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This research investigates the impact of bacterial growth on the pH of culture media, emphasizing its 
significance in microbiological and biotechnological applications. A range of sophisticated artificial 
intelligence methods, including One-Dimensional Convolutional Neural Network (1D-CNN), Artificial 
Neural Networks (ANN), Decision Tree (DT), Ensemble Learning (EL), Adaptive Boosting (AdaBoost), 
Random Forest (RF), and Least Squares Support Vector Machine (LSSVM), were utilized to model 
and predict pH variations with high accuracy. The Coupled Simulated Annealing (CSA) algorithm was 
employed to optimize the hyperparameters of these models, enhancing their predictive performance. 
A robust dataset comprising 379 experimental data points was compiled, of which 80% (303 points) 
were used for training and 20% (76 points) for testing. The study focuses on three bacterial strains 
including Pseudomonas pseudoalcaligenes CECT 5344, Pseudomonas putida KT2440, and Escherichia 
coli ATCC 25,922 cultured in Luria Bertani (LB) and M63 media, across varying initial pH levels, time 
intervals, and bacterial cell concentrations (OD600). Key input variables for the models included 
bacterial type, culture medium type, initial pH, time (hours), and bacterial cell concentration, all 
critical to pH dynamics. Sensitivity analysis using Monte Carlo simulations revealed bacterial cell 
concentration as the most influential factor, followed by time, culture medium type, initial pH, 
and bacterial type. The dataset was rigorously validated before training to ensure its suitability 
for predictive modeling. Evaluation of model performance demonstrated that the 1D-CNN model 
exhibited enhanced predictive precision, attaining the minimal RMSE and the maximum R² values 
and MAPE percentages in both training and testing phases. These findings underscore the efficacy of 
artificial intelligence techniques, particularly 1D-CNN, in precisely predicting pH changes in culture 
media due to bacterial growth. This methodology provides a reliable, cost-effective, and efficient 
alternative to traditional experimental approaches, enabling researchers to forecast pH behavior with 
greater confidence and reduced experimental effort.
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Maintaining pH homeostasis plays a crucial role in cellular metabolism, and its significance becomes evident 
through multiple biochemical and physiological lenses1,2. One key aspect is that the structure and function of 
biomacromolecules particularly proteins and enzymes are highly sensitive to pH, as even minor deviations can 
lead to conformational changes that impair biological activity3. Furthermore, pH directly influences the kinetics 
and thermodynamics of many metabolic reactions, especially those involving proton transfer, thus governing 
the directionality and efficiency of crucial biochemical pathways4. Notably, pH fluctuations can substantially 
affect energy metabolism, as the proton motive force is central to ATP synthesis via oxidative phosphorylation5. 
In the context of bacterial growth, understanding how microbial metabolism alters the pH of culture media is 
vital not only for optimizing growth conditions in industrial and clinical microbiology but also for elucidating 
microbial interactions, biofilm formation, and pathogenesis. Modeling these dynamics provides critical insights 
into microbial ecology and supports the development of pH-controlled bioprocesses and therapeutic strategies6.

In eukaryotic cells, molecular mechanisms are in place to regulate intracellular pH within a specific range 
across different subcellular compartments. For instance, mitochondria and chloroplasts are surrounded by 
cytoplasm, which tightly controls pH homeostasis. In contrast, bacteria thrive in a wide variety of environments, 
and the pH of their surroundings shapes their lifestyle, forming the basis for categorizing them as acidophiles 
(pH 1–3), alkaliphiles (pH 10–13), or neutrophiles (pH 5.5–9). Nevertheless, like eukaryotes, bacteria generally 
maintain a near-neutral intracellular pH to support metabolic activity and preserve cellular integrity. Their 
ability to regulate pH involves a range of mechanisms to sense and adapt to extracellular pH fluctuations7. 
Several factors can influence environmental pH changes. The initial pH and composition of the growth medium 
play a fundamental role, followed by the bacterial growth phase and the organism’s physiology and optimal pH 
range. In addition, microbial metabolism itself can alter extracellular pH. As a result, the growth of one bacterial 
strain may impact the proliferation of neighboring strains in a shared ecosystem, potentially shaping the fate of 
entire microbial populations8.

Understanding pH homeostasis in this context can offer practical applications in fields such as bioremediation 
or the study of pathogenic bacterial behavior. While many studies have explored the effects of initial pH on 
bacterial growth or specific metabolite production, fewer have focused on how pH evolves during microbial 
growth. The aim of the present study was to describe and elucidate pH changes throughout bacterial growth and 
to identify the factors driving these changes. As a proof of concept, we demonstrated that in silico predictions 
of pH shifts using a well-curated genome-scale metabolic model of Pseudomonas putida KT2440 are consistent 
with experimentally observed pH dynamics, at least in media containing glucose, glycerol, or citrate as carbon 
sources9. Sánchez-Clemente and team studied pH effects on growth and extracellular pH changes in Escherichia 
coli ATCC 25,922, Pseudomonas putida KT2440, and Pseudomonas pseudoalcaligenes CECT 5344, selected for 
cyanide assimilation under alkaline conditions. They tested initial pH (6, 7, 8 for E. coli and P. putida; 7.5, 8.25, 9 
for P. pseudoalcaligenes) in LB-medium, noting pH convergence to strain-specific values by stationary phase10. 
In glucose minimal medium, Pseudomonadaceae pH remained stable, but E. coli’s pH dropped to 4.5 at initial 
pH 6, stopping growth, though higher pH allowed recovery. Carbon sources affected pH: glucose and glycerol 
stabilized it, while citrate caused alkalinization, matching P. putida KT2440 model predictions.

The observed pH fluctuations during bacterial growth can be attributed to the metabolic activities of the 
microorganisms, which modulate their surrounding environment through the consumption of nutrients and 
the excretion of metabolites. For instance, species like Lactobacillus plantarum produce lactic acid as a metabolic 
by-product, thereby reducing the medium pH, while others such as Corynebacterium ammoniagenes produce 
ammonia via urease activity, which increases the pH of the medium11. These opposing mechanisms contribute to 
a diverse range of pH shifts depending on the bacterial strain and the availability of carbon and nitrogen sources 
such as glucose and urea.

Furthermore, the impact of these metabolic products on bacterial viability can manifest as beneficial (positive 
feedback) or detrimental (negative feedback) effects. For example, the accumulation of alkaline metabolites 
by Pseudomonas veronii despite its preference for acidic environments can lead to a phenomenon known as 
ecological suicide, where the population inadvertently alters the pH beyond its tolerance range, resulting in 
its own extinction11. These feedback mechanisms illustrate how metabolic pathways intricately influence pH 
dynamics, supporting the predictive capacity of data-driven models like CNN in capturing the nonlinear 
relationship between bacterial growth and environmental pH. Incorporating such metabolic insights aligns the 
modeling outcomes with known biochemical behaviors and strengthens the interpretability of the predictions.

Collectively, experimental research has generated a robust dataset elucidating the pH dynamics of culture 
media influenced by bacterial growth under diverse conditions. These data serve as vital inputs for microbiological 
modeling and process optimization, while also facilitating data-driven predictive approaches, such as artificial 
intelligence, to enhance the efficiency of pH prediction with reduced experimental demands.

While prior studies have examined the pH changes in culture media due to bacterial activity, comprehensive 
datasets encompassing various bacterial strains and media types remain limited. Consequently, there is a 
pressing need to systematically gather extensive pH data across different bacterial types, culture media, initial 
pH levels, time intervals, and bacterial cell concentrations. Given the critical role of pH in microbiological 
processes and biotechnological applications, accurately predicting pH variations in culture media presents a 
complex challenge due to the interplay of factors such as bacterial type, culture medium, initial pH, time, and 
cell concentration. The pH of culture media is a key parameter in optimizing microbial growth conditions, 
bioreactor design, and bioprocess development, highlighting the necessity for precise pH predictions in practical 
applications. Traditional experimental methods for measuring pH, although dependable, are often resource-
intensive and time-consuming, necessitating advanced computational techniques capable of providing rapid 
and reliable predictions.

This study bridges this gap by employing a suite of artificial intelligence models, including One-Dimensional 
Convolutional Neural Network (1D-CNN), Artificial Neural Networks (ANN), Decision Tree (DT), Adaptive 
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Boosting (AdaBoost), Random Forest (RF), Ensemble Learning (EL), and Least Squares Support Vector 
Machine (LSSVM), to simulate and predict pH variations in Luria Bertani (LB) and M63 media influenced 
by three bacterial strains: Escherichia coli ATCC 25,922, Pseudomonas putida KT2440, and Pseudomonas 
pseudoalcaligenes CECT 5344. To optimize the performance of these models, their hyperparameters were fine-
tuned using the Coupled Simulated Annealing (CSA) algorithm. The models were developed and validated using 
a comprehensive dataset comprising 379 experimental data points, with 303 allocated for training (80%) and 76 
for testing (20%). Thorough dataset validation ensured its suitability for predictive modeling, while sensitivity 
analysis via Monte Carlo simulations assessed the impact of each input parameter on pH outcomes. Model 
performance was meticulously evaluated using statistical metrics and visual representations, identifying the 
1D-CNN model as the most accurate in predicting pH changes. The overall research methodology is depicted 
in Fig. 1.

Although various artificial intelligence (AI) algorithms have been successfully applied in microbial 
systems, the modeling of pH dynamics in bacterial culture media remains largely unexplored. To the best of 
our knowledge, no comprehensive or generalizable predictive model exists for forecasting pH variations across 
diverse bacterial strains and culture conditions. A rare exception is the phenomenological model introduced by 
Ratzke and Gore, which utilized two differential equations to simulate microbial growth and environmental pH 
modification11. Their model captures basic pH-induced feedback loops within mono- and co-culture systems 
and demonstrated emergent behaviors such as ecological suicide, Allee effects, and bistability. However, the 
model remains qualitative and limited to synthetic examples with fixed parameters, without being trained or 
validated against experimental data at a large scale. In contrast, the present study offers a data-driven framework 
based on advanced machine learning models to quantitatively predict pH trajectories based on real experimental 
datasets. Therefore, our approach represents a novel and scalable contribution to microbial pH modeling.

Overview of machine learning and thermodynamic techniques
Machine learning methods
Artificial intelligence techniques have emerged as vital tools in biotechnological research for predictive modeling, 
particularly in scenarios involving complex variable interactions such as pH variation forecasting. In this study, 
seven advanced artificial intelligence algorithms including 1D-CNN, ANN, DT, RF, AdaBoost, EL, and LSSVM 
are utilized to model the pH dynamics of culture media influenced by bacterial growth. These methods excel at 
detecting intricate, non-linear patterns within experimental datasets, offering a robust and efficient alternative 
to conventional experimental approaches due to their computational efficiency, adaptability, and high predictive 
precision.

Artificial neural Network-based models
Convolutional neural networks (1D-CNNs)  1D-CNNs are specialized deep learning architectures designed to 
handle structured data, such as images. They employ convolutional layers to detect localized features like edges, 
patterns, and forms within the input, enabling robust identification of intricate structures and relationships12. 
Mathematically, the convolution operation in a 1D-CNN is expressed as Eq. (1):

	
(f × g) (x, y) =

i=∞∑
i=−∞

i=∞∑
i=−∞

f (i, j) .g(x − i, y − j)� (1)

Here, f denotes the input image or feature map, g represents the convolutional kernel, and (x, y) indicate the 
spatial coordinates of the output feature map.

1D-CNNs are composed of multiple convolutional layers, which progressively extract more complex 
and abstract features13. A key advantage of 1D-CNNs is their ability to process high-dimensional datasets, 

Fig. 1.  Procedure for determining the top-performing data-driven model.
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making them well-suited for tasks such as image classification and object recognition. Pooling layers are often 
incorporated to reduce data dimensionality and prevent overfitting. Due to their powerful capabilities, 1D-CNNs 
have revolutionized computer vision. By stacking several convolutional layers, 1D-CNNs can learn hierarchical 
feature representations, capturing critical details at varying levels of abstraction. This multi-layered approach 
enables 1D-CNNs to effectively interpret complex visual data, driving significant advancements in numerous 
computer vision applications14. 1D-CNN was used because of its strong ability to model spatial patterns and 
hierarchical representations, which are useful when capturing complex, nonlinear interactions among input 
features. Its use in a regression context for biological datasets is relatively novel.

Artificial neural network (ANN)  In this research, ANN used is a Multi-Layer Perceptron (MLP) architecture, 
which consists of an input layer, one or more hidden layers, and an output layer. Typically, an ANN comprises 
an input layer, one or more hidden layers, and an output layer, each composed of interconnected artificial neu-
rons15,16. Within the ANN algorithm, input data is first introduced to the input layer, where neurons in each 
subsequent hidden layer process the outputs from the preceding layer, generating new outputs. This layer-by-lay-
er data transformation persists until the information reaches the output layer, yielding the final prediction or 
outcome17. The result of a neuron in the ANN is mathematically represented as Eq. (2):

	
y =

n∑
i=1

(wi × xi) + b� (2)

where n is the number of input features, wi and xi are the i-th weight and input value respectively, and b is the 
bias term.

The training process of an ANN involves optimizing the weights and biases to minimize the error between 
predicted and actual outputs, typically using a backpropagation algorithm combined with gradient descent18. 
During backpropagation, the error is propagated backward from the output layer to the input layer, adjusting the 
weights and biases based on the calculated gradients. This iterative process continues until the model converges 
to an acceptable error level or a predefined number of epochs is reached. Activation functions, such as sigmoid, 
Rectified Linear Unit (ReLU) are applied to the neurons’ outputs to introduce non-linearity, enabling the ANN 
to solve complex, non-linear problems effectively19. The flexibility and robustness of ANNs make them suitable 
for applications ranging from image recognition to natural language processing, although they may require 
careful tuning and sufficient computational resources to achieve optimal performance. ANN was chosen due 
to its flexibility in capturing nonlinear relationships in multivariate biological data, especially when the input 
variables interact in complex ways. It serves as a baseline deep learning model for comparison.

Tree-based models
Decision tree (DT)  DT are a flexible supervised learning approach suitable for both classification and regres-
sion tasks, producing interpretable models through iterative binary partitioning. This method relies on impurity 
measures, such as the Gini index, information gain, or variance reduction, to determine optimal splits at each 
node. Internal nodes define decision rules based on features, while leaf nodes provide the final predictions. This 
process is illustrated in Eqs. (3) and (4) below:

	
Gini (D) = 1 −

∑
n
i=1p2

i � (3)

	
Gain (D, A) = Entropy (D) − |Dv|

|D| v∈ V alues(A)
Entropy (Dv) � (4)

The splitting criteria assess feature significance by analyzing probabilistic class distributions. This structured 
breakdown facilitates clear visualization of decision pathways and supports both numerical and categorical data 
with minimal preprocessing20,21.

Valued for their transparency and ability to capture nonlinear patterns, DT require careful regularization to 
avoid overfitting, employing techniques such as pruning, restricting tree depth, or integration with ensemble 
methods. Their key strengths built-in feature selection, resilience to outliers, and minimal data assumptions 
make them especially useful in regulated domains like medical diagnostics and financial risk assessment22,23. 
DT was applied for its interpretability and fast training. It provides insights into decision rules and feature 
importance, offering a transparent model that serves as a reference for more complex tree-based methods.

Random forest (RF)  RF method is a powerful supervised learning method widely applied in regression and 
classification tasks. It operates by constructing a multitude of decision trees, each trained on randomly sampled 
subsets of the data and features through techniques like bagging (bootstrap aggregation) and random feature 
selection. This approach fosters diversity by training each tree on a unique random subset, thereby improving 
predictive accuracy and generalization. For regression jobs, the algorithm computes the average of all tree esti-
mations, while for classification, it selects the predominant class through majority voting. The ensemble of trees 
mitigates the overfitting often associated with single DT and maintains strong performance even with noisy data 
or imbalanced classes. Owing to its reliability, versatility, and consistently high performance, RF is extensively 
used in fields such as medical diagnostics, financial modeling, and bioinformatics24,25. The regression output is 
typically derived as the average of individual tree predictions, formulated as Eq. (5):
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ŷ = 1

T

∑
T
i=1ht (x)� (5)

A significant strength of RF lies in its capacity to assess the relative importance of features, providing critical 
insights into the effect of every variable on the model’s forecasts. Compared to more intricate models like deep 
neural networks, RF requires less extensive hyperparameter optimization while delivering robust performance 
on large, high-dimensional datasets. However, its predictive accuracy may occasionally fall short of advanced 
methods like gradient boosting, and it can demand substantial computational resources for very large datasets. 
Nevertheless, RF remains a cornerstone of machine learning due to its combination of interpretability, resilience, 
and dependable performance, making it a preferred choice for a wide range of analytical applications26,27. RF was 
used to reduce overfitting compared to a single decision tree. By aggregating multiple trees, it enhances stability 
and is effective for datasets with noise or variable interactions.

Adaptive boosting (AdaBoost)  AdaBoost is a prominent ensemble learning technique that improves predictive 
accuracy by iteratively training a sequence of weak classifiers, typically basic decision stumps. At each step, the 
algorithm prioritizes data points misclassified in previous iterations, guiding subsequent learners to focus on 
these challenging cases. Each weak learner is assigned a weight reflecting its predictive performance, and the 
final prediction is derived as a weighted combination of all learners’ outputs. This iterative approach enables 
AdaBoost to perform exceptionally well in binary classification and regression tasks with complex or noisy data-
sets28,29. The process for updating the weight of each training sample is expressed as Eq. (6):

	 w
(t+1)
i = w

(t)
i .e−α tyiht(xi)� (6)

Here, wi(t) represents the weight of the i-th sample in the t-th iteration, αt denotes the weight or influence of the 
weak classifier ht at that stage, yi is the true label of the i-th data point, and ht(xi) indicates the prediction made 
by the weak learner ht for that instance. The parameter ​ αt, which quantifies the contribution of the weak learner 
to the final model, is computed as Eq. (7):

	
α t = 1

2 ln
1 − Errort

Errort
� (7)

In this formula, Errort signifies the weighted classification error of the weak learner ht during the t-th iteration. In 
this study, AdaBoost was employed to boost prediction precision by sequentially training multiple weak models, 
with increased focus on difficult-to-predict instances. Cross-validation was used to optimize the learning rate 
and the number of boosting iterations, ensuring a balance between reducing bias and preventing overfitting 
for robust generalization. This method was selected for its effectiveness in handling diverse datasets and 
enhancing the performance of simple classifiers. However, its sensitivity to noisy data and outliers necessitated 
thorough preprocessing to mitigate these challenges30,31. AdaBoost focuses on correcting errors by emphasizing 
misclassified points, making it valuable for capturing difficult patterns in pH behavior. Its iterative learning 
strategy improves accuracy over weak base learners.

Ensemble/Hybrid models
Ensemble Learning (EL) is not a single model but a general strategy that combines multiple base learners to 
improve predictive performance. In this study, a heterogeneous ensemble model was developed by integrating 
three distinct algorithms: Support Vector Machine (SVM) with an RBF kernel, Decision Tree (DT), and 
K-Nearest Neighbors (KNN) with Euclidean distance. The final prediction was made using a weighted voting 
mechanism based on the individual performance of each base learner. This EL model differs from Random Forest 
(RF), which is a homogeneous ensemble method composed exclusively of decision trees trained on random 
subsets of data and features. The inclusion of diverse model types in EL allows leveraging their complementary 
strengths, offering improved generalization compared to single-model or single-family ensembles like RF. These 
approaches are highly effective in reducing overfitting and enhancing generalization, making them well-suited 
for complex, diverse datasets, such as those employed in modeling pH variations in culture media32,33. For 
instance, in a weighted voting framework, the final prediction ŷ ​is determined as Eq. (8):

	
ŷ = argmaxc

∑
T
t=1wt.I(ht (x) = c)� (8)

Here, T represents the total number of models in the ensemble, wt denotes the weight assigned to the t-th model, 
ht(x) signifies the prediction of the t-th model for input x, I(⋅) is an indicator function returning 1 if the condition 
holds and 0 otherwise, and c indicates the possible class labels. A custom ensemble was created by combining 
heterogeneous models (SVM, DT, KNN) to leverage complementary strengths and improve generalization. This 
hybrid ensemble provides robustness in prediction across varied bacterial and media conditions.

Kernel-based model
Support Vector Machine (SVM) is a supervised learning method commonly applied to both classification and 
regression problems. Its fundamental principle is to determine the hyperplane that best separates data points 
from different classes while maximizing the margin between them. For nonlinear problems, SVM employs kernel 
functions to transform data into higher-dimensional space, allowing linear separation. Despite its robustness 
and accuracy, standard SVM involves solving a quadratic programming problem, which can be computationally 
intensive for large datasets. Least Squares Support Vector Machine (LSSVM) modifies the standard SVM by 
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replacing the quadratic optimization with a least squares cost function, transforming the problem into a system 
of linear equations.

Unlike traditional SVM, which relies on quadratic programming, LSSVM utilizes a least squares loss function, 
simplifying the optimization process into solving a system of linear equations. This reformulation substantially 
lowers computational demands, making LSSVM highly effective for handling large datasets34.

The goal of LSSVM is to identify a decision function that reduces prediction errors while preserving the 
model’s ability to generalize. The prediction function in LSSVM is typically formulated as Eq. (9):

	 f (x) = ∅ (x) wT + b� (9)

where w represents the weight vector, ϕ(x) denotes the transformation of input data x into a higher-dimensional 
space via a kernel function, and b is the bias term. Frequently employed kernel functions, such as radial basis 
function (RBF), polynomial, and linear kernels, enable LSSVM to model non-linear patterns in the input data35.

In this research, LSSVM was selected for its robust performance in managing complex, high-dimensional 
datasets with minimal computational overhead. Hyperparameters, including the regularization parameter and 
kernel-specific settings, were fine-tuned through cross-validation to optimize predictive accuracy. Additionally, 
feature scaling was implemented before training to ensure equitable contributions of all features to the kernel-
based similarity computations. LSSVM was selected for its efficiency and effectiveness in modeling nonlinear 
relations with limited data. Its use of least squares formulation simplifies optimization and is computationally 
efficient.

Coupled simulated annealing (CSA) optimization algorithm
Simulated Annealing (SA) is a probabilistic optimization algorithm inspired by the annealing process in 
metallurgy, where a material is heated and then slowly cooled to remove defects and reach a stable state. In 
the context of optimization, Simulated Annealing (SA) replicates this behavior by randomly searching the 
solution space and occasionally accepting inferior solutions with a defined probability, allowing the algorithm 
to avoid becoming trapped in local minima. Over time, the algorithm reduces its “temperature” parameter, 
gradually focusing on more promising areas of the solution space. This makes SA particularly useful for solving 
complex, multimodal, and non-convex optimization problems. CSA algorithm represents an evolved version 
of the conventional Simulated Annealing (SA) technique. Unlike standard SA, which navigates the solution 
space through a single trajectory and employs probabilistic acceptance of suboptimal solutions to escape local 
minima, CSA advances this method by executing multiple concurrent search processes36,37. These processes 
are interconnected via a shared acceptance criterion, fostering solution diversity and markedly enhancing 
convergence speed and reliability. By incorporating this coupling mechanism, CSA reduces the chances of early 
convergence and boosts the probability of identifying the global optimum37,38.

The primary advantage of CSA lies in its effective balance of exploration and exploitation. Each independent 
search generates new potential solutions, but their acceptance is orchestrated globally through an entropy-driven 
control mechanism. This coordination maintains an optimal level of randomness or “temperature” throughout 
the optimization process. Consequently, CSA excels in tackling high-dimensional, intricate, and multimodal 
optimization challenges where conventional approaches may falter. Its applications extend to fields such as 
engineering design, machine learning hyperparameter optimization, and modeling complex systems39.

Data gathering and evaluation indices
Data collection description
The dataset utilized for constructing the artificial intelligence models in this study was compiled from 
experimental investigations focused on assessing the pH variations in culture media influenced by bacterial 
growth across diverse conditions. A total of 379 experimental data points were gathered, incorporating 
critical input variables such as bacterial type, culture medium type, initial pH, time (hours), and bacterial cell 
concentration (OD600). The bacterial strains examined include Pseudomonas putida KT2440, Escherichia coli 
ATCC 25,922, and Pseudomonas pseudoalcaligenes CECT 5344, cultured in LB and M63 media. The bacterial 
strains examined include Pseudomonas putida KT2440, Escherichia coli ATCC 25,922, and Pseudomonas 
pseudoalcaligenes CECT 5344, cultured in Luria Bertani (LB) and M63 media. The bacterial strains selected 
for this study including Escherichia coli ATCC 25,922, Pseudomonas putida KT2440, and Pseudomonas 
pseudoalcaligenes CECT 5344 were chosen based on their relevance to microbiological and biotechnological 
research. E. coli ATCC 25,922 serves as a standard model organism frequently used in laboratory studies due to 
its well-characterized physiology. P. putida KT2440 is widely recognized for its metabolic versatility and its role 
in bioremediation and synthetic biology. P. pseudoalcaligenes CECT 5344, on the other hand, is an alkaliphilic 
bacterium known for its ability to degrade cyanide under basic conditions. Together, these strains represent a 
broad spectrum of physiological traits and environmental adaptability, making them suitable candidates for 
evaluating pH variation under diverse growth conditions. This comprehensive dataset establishes a strong 
foundation for developing and evaluating predictive models capable of simulating pH dynamics under a variety 
of microbial and environmental conditions10. In order to introduce the bacterial strains in the developed models, 
one-hot encoding that can transform each category into a vector was used. It is essential since many algorithms 
cannot directly process categorical data. For this purpose, a vector in which all elements are 0 except for one 
position was used. This position was set to 1 showing the presence of that type of bacterial strain.

Table 1 provides a detailed overview of the experimental systems analyzed in this study, summarizing their 
key characteristics and experimental parameters for modeling pH behavior. The dataset, encompassing 379 
observations, covers initial pH values ranging from 6 to 9, time intervals from 0 to 68.27 h, OD600 between 
0 and 1.7184, and system pH values spanning 4.59 to 9.03. This extensive dataset, capturing diverse bacterial 
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strains, media types, and experimental conditions, provides a solid platform for building highly precise artificial 
intelligence models capable of accurately predicting pH variations across different microbial growth scenarios 
and environmental settings.

Model evaluation indices
To assess and compare the predictive capabilities of the developed models, a range of essential performance 
metrics were calculated for each modeling technique. The models evaluated in this study encompass artificial 
intelligence methods, including 1D-CNN, ANN, RF, DT, EL, AdaBoost, LSSVM. These algorithms were applied 
to predict the pH variations in culture media influenced by bacterial growth, using input variables such as 
bacterial type, culture medium type, initial pH, time, and bacterial cell concentration (OD600). To measure the 
precision and reliability of each model across both training and testing phases, key evaluation metrics, including 
the coefficient of determination (R²), mean absolute percentage error (MAPE%) and root mean square error 
(RMSE), were determined40–42. These are defined in Eqs. (10)–(13):

Relative error percent:

	
RE% =

(
opred − oexp

oexp

)
× 100� (10)

Mean absolute percentage error:

	
MAP E% = 100

N

N∑
i=1

(∣∣∣∣
oi

pred − oi
exp

oi
exp

∣∣∣∣
)

� (11)

Mean square error:

	
MSE =

N∑
i=1

(
oi

pred − oi
exp)2

N

� (12)

Determination coefficient:

	

R2 = 1 −

N∑
i=1

(
oi

pred − oi
exp)2

N∑
i=1

(oi
exp − o)2

� (13)

Type of Bacteria Culture Medium Initial pH
Number of Data 
Points Time Range (hr)

Bacterial Cell 
Concentration Range 
(OD600)

System 
pH 
Range

Escherichia coli ATCC 25,922 LB 6 20 0–39.11 0.0028–1.5078 6.02–8.69

Escherichia coli ATCC 25,922 LB 7 20 0–39.11 0.0028–1.5104 6.48–8.86

Escherichia coli ATCC 25,922 LB 8 20 0–39.11 0.0028–1.5194 6.98–9.03

Escherichia coli ATCC 25,922 M63 6 20 0–46.13 0–1.1589 4.59–6.27

Escherichia coli ATCC 25,922 M63 7 20 0.05–46.14 0–1.3569 6.02–7.08

Escherichia coli ATCC 25,922 M63 8 20 0.05–46.20 0–1.4893 6.58–7.76

Pseudomonas putida KT2440 LB 6 18 0–42.12 0.0028–1.7128 6.25–8.75

Pseudomonas putida KT2440 LB 7 18 0–42.12 0.0028–1.7156 6.99–8.77

Pseudomonas putida KT2440 LB 8 18 0–42.12 0.0028–1.7184 7.76–8.77

Pseudomonas putida KT2440 M63 6 19 0–48.13 0–1.4569 5.92–6.32

Pseudomonas putida KT2440 M63 7 19 0–48.13 0–1.4919 6.80–7.12

Pseudomonas putida KT2440 M63 8 20 0–48.13 0–1.5141 7.26–7.87

Pseudomonas pseudoalcaligenes CECT 5344 LB 7.5 25 0.05–57.19 0–1.2817 7.33–8.55

Pseudomonas pseudoalcaligenes CECT 5344 LB 8.25 25 0–57.08 0–1.2898 7.66–8.64

Pseudomonas pseudoalcaligenes CECT 5344 LB 9 25 0–57.40 0–1.4235 7.84–8.69

Pseudomonas pseudoalcaligenes CECT 5344 M63 7.5 24 0.07–68.20 0–1.5816 7.10–7.45

Pseudomonas pseudoalcaligenes CECT 5344 M63 8.25 24 0.07–68.27 0–1.4925 7.24–7.87

Pseudomonas pseudoalcaligenes CECT 5344 M63 9 24 0.07–68.26 0–1.4925 7.39–8.11

Table 1.  Summary of experimental data for bacterial growth in LB and M63 media, detailing the number of 
data points, time range, bacterial cell concentration (OD600), and system pH range across different bacterial 
strains and initial pH conditions.
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In the given equations, the subscript ‘i’ represents the identifier for each specific points. The terms ‘pred’ and ‘exp’ 
represent estimated and experimentally observed pH values of the culture media, respectively43,44. The variable 
‘N’ indicates the total number of data points used in this study, comprising 379 experimental measurements of 
pH variations influenced by bacterial growth in culture media45.

The models were developed using input variables including bacterial type, culture medium type, initial pH, 
time, and bacterial cell concentration (OD600), with the pH of the culture media as the output variable. To 
ensure effective model training and reliable performance evaluation, the dataset was randomly split into training 
and testing subsets, with 80% of the data (303 points) allocated for training and the remaining 20% (76 points) 
reserved for testing.

To address the varying numerical scales of the input and output variables, a modified min-max normalization 
technique was implemented before model construction, scaling all features to a uniform range of [− 1, 1]. 
This preprocessing step improves model stability and convergence by reducing the influence of features with 
larger numerical values, thereby enhancing the predictive consistency of the artificial intelligence models. The 
normalization approach applied is outlined in Eq. (14):

	
xN =

x − Xmin
Xmax − Xmin

× 2 − 1� (14)

In the given equation, xN signifies the normalized value, x denotes the original, unscaled data point, and Xmax and 
Xmin represent the maximum and minimum values within the dataset, respectively. By transforming the feature 
values to a standardized range of [− 1, 1], this preprocessing step ensures data consistency, thereby enhancing the 
accuracy and stability of the artificial intelligence models developed in this study.

In the normalization formula provided, xN indicates the normalized value, x corresponds to the raw, 
unnormalized data, and Xmax and Xmin refer to the highest and lowest values in the dataset, respectively. This 
customized normalization technique was applied to the 379 experimental measurements of pH variations in 
culture media influenced by bacterial growth. By scaling the feature values to the [− 1, 1] range, this preprocessing 
method fosters uniformity across the dataset, significantly improving the precision and reliability of the artificial 
intelligence models constructed in this research.

Results and analysis
Outlier detection
The leverage method is a diagnostic tool used to identify influential data points in regression analysis. It evaluates 
how far the values of a data point’s input variables deviate from the mean of all input values. High leverage points 
can exert strong influence on the model’s predictions. In combination with standardized residuals, leverage 
values are often used in Williams plots to detect outliers or influential observations. A data point is typically 
considered influential if its leverage value exceeds a specific threshold, and its standardized residual is large. The 
initial equation expresses the difference Di as follows (Eq. 15)34,40,46–48:

	 Di = XPr ed,i − XExp,i� (15)

In this context, Di represents the residual for i-th point, calculated as the difference between the predicted pH 
value (XPred, i) and the experimentally observed pH (XExp, i) in the culture media affected by bacterial growth. 
This residual quantifies the prediction error for each data point within the dataset. The standardized residual 
(SDi) is defined by the subsequent Eq. (16):

	

SDi = Di√
1
N

N∑
i=1

D2
i × (1 − hi)

� (16)

The standardized residual (SDi) is obtained by dividing the raw residual (the difference between predicted 
and experimental values) by the standard deviation of all residuals. This normalization allows for consistent 
detection of outliers by comparing how far each point deviates from the model’s general trend. Figure 2 illustrates 
the identification of outliers in the pH dataset for bacterial growth using the leverage method, presented via a 
Williams plot. The denominator normalizes the residual by the standard deviation of residuals, adjusted by the 
leverage hi, which measures the impact of every data point on the model’s alignment. The leverage threshold 
h∗ is calculated as h∗=3(m + 1)/N, where m is the number of input features (5 in this study: bacterial type, 
culture medium type, initial pH, time, and bacterial cell concentration) and N is the dataset size. For this 
dataset, h∗=3(5 + 1)/379 = 0.0475. Data points with hi> h∗ are deemed high-leverage points, suggesting potential 
influence, while standardized residuals exceeding typical thresholds (commonly ∣SDi∣>3) are flagged as outliers. 
This analysis confirms the dataset’s suitability for pH prediction modeling and provides valuable insights into the 
dynamics of bacterial growth and pH interactions in culture media.

Hyperparameters optimization and models evaluation
To optimize the performance of each machine learning model, key hyperparameters were tuned using trial-and-
error methods guided by performance metrics such as R² and MSE. While detailed optimization procedures 
were initially illustrated through individual figures for each model, these plots and their corresponding analyses 
have been moved to the Supporting Material (Figures S1–S4) to enhance clarity and reduce visual overload in 
the main text. Hyperparameters for all models were meticulously optimized using CSA algorithm to ensure peak 
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performance and avoid overfitting. A summary of the optimal hyperparameter configurations for each model 
is presented in Table 2, which was found to be sufficient for conveying the necessary results without excessive 
redundancy. This adjustment was made in accordance with reviewer recommendations, ensuring that the main 
body of the manuscript remains concise and reader-friendly.

Table  3 offers a detailed overview of the performance metrics for seven artificial intelligence models, 
including DT, RF, EL, AdaBoost, ANN, 1D-CNN, and LSSVM, developed to predict pH variations in culture 
media influenced by bacterial growth. The assessment utilized three primary metrics: R², RMSE, and MAPE%, 
computed for the training (303 points), testing (76 points), and total datasets.

The results in Table  3 establish a distinct performance hierarchy among the models. The 1D-CNN 
demonstrated the highest predictive accuracy, achieving an R² of 0.998301691 for the total dataset, with the 
lowest RMSE (0.051935903) and MAPE% (0.370554549), showcasing its exceptional ability to model the 
complex relationships among input features, including bacterial type, culture medium type, initial pH (6–9), 
time (0–68.27 h), and bacterial cell concentration (0–1.7184 OD600). The EL model followed closely, exhibiting 
strong performance with an R² of 0.998222719 and low error rates, while the ANN and LSSVM models also 
showed robust predictive capabilities, maintaining R² values above 0.997 and MAPE% below 0.6. Conversely, the 
RF and AdaBoost models displayed slightly lower accuracy compared to 1D-CNN and EL but remained within 
acceptable predictive ranges.

Figure 3 enhances the insights from Table 3 by providing a visual comparison of model performance during 
the testing phase, likely through bar charts comparing R², RMSE, and MAPE% values across all models. The 
figure clearly highlights 1D-CNN’s superior predictive precision, with the closest alignment between predicted 
and experimental pH values for the 76 test points. It also reveals relatively higher error margins for models like 
DT and AdaBoost compared to 1D-CNN and EL, underscoring the advantages of deep learning and ensemble 
methods in addressing complex pH dynamics.

Collectively, Table 3; Fig. 3 emphasize the efficacy of advanced artificial intelligence techniques, particularly 
1D-CNN, in precisely predicting pH variations in culture media due to bacterial growth. These findings 
highlight the potential of CSA optimized computational models as reliable, efficient alternatives to conventional 
experimental methods, providing valuable tools for optimizing biotechnological processes where pH control is 
critical. Moreover, a standard ordinary least squares linear regression (LR) model was utilized using the same 
training and test subsets of the ML models. The performance metrics (R², RMSE, MAPE) of the LR model 
were then compared with those of the ML models and the results are shown in Table  3; Fig.  3. The results 

Fig. 2.  Identification of outliers using the Leverage approach.
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demonstrated that while the LR model achieved reasonably good performance, the ML models still outperformed 
it consistently, particularly in capturing nonlinear patterns and interactions between input features.

Figure 4 further complements these findings by illustrating the distribution of absolute relative errors for 
all machine learning models. The histograms show that most predictions for 1D-CNN and EL models are 
concentrated in the lowest error bins, confirming their superior accuracy and consistency across the dataset. 
In contrast, models such as DT and AdaBoost exhibit broader error distributions, reflecting slightly higher 
prediction variability. The MLP-ANN, LSSVM, and RF models fall between these extremes, maintaining 
moderate error concentrations. This comparative view highlights the advantages of deep learning and ensemble 
approaches in minimizing prediction errors and reinforces the performance hierarchy established by the 
quantitative metrics in Table 3.

Figure 5 present crossplots comparing predicted versus experimental pH values for culture media influenced 
by bacterial growth, employing seven distinct artificial intelligence models. These models include 1D-CNN, EL, 
AdaBoost, DT, RF, ANN, and LSSVM. The analysis is based on a 379-point experimental dataset, split into 303 
data points for training and 76 for testing. These crossplots serve as vital visual tools for assessing the predictive 
performance of each model, with optimal performance indicated by data points tightly clustered along the 
45-degree line.

The dataset encompasses three bacterial strains including Pseudomonas pseudoalcaligenes CECT 5344, 
Pseudomonas putida KT2440, Escherichia coli ATCC 25,922 and cultured in LB and M63 media, with initial 

Model

R2 RMSE MAPE%

Training Test Total Training Test Total Training Test Total

EL 0.9990 0.9960 0.9982 0.0382 0.0913 0.0533 0.2683 0.8237 0.3797

AdaBoost 0.9982 0.9892 0.9960 0.0523 0.1438 0.0796 0.4801 1.0664 0.5977

ANN 0.9986 0.9931 0.9972 0.0452 0.1163 0.0659 0.4005 0.9104 0.5027

1D-CNN 0.9994 0.9951 0.9983 0.0298 0.0996 0.0519 0.2728 0.7602 0.3706

LSSVM 0.9988 0.9961 0.9981 0.0422 0.0884 0.0547 0.4291 0.9071 0.5249

DT 0.9970 0.9885 0.9949 0.0660 0.1483 0.0888 0.6575 1.2069 0.7677

RF 0.9978 0.9968 0.9975 0.0575 0.0787 0.0623 0.5424 0.8332 0.6007

LR 0.9745 0.9698 0.9732 0.1026 0.1099 0.1064 1.0135 1.0206 1.0171

Table 3.  The obtained values of evaluation indices for all created models with respect to training, testing and 
total segments.

 

Model Key Hyperparameters Optimal Values

AdaBoost
Number of base estimators 15

Learning rate 1

RF

Max depth 21

Number of trees (n_estimators) 100 (default)

Max features sqrt (default)

DT Max depth 3.34

ANN

First hidden layer neurons 25

Second hidden layer neurons 17

Transfer functions Hyperbolic Tangent Sigmoid (tansig-hidden layers), Linear activation function (purelin- output layer)

LSSVM

Kernel RBF

Regularization parameter (γ) 1213

Kernel width (σ²) 0.77

1D-CNN

Convolutional layers 2

Pooling layers 1

Fully connected layers 1

Activation function Rectified Linear Unit (ReLU)

Learning rate 0.001

Epochs 100 (default)

Batch size 16 (assumed)

EL

Combined models SVM, DT, KNN with C = 120, gamma = 0.02, epsilon = 0.001

SVM settings RBF used as the Kernel function, distance = Euclidean

KNN settings k = 9, distance = Euclidean

Combination method Averaging

Table 2.  Optimal hyperparameter values for each machine learning model.
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pH values ranging from 6 to 9, time intervals from 0 to 68.27 h, OD600 from 0 to 1.7184, and system pH values 
spanning 4.59 to 9.03. Collectively, Fig. 5 provides a comprehensive visual assessment of the models’ predictive 
capabilities, with the 1D-CNN model exhibiting exceptional accuracy, demonstrated by the tight alignment of 
predicted and experimental pH values across all bacterial and media systems. EL and ANN also show robust 
performance, while models such as DT and AdaBoost display relatively wider scatter, suggesting slightly lower 
precision.

These crossplots validate the reliability of the 379-point dataset and the effectiveness of the data normalization 
technique applied, which reduced disparities in input scales and supported stable, accurate model training. 
Overall, the figures underscore the 1D-CNN model’s superior capacity to capture complex, non-linear 
relationships between key input features and pH behavior, highlighting its potential for enhancing applications 
such as microbial process optimization, bioreactor design, and biotechnological advancements.

Figure 6 illustrates the relative error percentages during the training and testing phases for seven artificial 
intelligence models developed to predict pH variations in culture media influenced by bacterial growth. Data 
points closer to the y = 0 line indicate superior predictive accuracy across the 379-point dataset (303 training 
points and 76 testing points). Among the models, 1D-CNN exhibits exceptional performance, with the tightest 
error distribution (MAPE% = 0.370554549, R² = 0.998301691), followed by EL (MAPE% = 0.37966203) and 
ANN (MAPE% = 0.502705344). In contrast, DT (MAPE% = 0.767710648) and AdaBoost models show wider 
error ranges. This visual analysis underscores 1D-CNN’s remarkable ability to precisely capture the complex 
effects of bacterial type, culture medium type, initial pH (6–9), time (0–68.27 h), and bacterial cell concentration 
(0–1.7184 OD600) on pH behavior, affirming its effectiveness for applications such as microbial process 
optimization, bioreactor design, and biotechnological advancements.

Fig. 3.  MSE, R-squared and MAPE% for all created models in this paper (testing phase).

 

Scientific Reports |        (2025) 15:30569 11| https://doi.org/10.1038/s41598-025-16150-x

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Sensitivity analysis
This section of the study explores the influence of key input variables include bacterial type, culture medium 
type, initial pH, time, and bacterial cell concentration (OD600) on the pH variations in culture media due to 
bacterial growth, while evaluating the relative significance of each factor. The importance of these input features 
is quantified through correlation coefficients, offering insights into their contributions to the pH prediction 
models developed using 379 experimental data points49.

Fig. 4.  Data frequency versus absolute error intervals for different ML models.
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In this analysis, the Monte Carlo simulation approach, appreciated for its simplicity and clarity, is utilized to 
assess the relative impact of the input variables on the pH behavior of culture media. It is important to clarify that 
Monte Carlo simulation in this study is not used to directly predict pH values, but rather to assess the sensitivity 
of input variables within the trained machine learning models. While Monte Carlo methods can be employed 
in traditional simulation contexts, they require prior knowledge of system equations and are computationally 
intensive when applied directly to complex biological processes. In contrast, machine learning models offer 
a data-driven alternative that can learn from experimental data without requiring explicit mechanistic 

Fig. 5.  Crossplots of estimated pH versus actual values for all machine learning models.
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formulations, providing faster and often more accurate predictions. Therefore, the Monte Carlo method was 
used to explore the influence of input variables on the output of ML models, not to simulate pH itself. The ML 
models remain central to the prediction framework, while Monte Carlo simulation supports interpretability 
and sensitivity analysis. The best model, i.e. 1-D CNN model was coupled with the Monte-Carlo algorithm for 
determining the most sensitive factors.

Fig. 6.  Relative error percent for training and testing segment for all the constructed models in this study.
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Monte Carlo simulation approach excels in managing uncertainties by systematically sampling a wide range 
of input values, allowing direct evaluation of output variability without dependence on proxy modeling. Within 
this framework, the model incorporates multiple input parameters, defined as Eq. (17)49:

	 y = f(x1, x2, ...., xn) = f(x)� (17)

The range and distribution properties of each input variable () are established and used to create a comprehensive 
sampling set as Eq. (18):

	 xi = [xi1, xi2, ...., xin] i = 1, 2, ...., k� (18)

Here, k represents the total number of generated samples, and n denotes the number of input features considered. 
Various sampling techniques, such as random sampling, importance sampling, and Latin hypercube sampling 
(LHS), may be applied at this stage to construct the input dataset. The model is then executed for each set of 
sampled inputs to produce the corresponding output results as Eq. (19):

	 yi = f(xi1, xi2, ..., xin) = f(x) i = 1, 2, ...., k� (19)

In this context, k indicates the number of samples generated, and n represents the number of input variables. 
Multiple sampling strategies, including random sampling, importance sampling, and Latin hypercube sampling 
(LHS), can be employed during this phase. The model is applied to each set of sampled input variables to compute 
the corresponding output results, as defined in Eqs. (20) and (21):

	
E(y) =

k∑
i=1

yi

k
� (20)

	
V (y) =

k∑
i=1

[yi − E(y)]2

k − 1 � (21)

Here, V and E denote the variance and expected value, respectively. Sensitivity analysis is then performed based 
on the input-to-output relationship described in Eq.  (22). Among the various methods for visualizing this 
relationship, scatterplot generation is regarded as one of the most straightforward and effective techniques:

	 (xij , yi), i = 1, 2, ..., k� (22)

Figure 7 presents a detailed sensitivity analysis assessing the relative influence of bacterial type, culture medium 
type, initial pH, time, and bacterial cell concentration on the pH behavior of culture media, employing a Monte 
Carlo simulation integrated with the artificial intelligence models developed in this study. The Monte Carlo 
method, recognized for its robustness in addressing uncertainties, systematically samples variations in the input 
parameters to evaluate their impact on pH predictions. The findings are displayed using a correlation matrix or 
comparable visualization, highlighting both the magnitude and orientation of the associations between each 
input variable and the resulting pH response.

The analysis identifies bacterial cell concentration as the most influential factor, with a correlation coefficient 
of 4.9825, underscoring its pivotal role in driving pH variations across the studied systems. Time follows closely, 
with a correlation coefficient of 4.8312, indicating that the duration of bacterial growth significantly affects 
pH dynamics. The type of culture medium, with a correlation coefficient of 3.7482, also exerts a substantial 
influence, suggesting that the media composition plays a critical role in pH changes. Bacterial type and initial 
pH, with correlation coefficients of 2.4972 and 2.2483, respectively, demonstrate comparatively lesser but still 
notable impacts.

Based on the analysis of 379 experimental data points, bacterial cell concentration and incubation time were 
identified as the most influential variables affecting pH changes in the culture media. Other features exhibited 
weaker correlations, suggesting that microbial metabolism and growth phase primarily drive acidification or 
alkalization dynamics. The use of Monte Carlo simulation enhances the reliability of this analysis by accounting 
for input uncertainties, providing a robust basis for understanding the underlying mechanisms. Figure 7 serves 
as a valuable resource for researchers, offering practical guidance for optimizing microbial processes where pH 
control is critical for biotechnological applications.

Temporal analysis of bacterial growth and pH dynamics in LB and M63 media using machine 
learning modeling
In the context of predictive modeling, a critical aspect is the model’s ability to accurately forecast not only 
individual data points but also the overall trend of the output variable. In this study, the top-performing model, 
1D-CNN, was employed to predict the trend of pH variations in the growth medium during the bacterial growth 
process for each bacterial strain. The results demonstrate that the developed 1D-CNN model effectively captures 
this trend, reflecting its capability to simulate the dynamic pH behavior. Moreover, this approach serves as a form 
of process simulation through the application of intelligent models, providing a reliable tool for understanding 
and predicting microbial growth dynamics.

Figure 8 presents a comprehensive overview of the 1D-CNN model’s predictive performance across six 
distinct bacterial strain–medium combinations. In each subplot (8a–8f), the red line represents the predicted 
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pH trend, the green dots indicate experimentally measured pH values, and the blue line denotes bacterial 
growth over time (OD600). These experiments reflect different environmental settings and initial pH conditions, 
demonstrating the model’s ability to generalize across multiple growth scenarios.

Figure 8a shows the results for Escherichia coli ATCC 25,922 cultivated in LB medium with an initial pH of 
6. The bacterial growth exhibited a classical sigmoidal pattern, rising from 0.0028 to 1.46 OD600 over ~ 39 h. 
The predicted pH increased from 6.0 to 8.76, closely aligning with experimental data (6.15–8.69), confirming 
the model’s high accuracy in alkaline pH forecasting under nutrient-rich conditions. Figure 8b corresponds to 
Pseudomonas putida KT2440 grown in LB medium (initial pH 6). Growth peaked at 1.62 OD600 in ~ 42 h, and 
the predicted pH ranged from 6.0 to 8.76. The predictions tightly followed the experimental range (6.25–8.75), 
demonstrating the model’s robustness in capturing pH elevation due to metabolic activity.

Figure 8c illustrates the growth of Pseudomonas pseudoalcaligenes CECT 5344 in LB medium with an initial 
pH of 7.5. Here, bacterial growth progressed steadily from 0 to 1.24 OD600 over ~ 57 h. The model accurately 
predicted a gradual pH increase from 7.43 to 8.55, matching experimental data (7.44–8.55), validating its 
effectiveness for neutral–alkaline starting conditions. Figure 8d displays results for E. coli ATCC 25,922 cultured 
in M63 minimal medium starting at pH 7. The bacterial growth reached 1.35 OD600 after ~ 46 h. In contrast to 
the LB medium results, pH decreased over time, and the model captured this acidification trend, predicting a 
decline from 7.09 to 6.46, consistent with the measured range (7.05–6.49). This illustrates the 1D-CNN model’s 
capability to handle both increasing and decreasing pH dynamics. Figure 8e reports the behavior of P. putida 
KT2440 in M63 medium with an initial pH of 8. The growth curve showed a peak at 1.42 OD600 after ~ 48 h. 
The model predicted a modest decline in pH from 7.82 to 7.42, accurately reproducing the experimental values 
(7.79–7.43), suggesting it can model moderate pH shifts under nutrient-limited conditions. Figure  8f shows 
the dynamics for P. pseudoalcaligenes CECT 5344 in M63 medium with an initial pH of 9. Bacterial growth 
increased to 1.38 OD600 over ~ 68 h. The model forecasted a steady decrease in pH from 8.11 to 7.52, aligning 
well with the measured pH trend (8.11–7.56), reinforcing its performance in alkaline environments.

Overall, the 1D-CNN model demonstrated consistent and accurate prediction across a wide spectrum of 
microbial growth conditions, pH trends (both rising and falling), and media compositions. These results validate 
the suitability of 1D-CNN for modeling pH dynamics in microbiological systems and reinforce its potential as a 
non-invasive, data-driven tool for predictive bioprocess monitoring and optimization.

From a technological perspective, the artificial intelligence framework developed in this study, validated 
through sensitivity analyses and error distribution assessments, demonstrates promising capabilities for data-
driven modeling of microbiological pH variations. While not claiming to establish a universal benchmark, the 
approach provides a practical example of how machine learning can capture key patterns in moderately complex 
systems using available experimental data. This work highlights potential applications in biotechnology and 
microbial process optimization, but further research with larger and more diverse datasets will be required to 
fully generalize these findings to broader and more intricate biological contexts.

Moreover, the computational efficiency of this methodology supports more sustainable research practices 
by decreasing reliance on extensive experimental efforts, aligning with modern goals of operational efficiency 
and environmental responsibility in scientific and industrial settings. However, there are some limitations 
that should be acknowledged. Needing external validation and independent datasets, lack of interpretability 

Fig. 7.  Assessment of the factors affecting pH variations in culture media due to bacterial growth using the 
developed predictive models and Monte Carlo simulation.
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for some of high-performing ML models like ANN and RF and the black box nature of the models, and high 
computational complexity of some models such as ANN and EL are the main limitations of the current study 
that need to be addressed in future works.

Conclusions
This research successfully developed and validated an extensive array of predictive models using advanced artificial 
intelligence techniques, including 1D-CNN, EL, AdaBoost, DT, RF, ANN, and LSSVM, to forecast pH variations 
in culture media influenced by bacterial growth. A comprehensive experimental dataset comprising 379 points 

Fig. 8.  Comparison between 1D-CNN-predicted and experimental pH values alongside bacterial growth 
trends for six different bacterial strain–medium combinations.
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was employed, incorporating critical input variables such as bacterial type, culture medium type, initial pH (6–9), 
time (0–68.27 h), and bacterial cell concentration (0–1.7184 OD600). The primary objective was to create precise 
predictive models for pH dynamics under diverse microbial conditions. Model performance was significantly 
improved through hyperparameter optimization using the CSA algorithm, ensuring exceptional predictive 
accuracy. Thorough evaluations, including correlation analysis, crossplots, and relative error assessments, 
identified 1D-CNN as the top-performing model, achieving an R² of 0.998301691, RMSE of 0.051935903, and 
MAPE% of 0.370554549, showcasing its superior ability to capture complex pH behavior. Sensitivity analysis 
via Monte Carlo simulations indicated that bacterial cell concentration had the greatest impact (correlation 
coefficient = 4.9825), followed by time (4.8312), culture medium type (3.7482), bacterial type (2.4972), and initial 
pH (2.2483), providing valuable insights into the key factors driving pH variations. These results underscore 
the significant benefits of employing artificial intelligence methods over conventional experimental approaches, 
offering a highly accurate, efficient, and cost-effective framework for predicting microbiological properties. This 
approach holds substantial potential for biotechnological applications, enabling the optimization of microbial 
processes and bioreactor design. Future studies could further refine model accuracy by incorporating additional 
biological or environmental factors, such as nutrient composition or oxygen levels, to broaden applicability 
across diverse microbial systems.

Data availability
All data used during this study are included in the published article and the provided supplementary file. All the 
codes and calculation files are also available from the corresponding author on reasonable request.

Received: 7 June 2025; Accepted: 13 August 2025

References
	 1.	 Aoi, W. & Marunaka, Y. Importance of pH homeostasis in metabolic health and diseases: crucial role of membrane proton 

transport. Biomed. Res. Int. 2014 (1), 598986 (2014).
	 2.	 Batool, Z. et al. Regulation of physiological pH and consumption of potential food ingredients for maintaining homeostasis and 

metabolic function: an overview. Food Reviews Int. 39 (8), 5087–5103 (2023).
	 3.	 Matthew, J. B. et al. pH-dependent processes in protein. Crit. Reviews Biochem. 18 (2), 91–197 (1985).
	 4.	 Jin, Q. & Bethke, C. M. The thermodynamics and kinetics of microbial metabolism. Am. J. Sci. 307 (4), 643–677 (2007).
	 5.	 Bibby, S. R. S. et al. Metabolism of the intervertebral disc: effects of low levels of oxygen, glucose, and pH on rates of energy 

metabolism of bovine nucleus pulposus cells. Spine 30 (5), 487–496 (2005).
	 6.	 Casey, J. R., Grinstein, S. & Orlowski, J. Sensors and regulators of intracellular pH. Nat. Rev. Mol. Cell Biol. 11 (1), 50–61 (2010).
	 7.	 Krulwich, T. A., Sachs, G. & Padan, E. Molecular aspects of bacterial pH sensing and homeostasis. Nat. Rev. Microbiol. 9 (5), 

330–343 (2011).
	 8.	 Ratzke, C. & Gore, J. Modifying and reacting to the environmental pH drives bacterial interactions. BioRxiv, : p. 136838. (2017).
	 9.	 Nogales, J. et al. Expanding the computable reactome in Pseudomonas putida reveals metabolic cycles providing robustness. BioRxiv, 

: p. 139121. (2017).
	10.	 Sánchez-Clemente, R. et al. Study of pH Changes in Media during Bacterial Growth of Several Environmental Strains. MDPI. (2018)
	11.	 Ratzke, C. & Gore, J. Modifying and reacting to the environmental pH can drive bacterial interactions. PLoS Biol. 16 (3), e2004248 

(2018).
	12.	 Raja Sarobin, M. & Panjanathan, R. V. and Diabetic retinopathy classification using CNN and hybrid deep convolutional neural 

networks. Symmetry, 14(9): p. 1932. (2022).
	13.	 Giusti, A. et al. Fast Image Scanning with Deep max-pooling Convolutional Neural Networks. IEEE. (2013).
	14.	 Yang, K. et al. Multi-criteria spare parts classification using the deep convolutional neural network method. Appl. Sci. 11 (15), 7088 

(2021).
	15.	 Valles, J. Application of a Multilayer Perceptron Artificial Neural Network (MLP-ANN) in Hydrological Forecasting in El Salvadorp. 

213–239 (Machine Learning and Optimization for Water Resources, 2024).
	16.	 Al-Mejibli, I. S., Alwan, J. K. & Abd, D. H. The effect of gamma value on support vector machine performance with different 

kernels. Int. J. Electr. Comput. Eng. 10 (5), 5497–5506 (2020).
	17.	 Paluang, P., Thavorntam, W. & Phairuang, W. Application of multilayer perceptron artificial neural network (MLP-ANN) 

algorithm for PM2. 5 mass concentration Estimation during open biomass burning episodes in Thailand.International Journal of 
Geoinformatics (2024).

	18.	 Ighalo, J. O., Igwegbe, C. A. & Adeniyi, A. G. Multi-layer perceptron artificial neural network (MLP-ANN) prediction of biomass 
higher heating value (HHV) using combined biomass proximate and ultimate analysis data. Model. Earth Syst. Environ. 8 (3), 
3177–3191 (2022).

	19.	 Pattanayak, S. et al. Application of MLP-ANN models for estimating the higher heating value of bamboo biomass. Biomass 
Convers. Biorefinery. 11, 2499–2508 (2021).

	20.	 De Ville, B. Decision trees. Wiley Interdisciplinary Reviews: Comput. Stat. 5 (6), 448–455 (2013).
	21.	 Suthaharan, S. & Suthaharan, S. Decision tree learning. Machine learning models and algorithms for big data classification: thinking 

with examples for effective learning, : pp. 237–269. (2016).
	22.	 Kingsford, C. & Salzberg, S. L. What are decision trees? Nat. Biotechnol. 26 (9), 1011–1013 (2008).
	23.	 Nowozin, S. et al. Decision tree fields. in 2011 International Conference on Computer Vision. IEEE. (2011).
	24.	 Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).
	25.	 Everingham, Y. et al. Accurate prediction of sugarcane yield using a random forest algorithm. Agron. Sustain. Dev. 36, 1–9 (2016).
	26.	 Hapfelmeier, A. & Ulm, K. A new variable selection approach using random forests. Comput. Stat. Data Anal. 60, 50–69 (2013).
	27.	 Genuer, R., Poggi, J. M. & Tuleau-Malot, C. VSURF: an R package for variable selection using random forests. R J. 7 (2), 19–33 

(2015).
	28.	 Margineantu, D. D. & Dietterich, T. G. Pruning Adaptive Boosting. In ICML (Citeseer, 1997).
	29.	 Zheng, Z. & Yang, Y. Adaptive boosting for domain adaptation: toward robust predictions in scene segmentation. IEEE Trans. 

Image Process. 31, 5371–5382 (2022).
	30.	 Ferreira, A. J. & Figueiredo, M. A. Boosting algorithms: A review of methods, theory, and applications. Ensemble machine learning: 

Methods and applications, : pp. 35–85. (2012).
	31.	 Lazarevic, A. & Obradovic, Z. Adaptive boosting techniques in heterogeneous and Spatial databases. Intell. Data Anal. 5 (4), 

285–308 (2001).

Scientific Reports |        (2025) 15:30569 18| https://doi.org/10.1038/s41598-025-16150-x

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


	32.	 Dong, X. et al. A survey on ensemble learning. Front. Comput. Sci. 14, 241–258 (2020).
	33.	 DietterichT.G. Ensemble learning. Handb. Brain Theory Neural Networks. 2 (1), 110–125 (2002).
	34.	 Bemani, A. et al. Estimation of adsorption capacity of CO2, CH4, and their binary mixtures in Quidam shale using LSSVM: 

application in CO2 enhanced shale gas recovery and CO2 storage. J. Nat. Gas Sci. Eng. 76, 103204 (2020).
	35.	 Songolzadeh, R., Shahbazi, K. & Madani, M. Modeling n-alkane solubility in supercritical CO 2 via intelligent methods. J. 

Petroleum Explor. Prod. 11, 279–287 (2021).
	36.	 Gonçalves-e-Silva, K. & Aloise, D. Xavier-de-Souza, Parallel synchronous and asynchronous coupled simulated annealing. J. 

Supercomputing. 74, 2841–2869 (2018).
	37.	 Yang, S. et al. A coupled simulated annealing and particle swarm optimization reliability-based design optimization strategy under 

hybrid uncertainties. Mathematics 11 (23), 4790 (2023).
	38.	 Xavier-de-Souza, S. et al. Coupled simulated annealing. IEEE Trans. Syst. Man. Cybernetics Part. B (Cybernetics). 40 (2), 320–335 

(2009).
	39.	 Suykens, J. A. K., Yalçin, M. E. & Vandewalle, J. Coupled Chaotic Simulated Annealing Processes. IEEE. (2003).
	40.	 Bemani, A., Madani, M. & Kazemi, A. Machine learning-based Estimation of nano-lubricants viscosity in different operating 

conditions. Fuel 352, 129102 (2023).
	41.	 Madani, M. et al. Modeling of CO2-brine interfacial tension: application to enhanced oil recovery. Pet. Sci. Technol. 35 (23), 

2179–2186 (2017).
	42.	 Daryasafar, A. et al. Connectionist approaches for solubility prediction of n-alkanes in supercritical carbon dioxide. Neural 

Comput. Appl. 29, 295–305 (2018).
	43.	 Yuan, H. et al. Microfluidic-assisted caenorhabditis elegans sorting: current status and future prospects. Cyborg Bionic Syst. 4, 0011 

(2023).
	44.	 Zhang, Y. et al. Dual recombinase polymerase amplification system combined with lateral flow immunoassay for simultaneous 

detection of Staphylococcus aureus and vibrio parahaemolyticus. J. Pharm. Biomed. Anal. 255, 116621 (2025).
	45.	 Izadmehr, M. et al. An exact analytical model for fluid flow through finite rock matrix block with special saturation function. J. 

Hydrol. 577, 123905 (2019).
	46.	 Bassir, S. M. & Madani, M. A new model for predicting asphaltene precipitation of diluted crude oil by implementing LSSVM-CSA 

algorithm. Pet. Sci. Technol. 37 (22), 2252–2259 (2019).
	47.	 Abbasi, P., Aghdam, S. K. & Madani, M. Modeling subcritical multi-phase flow through surface chokes with new production 

parameters. Flow Meas. Instrum. 89, 102293 (2023).
	48.	 Madani, M., Moraveji, M. K. & Sharifi, M. Modeling apparent viscosity of waxy crude oils doped with polymeric wax inhibitors. J. 

Petrol. Sci. Eng. 196, 108076 (2021).
	49.	 Madani, M. & Alipour, M. Gas-oil gravity drainage mechanism in fractured oil reservoirs: surrogate model development and 

sensitivity analysis. Comput. GeoSci. 26 (5), 1323–1343 (2022).

Acknowledgements
We acknowledge the support provided by Zarqa University.

Author contributions
All authors contributed equally to this paper.

Declarations

Competing interests
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​
0​.​1​0​3​8​/​s​4​1​5​9​8​-​0​2​5​-​1​6​1​5​0​-​x​​​​​.​​

Correspondence and requests for materials should be addressed to A.A.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 
4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in 
any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide 
a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have 
permission under this licence to share adapted material derived from this article or parts of it. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence 
and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to 
obtain permission directly from the copyright holder. To view a copy of this licence, visit ​h​t​t​p​:​/​/​c​r​e​a​t​i​v​e​c​o​m​m​o​
n​s​.​o​r​g​/​l​i​c​e​n​s​e​s​/​b​y​-​n​c​-​n​d​/​4​.​0​/​​​​​.​​

© The Author(s) 2025 

Scientific Reports |        (2025) 15:30569 19| https://doi.org/10.1038/s41598-025-16150-x

www.nature.com/scientificreports/

https://doi.org/10.1038/s41598-025-16150-x
https://doi.org/10.1038/s41598-025-16150-x
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.nature.com/scientificreports

	﻿Accurate modeling and simulation of the effect of bacterial growth on the pH of culture media using artificial intelligence approaches
	﻿Overview of machine learning and thermodynamic techniques
	﻿Machine learning methods
	﻿Artificial neural Network-based models
	﻿Convolutional neural networks (1D-CNNs)
	﻿Artificial neural network (ANN)



	﻿Tree-based models
	﻿Decision tree (DT)
	﻿Random forest (RF)
	﻿Adaptive boosting (AdaBoost)

	﻿Ensemble/Hybrid models
	﻿Kernel-based model
	﻿Coupled simulated annealing (CSA) optimization algorithm
	﻿Data gathering and evaluation indices
	﻿Data collection description
	﻿Model evaluation indices

	﻿Results and analysis
	﻿Outlier detection
	﻿Hyperparameters optimization and models evaluation
	﻿Sensitivity analysis
	﻿Temporal analysis of bacterial growth and pH dynamics in LB and M63 media using machine learning modeling

	﻿Conclusions
	﻿References


