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An enhanced adaptive image
steganography method using
block skin-maps and the integer
S-transform

Amal Khalifal, Doaa Sami Khafaga2, Mennatallah Sadek? & Eman Abdullah Aldakheel?**

Digital image steganography is the art and science of hiding secret information in an innocent looking
cover image to covertly exchange sensitive information in real-world scenarios. This paper presents a
transform-domain steganographic method that leverages the Discrete Wavelet Transform (DWT) and
a skin-based masking mechanism to identify perceptually less sensitive regions for embedding while
maintaining high imperceptibility and extraction accuracy. The proposed method extends our previous
work using S-transform which is an integer-to-integer discrete wavelet transform (DWT). The hiding
process starts with dividing the cover image into the basic color channels and applying DWT on each
channel independently. The approximation coefficients of the DWT are then used to build a blocked
skin-map. Only a pixel marked as “skin” in the blocked map will cause its corresponding approximation
coefficients to be embedded with the bits of the secret message. Experimental results demonstrate
that the proposed approach achieves competitive performance in terms of Peak Signal-to-Noise Ratio
(PSNR) and Structural Similarity Index (SSIM), outperforming several existing methods. Limitations
and future directions, including robustness to geometric distortions and steganalysis detection, are
discussed.
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Steganography is a method of hiding secret messages within a cover medium, often encrypting them for added
security. A general model for a steganographic channel is usually described in the context of the “prisoners’
problem” as shown in Fig. 1. In this scenario, two prisoners are communicating covertly, intending to exchange
sensitive information while under surveillance. The problem arises from the need to secretly communicate an
escape plan between Alice and Bob without alerting the warden. The challenge lies in finding a devising hiding
technique that are imperceptible ensuring that the secret message remains undetected within the cover object'.
Moreover, the prisoners must also consider the possibility of steganalysis, wherein the captors employ various
statistical analysis and detection methods to identify hidden messages. Therefore, the prisoners must develop
sophisticated steganographic algorithms to embed messages effectively while minimizing the likelihood of
detection®

In the digital age, the ubiquitous use of images for communication, sharing, and storage has made images
the most used steganographic carrier. In addition, digital images provide a rich canvas for hiding data because
they contain vast amounts of redundant information, allowing for subtle modifications without noticeably
altering the image’s appearance nor detected using automated analysis tools. That's why image steganography
finds applications in various fields, including covert communication, digital watermarking, authentication, and
copyright protection’. Its versatility makes it appealing for individuals and organizations with diverse needs.

Image steganography techniques usually embed a binary sequence of 0’s and 1’s in either the spatial domain
or the transform domain of the cover image. Spatial techniques often involve replacing the least significant
bits (LSBs) of pixels, while transform domain techniques alter transform elements, which are visually harder
to detect. Various transform domains, such as discrete cosine transform (DCT), discrete wavelet transform
(DWT), and contourlet transform, are used for steganography*. However, embedding messages into images

1Department of Computer Science, Purdue University Fort Wayne, Fort Wayne , USA. 2Department of Computer
Sciences, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box
84428, Riyadh 11671, Saudi Arabia. 3Faculty of Computer and Information Sciences, Ain Shams University, Cairo,
Egypt. “email: eaaldakheel@pnu.edu.sa

Scientific Reports|  (2025) 15:44242 | https://doi.org/10.1038/s41598-025-16176-1 nature portfolio


http://www.nature.com/scientificreports
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-025-16176-1&domain=pdf&date_stamp=2025-12-8

www.nature.com/scientificreports/

Message mv Alice Bob

Covers ¢ @,«
Stego-Object s “ Stego-Object s

Key k

Key Generation Facility

Fig. 1. A Schematic description of a Steganographic channel.

can cause visual artifacts and alter image statistics, which can be detected by both human observation and
steganalysis methods. Therefore, adaptive steganography, on the other hand, takes advantage of image features
and information content to guide steganographic methods to minimize noticeable alterations in the embedded
images along with maintaining statistical undetectability>®.

Among the various approaches, the spatial domain LSB replacement method and the transform domain
method utilizing wavelet transform are extensively applied in image steganography applications. These methods
require fewer computations, offer substantial capacity, and exhibit robustness, thus garnering considerable
attention in recent research endeavors. The authors of 2-bit LSB fusing’, for example, introduced an approach that
enhances the conventional LSB replacement method through the integration of transform domain techniques.
In their proposed method, they utilized the Haar DWT on the cover image and the pixel values of the message
image are added the coefficients of the cover image. To ensure effective fusion, the dimensions of the message
image must be equal to or smaller than half of those of the cover image which represents 25% of its size. Despite
this high embedding capacity, the algorithm requires the original cover image as a key during extraction which
is considered a disadvantage to any steganographic approach.

In%, on the other hand, the authors proposed a method of steganography in digital media using Singular
Value Decomposition (SVD) and a 2D Discrete Wavelet Transform (DWT) at the 3rd level of decomposition.
In their experiments, three 315 x 320 Gy images were used as test covers to hide exactly 302,454 bits of data. The
proposed method worked well for information hiding against AWGN (additive white Gaussian noise) attack and
fulfills the objective to achieve high robustness and high imperceptivity. Another approach combines the integer
wavelet transform (IWT) with a chaotic map to improve the security of the proposed method IWT®. Their
experiments used the NIST, DIEHARD and ENT tests suite to prove the randomness of the proposed chaotic
map while maintaining an acceptable visual quality of embedded images.

In recent studies, various types of DWT have been utilized in image steganography, each with its own
characteristics and advantages. The authors of FrRnWT1, for example, applied the Fractional Random Wavelet
Transform (FrRnWT) on medical images to hide the medical records of the patients on moral grounds. They
choose to apply the FrRnW'T on the green color plane of the cover image and then split the average sub-band
into equally sized non-overlapping blocks. The secret image, on the other hand, is encrypted using an Arnold
scrambling algorithm. The number of scrambling iterations as well as the passkey should be agreed upon by
both the sender and the receiver to further increase the security of the steganographic channel and prevent any
unauthorized access of embedded information. The performance was analyzed for different embedding factors
and the results showed that high values of the embedding factor can improve the invisibility of the hidden
information.

To address the challenge of achieving a high embedding capacity while simultaneously preserving high
perceptual embedding quality, the authors of QTAR! presented an adaptive-region transform-domain
embedding scheme using a curve-fitting methodology. The proposed scheme capitalizes on the observation that
highly correlated images exhibit significant coefficients densely packed within the transform domain, thereby
leaving ample space in areas of insignificant coefficients for embedding. Experimental findings illustrated an
increased embedding capacity and an improved perceptual quality compared to other approaches.

Another adaptive steganographic technique was presented in'?. The proposed algorithm used the Kirsch
edge detector to guide the hiding process embedding and maximize payload by embedding more secret bits into
edge pixels while fewer bits are embedded into non-edge pixels. The process starts with constructing a masked
image from the cover image and then generating an edge image from the masked image. The cover image is then
decomposed into triplets of pixels in which bits of the secret data are embedded to generate the stego-image.
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Simulation results showed that the Kirsch edge detector generates a greater number of edge pixels compared
to traditional edge detectors, resulting in a superior performance in terms of both payload and image quality
compared to conventional steganographic schemes.

In'3, The authors proposed an adaptive image steganographic scheme designed to minimize distortion in the
smooth areas of medical images. Their method divides the original JPEG image into several non-overlapping
sub-images and preserves the correlation among inter-block adjacent DCT coefficients to maintain structural
dependencies. The cost values of coefficients in each sub-image are dynamically updated based on changes in
neighboring blocks during the embedding process. Although the method supports various types of hidden data,
the authors evaluated its performance using randomly generated binary sequences embedded into JPEG images.
Experimental results showed that the proposed approach slightly outperformed existing methods in terms of
uniform embedding distortion (UED).

The authors in'4, On the other hand, an Invertible Mosaic Image Hiding Network (InvMIHNet) was
introduced to embed up to 16 secret images into a single cover image. The hiding process begins by feeding the
mosaic of secret images into an Invertible Image Rescaling (IIR) module, which performs downscaling while
preserving essential information. This is followed by the forward concealing process, which employs an Invertible
Image Hiding (ITH) module consisting of a DWT/IDWT block and Invertible Neural Networks (INNs). These
networks are trained to simultaneously minimize the restoration error between the original and recovered secret
images and the visual difference between the cover and stego-images. When compared with two other high-
capacity steganography methods, InvMIHNet demonstrated superior performance in both concealment and
recovery quality.

In this paper, we present a high-capacity adaptive image steganographic technique. The method is an
extension of the Enhanced Skin Block Map (ESBM) method published by the authors in'> and hence named
hiESBM. The original research targeted skin areas in the cover image as a region of interest for hiding. The
binary message is embedded into the integer Wavelet coeflicients of the approximation sub-band of the cover
image. Before embedding, the cover undergoes a conversion to the YCbCr color space where only the Y plane is
utilized for hiding. Despite the enhanced message recoverability, the ESBM method offered a very limited hiding
capacity which couldn’t exceed 0.007 bit-per-pixel in some cases. In hiESBM, however, we propose utilizing
the full RGB color space in a pursuit of a higher payload. In addition, instead of a rule-based skin-detection
technique, we explored using efficient machine learning methods to accomplish this task.

The remainder of the paper is structured as follows: Sect. “The steganographic method” outlines the
primary steps of the proposed steganographic method. In Sect. “Results”, we evaluate and analyze the method’s
performance across various metrics, including imperceptibility, hiding capacity, and extraction accuracy.
Section “Discussion” discusses the comparative performance of the proposed technique against other methods,
including ESBM and its predecessor, SBM. Finally, Sect. “Conclusions” concludes the paper”

The steganographic method

A steganographic channel consists of two main processes: the embedding process in which the sender hides the
secret message in the cover image and the extraction process through which the receiver retrieves the embedded
message from the stego-image. Figure 2 shows a general outline for the main steps we propose to be implemented
as part of each process. Those in turn, will be described in details through the following subsections.

Skin detection

Skin detection is an important pre-processing step for several computer vision applications such as face
recognition and gesture analysis. it can be defined as the process of classifying the pixels of a digital image
into “skin” and “non-skin”!®. Factors such as illumination, ethnicity, age, and background characteristics make
skin detection a challenging task. Skin detection methods can be categorized into two main groups: rule-based
methods and machine learning methods. The former set of techniques is simple, fast, and easy to implement and
reuse. They usually depend on a perceptual uniform color space such as RGB!” or YCbCr!®. On the other hand,
recent approaches build and train a skin classifier model using advanced machine-learning techniques such as
Convolutional Neural Networks (CNN) and deep learning'®. A more comprehensive survey on skin-detection
method can be found in?.

The output of a skin detection algorithm is a binary map, where a value of one (white) means that the
corresponding pixel is classified as “skin” otherwise it is “non-skin’, and it is set to zero (black) on the map.
Figure 3 shows an example of skin map generated for a given image. Notice that some pixels were misclassified
as skin regions. In fact, the precision of classification is an important performance indicator for skin-detection
methods. It is usually computed using Eq. 1, where t,is the number of true positives and fp is the number of false
positives.

Precision = t,/(tp + fp) (1)

In fact, the embedding process of the proposed technique will focus only on the skin pixels identified by this
map. More specifically, three methods for skin detection will be utilized and contrasted: Cheddad!”, SegNet!,
and Deeplab?!. Cheddad is a rule-based method that defines upper and lower thresholds that define the range
of skin tone pixels. The method relies on a reduced color space that is derived from the difference between the
grey-scale and the non-red encoded grayscale versions of the input image. SegNet, on the other hand, is a deep
learning approach that was fine-tuned using the ECU dataset for image segmentation. The DeepLab is another
deep-learned model that was built based on the DeepLabv3 + segmentation network and was fine-tuned and
trained to efficiently classify skin regions. According to the fair comparison conducted in?’, DeepLab was ranked
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Fig. 2. The main steps of the proposed steganographic method.

the best performing method, while Cheddad was ranked the 12th due to being imprecise especially when dealing

with complex background images.

However, despite the higher accuracy of the skin detection techniques discussed earlier, the hiding process
may change the pixel values resulting in some pixels that were originally identified as “skin” pixels to be classified
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Fig. 3. (a) The image, (b) The original skin map (c) The 4 x 4 blocked skin-map (d) The 8 x 8 blocked skin-
map.
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Fig. 4. One level of wavelet decomposition and reconstruction.

as “non-skin” after embedding. These changes introduced in the skin map will mislead the extraction process
and eventually present errors in the retrieved message. Therefore, the authors’ former research?? proposed using
a blocked version of the skin map to avoid error-prone skin pixels which often exists on the boundaries of the
skin map. The idea was to divide the skin map into equal size square blocks and process them discarding any
block that doesn’t purely consists of skin pixels. In other words, the new generated blocked map will include only
those blocks with all ones. This step proved to reduce errors and hence enhance the quality of the extraction
process. A 4 x4 and 8 x 8 blocked skin map for the input image are shown in Fig. 3 (c) and (d), respectively.

Integer-to-Integer walvelet transform

Wavelets are functions that satisfy certain mathematical requirements and are used to process data at different
scales or resolutions?. Like the retina of the eye, a wavelet multiresolution decomposition splits an image into
several frequency channels or sub-bands of approximately equal bandwidth. This allows the signals in each
channel to be processed independently??*. In the case of one-dimensional discrete wavelet transform (DWT),
the inpyt to the decomposition process is a vector that is convolved with a high pass filter (g) and a low pass
filter ( ). The result of the latter convolution is a smoothed version of the input while the high frequency part is
captured by the first convolution. This is followed by a sub-sampling step to resize these convolutions such that
the result is half the size of the input?. The resulting high frequency coefficients are the detail coefficients at the
finest level while the low frequency output represents a smoothed version of the input. The same procedure can
be repeated on the input approximation resulting in wavelet coeflicients at different levels of detail. All together,
these coeflicients constitute a multiresolution analysis of the input. On the other hand, the reconstruction process
starts by up-sampling step which puts a zero in between every two coefficients then follows with a convolution
using the filters g and h. finally, the results of these convolutions are added to form the original signal. Figure 4
depicts the steps of the one-dimensional WLT.

In the case of images, the one-dimensional DWT is first applied on all rows and then on all columns?’.
As shown in Fig. 5, this results in four classes of coeflicients: HH is the result of the high-pass filter in both
directions representing the diagonal features of the image. LH and HL result from a convolution with ¢ in one
direction and with } in the other, reflecting vertical and horizontal information respectively. The LL sub-band
is the result of a low-pass convolution in both directions. The same decomposition can be repeated on the LL
quadrant up to n times, where # is log,(min (height, width)).

Despite the fact that the image pixels are represented as integers, applying a 2D WLT on an image results in
floating point coeflicients. This, unfortunately, doesn’t allow perfect synthesis of the original image from its sub-
bands. This is actually a critical issue facing WLT-based steganographic techniques where parts of the embedded
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Fig. 5. An example of the Discrete Wavelet Transform when applied to an image.

data may be lost due to truncation errors. Therefore, Wavelet transforms that map integers-to-integers can be the
answer to address that issue. One example is the S-transform which is considered a reversible Haar transform?s.
Equations (2) and (3) are used to compute the approximation (s) and detail (d) coefficients, respectively. On the
other hand, Eqs. (4) and (5) can be used to synthesize the original signal. Notice that the computations still use
floating point arithmetic, but the results are guaranteed to be integer and reversible. You can refer to?* for the
generalized computations of the S-transform in two-dimensions.

z(2n) +z(2n+1)

st = | : ] @
d(n)= |z (2n) —z(2n+1)] (3)
z(m) = s+ | LEL 0
z(2n+1)= s(n) — L@J 5)

The embedding module

In the following text, the cover image is referred to as C and the stego-image as S. Furthermore, the secret
message is denoted by m, and its respective elements are denoted as m, where m; € {0, 1}. When applied
to a colored image, the DWT is usually computed for each color plane separately. Thus, we will refer to the
coeflicients by Ri(x, ¥), Gi(x, y),and Bi(x, y)where i = {a, h, v, d} (which stands for the approximation, horizontal,
vertical, and diagonal sub-bands respectively) and x and y are the coordinates of the coeflicient in a specific
sub-band.

As shown in Fig. 2, the embedding process starts with applying one level S-transform on each color channel of the
cover image. Combining the R , G, and B of C results in an averaged down-scaled version of the cover image. The
downscaled image is used to generate a skin map that matches the scale and dimensions of a single approximation
sub-band. This skin map is then divided into blocks, and only those blocks composed entirely of skin pixels are
retained. As demonstrated in previous research'?, this approach helps reduce errors that can occur when embedding
data near the edges of skin regions. Once the blocked skin map is created, it guides the data hiding process: for each
pixel marked as “skin” in the blocked map, the third least significant bit (LSB) of the corresponding Ra coefficient
is replaced with a message bit. After using all R coefficients, G, and B, coefficients are manipulated as well to
accommodate all the bits in the message m. Finally, the embedded R  is combined with the yet unmodified R, R,
and R, to construct the Red plane of the cover image using the inverse S-transform. The same process is repeated
for G, and B to construct the Green and Blue color planes, respectively. The reconstructed RGB planes are then
combined to form the stego-image SSS. It is important to note that the selected cover image must contain sufficiently
large skin regions to accommodate the message mmm. If the available skin area is insufficient, the algorithm will
reject the cover image CCC for failing the capacity check.2.4. The Extraction ModuleWhen the stego-image is
received on the other side of the communication channel, an extraction process is needed to retrieve the hidden
message. The steps of the extraction process are basically the same of the embedding but in a reversed order.
As demonstrated in Fig. 2, the retrieval process starts with a one level S-transform on each color channel of the
stego-image, where the combined R , G, and B, is used to generate the skin map. A blocking operation is then
applied on the generated skin map to remove skin pixels falling outside a pure skin block. This blocked map will
guide the extraction process from the R , G, and B, respectively. That is, the 3rd LSB of each approximation
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coefficient will be read, aligned and eventually converted into its original digital format. For example, if the
embedded message is a grey-scale image message, every 8 bits will form a pixel.

Results

The experimental design

In the following set of experiments, five cover images were selected from Pratheepan Dataset®®. As shown
in Fig. 6, the images show a variety of skin tones covering regions of different sizes. From left to right, the
cover image file names are: 06 Apr03Face.jpg, 920480_f520.jpg, 0520962400.jpg, 124511719065943_2.jpg and
Aishwarya-Rai.jpg. The image dimensions are 360 x 516, 520 x 775, 277 x 298, 300 x 434, and 324 x 430 pixels,
respectively. As far as the secret image is concerned, we used a grey-scale image that is scaled to fit within the
skin areas available in each cover image.

Performance metrics

The performance of the proposed technique was evaluated with respect to several criteria. First, to measure
the degradation caused by the embedding process we used the Peak Signal to Noise Ratio (PSNR). PSNR can
be computed using (6) using the Mean Squared Error (MSE) as in (7). M and N represent the dimensions of
the input images (I, I,) and R reflects the maximum signal value that exists in the image data type. PSNR is
measured in dB, where a value greater than 40 dB indicates that the stego-image closely resemble the original
cover image.

R2
PSNR = 10 log,, (MSE> (6)
ysp = el (T]\r; n)Ni bimel (7)
F

Secondly, a Similarity metric will be used to assess the quality of the extracted image. This metric quantifies
image quality degradation based on the difference between extracted message (M’) and the original one (M). It
can be computed as a percentage using (8), where a higher value reflects a greater similarity between the secret
image and the retrieved one and hence a higher extraction accuracy.

M. M VMM
M. M/SM. M

Similarity = 100 (8)

Furthermore, the Payload is used to measure the amount of information that can be hidden in each cover. In the

case of images, payload is represented in Bits per Pixel (bpp) and is calculated as in Eq. (9).

Payload — Number of secret bits embedded

)

Total pizels in cover image

Experimental results

In this section, we are going to analyze the performance of the proposed method (hiESBM). We would like
to start our experiments with investigating the effect of block size on the secret image retrieval quality using
three skin-detection techniques. As shown in Table 1, deeplab?! succeeded to provide the highest precision in
detecting skin regions even after the embedding process took place. This obviously results in less differences
between the skin map created before and after the embedding. In fact, in most of the test cases, the two maps
were identical when using 8 x 8 blocks. Therefore, moving forward in our experiments, we decided to use the
deeplab skin detection method as well as 8 x 8 block size.

Now, we can test the hiESBM performance when utilizing different color channels of the cover image for
hiding. In fact, we explored using only one color (namely blue) channel, two color channels, and the full color
channels. As shown in Table 2, the hiding capacity of each test image is computed in pixels. The PSNR values
shows the high invisibility of the proposed method even when utilizing all color channels. In addition, since

Fig. 6. The cover images used during experimental testing.
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2x2 Blocking 4x4 Bloc king 8x8 Blocking
Cover Image
Cheddad SegNet Deeplab | Cheddad | SegNet Deeplab Cheddad SegNet Deeplab
Message size
22288 24412 21680 20768 23216 20432 18176 21696 17856
A (pixels)
Similarity 83.8425 83.6572 83.4058 85.333 83.8371 83.9475 86.5351 84.225 99.9966
06Apr03Face.jpg Diff in skinmaps 200 568 28 160 656 32 192 896 0
Message size
27592 36444 27100 22368 33280 25088 15424 28096 21696
(pixels)
Similarity 83.7337 83.4601 86.6056 84.349 84.337 86.2927 84.2524 83.6058 100
Diff in skinmaps 940 2364 88 864 1808 128 704 1408 0
Message size
8304 3376 3580 6688 2944 2944 4864 1920 1472
(pixels)
Similarity 83.1711 85.2458 84.7742 83.736 84.574 93.9803 85.5522 86.8757 100
Diff in skin-
544 248 36 656 64 32 576 64 0
maps
Message size
10560 7484 6024 6688 6448 4832 2752 4480 2624
(pixels)
Similarity 84.2231 84.4695 86.0552 256 87.2056 84.2359 96.3715 84.5614 100
Diff in skin-
364 476 20 84.348 416 16 192 384 0
maps
Message size
17932 11204 10364 15456 10576 9520 11904 9600 7424
(pixels)
Similarity 85.2707 85.2304 89.6048 88.716 87.9499 84.2698 89.8256 93.8673 94.694
Aisharya-Rai,jpg Diff in skinmaps 296 184 20 304 192 16 192 448 64

Table 1. The effect of block size on the retrieval quality using three skin detection techniques.

hiESBM succeeded to minimize the difference between the skin map before and after embedding, the similarity
values are high reaching 100% in most of the cases.

We also noticed that the performance of hiESBM depends heavily on the individual characteristics of the
chosen cover image, which makes it quite challenging to decide which or how many color channels to use for
embedding. For example, in the case of 06AprO3Face the secret image was extracted with 100% for all color
channel combination. Thus, it is possible to utilize the full RGB space in this case. The 124511719065943_2
experiment, on the other hand, showed that RB channels should be avoided since it introduced errors in the
skin detection process which reduced the similarity measure. More interestingly, the Aishwarya-Rai experiment
showed the least retrieval quality among the experiments for all tested color channel combinations. In conclusion,
we recommend testing different cover images to maximize both the capacity and the extraction accuracy. Table 3
shows sample cases to visually demonstrate low retrieval accuracy.

While the proposed method demonstrates promising results in terms of imperceptibility and recovery
accuracy, several limitations should be acknowledged. First, the use of wavelet transforms and the skin-based
masking mechanism adds computational overhead, particularly during the preprocessing and embedding stages.
This may impact scalability when applied to large datasets or real-time applications. Second, the accuracy of skin
region detection is sensitive to variations in lighting conditions, skin tones, and background complexity, which
can affect the consistency of the embedding mask. Finally, the method’s performance may vary across different
types of images. It performs best on high-resolution images with clear foreground-background contrast and may
be less effective on low-contrast or uniformly textured images.

Discussion

The goal of this set of experiments is to discuss the performance of the proposed method in comparison with
some existing ones. The comparison focuses on the three quantitative metrics: PSNR, accuracy of retrieval
(similarity), and the payload (bbp). Table 4 shows the methods in their referenced publications as well as the
hiding approach they followed. All of the listed methods use images as the secret data.

The results show that the proposed method (hiESBM) provides the highest similarity between the extracted
image and the embedded one. At the same time, hiESBM outperformed the other methods in terms of
invisibility. However, in its pursuit of high invisibility, hiESBM couldn’t beat the hiding capacity of some of the
listed methods. In fact, the closest PSNR value was achieved by our predecessor method SBM. However, the
proposed method succeeded to offer more than 10 times the hiding capacity offered by SBM. Furthermore, it
is worth mentioning that the published results for FRnTW'? lacked a clear discussion on recoverability of their
proposed method especially with the low hiding capacity offered. Furthermore, the experiments used only two
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Cover Image Blue Green and Red and Red and RGB
8 ONLY Blue Blue Green
Message size
17856 35712 35712 35712 53568
(pixels)
Z Similarity 99.99 99.99 99.99 100 99.99
Diff in skinmaps 0 0 0 0 0
06Apr03Face
PSNR Sl 486233 486421 48.623 B
Message size
21696 43392 43392 43392 65088
(pixels)
Similarity 100 100 85.4666 88.5802 85.633
Diff in skinmaps 0 0 128 64 128
920480_£520
PSNR 53.9783 51.0965 50.64 50.6684 49.0767
Message size
1472 2944 2944 2944 4416
(pixels)
Similarity 100 100 99.9945 99.9945 87.053
Diff in skinmaps 0 0 0 0 192
0520962400
PSNR S0 52,502 52.062 52.147 ST
Message size
2624 5248 5248 5248 7872
(pixels)
o Similarity 100 99.9884 89.1687 99.9614 99.9056
_ Diff in skinmaps 0 0 64 0 0
124511719065943_2
PSNR 58.2787 55.3538 55.0494 55.0908 53.3988
Message size
7424 14848 14848 14848 22272
(pixels)
Similarity 94.69 85.5519 88.7081 85.3031 84.614
= Diff in skinmaps 64 192 128 256 256
Aishwarya-Rai
PSNR 53.9963 51.0565 51.0628 51.0902 49.3642

Table 2. The hiding/extraction performance using 8 x 8 block size in different combinations of color chan-nels.

colored cover images of size 512 x 512 to hide a 64 x 64 greyscale image, which doesn’t provide enough evidence
for the effectiveness of the proposed method.

Conclusions

In this research, we introduced a wavelet-domain image steganography method that integrates a skin-based
masking strategy and a lightweight bit-matching embedding rule to achieve high visual fidelity and effective
information recovery. During the hiding process, the approximation sub-band of the cover image is used to
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Cover Image

=

Embedded Color channel

RGB

Extracted Image

Green & Blue

Blue

Similarity

99.99

100

100

99.90

94.69

Table 3. Sample of extracted images using 8 x 8 block size in different combinations of color channels.

Method Approach Cover/Stego PSNR (db) | Secret/Retrieved Similarity (%) g:;ncn%y (bpp)
SBM, 20142, 2014 (DAI‘Z;Fblock) 46.17 89.37 0.014
Chaotic map’, 2017 IWT 31.15 92.12 18.21
CF-DWT-QTAR!, 2018 85;; 128 block) 34.23 97.52 19.54
Kirsch edge'?, 2021 Pixel 34.33 96.19 2.97
FrRnWT!?, 2021 Fractional Random Wavelet Transform (3rd Level, p=0.05) | 40.07 -- 0.125
2-bit LSB fusing’, 2021 DWT 37.78 100 0.25
ESBM!3, 2022 IWT 44.41 92.61 0.013
InvMIHNet'4, 2023 Neural Network & DWT 36.86 93.10 --
S-Transform
hiESBM (8% 8 block, 46.85 99.9 2.307
RGB)

Table 4. A performance comparison with some existing techniques.

build a blocked skin-map. That is, only coeflicients that correspond to “skin” pixels will be modified to carry
the message bits. Comprehensive experimental results were carried to test the retrieval accuracy using different
skin detections methods and block sizes. The results showed that the best performance was developed using
8x 8 block size and the deeplab skin detection method. The hiding capacity of the proposed method reached
2.3 bpp when utilizing the full color space for embedding which is more than 10 times the capacity offered by
its predecessor ESBM. Comparisons with some existing techniques demonstrated that the proposed method
performs competitively offering outstanding invisibility and extraction accuracy.

We also acknowledge several limitations of the current approach. These include sensitivity to lighting
variations in skin detection, dependence on image content and resolution, and the absence of a comprehensive
evaluation against steganalysis tools. Future work could involve evaluating the system’s robustness against
common image processing attacks—such as JPEG compression—to broaden its applicability, particularly in
areas like invisible image watermarking. Another valuable direction would be to assess the steganographic
security of the proposed method by subjecting it to standard steganalysis techniques, with the aim of improving
its resistance to detection.
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Embedding and Extraction Pseudo code
Begin Embedding Process

Read the cover-image C.
Apply one-level S-transform to each color channel (R, G, B) of C.
Combine the generated Ra, Ga, and Ba to form an averaged down-scaled version C'.
Perform skin detection on C’ resulting in a binary skin map.
Apply skin map blocking to create a blocked skin map
Embed the secret message guided by the blocked skin map as follows:
For each color plane X
For each “skin” pixel in the blocked map
Replace the 3 LSB of the corresponding Xa coefficient with a message bit.
Combine the embedded Xa with Xh, Xv, and Xd previously generated.
Apply the inverse S-transform to construct the X color plane of the stego-image.

Combine the reconstructed RGB planes to form the final stego-image.

End Embedding Process

Begin Extraction Process

Read the stego-image S.

Apply one-level S-transform to each color channel (R, G, B) of S.

Combine the generated Ra, Ga, and Ba to form an averaged down-scaled version S'.

Perform skin detection on S’ resulting in a binary skin map.

Apply skin map blocking to create a blocked skin map

Extract the secret message guided by the blocked skin map as follows:

For each color plane X

For each “skin” pixel in the blocked map

Extract one message bit from 34 LSB of the corresponding Xa coefficient.
Store the bit as part of the recovered message.

Reconstruct the original message from the extracted bits.

End Extraction Process

Data availability
The set of cover images used and analyzed during the current study were selected from Pratheepan Dataset that
is publicly available at http://cs-chan.com/downloads_skin_dataset.html.
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