent 
and identically distributed (i.i.d.) handover count samples. The joint PMF of these K handover count samples 
can be expressed as follows,

Fig. 3.  Probability mass function of handover counts for λ = 100 BSs/km2 and T = 8s.
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pR

H (hR) =
K−1∏
j=0

pR
H (hRj)� (4)

Using Eq. (1), we substitute the value of pR
H (hR) into Eq. (4), yielding

	
pR

H (hR) =
K−1∏
j=0

ψ(hRj)
η2 exp

(
−

ψ2 (hRj)
2η2

)
.� (5)

Upon further simplification of Eq. (5), we obtain

	
pR

H (hR) =
(

ψ(hRj)
η2

)K

exp

(
−

K−1∑
j=0

ψ2 (hRj)
2η2

)
� (6)

Now, to extract sufficient statistics using the Neyman-Fisher factorization theorem, we aim to initially break 
down the PMF of handover-counts into two factors as,

	 pR
H (hR) = [f (B (hRj)) , υ] [G (hRj)]� (7)

such that, f(.) is a function depending on hRj  only through B(hRj) and G(.) is a function depending only on 
hRj . After performing factorization and rearranging the Eq. (6), we obtain

	
pR

H (hR) = 1
η2K

exp

(
−

K−1∑
j=0

ψ2 (hRj)
2η2

)
× U(min hRj)

K−1∏
j=0

ψ(hRj)� (8)

where U(hR) is the unit step function. Now, by comparing the Eqs. (7) and (8), we can identify that 
B (hRj) =

∑K−1
j=0 ψ2 (hRj) is a sufficient statistics for estimation of velocity (υ). In next section, we make use 

of RBLS theorem to derive the MVU estimate of user velocity.

Minimum variance unbiased velocity estimator
Prior to determining the MVU estimator, it is essential to establish the Rao-Blackwell-Lehmann-Scheffe (RBLS) 
theorem. This theorem states that if υ̂ serves as an unbiased estimator of υ and B (hRj) represents an (m × 1) 

sufficient statistic for υ, then υ̂ = E
(

υ̂

B(hRj)

)
 qualifies as a valid unbiased estimator for υ. Moreover, if the 

sufficient statistic is complete, then υ̂ is the MVU estimator.
First, we need to compute the expected value of the sufficient statistic B (hRj), in order to determine the 

mean as,

	
E [B (hRj)] =

K−1∑
j=0

ψ2 (hRj) = K

(
η2π

2 + 4 − π

2 η2
)

.� (9)

We could remove the bias of the component by dividing the statistic by K. It should be obvious that 
B (hRj) =

∑K−1
j=0 ψ2 (hRj) estimates the second moment and not the variance as desired. If we transform 

B (hRj) as,

	
g (B (hRj)) = 1

K

K−1∑
j=0

ψ2 (hRj) − ψ̄2.� (10)

Next, we take expectation of g (B (hRj)) to find the mean value as,

	
E [g (B (hRj))] = E

[
1
K

K−1∑
j=0

ψ2 (hRj) − ψ̄2

]
= 2η2 − E

[
ψ̄2]

.� (11)

After subsituting the value of E
[
ψ̄2]

= 1
K

(
η2π

2 + 4−π
2 η2

)
 in above equation we get,

	
E [g (B (hRj))] = 2η2 − 1

K

(
η2π

2 + 4 − π

2 η2
)

= 2
(

K − 1
K

)
η2.� (12)

If we multiply this statistics by K/K − 1, it will then be unbiased for η2. Finally, the transformation is,
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g (B (hRj)) = 1

K − 1

[
K−1∑
j=0

ψ2 (hRj) − Kψ̄2

]
.� (13)

However, since

	

K−1∑
j=0

(
ψ (hRj) − ψ̄

)2 =
K−1∑
j=0

ψ2 (hRj) − 2
K−1∑
j=0

ψ (hRj) ψ̄

+ Kψ̄2 =
K−1∑
j=0

ψ2 (hRj) − Kψ̄2

� (14)

this may be written as,

	
g (B (hRj)) = 1

K − 1

[
K−1∑
j=0

(
ψ2 (hRj) − ψ̄2)2

]
.� (15)

The reason the normalizing factor 1/(K − 1) is utilized in the sample variance is due to the loss of one degree 
of freedom when estimating the mean, which results in a minimum variance unbiased (MVU) estimator. Our 
subsequent task, after establishing the RBLS theorem, is to identify a function W for which υ̂ = W (B) can 
serve as an unbiased estimator of υ. Our process begins by calculating the expectation of the handover-count as,

	
E

[
H2]

= 1
K

K−1∑
j=0

ψ2 (hRj) = 0.41υT
√

λ + 0.07 +
(

4υT
√

λ

π

)2

.� (16)

After additional simplification, we obtain,

	
υ2 + 0.41 π2

16T
√

λ
υ + π2

16T 2λ

(
0.07 − 1

K

K−1∑
j=0

ψ2 (hRj)

)
= 0.� (17)

Solving for the roots of υ, we can express the MVU estimate of velocity (υ̂) as,

	

υ̂ = −0.41 π2

32T
√

λ
+ π

4T
√

λ
×

√√√√ 1
K

K−1∑
j=0

ψ2 (hRj) − 0.07 − 0.412 π2

64 .� (18)

The MVU estimate of user velocity, as represented in Eq. (18), is a non-linear function of handover count 
samples. Therefore, we utilized the statistical linearization argument described in36 to assess the bias of the 
estimator. Additionally, let Y be a function such that,

	 υ̂ = Y (δ)� (19)

where, δ = 1
K

∑K−1
j=0 ψ2 (hRj). Thus, function Y (δ)) can be defined as

	
Y (δ) = −0.41 π2

32T
√

λ
+ π

4T
√

λ

√
δ − 0.07 + 0.41 π2

16 .� (20)

Utilizing the independent and identically distributed (i.i.d.) characterization of the handover-count and 

linearizing around δ0 = E
[

1
K

∑K−1
j=0 ψ2 (hRj)

]
= η2π

2 + 4−π
2 η2, yields the following result,

	
Y (δ) ≈ Y (δ0) +

(
dY (δ)

dδ

)

δ=δ0

(δ − δ0)� (21)

where, dY (δ)
dδ

= π

8T
√

λ

1√
δ−0.07+ 0.412 π2

64

, after substitution and simplifying further, we get

	

υ̂ ≈ υ +
π

8T
√

λ(
4υT

√
λ

π
+ 0.41π

8

)
(

1
K

K−1∑
j=0

ψ2 (hRj) − 2η2

)
.� (22)
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As K increases towards infinity i.e K → ∞, the estimated velocity υ̂ asymptotically follows the mean:

	 E [ υ̂] ≈ υ.� (23)

Therefore, we can conclude that the MVU velocity estimator proposed, based on the handover count PMF 
approximated via Rayleigh distribution, is asymptotically unbiased. Subsequently, the variance of the proposed 
estimator can be expressed as,

	

var (υ̂) =


 π

8T
√

λ

1(
4υT

√
λ

π
+ 0.41 π

8

)



2

1
K

var(ψ2 (hR))� (24)

where, var(ψ2 (hR)) is derived in Appendix A and the variance of the proposed estimator can be expressed as,

	

var (v̂) = 1
4K

(
8 − π2

2

) 
 π

8T
√

λ

1(
4υT

√
λ

π
+ 0.41 π

8

)



2 (
0.41υT

√
λ +

(
4υT

√
λ

π

)2

+ 0.07

)2

.� (25)

Cramer-Rao lower bound for quantifying estimation accuracy
Unbiased velocity estimators are defined as those which, on average, yield the true value of the user velocity. 
The CRLB establishes the minimum achievable variance for an unbiased estimator, indicating that any unbiased 
estimator with a variance lower than the CRLB is physically unattainable. Therefore, it serves as a benchmark 
with which we can evaluate the performance of any unbiased estimator. An unbiased estimator whose variance 
reaches the CRLB is referred to as an efficient estimator.

Given the Rayleigh-approximated joint PMF of K handover count samples presented in Eq. (6), we can 
derive the CRLB for the velocity estimator based on the handover-count PMF approximated via the Rayleigh 
distribution as,

	
CRLB ≥ 1

I(v) � (26)

where I(v) is the fisher information and can be computed as,

	
I(v) = −E

(
∂2

∂υ2 ln pR
H (hR)

)
� (27)

The Fisher Information Matrix I(v) is derived in Appendix B and CRLB can be expressed as,

	
CRLB = η4

K
(

∂η2

∂υ

)2 � (28)

Differentiating Eq. (3) with respect to v yields ∂η2

∂υ
= 1

2

(
0.41T

√
λ + 32T 2λυ

π2

)
, and substituting the value of 

η2 from Eq. (3) in Eq. (28) we get,

	
CRLB =

(
1
2

(
0.41υT

√
λ +

(
4υT

√
λ

π

)2
+ 0.07

))2

K
(

1
2

(
0.41T

√
λ + 32T 2λυ

π2

))2
� (29)

Result analysis
We utilize the root mean square error (RMSE) as an evaluation metric for the proposed MVU estimator’s 
performance, derived from both vertical and horizontal handover counts approximated via Rayleigh distribution. 
The equation RMSE =

√
variance is employed to showcase the validity of our analysis and to facilitate a 

comparison with the respective CRLB in assessing the performance of the proposed MVU estimator.
The variance of the proposed MVU estimator, which is based on the PMF of vertical and horizontal 

handover-counts approximated using the Rayleigh distribution, is represented by Eq. (25). In Fig. 4, the RMSE 
plot of the proposed MVU estimator demonstrates the impact of increasing user velocity (v) for different 
numbers of samples (K) (10, 20, 40, 80) over a fixed measurement time-span (T = 8s) and base station density 
(λ = 100BSs/km2). The plot illustrates that as the user velocity υ increases, the RMSE of the proposed MVU 
estimator also increases, suggesting that the estimator delivers optimal results when the user moves slowly, while 
its performance diminishes as the user’s speed increases.

Figure 5 illustrates the fluctuation of RMSE for the proposed MVU estimator at a constant base station density 
of λ = 10 BSs/km2 and a measurement time of T = 8s across various velocities (υ = 10, 20, 40, 80 km/h). 
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It is also evident that the RMSE diminishes as the number of handover-count samples increases, indicating that 
greater sampling leads to additional information for estimation and subsequently lowers the error.

The graph depicted in Fig. 6 displays the RMSE variation for the proposed MVU estimator across a time span 
(T), maintaining a fixed BS density of λ = 100 BSs/km2 and a velocity of v = 40 km/h. It is apparent that 
the RMSE of the MVU estimator diminishes as the time span for measurement increases. For example, when 
the service provider utilizes K = 20 samples and λ = 100 BSs/km2, the RMSE for T = 3s and T = 12s are 
6km/h and 4.2km/h respectively, showcasing an improvement in accuracy with a longer time span. However, it’s 
important to note that a longer time span leads to enhanced accuracy but also results in a slower response from 
the estimator, indicating a trade-off between accuracy and the duration allocated for data collection.

By employing a fixed time span of T = 8s for measuring vertical and horizontal handover counts, along 
with K = 10 samples, we can create a plot displaying RMSE against BS density λ in Fig. 7. This analysis 
encompasses various user velocities (υ = 10, 20, 40, 80 km/h). In a specific instance where the user’s velocity 
is υ = 20 km/h and a fixed time span of T = 8s is utilized for handover-count measurement, the RMSE of the 
MVU-based velocity estimator is observed to be 8km/h and 6.4km/h for BS densities of λ = 20 BSs/km2 and 
λ = 90 BSs/km2, respectively. From this, we can deduce that an increase in BS density (λ) leads to a reduction 
in the variance of the velocity estimator, thereby enhancing the accuracy of velocity estimation in hyper-dense 
networks.

Subsequently, we conduct an analysis on the precision of MVU estimates derived from vertical and horizontal 
handover-count statistics. This is achieved through a comparison of the proposed estimator variance with its 

Fig. 5.  RMSE of MVU estimator in relation to number of both vertical and horizontal handover count samples 
(K).

 

Fig. 4.  RMSE for MVU estimator across user velocity (υ) (km/h), T = 8s, and λ = 100 BSs/km2.
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corresponding Cramér-Rao Lower Bound (CRLB), which represents the minimum variance achievable for an 
unbiased estimator and is formulated in Eq. (29). Figure 8 illustrates the relationship between the CRLB and 
the proposed estimator variance as user velocity (υ) increases, considering different sample sizes for estimation 
(K = 10, 20, 40, 80). We have held the base-station density and handover-count measurement time-span 
at λ = 100BSs/km2 and T = 8s respectively. It is evident that as the mobile user velocity rises, the CRLB 
similarly increases. Furthermore, the RMSE of the MVU estimator consistently aligns closely with the CRLB as 
the number of handover count samples utilized for estimation increases.

Adaptation of MVU velocity estimation under co-channel conditions
To reflect real-world conditions in HetNets, we have incorporated the scenario of co-channel deployment, where 
both macro-cell BSs and small-cell BSs operate on the same frequency band. This approach, which is increasingly 
used to maximize area spectral efficiency, results in cell boundaries that are dynamic and sometimes indistinct, 
influenced by factors such as BS density, variations in transmit power, and load-balancing bias settings. These 
complexities contribute to elevated levels of co-channel interference, particularly near cell edges, which can cause 
unnecessary or ping-pong handovers and add challenges to mobility management. To maintain the effectiveness 
of the MVU velocity estimation method under these conditions, our framework has been enhanced to model 
handover counts using stochastic geometry, taking into account random base station placement, user velocity, 
network density, transmit power, and observation duration. Our results demonstrate that the MVU estimator 
remains reliable when BS coverage boundaries are clearly delineated, although its variance may increase in 
environments with high interference or rapidly changing network conditions.

Fig. 7.  Analyzing the effect of base station density (BSs/km2) on RMSE of MVU estimator at T = 8s.

 

Fig. 6.  Assessing RMSE Variations of MVU Estimator with Time Span (T) at λ = 100BSs/km2.
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Conclusion
In this paper, we have introduced a Minimum Variance Unbiased velocity estimator for user velocity in HetNets, 
incorporating both horizontal and vertical handover counts. We have modeled the PMF of handover counts as 
Rayleigh distributed, showing minimal MSE with simulated PMF. Subsequently, we extracted sufficient statistics 
for velocity estimation using the Neyman-Fisher factorization theorem and derived the MVU estimator through 
the RBLS theorem. Our study included the derivation of the CRLB for velocity estimation and compared it to 
the variance of the proposed MVU estimator, demonstrating a close alignment between the MVU estimator’s 
variance and the CRLB. Furthermore, we observed that the variance of the MVU estimator decreases with an 
increase in the number of handover-count samples, indicating that a higher quantity of samples yields more 
information for estimation. Additionally, we found that the variance of the MVU velocity estimator decreases as 
the time period used for handover-count measurement increases, suggesting a trade-off between accuracy and 
speed in velocity measurement.

Data availability
No pre-existing datasets were used in the performance of this study. The datasets generated during the current 
study are available from the corresponding author upon reasonable request.

Code availability
Yes.

Appendix A: Variance of ψ2

Here, we derive the expression for the variance of ψ2 (hR), denoted as var(ψ2 (hR)), and it can be expressed as,

	 var(ψ2 (hR)) = 4 × Mean (hR)2 × var (hR) + 2 × var (hR)2.� (30)

where, var (hR) = (4−π)
2 η2 and Mean (hR) = η

√
π
2 , substituting these values in Eq. (30) we get,

	
var(ψ2 (hR)) = 4η2 π

2 × (4 − π)
2 η2 + 2

(4 − π

2

)2
η4.� (31)

After further simplification of the equation, we obtain,

	
var(ψ2 (hR)) =

(
8 − π2

2

)
× η4.� (32)

Upon substituting the value of η from Eq. (3) into Eq. (32), we obtain,

	
var(ψ2 (hR)) = 1

4

(
8 − π2

2

)
×

((
4υT

√
λ

π

)2

+ 0.41υT
√

λ + 0.07

)2

.� (33)

Fig. 8.  RMSE of the MVU estimator compared to the CRLB with increasing user velocity (v), at fixed 
λ = 10 0BSs/km2, and T = 8s.
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Appendix B: Fisher Information Matrix I(v)
Consider the joint PMF of K handover count samples as expressed in Eq. (6) and taking logarithm on both sides 
we get the log-likelihood function as,

	
ln pR

H (hR) = K ln

(
ψ(hRj)

η2

)
−

K−1∑
j=0

ψ2 (hRj)
2η2 � (34)

Now, differentiate the above log-likelihood function with respect to υ, to get first derivative as,

	

∂

∂υ
ln pR

H (hR) = − K

η2
∂η2

∂υ
+ 1

2η4
∂η2

∂υ

K−1∑
j=0

ψ2 (hRj)� (35)

Next, differentiate the Eq. (35) with respect to υ, to get second derivative as,

	

∂2

∂υ2 ln pR
H (hR) = − K

η2
∂2η2

∂υ2 + K

η4

(
∂η2

∂υ
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− 1
η6

(
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2η4
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� (36)

The Fisher Information matrix I(v) can thus be expressed as,

	

I(v) = − E

(
∂2

∂υ2 ln pR
H (hR)

)
= 1

η2

(
∂2η2

∂υ2

(
K − 1
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E
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As E
[
ψ2 (hRj)

]
= 2η2, after substitution and further simplification we can rewrite fisher information matrix 

as,

	
I(v) = K

η4

(
∂η2

∂υ

)2

� (38)
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