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Large language models (LLMs) hold transformative potential for medical image labeling in radiology, 
addressing challenges posed by linguistic variability in reports. We developed a two-stage natural 
language processing pipeline that combines Bidirectional Encoder Representations from Transformers 
(BERT) and an LLM to analyze radiology reports. In the first stage (Entity Key Classification), BERT 
model identifies and classifies clinically relevant entities mentioned in the text. In the second stage 
(Relationship Mapping), the extracted entities are incorporated into the LLM to infer relationships 
between entity pairs, considering actual presence of entity. The pipeline targets lesion-location 
mapping in chest CT and diagnosis-episode mapping in brain MRI, both of which are clinically 
important for structuring radiologic findings and capturing temporal patterns of disease progression. 
Using over 400,000 reports from Seoul Asan Medical Center, our pipeline achieved a macro F1-score 
of 77.39 for chest CT and 70.58 for brain MRI. These results highlight the effectiveness of integrating 
BERT with an LLM to enhance diagnostic accuracy in radiology report analysis.

Abbreviations
AI	� artificial intelligence
LLM	� large language model
CT	� computed tomography
MRI	� magnetic resonance imaging
NLP	� natural language processing
LM	� language model
BERT	� Bidirectional Encoder Representations from Transformers
GPT	� Generative Pre-trained Transformer
CDW	� Clinical Data Warehouse
CDM	� Common Data Model
OMOP CDM	� Observational Medical Outcomes Partnership Common Data Model

In the rapidly evolving landscape of artificial intelligence (AI), the integration of large language models 
(LLMs) into medical imaging analysis presents a transformative opportunity for healthcare1. Radiology, a 
field traditionally reliant on expert interpretation of computed tomography (CT) scans, X-rays, and magnetic 
resonance imaging (MRI), is now poised to benefit from AI-driven advancements that promise to enhance 
diagnostic accuracy and efficiency2.

Despite the potential of deep learning classifiers to analyze radiological images, the process of annotating these 
images remains labor-intensive and demands significant domain expertise3. This has led researchers to explore 
the utilization of existing radiology reports as a more accessible source of training data4–7. Radiology reports, 
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often rich in clinical context and historical comparisons, offer a wealth of information that can be harnessed for 
AI model development8. However, discrepancies between image-based annotations and report-derived labels 
pose challenges due to the narrative nature of reports, which frequently include comparative analyses with 
prior imaging examinations9,10. These reports encapsulate nuanced details about disease progression and lesion 
characteristics that are not always apparent in image annotations alone.

Therefore, numerous ongoing studies aim to extract more detailed information and generate accurate labels 
from radiology reports. Traditional methods for extracting information from radiology reports have relied on 
keyword-based rules, which are prone to errors such as false positives and negatives due to the variability in 
report language11. Recent advancements in natural language processing (NLP), particularly with language models 
(LMs) like Bidirectional Encoder Representations from Transformers (BERT)12 and Generative Pre-trained 
Transformer-4 (GPT-4), have shown promise in overcoming these limitations by providing more accurate and 
context-aware information extraction capabilities3,13. For instance, fine-tuned LMs have been successfully used 
to classify patients based on lung cancer treatment stages from radiological reports, achieving high accuracy 
compared to human radiologists14. Additionally, LLMs have been applied to extract structured clinical data from 
imaging reports, improving the accuracy of information such as lesion characteristics and locations15.

However, there remains a critical need for methods that can seamlessly integrate these capabilities to handle 
complex tasks, such as matching the relationship between lesions and their anatomical locations in chest CT 
reports and assessing cancer episodes in brain MRI reports. Addressing such tasks is particularly important 
in chest CT and brain MRI, which play pivotal roles in thoracic and neurological imaging due to their high 
clinical demand in radiology departments16,17. Chest CT is the most commonly performed thoracic imaging 
modality after radiographs, enabling detailed visualization of lung parenchyma, airways, and vascular structures 
for accurate diagnosis of conditions like tumors or infections. Similarly, brain MRI offers superior sensitivity 
for detecting neurological abnormalities, such as tumors or aneurysms, making it essential for precise clinical 
assessment and prognosis. Extracting detailed relational information from these modalities is crucial for 
accurate clinical assessment and prognosis, and requires a deeper understanding of radiology narratives through 
carefully designed language modeling approaches.

This study addresses a critical gap in radiology report analysis: the lack of effective methods for extracting 
and mapping fine-grained clinical entities and their relationships from free-text reports. We propose a two-
stage NLP pipeline that integrates a BERT-based model for Entity Key Classification with an LLM that performs 
advanced Relationship Mapping along with deeper contextual inference, such as identifying negations. The 
pipeline first identifies the presence of lesion and diagnosis mentions in chest CT and brain MRI reports, then 
leverages the LLM’s capacity for deep contextual and semantic understanding to model the relationships among 
those entities.

Our contributions are as follows:

•	 We introduce a two-stage approach that effectively combines the lexical sensitivity of BERT-based models 
with the deeper contextual reasoning capabilities of LLMs.

•	 Our pipeline enables complex relationship mapping with only a small number of keyword-based annotations 
for entity classification in the first stage.

•	 The approach utilizes an open-source LLM, making it feasible for real-world healthcare applications, where 
the deployment of proprietary LLMs is often limited due to privacy and data sovereignty concerns.

Results
Dataset summary
In our two-stage NLP approach, a total of 447,679 reports (patients = 207,504) in the Clinical Data Warehouse 
(CDW) database were used in the first stage to train the entity key classification BERT model. The pre-training 
corpus consisted of 396,625 reports (patients = 170,622) in the CDW control group, after preprocessing and 
removal of duplicate texts. From the CDW case group, which included 51,054 reports, 1,000 chest CT reports 
and 500 brain MRI reports were randomly sampled for entity value keyword extraction annotation. These 
annotated reports were used to fine-tune the BERT model, while the remaining 49,554 reports were used for 
weak-label fine-tuning (Supplementary information, Supplementary Fig. 1).

In the second stage of relationship mapping, we utilized 417,133 reports (patients = 110,643) in the 
Observational Medical Outcomes Partnership Common Data Model (OMOP CDM) database after preprocessing 
and removing duplicated texts with the CDW annotated reports. From this dataset, 400 reports were randomly 
selected and pairwise annotated as the internal validation set for both chest CT and brain MRI modalities. 
Of these, 360 reports (90%) from each modality were used for the final evaluation of the tasks, information 
extraction, and relation matching (Fig. 5).

We analyzed the statistical characteristics of the report texts in the final annotated dataset, as summarized in 
Table 1. The average tokenized lengths per report were 56 for chest CT and 145 for brain MRI. The number of 
reports containing both Korean and English was 87 for chest CT and 90 for brain MRI, indicating that over 20% 
of the reports in both modalities included multilingual content. Among these mixed-lingual reports, the average 
proportion of Korean characters was 6% and 4%, respectively.

Pipeline overview
We developed a two-stage NLP pipeline that integrates a BERT-based model with Llama-3-8b18a representative 
open-source LLM, to extract and analyze key clinical information from chest CT and brain MRI reports. In the 
first stage, Entity Key Classification, fine-tuned BERT-based model12 was used to identify and classify entity keys 
corresponding to lesions and diagnoses. In the second stage, Relationship Mapping, Llama-3-8b was prompted 
without further training, to identify relationships between entity pairs, specifically lesion-location pairs in chest 
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CT and diagnosis-episode pairs in brain MRI reports This pipeline is designed to exploit the complementary 
strengths of both models: the BERT model’s precision in recognizing structured medical entities, and the LLM’s 
ability to understand complex semantic relationships. An overview of proposed pipeline is illustrated in Fig. 1, 
demonstrating how these components are integrated to process radiology reports.

Stage 1: entity key classification performance
To evaluate classification performance at the report level, accuracy was measured as the complete correctness of 
extracted information. Precision was reported when model predictions were present, while recall was calculated 
when human annotations were available. In cases where no ground-truth annotations existed, specificity was 
used to assess the model’s ability to avoid generating hallucinated information.

Figure 2 shows the entity key classification performance of extracting lesions in chest CT and extracting 
diagnoses in brain MRI reports. With 360 internal validation test set cases, none of the lesions described in our 
entity keys (Table 4) were found in 49 chest CT reports and no diagnoses were found in 50 brain MRI reports. 
Despite having the lowest accuracy (44.4) and F1-score (80.5) for chest CT lesion key classification, the BERT 
model achieved the highest recall of 98.9. Our best model, which combined LLM with BERT-extracted lesion 

Fig. 1.  An overview of our two-stage modeling pipeline: 1). Entity Key Classification stage to classify the 
existence of entity keys on input radiology reports using pre-trained BERT encoder 2). Relationship Mapping 
stage to map lesion-location pairs for chest CT and diagnosis-episode pairs for brain MRI with semantic entity 
key classification using LLM (Llama-3-8B).

 

Report type Statistic Value

Chest CT Number of reports 400

Number of unique patients 396

Average tokenized length [min, max] 156 [36, 321]

Number of Mixed-lingual reports (Korean and English) 87

Average proportion of Korean characters per report 0.06

Brain MRI Number of reports 400

Number of unique patients 384

Average tokenized length [min, max] 145 [10, 546]

Number of Mixed-lingual reports (Korean and English) 90

Average proportion of Korean characters per report 0.04

Table 1.  Report text statistics for each report type. The table summarizes report characteristics of annotated 
validation set, including the total number of reports and unique patients, average tokenized report length 
(measured using the Llama-3-8b tokenizer), and the number of mixed-lingual (Korean and English) reports. 
The proportion of Korean characters per report was also calculated for mixed-lingual subset.
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prompts, demonstrated superior performance across all metrics compared to the LLM without BERT-extracted 
lesion prompts. This optimized model achieved an accuracy of 73.9, an F1-score of 93.4, and a specificity of 
79.6, with the latter metric particularly useful for assessing potential hallucinations in LLMs (Fig.  2). The 
incorporation of BERT-extracted lesion prompts substantially improved the LLM’s performance in processing 
and interpreting medical data, achieving a 9.7 point increase in accuracy and a 3.9 point increase in F1-score.

In contrast, BERT model’s brain MRI diagnosis key classification performance was the highest in both 
accuracy (80.6), which was the same as LLM with BERT extracted diagnosis prompt’s accuracy, and F1-score 
(91.9). LLM with BERT extracted diagnosis prompt had F1-score of 91.1 and specificity of 52.0 and were 0.8 and 
12 points less than BERT’s performance, respectively. However, LLM with BERT extracted diagnosis prompt had 
higher scores in all the metrics than those without BERT extracted diagnosis’ performance as the same tendency 
of chest CT’s performance (Fig. 2; Supplementary information, Supplementary Table 4).

Brain MRI non-tumor diagnosis entity key classification performance
A detailed entity key classification was conducted on a total of 97 reports in which non-tumor diagnoses were 
identified during the brain MRI entity key classification stage. Among these, 25 reports did not contain any of 
the following four non-tumor diagnoses: Demyelinating, Hemorrhage/Vascular lesion, Infection/Inflammation, 
and Stroke/Infarction. During the subsequent second entity key classification stage, 14 out of these 25 reports 
were correctly identified as not containing any of these four diagnoses and further analysis of these results will 
be provided in the Discussion section. Also, due to the false negative prediction during the first stage, the model 
missed 2, 20, 0, and 8 positive cases for each non-tumor diagnosis class.

Figure 3 presents the confusion matrix for each non-tumor diagnosis category. Even with the imbalanced 
distribution of three diagnostic classes among 97 reports—11 positive cases for demyelinating, 11 for infection/
inflammation, and 28 cases for stroke/infarction—all three classes achieved high accuracy scores and F1-scores, 
with a minimum of 90.72 and 83.02, respectively, for stroke/infarction. However, the performance was relatively 
low for hemorrhage/vascular lesion, 76.29 in accuracy and 72.29 in F1-score.

Stage 2: relationship mapping performance
The performance of the lesion-location relationship mapping task was evaluated at the lesion level using the 
proposed LLM with BERT approach (Table  2). The overall macro average accuracy was 56.13, with an F1-
score of 77.39. The accuracy score was relatively lower since the F1-score measures the proportion of correctly 
predicted location matches within each lesion, while the accuracy metric is more stringent, as it only counts a 
match as correct when all locations were correctly identified for a given lesion. The model achieved the highest 
performance for mass in chest CT scans (n = 60), with an accuracy of 80.00 and an F1-score of 89.55. In contrast, 
the lowest performance was observed for fibrosis (n = 98), with an accuracy of 40.82 and an F1-score of 64.00. 
For most chest CT lesions, the model’s precision was higher than recall, except for bronchiectasis, bronchial 
wall thickening and interstitial thickening, where the recall score exceeded the precision score by 5.09 points, 
1.13 points and 19.75 points, respectively. The largest disparity between precision and recall in locating chest 

Fig. 2.  Entity key classification performance for chest CT and brain MRI reports. LLM without BERT 
extracted prompt refers to the modeling process without using BERT’s extraction information as an additional 
prompt string, and LLM with BERT extracted prompt uses BERT’s extraction information in the input 
prompt. Accuracy was calculated using the total evaluation set (n = 360) for both chest CT and brain MRI, 
recall was calculated using reports containing at least 1 lesion for chest CT (n = 311) and 1 diagnosis for brain 
MRI (n = 310), and specificity was calculated using reports that contained none of the 11 lesions (n = 49) or 5 
diagnosis groups (n = 50).
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CT lesions was observed in interstitial thickening, resulting in the fourth-lowest F1-score (77.78). This large 
disparity was followed by atelectasis, which had the third-lowest F1-score (74.49) for lesion-location matching 
in chest CT reports. The LLM with BERT method consistently outperformed the rule-based method across 
most lesion types and evaluation metrics. Notably, the macro-averaged F1 score showed an improvement of 
approximately 34.42 points. For bronchial wall thickening and interstitial thickening, the rule-based method 
yielded a performance of 0 in certain metrics. Detailed F1-score measure for each lesion-location pair is shown 
in Supplementary information, Supplementary Fig. 7.

The brain MRI diagnosis-episode relationship mapping task was evaluated on a per-diagnosis basis for 
malignant tumors using the LLM with BERT approach (Table  3). For brain MRI reports, the overall macro 
average accuracy in matching malignant tumor diagnoses with their corresponding episodes was 63.12, with an 
F1-score of 70.58. The accuracy score was comparatively lower because it only considers a match correct when all 
episodes are accurately identified for a given brain MRI malignant tumor diagnosis, while the F1-score measures 
the proportion of correctly predicted episode matches within each diagnosis. In brain MRI analysis of malignant 
tumors, the model demonstrated the highest performance for matching episodes to lymphoma diagnoses, 
achieving an F1-score of 72.69. Conversely, the poorest performance was observed in matching episodes 
for metastasis diagnoses, with an F1-score of 69.07 and an accuracy of 48.5. A significant disparity between 
precision and recall was noted for glioma, where recall exceeded precision by 27.54 points. Both glioma and 
metastasis exhibited higher recall scores, indicating that the presence of multiple episode types within a single 
report may have negatively impacted accuracy and precision. Compared to chest CT, the macro-average scores 
showed 6.99 points increase in accuracy but a 6.81% point decrease in the F1-score. The rule-based baseline 
demonstrated substantially lower performance than the proposed model across all macro-averaged metrics 

Fig. 3.  Additional brain MRI entity key classification result heatmap of four non-tumor diagnoses: 
Demyelinating, Hemorrhage/Vascular lesion, Infection/Inflammation, and Stroke/Infarction. Additional steps 
were performed on 97 reports, which were classified as non-tumor diagnosis present during the brain MRI 
entity key classification stage.

 

Scientific Reports |        (2025) 15:31550 5| https://doi.org/10.1038/s41598-025-16213-z

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


except for precision. In particular, the difference in macro-average F1 score was 31.06 points. Detailed F1-score 
measure for each diagnosis-episode pair is shown in Supplementary information, Supplementary Fig. 8.

Assessment of patient progression in brain MRI reports using a comparative pipeline
In our proposed pipeline for brain MRI report analysis, comparisons were made with preceding reports to 
evaluate changes over time. Within the CDM database, a total of 7,096 patients and 27,028 reports were included, 
yielding an average of 3.8 reports per patient. The number of reports per patient ranged from 1 to 43, with a 
median of 2 reports. The average time interval between successive reports was 128.8 days, with a maximum 
of 3,635 days and a median of 66 days. To assess the progression status of patients over time, our pipeline was 
applied to the remaining CDM data. The episode mapping performed by the LLM model achieved an F1-score of 
70.58, with a higher recall of 73.31, demonstrating the model’s strong ability to capture positive episode changes. 
We first applied entity key classification stage, which achieved an F1-score of 91.1 during internal validation, and 
filtered out reports lacking malignant tumor diagnoses from the first stage output. Also, patients with less than 
three sequential reports were excluded. Then the second step, episode mapping, was applied to the remaining 
set, including 999 reports classified with glioma existence, 733 reports with lymphoma, and 10,712 reports with 
metastasis.

Even though multiple diagnoses and episodes could be classified throughout our pipeline, we only used 
the reports with single diagnosis and episode, and patients with single diagnosis along the sequence of reports 
for better analysis. Figure 4 shows episode changes among the total of 1,707 patients after applying the above 

Malignant tumor diagnosis (count, %) Method Accuracy Precision Recall F1-score

Glioma (n = 20, 5.6) Rule-based 50.00 50.00 18.18 26.66

BERT + LLM 80.00 58.82 86.36 69.98

Lymphoma (n = 23, 6.4) Rule-based 52.17 100.00 28.57 44.44

BERT + LLM 60.87 85.71 63.10 72.69

Metastasis (n = 200, 55.6) Rule-based 50.50 79.15 33.88 47.45

BERT + LLM 48.50 67.74 70.46 69.07

Macro avg Rule-based 50.89 76.38 26.88 39.52

BERT + LLM 63.12 70.76 73.31 70.58

Table 3.  Performance for diagnosis-episode relationship mapping on brain MRI reports using the proposed 
LLM–BERT extraction approach. Bold indicates the highest performance value for each malignant tumor 
diagnosis.

 

Lesion (count, %) Method Accuracy Precision Recall F1-score

Nodules (n = 222, 61.7) Rule-based 27.93 84.03 40.05 54.25

BERT + LLM 53.15 83.14 74.16 78.39

GGO (n = 69, 19.2) Rule-based 27.54 64.23 42.91 51.45

BERT + LLM 57.97 86.20 75.12 80.28

Consolidation (n = 50, 13.9) Rule-based 30.00 68.33 45.14 54.37

BERT + LLM 50.00 80.17 67.71 73.42

Atelectasis (n = 96, 26.7) Rule-based 34.38 70.56 48.19 57.27

BERT + LLM 52.08 83.83 67.03 74.49

Fibrosis (n = 98, 27.2) Rule-based 22.45 55.67 29.03 38.16

BERT + LLM 40.82 67.49 60.86 64.00

Bronchiectasis (n = 57, 15.8) Rule-based 36.84 75.25 46.90 57.79

BERT + LLM 47.37 77.20 82.29 79.66

Mass (n = 60, 16.7) Rule-based 65.00 78.75 68.75 73.41

BERT + LLM 80.00 92.87 86.46 89.55

Bronchial wall thickening (n = 28, 7.8) Rule-based 3.57 0.00 0.00 0.00

BERT + LLM 57.14 78.38 79.51 78.94

Interstitial thickening (n = 9, 2.5) Rule-based 0.00 0.00 0.00 0.00

BERT + LLM 66.67 69.14 88.89 77.78

Macro avg Rule-based 27.52 55.20 35.66 42.97

BERT + LLM 56.13 79.82 75.78 77.39

Table 2.  Performance for lesion-location relationship mapping on chest CT reports, comparing a rule-based 
baseline and the proposed LLM with BERT extraction approach. Bold indicates the highest performance value 
for each lesion.
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filters. Within each patient’s sequence of reports, the count was incremented only when there was a change in 
the episode label, limited to a maximum of four changes. For metastasis and glioma, the majority of patients had 
a progression episode as their first episode, whereas lymphoma patients more commonly had an improvement 
episode first. Overall, across all entity key labels, episodes often changed to a different label rather than remaining 
the same. The detailed transitions are provided in Supplementary information, Supplementary Table 7.

Discussion
Superiority of the integrated pipeline in entity classification
Our entity classification task achieved an improved macro-average F1-score of 93.4. To evaluate classification 
performance, McNemar’s test was used to assess pairwise disagreements among BERT, LLM, and our integrated 
pipeline. For chest CT reports, the integrated pipeline demonstrated statistically significant improvements over 
both individual models. In brain MRI reports, it significantly outperformed the LLM and showed comparable 
performance to the BERT model. These results were further supported by the 95% confidence intervals derived 
from bootstrap analysis of per-report F1-score (Supplementary information, Supplementary Figs.  9–10; 
Supplementary Table 5). Together, these findings provide statistical evidence that our approach is more effective 
for entity classification than using either BERT or LLM alone, across both chest CT and brain MRI datasets.

To better understand the observed performance gains, we analyzed the classification behavior of each model 
in detail. The BERT-based entity key classification performance showed a distinct pattern in lesion detection 
(Supplementary information, Supplementary Fig. 6). While the model demonstrated strong sensitivity with only 
8 false negatives across 11 lesion types including zero false negatives for 7 lesion categories, it generated 371 false 
positives out of the total 3,960 predictions (9.4%). This led to the highest recall but the lowest precision among 
all models. This trade-off likely stems from the BERT model’s training approach: while it effectively learned to 
identify lesion-related keywords from our keyword-annotated training data, including various typographical 
and syntactic variations, it struggled in understanding complex semantic contexts such as negations.

The challenge of negation handling in medical texts has been well-documented in previous research. Studies 
have shown that BERT models often struggle with negation prediction19while larger language models typically 
demonstrate relative insensitivity to negated contexts20. Our internal validation test set analysis confirmed this 
limitation. For reports containing negated lesions (n = 186), BERT correctly classified only 1 report (0.5%), while 
our two-stage pipeline correctly classified 136 reports (73.1%). For reports without any negated lesions (n = 174), 
BERT correctly classified 159 reports (91.4%), while our pipeline correctly classified 130 reports (74.7%; 
Supplementary information, Supplementary Table 8). A chi-square test revealed a highly significant performance 
difference between negated and non-negated reports for BERT (χ2 ≈ 300.46, p < 0.001), suggesting that the BERT 
model is particularly sensitive to negation. In contrast, our proposed pipeline showed no statistically significant 
performance difference (χ2 ≈ 0.12, p = 0.73), suggesting greater robustness to negation.

These findings highlight two key insights. First, they demonstrate the complementary strengths of both 
models: BERT’s high sensitivity in keyword detection and the LLM’s superior ability to understand semantic 
context, particularly negations. Second, they validate the design of our two-stage architecture. The initial BERT 
stage ensures comprehensive lesion detection with high recall, while the subsequent LLM stage refines these 
outputs by incorporating deeper understanding, effectively filtering out false positives and handling negated 
contexts (Supplementary information, Supplementary Fig. 5). Overall, this architecture achieves a more balanced 
and robust performance than either model alone (Supplementary information, Supplementary Table 9).

Also, for the brain MRI entity classification performance, the initial identification of non-tumor diagnoses 
resulted in 97 positive samples, with 25 false positives, indicating a challenge in preliminary classification 

Fig. 4.  Sankey diagram illustrating the episode change of three malignant tumor diagnoses up to 5 time steps. 
The diagram begins with three initial nodes representing the cancer diagnoses: Metastasis (blue), Glioma (red), 
and Lymphoma (green). Links carry the diagnosis colors and connect to subsequent nodes representing time-
step-specific episode states: Progression (orange), Stable (light blue), and Improvement (yellow). The flows 
visualize transitions across up to 5 time steps (t0 ~ t4), with link thickness indicating transition counts.
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accuracy (Fig. 2). Interestingly, the second stage of our pipeline demonstrated improved accuracy in handling 
false positive non-tumor cases. Figure 3, depicting the detailed classification results, shows that 14 of the 25 
false-positive samples were correctly reclassified as negative during the detailed entity key classification of non-
tumor diagnoses. This improvement stems from the refinement in our prompting strategy: while the initial stage 
prompted the model to identify potential non-tumor diagnoses broadly, the second stage implemented more 
specific, targeted classification tasks for each of the four non-tumor diagnosis types. This finding highlights the 
critical importance of precise prompt engineering in LLM applications.

Context-aware relationship mapping beyond rule-based methods
Our integrated pipeline goes beyond disease detection by accurately mapping the corresponding locations and 
episodes for each identified disease, further enhancing its clinical applicability. While the rule-based mapping 
approach occasionally achieved higher precision, it showed significantly lower accuracy, recall and F1-score. The 
high precision observed in rule-based matching can be attributed to its strict criteria, where relationships are 
considered matched only if the lesion and location entities appear within the same sentence. In such cases, true 
relationships are highly likely to be captured, resulting in high precision. However, the considerably lower recall 
and overall accuracy indicate that a large number of valid relationships span across sentences and are thus missed 
by the rule-based approach. This suggests that sentence-level co-occurrence is insufficient to comprehensively 
capture the full range of meaningful relationship mappings and rule-based approach is only effective when clear 
keyword matches are present. In contrast, our integrated pipeline leverages the LLM’s ability to interpret the full 
context of the report, enabling more accurate and robust mapping compared to the rule-based baseline.

The model’s performance demonstrated significant variations across different imaging modalities and lesion 
types. In chest CT analysis, the model showed particular strength in mapping locations for mass, achieving 
an F1-score of 89.55. However, it showed lower accuracy in detecting fibrosis patterns, possibly due to the 
complex and varied presentation of fibrotic changes in imaging reports. Brain MRI analysis presented additional 
challenges, resulting in lower overall F1-scores compared to chest CT tasks. This difference can be attributed to 
several factors: the inherent complexity of neurological conditions, the more nuanced language used in brain 
MRI reporting, and significant data imbalances in our dataset.

Comparison with existing methods
Prior research, such as CheXbert, reported a macro-average F1-score of 79.8 in classifying the presence of 14 
observations into four categories: positive, negative, uncertain, and blank21. A subsequent study, CheX-GPT, 
employed a similar but reversed approach to ours by first using an LLM (GPT-4) to label 50,000 MIMIC-CXR 
reports and then fine-tuning BERT-based encoder for binary classification of 10 diseases22. Although CheX-
GPT utilized both a BERT model and an LLM, and was trained on a substantially larger fine-tuning dataset than 
ours, it was evaluated on 500 manually annotated MIMIC-CXR reports and achieved a macro-average F1-score 
of 92.79. In comparison, our entity classification —which shares similar objectives—achieved a higher macro-
average F1-score of 93.4, demonstrating competitive performance of our method even with limited supervision 
and smaller data volume. Also, proprietary LLMs have demonstrated promising performance across various 
medical tasks23surpassing existing systems in several benchmarks24. However, their application in routine clinical 
practice is limited due to concerns around data privacy and the substantial computing resources required. In 
contrast, our pipeline employs a relatively lightweight open-source LLM, which can be replaced based on the 
user’s specific requirements and trade-offs between performance, data privacy, and computational constraints.

Additionally, many prior approaches have attempted to convert unstructured radiology reports into structured 
formats using NLP techniques. However, these methods often rely heavily on named entity recognition for 
keyword-based label extraction25limiting their ability to capture the rich and complex semantic relationships 
present in clinical narratives. Recent studies have proposed various relationship annotation schemes26–28but 
face challenges in labor-intensive annotation processes and varying relationship types across different imaging 
modalities. Extracting these various relationships across diverse modalities and tasks through human annotation 
is highly laborious.

In contrast, our study focused on clinically meaningful tasks, such as lesion-location and diagnosis-episode 
matching, without relying on any manually annotated relationship labels. Instead, we fully utilized the LLM’s 
capacity to infer complex relationships directly from the radiology reports. This design enables our two-stage 
pipeline to be flexibly adapted to diverse relation extraction tasks with minimal keyword-based annotations.

Limitations
Our modeling pipeline depends hugely on LLM’s overall performance. We chose Llama-3-8b model among 
various open-source LLMs considering the data privacy when using closed-source APIs and computational 
resources. Despite the strong capabilities of Llama-3-8b, its relatively small parameter size imposed limitations 
on achieving optimal performance. However, as larger-scale open-source models such as Llama-3.1 405B 
become available, incorporating a larger open-source LLM into our proposed approach is expected to further 
improve performance in both entity classification and relationship matching.

Implications
In our research, we proposed a two-stage natural language processing pipeline capable of extracting target 
entity key information and matching relationships between them. By integrating advanced NLP techniques, we 
demonstrated that open-source large language models have significant potential to understand the sophisticated 
semantics underlying radiology reports. A key strength of our study is the use of a locally deployed LLM 
instead of public models like GPT-4, ensuring compliance with data privacy and security requirements. Despite 
the computational constraints of smaller models, our fine-tuned implementation demonstrates that robust 
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performance can be achieved through thoughtful system design. This approach serves as a benchmark for 
institutions navigating strict privacy regulations while leveraging advanced NLP capabilities.

Also, our pipeline demonstrates applicability to radiology reports written in multiple languages. Even though 
more than 20% of the reports included both Korean and English, and no language normalization or translation 
was performed, the combined LLM with BERT-extracted lesion prompts produced robust results. Moreover, 
BERT and LLM’s inherent capacity to understand and interpret multiple languages suggests that our pipeline 
can generalize well with texts written in different linguistic settings and to reports from other institutions. 
Therefore, we expect that as the performance of LLMs continues to advance rapidly and their utilization deepens, 
increasingly complex tasks can be effectively addressed.

Future work and clinical integration
Future directions include validating system performance across varying institutional reporting styles and 
medical terminologies, optimizing integration with hospital information systems, and addressing data imbalance 
to improve detection of rare conditions. Expanding the dataset, refining prompt engineering techniques, and 
exploring transfer learning for different radiological domains are also essential. Additionally, extending this 
approach to other imaging modalities, such as ultrasound or nuclear medicine, and conducting prospective 
validation in clinical settings will be critical to establish its broader applicability.

To translate these advances into clinical impact, seamless integration of the system as a decision support tool 
is essential to minimize workflow disruption. By structuring detailed information such as lesion location and 
disease progression into a visually interpretable format, the system can support clinicians in rapidly assessing 
temporal changes, facilitating timely therapeutic decisions and improved prognosis management. Ensuring 
clinical safety and preserving trust will also require robust privacy protection and the implementation of human-
in-the-loop safeguards, such as mandatory clinician verification of AI-generated outputs. As follow-up research, 
we are developing a benchmark dataset to evaluate performance across diverse LLMs and advancing image-
text integrated learning to enhance radiological interpretation by aligning textual knowledge from reports with 
visual features. We anticipate that this approach will help bridge the gap between learned clinical knowledge and 
its practical implementation in imaging, potentially reaching a level suitable for routine clinical use and further 
advancing NLP’s role in radiology for improved information extraction, organization, and enhanced clinical 
care and research.

Methods
Data source and cohort definition  We mainly utilized two types of radiology reports, chest CT, brain MRI 
throughout our total pipeline, and additionally used brain CT reports only for pre-training purposes. This over-
all dataset composition is illustrated in Fig. 5. The reports were extracted from CDW and OMOP CDM at Seoul 
Asan Medical Center. Our cohort included patients over 18 years old who had been diagnosed with infectious 
lung disease or respiratory infection symptoms and had chest X-ray or CT records within one and two weeks, 
respectively, before and after their diagnosis, between January 1, 2010, and December 31, 2021. This chest CT 
cohort comprised 106,154 patients. We also included patients over 18 years old, diagnosed with brain-related 
lesions, tumors, or hemorrhages, who had brain MRI or CT records within two weeks before and after their 
emergency room visit or admission, between January 1, 2010, and December 31, 2019. This brain MRI cohort 
included 7,125 patients. In alignment with the criteria used for the CDM database, we also retrieved radiology 
reports from our CDW system, Asan BiomedicaL research Environment, ABLE system, for a keyword-based 
training approach which will be further described in the Model Development section. For text pre-processing, 
we removed symbols, except for commonly used punctuation such as commas and periods, and substituted 
newlines and consecutive spaces into a space.

This study was approved by the Institutional Review Boards (IRB) at Asan Medical Center (IRB No. S2022-
0123-0015). All methods were performed in accordance with the relevant institutional guidelines. The study 
analyzed de-identified radiology reports collected for routine clinical care in a retrospective manner, IRB granted 
a waiver of written informed consent.

Approximately 20% of the extracted radiology reports were mixed-lingual, containing both Korean and 
English (Table 1). We did not perform any translation or language normalization, as most key medical terms 
were already written in English, and translation quality between English and non-English languages can degrade 
significantly in domain-specific, mixed-language contexts29. Notably, our proposed pipeline demonstrated 
robust performance on these mixed-lingual reports without any language-specific processing. This suggests 
that the approach may be generalizable to radiology reports in other multilingual clinical settings, even in the 
absence of additional language-specific adaptation or training.

Tasks definition
Our research focused on developing NLP techniques for the analysis of radiological reports from two distinct 
imaging modalities: chest CT and brain MRI. For each modality, we defined specific tasks tailored to the unique 
clinical requirements and characteristics of the imaging type. To ensure clinical relevance and practical utility, 
we derived these tasks based on scenarios and demands identified through consultation with expert radiologists. 
This approach allowed us to align our research objectives closely with real-world clinical needs.

In the analysis of chest CT reports, we addressed two primary tasks. The first task, disease detection, involved 
entity key classification to determine the presence or absence of specific respiratory diseases within the report 
text. This approach aimed to automatically identify and categorize various pulmonary conditions described by 
radiologists. The second task focused on lesion-location association, utilizing pair matching between entity keys 
to establish relationships between detected lesions and their anatomical locations within the chest. This task was 
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crucial for mapping the spatial distribution of abnormalities and providing a comprehensive understanding of 
the patient’s pulmonary status.

For brain MRI reports, we similarly defined two distinct tasks. The first task focused on disease entity key 
classification, aiming to detect the presence of malignant tumors, non-malignant tumors, and non-tumor 
diseases, with a particular emphasis on classifying the specific types of malignant tumors. This task was designed 
to automatically identify and categorize various types of brain diseases based on radiological descriptions. 
Additionally, we developed a tumor progression assessment task, which involved entity key comparison 
to evaluate changes only in malignant tumors over time. This longitudinal analysis aimed to automatically 
determine whether tumors had improved, worsened, or remained stable between successive MRI examinations, 

Fig. 5.  Overview of Data Usage from Clinical Data Warehouse (CDW) and Common Data Model (CDM). 
Data from the CDW database were utilized for BERT training and evaluation, while data from the CDM 
database were employed for prompt tuning of the large language model and final internal validation.
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providing valuable insights into disease progression and treatment efficacy. Additionally, we performed an extra 
task of classifying detailed entity keys of the brain related non-tumor diagnoses.

Entity key definition
To prevent misunderstanding of the terms used in this study, we first clarify them here. “Entity type” refers to 
the main categories of information to extract, such as diagnosis or location. “Entity key” refers to individual 
items within the entity type, such as nodule or consolidation within chest CT lesion. “Entity value” refers to the 
keywords that act as extraction rules for each entity key that human annotators find. We also refer to the span 
in the report that matches the entity values as a “mention”. Examples of each term are represented in Table 4. 
In chest CT reports, we focused on extracting 11 lesions and 11 locations, finally forming lesion-location pairs 
for 9 lesions and 11 locations. Pleural effusion and pleural thickening were excluded from the pair-matching 
process, as their association with the “pleural” location is inherently obvious as represented in Supplementary 
information, Supplementary Table 2. For brain MRI reports, we focused on 4 tumor-related diagnoses including 
1 entity key of non-malignant tumors, 4 non-tumor diagnoses, and 3-episode groups, forming diagnosis-episode 
pairs with a specific focus on the three malignant tumor diagnoses: Glioma, Lymphoma, Metastasis (Table 4).

Data annotation process
We developed a consistent annotation process for both chest CT and brain MRI reports, while addressing the 
unique characteristics of each modality. Our modeling consisted of five key steps: (1) defining entity types (e.g., 
Lesion, Location for CT; Diagnosis, Progression Status for MRI), (2) identifying specific entity keys within each 
type, (3) extracting relevant keywords as entity values, (4) annotating text spans matching these values, and (5) 
marking entity key pairs for relationship mapping tasks.

This process was applied independently to each dataset, allowing us to capture modality-specific nuances while 
maintaining methodological consistency. For chest CT, we focused on respiratory diseases and lesion-location 
associations, while for brain MRI, we targeted malignant tumor classification and progression assessment. This 
approach resulted in a comprehensive annotated corpus, serving as a foundation for training and evaluating our 
NLP models in extracting clinically relevant information from radiological reports. Data annotation details are 
represented in Supplementary information, Supplementary Tables 2 and 3.

NLP approach pipeline
Our NLP pipeline was designed to process the complex nature of radiological reports, which contain critical 
details such as diagnoses, observed lesions, their locations, and temporal changes. The pipeline consists of two 
main stages. In the Entity Key Classification Stage, we employed a BERT-based model12 to identify and classify 
entity keys for lesions and diagnoses. This stage was crucial for accurately detecting clinical entities within 
the nuanced context of radiological reports. The BERT model was fine-tuned in a supervised manner on our 
annotated and weakly labeled reports to optimize the performance for medical text analysis. In the Relationship 
Mapping Stage, following entity recognition, we utilized a LLM to establish relationships between the extracted 
entity pairs. For chest CT reports, the LLM focused on mapping lesion-location pairs, while for brain MRI 
reports, it targeted diagnosis-episode pairs. This stage leveraged the LLM’s advanced language understanding 
capabilities to interpret complex relationships within the medical text30. This stage was conducted only with 
prompt engineering of LLM input, without any training procedure. Notably, for location and episode entities, 
which are typically represented by straightforward keywords (e.g., “right lung” or “rt. lung”), we relied solely 
on the LLM’s capabilities without additional entity classifying using BERT. This approach aimed to enhance the 
accuracy and efficiency of information extraction from medical texts, potentially improving clinical decision-
making processes and facilitating large-scale analysis of radiological data.

Entity types Entity keys Example of entity value Example of mention

Chest CT

Lesions
Nodules, Ground glass opacity (GGO), Consolidation, Pleural effusion, 
Atelectasis, Fibrosis, Bronchiectasis, Mass, Bronchial wall thickening, Interstitial 
thickening, Pleural thickening

Nodules:
nodule, calcified granuloma, nodular 
lesion

“nodular lesions in left 
upper lobe.”

Locations
Right lung, Left lung, Both lower lobe (BLL), Right lower lobe (RLL), Left lower 
lobe (LLL), Right middle lobe (RML), Both upper lobe (BUL), Right upper lobe 
(RUL), Left upper lobe (LUL), Pleural, Left Lingula

Right lung: right lung, rt. lung “small nodules in the Rt. 
lung”

Brain MRI

Diagnoses

tumor Glioma, Lymphoma, Metastasis, Non-malignant tumors Glioma: astrocytoma, gbm, idh-mutant “GBM in the left temporal 
lobe.”

non-tumor Demyelinating, Infection/Inflammation, Hemorrhage/Vascular lesion, Stroke Demyelinating:
multiple sclerosis, demyelinating

“R/O demyelinating 
disease, more likely.”

Episodes Progression, Stable, Improvement Progression:
newly appeared, progression

“progression of preexisting 
contrast enhancing lesion”

Table 4.  Pre-defined entity keys, along with examples of entity values and mentions for each entity type.
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BERT encoder model
For BERT encoder to get familiar with mixed languages (Korean and English) and medical words, we trained our 
own tokenizer using morpheme-aware byte-level byte pair encoding and performed masked language modeling 
(MLM) pre-training first to train BERT model12. We used data from the control group in the CDW database, 
with 5% (n = 19,832) set aside as validation data for early stopping, and the rest as training data (n = 376,793). As 
Park et al. demonstrated that splitting words into their morphemes can improve Korean text language modeling 
performance, we adopted their morpheme-aware tokenizer training approach31. Also, the presence of out-of-
vocabulary tokens was prevented by using byte-level byte pair encoding32. We first initialized our model with 
clinically pre-trained CXR-BERT model33 and then followed the original BERT’s MLM training setup without 
next sentence prediction.

After pre-training on a large volume of radiology reports, supervised fine-tuning was performed as the next 
training step. Additional classification layers, consisting of a token-wise attention layer followed by a dense layer, 
were added to the pre-trained BERT encoder for the purpose of multi-label classification34. For fine-tuning, we 
first used 80% of the data from the annotated case group in the CDW database, in which the keywords related to 
each entity type were extracted as entity values, comprising 800 chest CT reports and 400 brain MRI reports. To 
expand the training data, we applied regular expression matching to a non-annotated CDW database case set, 
which comprised 23,865 chest CT reports and 21,243 brain MRI reports. In other words, we performed rule-
based labeling using regular expressions to generate weakly annotated reports by detecting whether keywords 
from annotated data were present in the non-annotated reports. For example, even if a report contains solely 
an expression for glioma, such as glial tumor, it would be labeled as not containing glioma-related mentions if 
glial tumor was not included in the previously collected keyword list. These weakly labeled reports were used as 
additional fine-tuning data. The final model was then employed to classify the presence of each entity key within 
the radiology reports.

LLM model  To ensure data privacy, we employed the most advanced open-source local small language model, 
Llama-3-8b18. Since Llama-3-8b possesses a high level of language understanding, relationship mapping was 
conducted using two-shot in-context examples without extra parameter tuning. Instructions were given to de-
termine mapping entity types (lesion-location pairs for chest CT, and diagnosis-episode pairs in brain MRI) 
within the report, with an output result template to ensure the consistency of the LLM’s output response struc-
ture. Additionally, to enhance LLM’s relationship extraction performance, we provided BERT’s diagnosis/lesion 
classification results as complementary information by concatenating the string “### Target Lesions:” or “### 
Target Diseases:” with the BERT output inside the input prompt (Supplementary information, Supplementary 
Figs. 1–4).

For Brain MRI, the process is conducted in the same manner as previously described. However, since the 
relationship mapping in Brain MRI reports differs by each diagnosis, the extraction was carried out in two 
steps. In Step 1, we first checked the existence of five diagnoses: three malignant tumor diagnoses (Glioma, 
Lymphoma, Metastasis), non-malignant tumor diagnoses, and the other non-tumor diagnoses. If any malignant 
tumor diagnosis was found in Step 1, we proceeded Step 2; extract the episode entity key and then match the 
relationship between the tumor-related entity key and the episode entity key. If the other non-tumor diagnosis 
was found, step 2 was performed with additional entity key classification; checking for the existence of the non-
tumor diagnoses’ entity keys. The input prompts for each step can be found in Supplementary information, 
Supplementary Figs. 1–4.

This entire process constituted our final proposed radiology report curation process. Among 800 radiology 
reports, we sampled 10% of the reports, 40 reports respectively for chest CT and brain MRI, for prompt 
development, and used the remaining 90% as the final performance evaluation.

Rule-based relationship mapping baseline
For the relationship mapping task, we additionally implemented a simple rule-based mapping approach to serve 
as a baseline for comparison. Using the annotated entity values obtained during the data annotation process, 
we matched lesion-location pairs in chest CT or diagnosis-episode pairs in brain MRI if they appeared within 
the same sentence. Sentence segmentation for each report was performed using the ‘en_core_web_sm’ model 
provided by spaCy35.

Evaluation and statistical tests  We evaluated our overall framework using two types of tasks: The first task, 
Entity Key Classification evaluation, assessed how well the model could extract key information—specifically, 
lesion and diagnosis data—from radiology reports. The second task, Relationship Mapping evaluation, evaluated 
the model’s ability to correctly associate each extracted lesion and diagnosis with the corresponding location and 
episode information.

Since a single report may contain multiple lesions or diagnoses, the accuracy of entity key classification was 
measured in a binary manner: a report was considered correct only if all lesions and diagnoses were correctly 
extracted. We also reported precision, recall, and F1-scores for data that could be calculated, since precision 
cannot be calculated if the model judges no lesion or diagnosis information in the report, and recall cannot be 
calculated if there is no human annotated label in the report. To quantify LLM’s hallucinations, we also checked 
specificity score, which measures the model’s ability of correctly not extracting any information when no human 
annotations are present. For relationship mapping performance, evaluation was conducted on each lesion for 
chest CT reports (or diagnosis for brain MRI reports), as one lesion could be associated with multiple locations 
(Supplementary information, Supplementary Table 1). In the same way, we evaluated accuracy, precision, recall, 
and F1-scores for each human annotated lesion and diagnosis.
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To assess the statistical significance of performance differences between models (BERT, LLM, and the 
integrated BERT + LLM pipeline), we conducted McNemar’s test on report-level classification outcomes. 
Additionally, we performed paired bootstrap resampling (1,000 iterations) to estimate 95% confidence intervals 
for per-report F1-score differences. The detailed results are provided in the Supplementary Information, 
Supplementary Table 5.

Implementation details  All experiments were conducted in a Python 3.8.10 environment using the following 
package versions: PyTorch 2.1.2, NumPy 1.24.4, Transformers 4.44.2, and Scikit-learn 1.3.2. Model training and 
inference were performed on a server equipped with two Intel(R) Xeon(R) Gold 6248R CPUs (96 logical cores), 
754 GB of memory, and two NVIDIA RTX A6000 GPUs (49 GB VRAM each). For experiments involving LLMs, 
only a single GPU was used per run.

Data availability
The raw radiology reports are not publicly available due to patient privacy concerns. De-identified text with 
annotation examples and the actual model output examples are provided in the Supplementary information 
(Supplementary Figure 1-4, Supplementary Table 6). Annotation information (e.g., entity value keywords) is 
available from the corresponding author upon reasonable request.

Code availability
The trained BERT checkpoints and running scripts are available on GitHub (​h​t​t​p​s​:​​​/​​/​g​i​t​h​u​​b​.​c​o​​m​/​c​h​a​i​​h​o​y​​a​h​​/​r​a​d​
i​o​​l​o​​g​y​_​​r​e​p​​o​r​​t​_​i​n​f​o​r​m​a​t​​i​o​n​_​e​x​t​r​a​c​t​i​o​n).
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