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Human Activity Recognition (HAR) has become an active research area in recent years due to its 
applicability in various domains and the growing need for convenient facilities and intelligent 
homes for the elderly. Physical activity tends to decrease as people age, along with their ability 
to perform day-to-day tasks, which affects both mental and physical health. Several investigators 
apply deep learning (DL) and machine learning (ML) approaches to recognize human activities, but 
minimal investigations are concentrated on human activity recognition of older adults. Recently, 
the DL method has demonstrated excellent performance in classifying human activities using HAR 
information. Therefore, this study introduces an Advanced Smart Human Activity Recognition 
for Disabled People Using Deep Learning with a Snake Optimiser (AHARDP-DLSO) approach. 
The purpose of the AHARDP-DLSO technique is to provide an efficient deep learning-based HAR 
model designed to detect and classify the daily activities of individuals with disabilities with high 
precision and adaptability. Primarily, the min-max normalization is utilized for data normalization 
to ensure consistent input data quality. Furthermore, the AHARDP-DLSO technique utilizes the 
deep belief network (DBN) model for the classification process. To further enhance performance, the 
hyperparameter tuning of the DBN method is performed by using the snake optimizer algorithm (SOA) 
model. The experimental validation of the AHARDP-DLSO method is performed under the WISDM 
dataset. The comparison study of the AHARDP-DLSO method revealed a superior accuracy value of 
95.81% compared to existing models.
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In recent times, HAR is one of the most efficient techniques to facilitate persons with disabilities. As a key 
research speciality in computer vision (CV), HAR has applications in various areas, ranging from human-
computer interfaces to medical care1. With the advancement of technology, such as imaging methods and 
camera devices, new HAR conditions are continually evolving. Given its capability to bring higher-level 
visions into human activities from raw sensor inputs, HAR is utilized in fields such as gesture recognition, gait 
studies, home behaviour studies, and video surveillance2. Video-based HAR, which observes images or videos 
that contain sensor-based HAR, and human motion, which uses smart sensor data, such as accelerometers, 
gyroscopes, or sound sensors, are the two major classifications of HAR3. With the growing accessibility of 
robust crypto-systems and the ubiquity of smart sensor technology for creating specific sensor-based HAR data, 
privacy is gaining popularity. Several types of sensors are examined for their potential to enhance the accuracy 
of activity recognition4. As a result, mobile and fixed sensors have evolved as sources for various approaches to 
identifying human activities, depending on how sensors are utilized within a specific setting. Mobile sensor-
based approaches utilize specific movement sensors found on the body5. The general usage of HAR is helpful for 
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the quality and safety of human life. The presence of devices, such as video cameras, sensors, Wi-Fi, and radio 
frequency identification (RFID), is not a recent development. However, the use of these devices in HAR is still in 
its early stages6. The purpose of HAR’s development is to rapidly advance methods, such as artificial intelligence 
(AI), which enable the use of these devices in various application areas. For this reason, there is a common 
relationship between AI models or methods and HAR devices7.

Previously, these models relied on a single or small order of images, but developments in AI have now offered 
more opportunities. As observed, the development of HAR corresponds to the development of AI, which 
expands the scope of HAR in several application areas8. In usual activity recognition approaches, authors have 
often used an ML method, namely a random forest (RF), decision tree (DT), support vector machine (SVM), and 
naïve bayes (NB), to identify actions from characteristic vectors that come from indications in a window period 
using statistical values or Fourier alteration. Recurrent neural networks (RNNs) have a directed, closed cycle. 
RNNs are suitable for handling time-series datasets, such as audio and video, as well as natural language signals9. 
Now, hierarchical multi-layered convolutional neural networks (CNNs) have achieved noticeable results in 
areas such as image capturing and are processing the consideration of an approach called DL. In this way, as 
the RNN contains deep levels for temporal direction, it comes to take over as a DL technique10. HAR plays 
a significant role in enhancing the independence and quality of life for individuals with disabilities. Accurate 
interpretation of complex human movements is now possible in real-time, thanks to the rapid advancement 
of AI models and sensor technologies. Developing intelligent systems that can seamlessly understand and 
respond to human actions can significantly improve assistive devices and healthcare monitoring. Moreover, 
incorporating innovative optimization with AI models provides more precise and efficient activity recognition. 
These developments motivate the creation of smarter, adaptive solutions that effectively support people with 
disabilities.

This study introduces an Advanced Smart Human Activity Recognition for Disabled People Using Deep 
Learning with a Snake Optimiser (AHARDP-DLSO) approach. The purpose of the AHARDP-DLSO technique 
is to provide an efficient deep learning-based HAR model designed to detect and classify the daily activities of 
individuals with disabilities with high precision and adaptability. Primarily, the min-max normalization is used 
for data normalization to ensure consistent input data quality. Furthermore, the AHARDP-DLSO technique 
utilizes the deep belief network (DBN) model for the classification process. To further enhance performance, 
the hyperparameter tuning of the DBN method is performed by using the snake optimizer algorithm (SOA) 
model. The experimental validation of the AHARDP-DLSO method is performed under the WISDM dataset. 
The significant contribution of the AHARDP-DLSO method is listed below.

•	 The AHARDP-DLSO technique effectively applies min-max normalization to pre-process data, ensuring that 
input features are scaled within a consistent range. This step enhances the stability and performance of the 
learning process by preventing features with larger ranges from dominating the model training.

•	 The AHARDP-DLSO method utilizes the DBN approach to perform robust classification by capturing intrin-
sic patterns in the data through its layered architecture. This approach enhances the model’s capability to learn 
hierarchical feature representations, leading to improved accuracy and generalization.

•	 The AHARDP-DLSO approach integrates the SOA model to optimally tune hyperparameters, enabling ef-
ficient exploration of the search space. This optimization enhances model performance by identifying the 
optimal parameter settings that enhance convergence and accuracy.

•	 The AHARDP-DLSO methodology introduces a novel approach by incorporating the DBN and SOA models 
for tuning and classification by effectively searching the hyperparameter space. The synergy between DBN’s 
deep feature learning and SOA’s adaptive tuning creates a more effective and flexible model. This innovation 
sets the proposed method apart from conventional static tuning techniques.

Related works
Almalki et al.11 propose a HAR model, namely the bat optimization algorithm integrated with an ensemble 
voting classifier for HAR (BOA-EVCHAR). This approach employs ensemble classification to detect HAR in the 
IoT atmosphere. In the initial stage, data pre-processing is accomplished. For HAR detection and classification, 
an integration of DBN along with long short-term memory (LSTM) classifier methodologies is implemented. 
Lastly, the BOA method is employed to select the optimal hyperparameter values for the DBN and LSTM 
methods. Alotaibi et al.12 present an Optimum Deep RNN for HAR (ODRNN-HAR) method. Initially, this 
approach allows IoT devices to accumulate HAR data. The pre-processing process of the proposed model 
is accomplished by implementing Z-score normalization. For efficient HAR, the presented methodology 
utilizes the DRNN model. Finally, the optimal hyperparameter alteration is achieved by utilizing the Mayfly 
Optimisation (MFO) technique. Febrianti et al.13 introduce a framework that integrates Light Gradient Boosting 
Machine (LGBM) with an Android application, which analyses user movement data, classifies activities, displays 
step counts per day, and rewards users for achieving movement targets. To address privacy concerns, user data 
is anonymized by utilizing Elliptic Curve Cryptography (ECC) blind signature. The system also implements 
the power of AI techniques in the Mobile Crowd Sensing (MCS) server to effectively discriminate between 
diverse activities with high accuracy and reliability. Alotaibi et al.14 propose a new Arithmetic Optimisation 
Algorithm with LSTM Autoencoder (AOA-LSTMAE) methodology. The P-ResNet method is utilized for the 
feature extraction process. Additionally, the LSTMAE classifier is implemented for detecting a diverse range of 
actions. To enhance the recognition effectiveness of the LSTMAE method, AOA is utilized for hyperparameter 
tuning. Kumar et al.15 present a design paradigm for an electronic wheelchair that integrates AI-assisted smart 
sensors and controllers. Core components include advanced sensors for environmental and health data, an 
intelligent controller driven by AI models, and motorized wheels for achieving seamless mobility. The smart 
sensors, which measure temperature, ECG, oxygen, and heart rate, contribute to real-time health monitoring 
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and environmental awareness. The AI-assisted controller optimizes wheelchair navigation, giving a responsive 
and adaptive system. Alabdulkreem et al.16 introduce a Computer Vision with Optimum Deep Stacked 
Autoencoder Fall Activity Recognition (CVDSAE-FAR) methodology. The densely connected networking 
methodology is utilized for extracting features. Moreover, the DSAE method efficiently obtains and categorizes 
the feature vectors. Finally, the fruit fly optimization (FFO) methodology is employed for the hyperparameter 
tuning process. The performance validation of the presented technique is investigated on a standard dataset.

Alzahrani et al.17 propose an Indoor Activity Monitoring by utilizing the Chaotic Dwarf Mongoose 
Optimisation with DL (IAM-CDMODL) method. Primarily, the approach uses a bilateral filtering (BF) 
methodology for pre-processing. Additionally, the approach utilizes the MobileNetV2 (MN-V2) method 
to learn intrinsic and complex patterns from the pre-processed images. Furthermore, the CDMO method is 
employed for optimum hyperparameter selection associated with the MN-V2 technique. Finally, the deep CNN 
bi-directional LSTM (DCNN-BiLSTM) method is used to detect indoor activities. Ciortuz et al.18 compared 
models such as SVM, CNN, gated recurrent unit (GRU), LSTM, transformer, and hybrid Convolutional LSTM 
models with and without attention for classifying state and behavioural activities. Dahiya et al.19 proposed an 
attention-based capsule network model (At-CapNet) technique that integrates electroencephalography (EEG) 
and time-domain near-infrared spectroscopy (tNIRS) features from multiple brain regions. Kumar, Surendran, 
and Madhusundar20 compared RF and RNN models for developing a real-time intelligent system for human 
posture identification. Kim et al.21 developed a comprehensive framework by utilizing explainable artificial 
intelligence (XAI) integrated with ML models, namely RF, DT, XGBoost (XGB), and an ensemble voting classifier 
(EVC) for accurate activity recognition and anomaly detection in smart home environments. Thanarajan et 
al.22 developed an improved wolf swarm optimization with deep learning-based movement analysis and human 
activity recognition (IWSODL-MAHAR) methodology that uses dimensionality reduction, a hybrid DL model, 
and Nadam optimizer tuning to recognize human activities accurately. Choudhury and Soni23 presented 
a lightweight hybrid DL method, namely convolutional LSTM (ConvLSTM), to accurately classify human 
activities in individuals with knee abnormalities using physiological sensor data, optimized for performance 
and computational efficiency. Rizk and Hashima24 proposed RISense, a DL model integrating re-configurable 
Intelligent Surface (RIS) technology and RNN for accurate HAR in challenging real-world environments. Luo et 
al.25 developed ActivityMamba, a hybrid neural network incorporating CNN and visual Mamba for efficient and 
precise HAR. Prabagaran et al.26 presented a hybrid Siamese top-down neural network optimized by the popular 
optimization algorithm (Hyb-STDNN-POA) methodology for accurate HAR, integrating noise reduction and 
advanced feature extraction techniques to improve performance. Zohrevand, Mirzaei, and Sajedi27 proposed 
a model that utilizes deep neural network (DNN) models to enhance the accuracy and efficiency of HAR by 
effectively processing multidimensional sensor data and complex features. Dastbaravardeh et al.28 proposed a 
lightweight action recognition framework using CNN with Channel Attention Mechanisms (CNN-CAM) and 
AE to detect human actions in low-resolution and low-size videos. Aidarova et al.29 improved HAR by integrating 
multimodal sensor fusion with a transformer-based attention mechanism (AM) for more accurate and real-time 
classification. Rezaee30 proposed a real-time student activity monitoring system using a bidirectional LSTM–
grey wolf optimizer (BiLSTM-GWO) framework. The model classifies accelerometer data with improved 
accuracy and efficiency, using DL and optimization for health monitoring in educational settings. Amrani et 
al.31 presented a homogenization method to integrate diverse HAR datasets into a unified framework, computed 
using simplified convolutional neural network (S-CNN) and LSTM models. Gupta and Khang32 developed an 
AI-driven workforce training systems tailored for individuals with physical disabilities by utilizing personalized 
learning algorithms, predictive analytics, and adaptive content delivery to enhance inclusivity, accessibility, and 
employability.

Although existing studies have exhibited significant advances in HAR using various ML and DL models, 
several limitations remain. Several models rely on intrinsic architectures, which can result in high computational 
costs and limited hardware compatibility. Models used in the tuning process primarily enhance training time, 
while various techniques focus on accuracy but overlook robustness in noisy or real-world environments. Sensor 
data variability and privacy concerns also remain inadequately addressed. The research gap is in developing 
lightweight, efficient models that strike a balance between accuracy, computational efficiency, and adaptability 
across diverse scenarios, while minimizing pre-processing and ensuring privacy. Addressing these challenges is 
crucial for the practical and scalable deployment of HAR. Additionally, most existing models lack generalizability 
to real-world, dynamic environments and face difficulty with unseen or ambiguous activity patterns.

The proposed method
In this study, the AHARDP-DLSO approach is proposed. The purpose of the AHARDP-DLSO approach is to 
provide an efficient DL-based HAR model designed to detect and classify the daily activities of individuals with 
disabilities with high precision and adaptability. It comprises three distinct stages, as shown in Fig. 1, involving 
data normalization, DBN-based HAR classification, and SOA-based parameter optimization.

Stage I: min-max normalisation
Primarily, the AHARDP-DLSO model performs a data normalization process by using the min-max normalization 
approach to ensure consistent input data quality33. This model is chosen for its simplicity and efficiency in 
scaling data to a fixed range in [0, 1]. The method prevents dominance by features with larger numeric ranges 
and ensures that all features contribute equally to the model training process. This normalization preserves 
the original distribution shape, which is beneficial when the data does not follow a Gaussian distribution. This 
also enhances convergence speed for various ML models by keeping input values within a consistent scale. 
Moreover, min-max normalization is computationally efficient and easy to implement, making it appropriate for 
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massive datasets. Its ability to maintain the relative relationships between data points makes it an ideal choice in 
scenarios where feature scaling impacts model stability and accuracy.

It normalized each feature using Min-Max scaling, resulting in an interval of [0, 1]. Attaining a quicker 
convergence speed in DL methods, however, while guaranteeing none suppress the learning procedure, varies 
considerably with this normalization method. Numerous financial prediction models find MinMax helpful 
normalization, as it enhances performance with wide datasets containing various scales. The normalization 
equation is as demonstrated:

	
xnorm = x − xmin

xmax − xmin
� (1)

Here, x represents the unique value of a feature, xmin denotes the minimal feature value, and xmax signifies 
the maximal feature value.

Stage II: DBN-based HAR classification
Additionally, the AHARDP-DLSO technique employs the DBN classification model to recognize various 
activities34. This technique is chosen for its ability to learn hierarchical feature representations from raw sensor 
data. This technique automatically captures intrinsic patterns and temporal dependencies, thereby enhancing 
classification accuracy, unlike conventional ML techniques that depend on manual feature extraction. The 
layered structure of the model enables effective unsupervised pre-training, which facilitates better generalization 
and mitigates the risk of overfitting, particularly with limited labelled data. Compared to shallow models, DBNs 

Fig. 1.  Overall process of the AHARDP-DLSO approach.
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present deeper insight into data characteristics, making them more robust to noise and variability in HAR signals. 
Moreover, DBNs exhibit robust performance across diverse HAR datasets, highlighting their effectiveness in 
recognizing diverse activities with high precision. Figure 2 illustrates the architecture of the DBN classifier.

The DBN hierarchical architecture mainly contains a visible layer v = (v1, v2, · · · , vm) and a hidden layer 
(HL) h = (h1, h2, · · · , hn), while the h-layer comprises many RBM levels.

Let θ = {w, c, b}, where w represents the weight between h and v, c and b refer to the bias between h 
and v. Formerly, the effect of a node in the h layer on the v layer is described below:

	
P (v, h) = 1

Z
e−E(v,h)� (2)

whereas E(v, h) follows the Bernoulli distribution.
Let the three coefficients of the Bernoulli distribution of the ith HL and the jth visible layer be cj , bj  and 

wj .

	
E (v, h) = −

∑ m

j=1
bjvj −

∑ n

i=1
cihi −

∑ n

i=1

∑ m

j=1
wijvjhi� (3)

Next, the part of each node in layer h on layer y is displayed below:

	
P (v) =

∑
h
P (v, h) = 1

Z

∑
h
e−E(v,h)� (4)

Successively, each of the nodes in the v-layer acts on the h‐layer as demonstrated:

	
P (h) =

∑
v
P (v, h) = 1

Z

∑
v
e−E(v,h)� (5)

The result of each y-layer node on the ith h‐layer node is depicted below:

	
P (hi = 1|v) = σ

(
ci +

∑ m

j=1
wijvj

)
� (6)

Fig. 2.  DBN structure.
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The result of each h-tier node on the ith v‐tier node is exhibited below:

	
P (vj = 1|h) = σ

(
bj +

∑ n

j=1
wjivi

)
� (7)

	 where σ is σ (x) = 1/(1 + e−x).

.
When v0, v1, . . . , vm in v follow a self-determining uniform distribution, formerly the maximal probability 

approximation is gained by acquiring the natural logarithm of Eq. (4).

	
θ̂ = argmax

θ

∑ m

t=0
ln P (vt|θ )� (8)

	
θ * = θ + η

∂ lnP (v)
∂ θ

� (9)

Whereas η (η > 0) denotes a learning rate.
The outcome of the lth visual layer on the h-layer is stated below:

	
ln P (v0) = ln

∑
h
e−E(v0,h) − ln

∑
v,h

e−E(v,h)� (10)

To obtain the main parameters of DBN, the sources are carried out for wij , bj , and cj , respectively.

Algorithm 1.  Pseudocode of the SOA model.
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


∂ lnP (v0)
∂ wij

= P (hi = 1|v0) v0j −
∑

v
P (v) P (hi = 1v)

∂ lnP (vO)
∂ bj

= v0j −
∑

v
P (v)

∂ lnP (vO)
∂ ci

= P (hi = 1|v0) −
∑

v
P (v) P (hi = 1v)

� (11)

The relationship between the outcomes of the present iteration and the previous iteration is expressed below:

	




wi,j∗ = wij + η ∂ In P (vo)
∂ wij

bj∗ = bj + η ∂ In P (vo)
∂ bj

ci∗ = ci + η ∂ In P (vo)
∂ ci

� (12)

Lastly, the v-layer weight parameters of the DBN are resolved in reverse to define the network structure of the 
DBN.

Stage III: SOA-based parameter optimizer
To further enhance performance, the hyperparameter tuning of the DBN model is performed by using the SOA 
method35. This model is chosen for its robust exploration-exploitation balance and adaptive search behaviour. 
This technique effectually navigates intrinsic, high-dimensional search spaces, making it ideal for optimizing 
hyperparameters in DL models. The natural movement of snakes inspires this model, which dynamically adjusts 
its search patterns in response to feedback, resulting in faster convergence and improved solutions. It outperforms 
many metaheuristic algorithms by avoiding premature convergence and maintaining diversity among candidate 
solutions. Its simplicity, flexibility, and robustness make it a suitable choice for fine-tuning parameters in tasks 
such as classification, where performance heavily depends on optimal settings.

SO is stimulated by the mating and hunting behaviour of snakes, and its search procedure is separated into 
dual stages: exploitation and exploration. The exploration stage defines the environmental issues, such as food 
and temperature. At this stage, snakes primarily focus on finding food within their environment. It guarantees 
that SO can search the most significant possible number. The exploitation stage encompasses two transitional 
types, such as mate and fight modes, which are employed to enhance the SO’s search effectiveness. During 
the fight mode, every male snake will fight with each other to catch the best female snake, and every female 
snake will choose the best male snake. During the mating mode, the existence of mating behaviour is based on 
the quantities of temperature and food. When the mating behaviour occurs, the poor locations of snakes are 
upgraded for the succeeding iteration round. The SO model initiates by randomly generating the positions of 
snakes within the search space as given in Eq. (13).

	 Ui = Umin + rand × (Umax − Umin)� (13)

Here, Ui represents the position of the ith snake. The term ”rand"refers to a uniformly distributed random 
number in the range [0, 1], ensuring diversity in initialization. Umin and Umax represent lower and upper limits 
for the solution problem, respectively, which define the permissible range for snake positions. This initialization 
provides a broad and unbiased coverage of the search space, which is significant for effective exploration during 
the early optimization stages.

In the exploration stage, the behaviour of snakes is governed by two key environmental factors: food 
availability ( Q) and temperature ( T emp). These control how snakes explore the search space and are computed 
using Eq. (14).

	
Q = c1 × exp

(
t − T

T

)
, T emp = exp

(−t

T

)
� (14)

Here, c1 = 0.5, t denotes the present iteration count, and T  signifies the maximal iteration count. If Q < 0.25, 
the snakes begin to update their locations randomly in search of food. The Q value simulates the availability 
of food, decreasing or increasing exponentially with iterations, which influences the snakes’ decision to explore 
or exploit. Meanwhile, T emp models environmental temperature, gradually reducing over time to shift the 
algorithm from exploration to exploitation. These two parameters dynamically control the balance between 
global search and local refinement.

During the exploitation state, when Q < 0.25 and T emp >0.6, snakes move toward the globally best 
solution found so far. This behaviour is described in the Eqs. (15–16).

	 Ui,m(l + 1) = Ui (t) + c3 × Mm × rand × (Q × Ui,f (t) − Ui,m (t))� (15)

	 Ui,f (l + 1) = Ui (t) + c3 × Mf × rand × (Q × Ui,m (t) − Ui,f (t))� (16)

Here, Ui,m(l + 1) and Ui,f (l + 1) are the updated positions of male and female snakes after mating. Ui (t)​ is 
the current position at iteration t, and rand ∈ [0,1] introduces stochasticity. c3 is a scaling factor (usually 2), 
while Q controls behavioural conditions based on food availability. Mm and Mf  denote the mating capabilities 
of male and female snakes, respectively, and are defined in Eq. (17).

	
Mm = exp

(
−fi,f

fi,m

)
, Mf = exp

(
−fi,m

fi,f

)
� (17)
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Here, fi,f  and fi,m​ are the fitness values of the female and male snakes. These mating equations help improve 
diversity and introduce new candidate solutions by simulating cooperative reproductive behaviour between 
genders within the population. This mechanism plays a significant role in refining the search space and avoiding 
premature convergence. After mate mode is finished, SO has a definite probability of entering the egg-laying 
period. This period can help the poor male and female snakes update their locations again. The SO’s pseudo code 
is specified in Algorithm 1.

Fitness selection is a significant feature that influences the SOA performance. The hyperparameter choice 
procedure includes the solution encoder method to estimate the efficiency of the candidate solutions. In this 
section, the SOA considers accuracy as the primary condition for designing the fitness function, as stated.

	 F itness = max (P )� (18)

	
P = T P

T P + F P
� (19)

Here, T P  and F P  represent the true positive and false positive values, respectively.

Result analysis and discussion
This article examines the performance of the AHARDP-DLSO technique under the WISDM dataset36. The 
dataset comprises 15,000 samples across six classes, as shown in Table 1. The total number of features is 128. The 
highest and lowest frequencies are walking (38.6%) and standing (4.4%), respectively. Afterwards, 36 subjects 
who were essential to implementing specific daily tasks while shifting an Android phone in their front pants 
pocket instituted the innovative purpose of WISDM. An accelerometer with a 20-Hz sample rate functioned 
as the sensor, while a motion sensor is also commonly found in smartphones. Walking (Walk), Standing 
(Std), upstairs (Up), sitting (Sit), jogging (Jogging), and downstairs (Down) were the documented activities. 
To ensure that the information was of superior value, a specific individual identified in the process examined 
the information gathering. The curated dataset ensures balanced class representation and reliable ground truth 
labeling for accurate model training and evaluation.

Figure 3 illustrates the classifier results of the AHARDP-DLSO approach on the test dataset. Figure 3a and b 
show the confusion matrix with the accurate identification and classification of all 6 class labels on a 70%TRASE 
and 30%TESSE. Figure 3c illustrates the PR study, demonstrating enhanced performance across all class labels. 
Lastly, Fig. 3d represents the ROC investigation, signifying efficient results with high ROC values for discrete 
class labels.

In Table 2; Fig. 4, brief recognition results for the AHARDP-DLSO approach are presented for 70%TRASE 
and 30%TESSE. The results indicate that the AHARDP-DLSO approach can efficaciously identify the samples. 
With 70%TRASE, the AHARDP-DLSO model achieves an average accuy  of 95.48%, precn of 86.50%, recal 
of 86.45, Fscore of 86.41%, MCC of 83.74%, and Kappa of 83.80%. Meanwhile, with 30%TESSE, the AHARDP-
DLSO model achieves an average accuy  of 95.81%, precn of 87.52%, recal of 87.40, Fscore of 87.40%, MCC 
of 89.93%, and Kappa of 85.00%.

In Fig.  5, the TRA accuy  (TRAAY) and validation accuy  (VLAAY) outcomes of the AHARDP-DLSO 
technique under 70%TRASE and 30%TESSE accuy  over 0–25 epochs are illustrated. The figure highlights 
that the TRAAY and VLAAY values exhibit an increasing trend, which indicates the capacity of the AHARDP-
DLSO method to achieve optimal performance across multiple repetitions. Moreover, the TRAAY and VLAAY 
remained closed beyond the epochs, indicating minimal overfitting and revealing the maximum performance of 
the AHARDP-DLSO method, which guarantees consistent prediction on hidden samples.

In Fig.  6, the TRA loss (TRALO) and VLA loss (VLALO) graphs of the AHARDP-DLSO approach are 
demonstrated under 70%TRASE and 30%TESSE. The loss values are computed throughout 0–25 epochs. 
The following TRALO and VLALO values illustrate a decreasing tendency, which indicates the ability of the 
AHARDP-DLSO technique to equalize the exchange between generalization and data fitting. The continual 
reduction in loss values as well as assurances of the superior performance of the AHARDP-DLSO technique and 
tuning the prediction results, eventually.

To elucidate the higher performance of the AHARDP-DLSO method, a quick comparative analysis is 
concluded in both Table 3; Fig. 718,19,37–39. The results revealed that the EfficientNet B0 model showed minimal 
classification performance with accuy  of 89.11%, precn of 85.25%, recal of 84.52%, and Fscore of 83.26%. 

WISDM Dataset

Activity Samples Percentage (%) For experimental

Walking 424,400 38.6 2500

Jogging 342,177 31.2 2500

Upstairs 122,869 11.2 2500

Downstairs 100,427 09.1 2500

Sitting 59,939 05.5 2500

Standing 48,397 04.4 2500

Total number of instances 15,000

Table 1.  Details of the dataset.

 

Scientific Reports |        (2025) 15:31372 8| https://doi.org/10.1038/s41598-025-16180-5

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Likewise, the VGG16, Baseline, Xception, Inception-V3, and CNN models have tried to accomplish a somewhat 
closer classification solution. Simultaneously, the CNN-LSTM technique exhibited reasonable performance with 
an accuy  of 95.25%, precn of 81.38%, recal of 81.64%, and Fscore of 86.27%. Moreover, the SVM, GRU, 
and At-CapNet techniques attained slightly lesser values. The AHARDP-DLSO model illustrates promising 
performance with an accuy  of 95.81%, precn of 87.52%, recal of 87.40%, and Fscore of 87.40%.

The computation time (CT) performance of the AHARDP-DLSO technique is compared with that of other 
existing models in both Table 4; Fig. 8. The results indicate that the AHARDP-DLSO technique achieves a CT of 
2.12 s. Alternatively, the SVM, GRU, At-CapNet, CNN-LSTM, CNN, Baseline, VGG16, Inception-V3, Xception, 
and EfficientNet B0 approaches attained increased CT values of 7.99s, 6.23s, 7.98s, 4.62s, 3.52s, 3.97s, 6.44s, 
5.23s, 7.40s, and 4.98s, respectively. Consequently, the AHARDP-DLSO approach is utilized for an accurate 
HAR classification process.

Table 5; Fig. 9 demonstrates the error analysis of the AHARDP-DLSO methodology with the existing models. 
The error analysis reveals that the models exhibit low performance, with accuy  of 4.19–10.89%, precn of 
12.48–19.64%, recal of 12.60–19.26%, and Fscore ranging from 12.60 to 16.74% for all models. The baseline 
model illustrates an accuy  of 10.45%, precn of 14.94%, recal of 13.42%, and Fscore of 16.27%, showing 
modest performance. EfficientNet B0 achieves the highest accuy  of 10.89% but maintains moderate precn of 
14.75%, recal of 15.48%, and Fscore of 16.74%, suggesting room for improvement. VGG16 and GRU models 
present higher recal values of 19.26% and 18.71%, respectively, but their overall accuy  and Fscore remain low, 
implying many misclassifications. CNN-based models, comprising CNN-LSTM and CNN Classifier, exhibit 

Fig. 3.  (a-b) Confusion matrices and (c-d) PR and ROC curves.
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higher precn values above 18%, but lower recal and accuy , highlighting that they are more conservative in 
positive predictions. Overall, the low metric values across models highlight significant classification challenges 
and the necessity for additional model optimization and improved feature engineering.

Conclusion
In this article, the AHARDP-DLSO approach is proposed. The purpose of the AHARDP-DLSO approach is 
to provide an efficient DL-based HAR model designed to detect and classify the daily activities of individuals 

Fig. 4.  Average of AHARDP-DLSO technique under 70%TRASE and 30%TESSE.

 

Class Accuy P recn Recal F Score MCC Kappa

TRASE (70%)

Walking 93.52 80.95 79.93 80.44 76.56 76.61

Jogging 95.24 83.66 88.65 86.08 83.26 83.32

Upstairs 96.11 87.78 88.98 88.38 86.05 86.11

Downstairs 95.79 87.30 87.50 87.40 84.87 84.92

Sitting 95.52 91.16 81.39 86.00 83.53 83.58

Standing 96.67 88.18 92.24 90.16 88.19 88.26

Average 95.48 86.50 86.45 86.41 83.74 83.80

TESSE (30%)

Walking 94.18 83.00 81.89 82.44 78.95 79.02

Jogging 95.56 85.73 88.23 86.96 84.30 84.37

Upstairs 96.24 87.89 90.09 88.98 86.72 86.80

Downstairs 95.93 87.82 87.70 87.76 85.32 85.38

Sitting 95.96 91.73 82.39 86.81 84.60 84.66

Standing 97.02 88.94 94.09 91.44 89.69 89.76

Average 95.81 87.52 87.40 87.40 84.93 85.00

Table 2.  Recognition results of AHARDP-DLSO technique under 70%TRASE and 30%TESSE.
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Fig. 6.  Loss outcomes of the AHARDP-DLSO technique under 70%TRASE and 30%TESSE.

 

Fig. 5.  Accuy  outcomes of AHARDP-DLSO technique under 70%TRASE and 30%TESSE.
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with disabilities with high precision and adaptability. It comprises three distinct stages: data normalization, 
DBN-based HAR classification, and SOA-based parameter optimization. Primarily, the AHARDP-DLSO 
model performs a data normalization process using the min-max normalization to ensure consistent input 
data quality. Moreover, the AHARDP-DLSO model uses the DBN classification approach to identify various 
activities. To further enhance performance, the hyperparameter tuning of the DBN model is performed by the 
SOA approach. The experimental validation of the AHARDP-DLSO method is performed under the WISDM 
dataset. The comparison study of the AHARDP-DLSO method revealed a superior accuracy value of 95.81% 
compared to existing models. The AHARDP-DLSO method may not fully reflect the variability seen in diverse 
real-world environments due to its evaluation on a single dataset. The model may also be sensitive to sensor 
noise or placement discrepancies, which can affect activity classification accuracy. While the model exhibits high 
performance under controlled conditions, its robustness under dynamic, multi-user, or multi-device scenarios 
remains unexplored. Computational efficiency on edge devices and real-time processing were not thoroughly 
addressed. Future works can involve cross-dataset validation, sensor fusion, and integration with real-world 

Fig. 7.  Comparison analysis of the AHARDP-DLSO approach with existing models.

 

Model Accuy P recn Recal F Score

AHARDP-DLSO 95.81 87.52 87.40 87.40

SVM 90.29 85.68 86.14 84.24

GRU 89.98 86.44 81.29 86.34

At-CapNet 92.33 82.12 85.73 84.16

CNN-LSTM 95.25 81.38 81.64 86.27

CNN Classifier 93.32 80.54 84.52 86.81

Baseline Model 89.55 85.06 86.58 83.73

VGG16 Model 89.32 85.64 80.74 85.75

Inception-V3 91.54 81.35 85.02 83.51

Xception Model 90.17 80.36 85.42 86.03

EfficientNet B0 89.11 85.25 84.52 83.26

Table 3.  Comparison analysis of AHARDP-DLSO approach with existing models18,19,37–39.
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smart environments. Additionally, improving model interpretability and incorporating adaptive learning could 
improve practical deployment.

Fig. 8.  CT evaluation of AHARDP-DLSO methodology with existing techniques.

 

Model CT (sec)

AHARDP-DLSO 2.12

SVM 7.99

GRU 6.23

At-CapNet 7.98

CNN-LSTM 4.62

CNN Classifier 3.52

Baseline Model 3.97

VGG16 Model 6.44

Inception-V3 5.23

Xception Model 7.40

EfficientNet B0 4.98

Table 4.  CT evaluation of AHARDP-DLSO methodology with existing techniques.
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Data availability
The authors confirm that the data supporting the findings of this study are available within the benchmark data-
set, accessible at https:/archive.ics.uci.edu/dataset/507/wisdm+smartphone+and+smartwatch+activity+and+bi-
ometrics+dataset36.
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