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The timely and precise identification of diseases in plants is essential for efficient disease control 
and safeguarding of crops. Manual identification of diseases requires expert knowledge in the field, 
and finding people with domain knowledge is challenging. To overcome the challenge, computer 
vision-based machine learning techniques have been proposed by the researchers in recent years. 
Most of these solutions with the standard convolutional neural network (CNN) approaches use 
uniform background laboratory setup leaf images to identify the diseases. However, only a few works 
considered real-field images in their work. Therefore, there is a need for a robust CNN architecture that 
can identify the diseases in plants in both laboratory and real-field conditioned images. In this paper, 
we have proposed an Inception-Enhanced Vision Transformer (IEViT) architecture to identify diseases 
in plants. The proposed IEViT architecture extracts local as well as global features, which improves 
feature learning. The use of multiple filters with different kernel sizes efficiently uses computing 
resources to extract relevant features without the need for deeper networks. The robustness of the 
proposed architecture is established by hyper-parameter tuning and comparison with state-of-the-
art. In the experiment, we consider five datasets with both laboratory-conditioned and real-field 
conditioned images. From the experimental results, we see that the proposed model outperforms 
state-of-the-art deep learning models with fewer parameters. The proposed model achieves an 
accuracy rate of 99.23% for the apple leaf dataset, 99.70% for the rice dataset, 97.02% for the ibean 
dataset, 76.51% for the cassava leaf dataset, and 99.41% for the plantvillage dataset.
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The global demand for food production is met with some challenges in the form of plant disease, which 
makes a significant threat to production of crops1. Plant diseases are fueled by changing climatic conditions 
such as temperature. Hence, accurately and timely identifying these diseases is crucial to prevent their spread2. 
Traditional identification relies on visual inspection, which is labor-intensive, lacks precision, and is prone to 
human error3. Researchers have proposed several machine learning (ML)-based approaches to identify diseases 
in plants from the leaf images and broadly classify them into traditional ML-based approaches and deep learning 
(DL)-based approaches. The traditional ML-based approach includes algorithms such as K-nearest neighbour 
(KNN), support vector machine (SVM), random forest (RF), and decision tree (DT)4. The performance accuracy 
in this algorithm heavily depends on the extracted features from the images. Finding the set of features from the 
extracted features that gives optimum results is an important challenge in this approach.

CNNs have shown remarkable success in image analysis tasks, making them well-suited for the identification 
of visual symptoms associated with plant diseases. Their ability to automatically learn hierarchical features from 
images contributes to highly accurate disease classification. Several deep learning architectures such as, VGG165, 
VGG195, InceptionV36, ResNet507, MobileNet8, and EfficientNet9 are used in the identification of diseases. 
Despite their strengths, DL architectures fail to model global relationships effectively; deeper architectures 
widen receptive fields but risk losing low-level features in the process10. In recent times, deep learning with 
self-attention has been used in this field and gives prominent results. Despite the development of architecture 
and achieving high accuracy, it is still far from being implemented in real field conditions due to various 
reasons: (a) The number of parameters used in the state-of-the-art deep learning models is large and requires 

1Manipal Institute of Technology Bengaluru, Manipal Academy of Higher Education, Manipal, Karnataka 576104, 
India. 2Department of IT, Indian Institute of Information Technology, Guwahati, Assam 781015, India. 3Nanjing 
University of Information Science and Technology, Nanjing, China. 4Kumar Sekhar, Ruhul Amin Hazarika and 
Mithun Mukherjee have contributed equally to this work. email: mahmudul.hassan@manipal.edu

OPEN

Scientific Reports |        (2025) 15:30997 1| https://doi.org/10.1038/s41598-025-16142-x

www.nature.com/scientificreports

http://www.nature.com/scientificreports
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-025-16142-x&domain=pdf&date_stamp=2025-8-21


high computing devices to train the model. (b) Real-field images for the agricultural crops are unavailable. 
Designing a lightweight convolutional neural network (CNN) architecture that can effectively identify diseases 
in plants is an important area in research. In this view, Dosovitskiy et al.11 introduced the vision transformer 
(ViT) architecture in image processing and computer vision tasks. This architecture has achieved significant 
performance in classification with less memory and fewer parameters. Singh et al.12 used MobileViT architecture 
in the identification of plant leaf diseases with fewer parameter as compared to standard CNN models. However, 
a limited number of labelled images may often leads to class imbalance, which affects in models performances. 
A low-cost real time plant disease detection model named as PMVT, used by Li et al.13. They have replaced 
the convolution block with 7 × 7 convolution and also integrated CBAM in standard ViT. In comparison with 
CNN, the ViT architecture heavily relies on model regularization and data augmentation while training on 
smaller datasets. The main reason is that the ViT architecture mainly focuses on extracting global features and 
long-distance features, whereas the CNN architecture focuses on local features. However, the combination of the 
CNN with the ViT architecture will enhance the feature extraction as the model will extract both local as well 
as global features. Further, hybridization of both CNN and ViT may increase the performance of the model. In 
this point of view, a novel lightweight Inception-Enhanced Vision Transformer (IEViT) architecture is proposed 
to identify the diseases in plants. The model combines features extracted from both Inception CNN and ViT 
architecture. This model begins with two inception blocks, where we use a parallel convolution filter to extract 
local features, followed by a stacked transformer block.

Contribution and organization of the paper
The main contributions of the proposed architecture are as follows

•	 An Inception-Enhanced Vision Transformer (IEViT) architecture is proposed to identify the diseases in 
plants with wide and different conditioned images.

•	 To extract the local features, two inception blocks with parallel convolution are used, which use different filter 
sizes to extract the features.

•	 The model is lightweight and uses only 0.90M parameters, which is much less as compared to state-of-the-art 
deep learning models and can be feasible to implement in agriculture. The proposed model is implemented in 
different datasets, and the performances are compared with different state-of-the-art deep learning models. 
The proposed model outperforms several deep learning-based architectures.

The rest of the paper is organized as follows: Sect. “Related work” provides a brief discussion of several existing 
works. Section “Materials and methods” provides the details about the proposed models. Results and performance 
are discussed in Sect. “Experimental results and analysis”. Finally, the paper concludes in Sect. “Conclusion” with 
future scope.

Related work
The performance of CNN in computer vision is impressive, and researchers have explored and designed 
several deep-learning models to identify diseases in plants. In this section, we have explored and summarized 
different deep-learning models used in plant disease detection. Mohanty et al.14 used two different deep 
learning architectures, AlexNet and GoogleNet, to identify the diseases in plants. In this paper, the authors 
used a large-scale plant dataset consisting of 54306 images of 38 different categories. Three different types of 
images were used, namely color, greyscale, and segmented images and recorded a maximum accuracy of 99.35%. 
Later, Ferentinos et al.15 used five different deep learning architectures to classify 58 distinct plant diseases and 
achieved an accuracy of 99.48% using VGG architecture.

Thakur et al.16 proposed a lightweight VGG-ICNN model for the identification of plant diseases in multiple 
plant disease datasets. In this paper, the authors used 4 convolution layers of VGG16 and three blocks of 
Inception v7. In their paper, the authors recorded an average accuracy rate of 99.16%. Later, a lightweight 
DenseNet (LWDN) proposed in17 to identify the diseases in plants achieved an accuracy rate of 99.36% in the 
plantvillage dataset14.

Too et al.18 suggested a fine-tuned deep learning architecture to identify different diseases in plants. Using 
DenseNet architecture18, they have recorded maximum accuracy. Further, Atila et al.19 used EfficientNet 
architecture to identify the diseases in plants, and they have compared the performances of the model with 
several state-of-art deep learning models and showed that EfficientNet architectures outperform other models. 
Moreover, Sangeetha et al.20 proposed an improved agro deep learning in the identification of panama wilts 
diseases in banana leaves. This technique used the arrangement of colour and shape changes in banana leaves to 
forecast the disease’s intensity and its effects and achieved an accuracy rate of 91.56%.

CNN, with self-attention, has also gained much attention and is widely used in the identification of plant 
diseases. Zeng et al.21 proposed a self-attention-based CNN (SACNN) model to identify different crop diseases. 
The SACNN model consists of the base network to extract global features and self-attention to extract the local 
features. In their work, different levels of noise were added in the images to evaluate the model performance 
and show SACNN outperform state-of-art deep learning models. Chen et al.22 proposed a lightweight attention-
based deep learning architecture to identify the diseases in rice plants. The authors used the MobileNet-V2 
pre-trained on ImageNet as the backbone network, and to improve the learning capability for minute lesion 
information, they incorporated an attention mechanism. The attention mechanism helps the network understand 
the significance of spatial points and inter-channel relationships for input features.

Moreover, Qian et al.23 proposed a deep CNN architecture to identify 4 different maize diseases. In this work, 
the authors divided the CNN architecture into three stages. Stage 1 extracts the image features and encodes them 
into a feature tokens matrix. Stage 2 is the core computation using multi-head self-attention, and finally, stage 3 
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is the classification stage. Deep attention dense CNN used by Pandey et al.24 to identify different plant diseases. 
Mixed sigmoid attention learning merging with basic dense learning used in this work as in dense learning 
features at higher layer considering all lower layer features that provide efficient training process. Further, 
attention learning strengthens the learning ability of the dense block. The authors achieved an accuracy rate of 
97.55% on a real-time dataset consisting of 17 plant species. Later, Bhujel et al.25 proposed a lightweight self-
attention CNN to identify different tomato leaf diseases. The model is proposed based on residual architecture 
and used 20 convolution layers, and after the 16th layer, they used an attention block.

Mohamed Zarboubi et al.26 proposed a CustomBottleneck-VGGNet to identify the different tomato leaf 
diseases. In this proposed approach author has used two layers of VGG16 followed by custom bottle neck layer 
with 1 × 1 and 3 × 3 convolutions . They have also included CBR (Convolution-Batch Norm-ReLU) and CBS 
(Convolution-BatchNorm-SiLU) layer. Author recorded an accuracy rate of 99.12% with 1.4M parameters.

Moreover, Ghost enlightened transformer (GET) architecture suggested by Lu et al.27 to identify grape 
diseases and pests. The performances of GeT suppress other deep learning models, achieve an accuracy rate of 
98.14%, and are also faster and lighter. To enhance the feature extraction in ViT architecture, Yu et al.28 used 
inception convolution in ViT architecture to identify the diseases in plants. Four different datasets were used 
in this work, and the experimental results outperformed those of other deep learning models. Furthermore, A 
combination of CNN and ViT was used in the work29 to identify different diseases in plants. Three different 
datasets were used to evaluate the performances and show that fusion of attention with CNN blocks compensates 
the speed of the architecture. Mobile device compatible, PMVT a light weight transformer based architecture 
used in13 to identify the diseases in plant. In this paper, the author replaces the convolution block in MobileViT 
with an inverted residual structure and also incorporates CBAM into the ViT encoder. Multiple datasets were 
used to evaluate the performances of the model, and it achieved 1.6% higher performance than MobileNetV3 
and 2.3% in Squeezenet.

Bellout et al.30 investigate 5 different YOLO model namely YOLOv5, YOLOX, YOLOv7, YOLOv8, and 
YOLO-NAS in identification of tomato leaf diseases. PlantDoc and PlantVillage dataset were used to investigate 
the result and achieved an accuracy of 93.1% using YOLOv5 model. A light weight IoT integrated DL based 
approach termed as LT-YOLOv10n, proposed by Abdelaaziz Bellout et al.31 to identify real-time tomato leaf 
disease detection. Author has incorporated CBAM and C3F layer in YOLOv10 architecture and developed 
a mobile-based application for the identification of diseases. The images from the public roboflow universe 
dataset, along with images from the PlantVillage dataset, were used to train the model and achieved an accuracy 
rate of 98.7%. Table 1 summarizes the articles discussed in the related section.

Paper references DL model Dataset Class Accuracy (%)

Mohanty et al.14 AlexNet, GoogleNet PlantVillage14 38 99.34

Ferentinos et al.15
AlexNet, VGG,
Overfeat, GoogleNet
AlexNetOWTBn

PlantVillage14 58 99.48

Geetharamani et al.32 Nine layer CNN PlantVillage14 38 96.46

Chen et al.33 VGGNet with two
inception layer Maize dataset14 4 84.25

Sethy et al.34
11 state-of-art CNN
architecture with
SVM for classification

Rice dataset34 4 98.38

Too et al.18 Fine tune 6 different
CNN models PlantVillage14 38 99.76

Atila et al.19 EfficientNet PlantVillage14 38 99.38

Zeng et al.21 Self-attention CNN with
Residual Connection

AES-CD9214
MK-D2 dataset35 6 95.59

Qian et al.23 Transformer and Multi-
head attention Maize dataset14 4 98.7

Pandey24 DADCNN-5 PlantVillage14 38 99.93

Bhujel et al.25 CNN with Multiple
attention Tomato leaf14 10 99.69

Lu et al.27 GET GLDP12k dataset27 11 98.14

Yu et al.28 ViT architecture Ibean36 3 99.22

Borhani et al.29 ViT architecture Wheat rust37 3 100

Mohamed Zarboubi
et al.26

CustomBottleneck-
VGGNet PlantVillage14 10 99.12

Abdelaaziz
Bellout et al.31 LT-YOLOv10n Roboflow Universe,

PlantVillage14 9 98.7

Bellout et al.30 Multiple YOLO
architecture

PlantVillage14

PlantDoc38 3 93.1

Table 1.  Summarization of the existing work.
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Materials and methods
In this paper, we aim to design a lightweight deep learning architecture to identify diseases in plants and that can 
also be easily deployable in agriculture. In particular, we design a fusion of Inception block and ViT transformer 
architecture termed as IEViT to classify the diseases in plants.

Inception block
Inception block in architecture first used in GoogleNet architecture by Szegedy et al.6. Increasing the layers 
in the DL architecture may result in overfitting in the model. In inception, it uses multiple filters of different 
sizes on the same layer. The outputs of all the convolution layers are concatenated together and forwarded 
to the next layer. The use of multiple filter sizes extracts better features, which increases the performance of 
the model. In this paper, we have used two inception blocks termed as InceptionA and InceptionB block. The 
normal convolution used in the inception block was replaced with depthwise separable convolution. The use 
of depthwise separable convolution reduces the number of parameters in the model. The parameter used in 
depthwise separable convolution is calculated as

	 Sdepthwise = D2
K × M × D2

F + M × N × D2
K .� (1)

We write the computation cost in standard convolution as

	 Cost = D2
K × M × N × D2

F ,� (2)

where DF  is the input image dimension, DK  is the kernel dimension, M is the number of channels and N is 
the number of kernel/filters. The inceptionA block consists of 1 × 1 convolution, 1 × 1 convolution followed 
by one 3 × 3 depthwise separable convolution, 1 × 1 convolution followed by two 3 × 3 depthwise separable 
convolution and 3 × 3 maxpooling followed by 1 × 1 convolution as shown in figure. Similarly, in inceptionB 
block also we have used 3 × 3 average pooling and 7 × 7 depthwise separable convolution as shown in Fig.  1.

Inverted bottleneck block (MV2)
The inverted residual structure was first used in MobileNet architecture39 and adopted in IEViT architecture, 
which undergoes feature enhancement and feature reduction in convolution. The block diagram of MV2 is 
shown in Fig. 2, and it is seen that MV2 uses three separate convolutions. At first, 1 × 1 point-wise convolution is 
used to expand low-dimension to high-dimensional feature maps. Next, 3 × 3 depth-wise separable convolution 
is used, followed by an activation function to achieve spatial filtering of the higher-dimensional data. Finally, 
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Fig.  2.  Block diagram of MV2 block.

 

Fig.  1.  Block diagram of Inception Block used in Proposed architecture.
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1 × 1 point-wise convolution is used to project back to the low-dimensional subspace. The initial and final 
feature map is added using a residual connection.

We denote X as the input tensor to the inverted bottleneck block, Cin represents the number of input 
channels, and Cout represents the number of output channels. The first step involves expanding the number of 
channels by using a 1 × 1 convolution followed by a non-linear activation function. Let t denote the expansion 
factor. The output of this layer is expressed as

	 Xexpanded = Swish
(
Conv2D(X, Cin × t, 1 × 1)

)
� (3)

Later, depthwise separable convolution is applied of kernel size K × K  is applied with a depth multiplier α on 
each input channel. The output of this depthwise convolution layer is expressed as

	 Xdepthwise = DepthwiseConv2D(Xecpanded, K × K, depth_multiplier = α)� (4)

Following the depthwise convolution, a 1 × 1 pointwise convolution is applied to combine information across 
channels to reduce the output channel to Cout. The output is expressed as

	 Xout = Conv2D(Xdepthwise, Cout, 1 × 1) .� (5)

Finally, a residual connection is added between the input and output of the block. The output is expressed as

	 Xout = Xout + X .� (6)

Vision transformer block
With the success of transformer architecture in the natural language field, Dosovitskiy et al.11 used transformer 
architecture in image recognition task and showed that it achieves the same performance accuracy as CNN. The 
ViT transformer architecture consists of a multi-head attention (MHA)40 layer and a multi-layer perceptron 
(MLP) as shown in Fig. 3. Instead of dividing the image into a number of patches followed by a linear projection 
of patches, we pass the input image through the convolutional layer to extract the local features. The local features 
are divided into a number of patches, and the patches are forwarded to the transformer block. In transformer 
architecture, MHA and MLP are the main components, which are preceded by one normalization layer and 
followed by residual connection.

The self-attention mechanism calculates attention scores that represent the importance of each patch in 
the image. These attention scores are used to compute a weighted sum of the values (representations) of all 
patches, producing an attention output. Let’s denote the input to the self-attention mechanism as X, where X has 
dimensions N × d, with N being the number of tokens in the sequence and d being the dimensionality of the 
token embeddings. The self-attention mechanism computes attention scores as follows:

•	 Query, key, and value matrices: Three matrices W Q, W K  and W V , are learned parameters mapping the 
input X to query, key, and value spaces, respectively. These matrices have dimensions d × d.

•	 Query, key, and value projections: Compute query Q = X.W Q, key K = X.W K  and value V = X.W V

•	 Scaled Dot-Product Attention: Compute the scaled dot-product attention scores 

Fig.  3.  Architecture of transformer block.
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Attention(Q, K) = softmax

(
QKT

√
d

)
� (7)

•	 Attention Output: Compute the attention output A = Attention(Q, K).V

The attention output A has dimensions N × d, representing the weighted sum of values.
The ViT architecture consists of a feed forward neural network as MLP separated by a nonlinear activation 

function. The activation function used is Swish. The output is represented as

	 MLP = Swish(A.W + b)� (8)

where W is the learnable weight matrices and b is the bias.

Inception enhanced vision transformer architecture
The main objective of this work is to hybridize the Inception block with ViT architecture to identify the diseases 
in the plants. The inception block used in the architecture extracts the local features, and the ViT architecture 
extracts the global feature information. The inception-enhanced ViT architecture consists of a Convolution 
block, an InceptionA block, followed by an InceptionB block, an Inverted bottleneck Block (MV2), Vision 
Transformer block (ViT), and Global Average Pooling.

The architecture of Inception-enhanced ViT is shown in Fig. 4. The first layer is the input layer, which takes 
the RGB images of size 256 × 256 × 3 as input. The next layer used is a convolutional layer with filter size 3 × 3. 
The output generated in this layer is of size 128 × 128 × 16. The output of the convolution layer is forwarded to 
the InceptionA block, followed by the InceptionB block for multilevel feature extraction. InceptionA uses filter 
size of 1 × 1,3 × 3 depthwise convolution, and 3 × 3 max-pooling layer as shown in Fig.  1. The InceptionB 
block consist of 1 × 1,7 × 7 depthwise convolution, and 3 × 3 avg-pooling layer as shown in Fig. 1. The output 
generated after the InceptionB block is of size 128 × 128 × 192. The output of each layer is concatenated 
together and forwarded as the input of the next layer. Next, a number of MV2 blocks is used, which enhances 
the feature reduction as well as reduces the number of computations. The output features of the MV2 block are 
then divided into a number of patches of size n × n (n = 2, 4, 8) and passed through the transformer block for 
global feature extraction. Non-overlapping patch embedding technique is used in this work, where the input 
feature map is divided into a number of patches determined by the patch size. The output of the transformer 
block is then passed through a convolution layer and a global average pooling layer, which converts the output 
of the convolution layer into a 1D vector. Finally, a dense layer is used with a softmax activation function and 
output neuron, which is equal to the number of classes in the dataset. A brief description of the parameter 
used along with the output size of each layer is shown in Table 2. For an instance of 5 classes, the required 
parameter is 904,693, which varies with regard to the number of output classes in the dataset. The size of the 
required parameter is 3.72MB. The activation function used in the convolution block is ReLu, and in MV2 and 
transformer block is Swish.

Experimental results and analysis
Dataset
Five open-source publicly available dataset is used to evaluate the performance of the proposed model. The 
dataset used are Apple leaf image dataset41, rice disease dataset34, ibean dataset36, PlantVillage dataset14, and 
Cassava dataset42. The images in the dataset are of different categories, such as laboratory-conditioned images, 
field images, images with multiple leaves and images with complex backgrounds. The images used in this work 
is resized into 224 × 224. The purpose of using multiple dataset is to evaluate the robustness of the proposed 
model.

Fig.  4.  Block diagram of proposed Inception-Enhanced ViT architecture.
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Apple leaf image dataset41 is the first dataset that is used in this work, which is a freely available dataset and 
consists of 1820 images. Table 3 gives a brief dataset description along with number of classes. Figure 5 shows 
the sample images from the dataset.

The second dataset used is the rice leaf diseases dataset34, which consists of 5932 images of four categories 
of rice diseases. The images in this dataset were captured in a real field. Figure 6 shows the sample images of the 
dataset, and Table 3 shows the description of the dataset.

The third dataset used is ibean dataset36, which consists of three classes of images. The images in this dataset 
were captured in real-time field conditioned, and multiple leaves were present in single images. Table 4 and Fig.  
7 show the dataset description and sample images from the dataset.

Fig.  5.  Sample images from Apple Leaf Dataset41.

 

Apple dataset41 Rice dataset34

Disease name Number of images Disease name Number of images

Healthy 515 Bacterial blight 1580

Multiple disease 91 Blast 1440

Scab 592 Brown spot 1600

Apple Rust 622 Tungro 1308

Total 1820 Total 5932

Table 3.  Apple41 and Rice34 dataset description.

 

Layer name Output Parameter

Input Layer 256 × 256 × 3 0

Conv2D 128 × 128 × 16 448

Inception A 128 × 128 × 160 9472

Inception B 128 × 128 × 192 53104

MV2 128 × 128 × 16 7264

MV2 64 × 64 × 24 1920

MV2 64 × 64 × 24 3216

MV2 32 × 32 × 48 4464

ViT 32 × 32 × 80 270048

MV2 16 × 16 × 80 28640

ViT 16 × 16 × 96 493472

Conv2D 16 × 16 × 320 31040

Global average pooling2D 320 0

Dense 4 1605

Total – 904,693

Table 2.  Layers and parameter details of the proposed model.
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The fourth dataset used is the cassava dataset42, which consists of one healthy and four disease-class images. 
The images in the dataset were captured with complex backgrounds. Figure 8 shows the sample images, and 
Table 4 shows the detailed dataset description.

The images in the fifth dataset are from the plantvillage dataset14. PlantVillage dataset consists of 54305 
images and 38 different categories of diseases. In this work, we have considered only 7 categories of potato and 
corn images. Figure 9 contains the sample images, and Table 5 summarizes the detailed dataset information.

Evaluation matrics
Performance evaluation matrices determine how effectively the proposed model classifies the images. In this 
paper, we have used several performance matrices such as accuracy, sensitivity, specificity, precision, False 
Positive Rate (FPR), False Negative Rate (FNR), f1-score, and Matthews Correlation Coefficient (MCC). The 
proportion of accurately predicted images to all images is called accuracy.

	
Accuracy = TP + TN

TP + FP + TN + FN
� (9)

Fig.  7.  Sample images from ibean dataset36.

 

Ibean dataset36 Cassava dataset42

Disease name Number of images Disease name Number of images

Angular leaf spot 432 Cassava mosaic disease (CMD) 2658

Bean Rust 436 Cassava bacterial blight (CBB) 466

Healthy

428 Cassava green mite (CGM) 773

Cassava brown streak disease (CBSD) 1443

Healthy 316

Total 1296 Total 5656

Table 4.  Ibean36 and Cassava42 dataset description.

 

Fig.  6.  Sample images from Rice Leaf dataset34.
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Precision is defined as the proportion of true predictions to the total number of positive predictions of the model.

	
Precision = TP

TP + FP
� (10)

Sensitivity is defined as the proportion of positive classes classified as positive to the total number of positive 
classes.

	
Sensitivity = TP

TP + FN
� (11)

FPR is the ratio of false predictions with negative values.

Disease name Number of images

Corn Gray leaf spot 513

Corn Common rust 1192

Corn healthy 1162

Corn Northern Leaf Blight 985

Potato Early blight 1000

Potato Healthy 152

Potato Late blight 1000

Total 6004

Table 5.  PlantVillage (Corn and Potato) dataset14 description.

 

Fig.  9.  Sample images from PlantVillage dataset14.

 

Fig.  8.  Sample images from Cassava dataset42.
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FPR = FP

FP + TN
� (12)

FNR is the ratio of false negative values with positive values.

	
FNR = FN

FN + TP
� (13)

F1-score is defined as the harmonic mean of precision and recall.

	
F 1 − score = 2

(Precision × Recall
Precision + Recall

)
,� (14)

where TP is true positive, which is defined as the correctly predicted positive along with the original class as 
positive. FP indicates false positive, which is defined as images supposed to be positive but predicted negatively. 
TN is true negative, indicating images are negative and predicted as negative. FN is false negative, indicating 
images are negative but predicted as positive.

Results and discussion
In this section, we evaluate the performance of the proposed architecture to identify diseases in plants without 
specifying the disease class. We consider the following five different publicly available plant disease datasets: 
apple leaf dataset41, rice leaf dataset34, ibean dataset36, cassava dataset42 and plantvillage dataset14. We set the 
learning rate of the proposed model as 0.001, the batch size as 32, and the training epoch as 100. Firstly, the 
performance of the model is evaluated in terms of accuracy and loss. Table 6 presents the training and validation 
accuracy, training and validation loss on five datasets with 100 epochs. Figures 10, 11, 12, 13 and, 14 shows the 
progression of accuracy and loss on each dataset using the Adam optimizer after 100 epochs. From the figures, 
we observe that the accuracy increases and the loss decreases with respect to epochs. From the accuracy and loss 
curve, we find that after a certain number of epochs, the accuracy and loss stabilize, thereby achieving optimum 
results.

We have also investigated the model performance with other key performance matrices such as sensitivity, 
specificity, precision, FPR, FNR, f1-score, and mathews correlation coefficient (MCC). Table 7 summarizes the 
matrices on each dataset. Moreover, the performance of the proposed model on test images is shown in terms 
of the confusion matrix.

Fig.  10.  Performance on Apple Leaf dataset41.

 

Dataset Train Acc. Train Loss Val Acc. Val Loss

Apple41 0.9972 0.3728 0.9923 0.3732

Rice34 1.0000 0.3328 0.9970 0.3528

Ibean36 0.9965 0.3028 0.9702 0.4028

Cassava42 0.9247 0.4228 0.7651 0.6328

PlantVillage14 0.9973 0.1347 0.9941 0.1836

Table 6.  Performance of Inception-Enhanced ViT architecture on different datasets.
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Fig.  13.  Performance on Cassava dataset42.

 

Fig.  12.  Performance on Ibean leaf dataset36.

 

Fig.  11.  Performance on Rice dataset34.
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The confusion matrices of apple41, rice34, ibean 36, cassava42 and plantvillage datasets14 are drawn and shown 
in Figs.  15, 16 and 17. From the confusion matrix, it is observed that the proposed model has very few false 
positives and false negatives in all the datasets.

Performance comparison with different optimizers
We evaluate and compare the performance of the proposed Inception-ViT architecture with several optimizers 
to find which optimizer provides the best performance. We select the following optimizers: SGD43, Adam44, 
RMSProp43, Adamax43, Adadelta43, and Ftrl45. From Table 9, we observe that Adam and RMSProp optimizer 
provide the highest performance accuracy. Moreover, we can conclude that the Adam optimizer outperforms 
others for all the datasets14,34,36,41,42.

Fig.  15.  Confusion matrix on Apple and Rice dataset.

 

Dataset Sensitivity Specificity Precision FPR FNR F1-score MCC

Apple41 0.9715 0.9971 0.9821 0.0028 0.0270 0.9767 0.9741

Rice34 0.9950 0.9983 0.9950 0.0017 0.0049 0.9950 0.9933

Ibean36 0.9690 0.9845 0.9690 0.0155 0.0309 0.9690 0.9536

Cassava42 0.6717 0.9317 0.7096 0.0682 0.3292 0.6855 0.6237

PlantVillage14 0.9945 0.9965 0.9901 0.0011 0.0054 0.9937 0.9912

Table 7.  Performance metrics of the proposed model on different datasets.

 

Fig.  14.  Performance on PlantVillage dataset14.
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Performance with the number of patches
Moreover, to show the effectiveness of patch sizes in the proposed Inception with ViT architecture for the 
identification of plant diseases, we provide a comparative analysis with different patch sizes. We consider the 
following patch sizes: 2 × 2, 4 × 4, 8 × 8, and 16 × 16. From Table 10, we can see that the patch size has less 
impact on the performance. However, using patch size 8 × 8 and 4 × 4 provides a superior performance as 
compared to patch size 2 × 2 and 16 × 16, respectively.

Comparison with state-of-art deep learning models
In order to verify the robustness of the proposed model, we have compared the performance of the proposed 
model with several state-of-the-art deep learning architectures. The performance comparison of the proposed 
model with different deep learning models has been summarized in Table 8 after 100 epochs. From Table 8, it 
is observed that the proposed Inception-enhanced Vision Transformer model outperforms the state-of-the-art 
deep learning architectures. Table 8 also compares the parameters required of the deep learning models, and it 
shows that the proposed deep learning model uses fewer parameters. Table 8 shows the size and Floating Point 
Operations per Second (FLOPs) required in each model, and it shows that the proposed model require fewer 
FLOPs as compared to standard DL models. The performance of the proposed model is also compared with 
the other deep learning models in Table 11. From Table 11, it is noted that the proposed model can successfully 
classify diseases in plants with higher performance accuracy as compared to the existing works. Hence, it is 
worthwhile to note that the proposed Inception-enhanced Vision Transformer outperforms state-of-the-art 
deep learning models.

Fig.  17.  Confusion matrix of cassava dataset42.

 

Fig.  16.  Confusion matrix on Ibean and PlantVillage dataset.
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Optimizer Training Acc Training loss Validation Acc Validation Loss

Apple dataset41

 SGD 0.4638 0.9856 0.3891 1.0374

 RMSProp 0.9982 0.1178 0.9968 0.1251

 Adam 0.9972 0.3728 0.9923 0.3732

 Adamax 0.8147 0.8556 0.7023 0.8703

 Adadelta 0.8238 0.5591 0.7176 0.8390

 Nadam 0.8268 0.5621 0.7248 0.8232

 Ftrl 0.8562 0.5394 0.7451 0.8132

Rice dataset34

 SGD 0.8692 0.5346 0.7318 0.6146

 RMSProp 1.000 0.3393 0.9927 0.3567

 Adam 1.000 0.3328 0.9970 0.3528

 Adamax 0.9168 0.4285 0.8527 0.5128

 Adadelta 0.8571 0.5348 0.8038 0.5793

 Nadam 0.8179 0.5249 0.7748 0.6173

 Ftrl 0.8027 0.5294 0.7819 0.6123

Ibean dataset36

 SGD 0.4152 1.0348 0.3750 1.0877

 RMSProp 0.9826 0.3290 0.9294 0.4241

 Adam 0.9965 0.3028 0.9702 0.4028

 Adamax 0.4152 1.0348 0.3750 1.0877

 Adadelta 0.4152 1.0348 0.3750 1.0877

 Nadam 0.4152 1.0348 0.3750 1.0877

 Ftrl 0.4152 1.0348 0.3750 1.0877

Cassava dataset42

 SGD 0.7682 0.6251 0.5025 0.7396

 RMSProp 0.9046 0.4376 0.7381 0.6451

 Adam 0.9247 0.4228 0.7651 0.6328

 Adamax 0.7187 0.6429 0.4627 0.7914

 Adadelta 0.7097 0.6452 0.4607 0.8014

 Nadam 0.7285 0.6104 0.4821 0.7552

 Ftrl 0.7047 0.6625 0.4663 0.7936

PlantVillage dataset14

 SGD 0.8732 0.4753 0.8271 0.5129

 RMSProp 0.9952 0.1393 0.9918 0.2178

 Adam 0.9973 0.1347 0.9942 0.1836

 Adamax 0.9263 0.4621 0.8575 0.4726

 Adadelta 0.8357 0.4961 0.7817 0.6129

 Nadam 0.9136 0.3961 0.8537 0.4327

 Ftrl 0.8436 0.4853 0.7971 0.5326

Table 9.  Performance comparison with different optimizers.

 

Models Accuracy (%) Precision (%) Recall (%) F1-score (%) Parameter (M) Size (MB) FLOPs (B)

VGG16 95.65 95.54 95.72 95.62 138.4 527.79 31.04

VGG19 98.87 98.23 98.45 98.34 143.7 548.05 39.38

InceptionV3 97.27 97.31 97.28 97.29 23.9 103.61 5.72

ResNet50 97.98 97.68 97.82 97.75 25.6 97.49 8.26

EfficientNetB0 99.62 99.66 99.63 99.45 5.3 20.17 820.4

MobileNetV2 93.52 93.23 93.48 93.35 3.5 13.37 640.6

Inception
Enhanced
VIT

99.42 99.27 99.34 99.30 0.90 3.72 29.34

Table 8.  Performance comparison of the proposed model with standard DL models under similar training 
conditions on PlantVillage Dataset.
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Conclusion
In this paper, we propose an inception-enhanced Vision Transformer architecture to identify diseases in plant 
leaves. The fusion of inception in ViT architecture has the benefit of having both local and global feature 
extraction, which increases the performance of the model. In fact, the ViT blocks in the proposed model 
accelerate the training, and the attention model in ViT focuses on the meaningful regions in the input image. 
An investigation is performed with different patch sizes to achieve the optimal architecture. The results reveal 
that Inception-enhanced ViT with 4 patch size gives the best performance accuracy. The proposed inception-
enhanced ViT architecture is experimented on five different datasets, which are unbalanced datasets, images in 
the dataset with complex backgrounds, and images with multiple leaves. The experimental result shows that the 
model performance achieves impressive results with an accuracy rate of 99.23%, 99.70%, 97.02%, 76.51%, and 
99.41% on apple41, rice34, ibean36, cassava42, and plantvillage datasets14, respectively. The performance in the 
cassava dataset42 is lower than that of the other dataset. This is because the dataset is unbalanced and the presence 

Paper Ref. DL model used No of class Performance Parameter

Mohanthy et al.14 Transfer learning
(GoogleNet) 38 99.34 6.7M

Ferentinos et al.15 Transfer Learning
(VGG16, Overfeat) 58 99.53 138.4M

Waheed et al.46 Dense CNN 3 98.06 NA

Pandey et al.24 DADCNN-5 38 99.93 NA

Fang et al.47 ResNet-50 10 95.61 25.6M

Thakur et al.16 VGG-ICNN NA 99.16 6M

I Kunduracioglu48 EfficientNetV2_m 4 100 54.4M

I Kunduracioglu49 Res2Next50 10 99.85 NA

Dheeraj et al.17 LWDN NA 99.37 1.5M

I Kunduracioglu et al.50 CNN with ViT 4 100 NA

Proposed Inception-Enhanced ViT 7 99.41 0.90M

Table 11.  Performance comparison of the proposed model with existing work on PlantVillage dataset14.

 

Patch size Training loss Training Acc Validation loss Validation Acc

Apple dataset41

 2 0.3741 0.9912 0.3302 0.9874

 4 0.3828 0.9914 0.3722 0.9914

 8 0.3728 0.9972 0.3732 0.9923

 16 0.3875 0.9905 0.3826 0.9841

Rice dataset34

 2 0.3354 0.9942 0.3671 0.9901

 4 0.3249 1.0000 0.3521 0.9942

 8 0.3228 1.0000 0.3528 0.9970

 16 0.3485 0.9912 0.3662 0.9897

Ibean dataset36

 2 0.3334 0.9843 0.4264 0.9579

 4 0.3157 0.9904 0.4178 0.9617

 8 0.3028 0.9965 0.4028 0.9702

 16 0.3394 0.9808 0.4349 0.9496

Cassava dataset42

 2 0.4417 0.8846 0.6579 0.7319

 4 0.4259 0.9155 0.6297 0.7552

 8 0.4228 0.9247 0.6328 0.7651

 16 0.4491 0.8808 0.6592 0.7296

PlantVillage dataset14

 2 0.1507 0.9904 0.2142 0.9902

 4 0.1358 0.9947 0.1857 0.9926

 8 0.1347 0.9973 0.1836 0.9941

 16 0.2268 0.9923 0.1926 0.9917

Table 10.  Performance comparison with different patch sizes.
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of multiple leaves in a single image. Moreover, the images in the dataset are highly correlated with each other. 
In51, the authors recorded an accuracy rate of 52.87% and 46.24% using plain and deep residual convolutional 
neural networks in an imbalanced cassava dataset42. In comparison with this, our proposed model achieved a 
much higher performance accuracy rate in the imbalanced dataset. The number of parameters required in the 
proposed model is much less and can be easily deployable in small devices like smartphones. Furthermore, the 
likelihood of human error and disease transmission is decreased by quick and automatic identification. Moreover, 
the presence of agro experts in remote areas is very few; the proposed inception-enhanced Vision Transformer 
model provides significant benefits to the farmers to reduce crop yield loss and identify the diseases in plants in 
an easy manner. The future direction of this work can be extended to a real-time AI model by integrating IoT-
enabled smart cameras for continuous, automated disease detection in farms. Additionally, federated learning 
can be employed, allowing the model to train across distributed farm data without sharing raw images.

Data availability
The datasets generated and/or analysed during the current study are available in Kaggle repository at: ​h​t​t​p​s​:​​/​/​w​
w​w​.​​k​a​g​g​l​e​​.​c​o​m​/​d​​a​t​a​s​e​​t​s​/​p​i​a​​n​t​i​c​/​p​​l​a​n​t​p​a​​t​h​o​l​o​​g​y​-​a​p​p​​l​e​-​d​a​t​​a​s​e​t​​h​t​t​p​​s​:​/​/​w​w​​w​.​k​a​g​g​​l​e​.​c​o​m​​/​d​a​t​a​​s​e​t​s​/​t​​h​e​r​e​a​l​​o​i​s​e​/​b​​e​a​
n​-​d​​i​s​e​a​s​e​​-​d​a​t​a​s​​e​t​h​​t​t​p​s​:​​/​/​w​w​w​.​​k​a​g​g​l​e​​.​c​o​m​/​d​​a​t​a​s​e​​t​s​/​s​i​n​​a​d​u​n​k​2​​3​/​b​e​h​z​​a​d​-​s​a​​f​a​r​i​-​j​​a​l​a​l​​h​t​t​p​s​​:​/​/​w​w​​w​.​k​a​g​g​​l​e​.​c​o​m​​/​d​a​t​
a​s​​e​t​s​/​m​o​h​i​t​s​i​n​g​h​1​8​0​4​/​p​l​a​n​t​v​i​l​l​a​g​e, ​h​t​t​p​s​:​​/​/​w​w​w​.​​k​a​g​g​l​e​​.​c​o​m​/​d​​a​t​a​s​e​​t​s​/​n​i​r​​m​a​l​s​a​n​​k​a​l​a​n​a​​/​c​a​s​s​​a​v​a​-​l​e​​a​f​-​d​i​s​​e​a​s​e​-​c​​l​a​
s​s​i​f​i​c​a​t​i​o​n.
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