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This study aims to improve both the evaluation accuracy and the real-time feedback capability 
in monitoring athletes’ physical function changes during volleyball training. Firstly, based on the 
framework of the generalized regression neural network, a variable-structure generalized regression 
neural network (VSGRNN) is proposed and developed. Three heterogeneous kernel functions, namely 
Gaussian kernel, radial basis kernel, and Matern kernel, are introduced, and a local weighted response 
mechanism is constructed to enhance the expression ability of nonlinear physiological signals. Second, 
a dynamic adjustment mechanism for smoothing factors based on local gradient perturbation is 
proposed, enabling the model to have response compression capability in high-fluctuation samples. 
Finally, combining the structure embedding mapping mechanism with a multi-scale linear compression 
framework, the reconstruction of high-dimensional physiological indicators and the elimination of 
redundant features are achieved, improving model deployment efficiency. Comparative experiments 
conducted on training data of a high-level university men’s volleyball team show that VSGRNN has 
a goodness-of-fit R2 = 0.927 on the validation set, with a Root Mean Square Error (RMSE) only 1.68 
and Symmetric Mean Absolute Percentage Error (SMAPE) controlled at 8.21%. Within the local 
perturbation interval, the peak response deviation is 6.7%, far better than the comparative models 
(Long Short-Term Memory (LSTM) + Attention at 8.5% and Tabular Data Network (TabNet) at 9.8%). 
When compressed to 30% of the original feature dimension, the error only increases by 7.9%, and 
the inference time is shortened by 46.1%. The research conclusion shows that VSGRNN outperforms 
traditional models in terms of accuracy, robustness, structural compression adaptability, and real-time 
feedback capability. This study provides an engineerable structure-response modeling method for 
the intelligent evaluation of physical functions in volleyball-specific training, which has high practical 
application value.

Keywords  Volleyball training, Physical function assessment, Generalized regression neural network, Multi- 
kernel adaptive modeling

As competitive sports training becomes more advanced, traditional evaluation methods increasingly fail to 
meet the demands for individualized, real-time, and dynamically adaptive assessments required by elite sports 
teams. For instance, in volleyball training, athletes’ physiological indicators exhibit high volatility and nonlinear 
functional responses. Indicators such as heart rate, lactate, and explosive power often show short-term phase lag, 
delayed changes, and asymmetric coupling, which pose challenges to function monitoring and load regulation1,2. 
Therefore, it is necessary to construct an intelligent evaluation model with dynamic response and structure 
perception capabilities.

In recent years, artificial intelligence technologies have been increasingly applied to modeling sports 
training data, including Back Propagation Neural Networks (BPNN), Long Short-Term Memory (LSTM) time-
series networks, and Support Vector Machines (SVMs). However, these methods often struggle to capture the 
complex nonlinear relationships among indicators and are less effective in addressing high-dimensional feature 
redundancy3,4. Consequently, developing an evaluation model with both a flexible response structure and high 
compression adaptability has become an important research focus5.

This study introduces a Variable-Structure Multi-Kernel Generalized Regression Neural Network (VSGRNN). 
Building on the generalized regression neural network (GRNN), the proposed model incorporates a multi-
kernel fusion mechanism, integrating Gaussian, Matern, and radial basis kernel functions to expand its capacity 
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for modeling nonlinear relationships. In addition, a dynamic smoothing factor adjustment mechanism based on 
local gradient sensitivity is employed to improve the model’s stability under training perturbations. For feature 
construction, the model combines the Structural Embedding and Encoding Mechanism (SEEM) with the Multi-
Scale Linear Compression (MSLC) framework, enabling automatic screening and semantic reconstruction 
of redundant physiological features. This approach enhances computational efficiency and adaptability for 
deployment.

The proposed method was tested using six consecutive weeks of training data from a high-level university 
men’s volleyball team. A multi-dimensional indicator input matrix was constructed, and the VSGRNN’s 
performance was systematically compared with various mainstream models. Experimental results demonstrated 
that VSGRNN achieved superior global prediction accuracy, improved response to local perturbations, greater 
tolerance to structural compression, and shorter real-time feedback delays. These findings highlight the 
model’s strong potential for engineering applications and practical promotion. Overall, this study provides a 
novel approach for the intelligent evaluation of physical function in volleyball-specific training, offering both 
theoretical foundations and methodological support for the broader use of structure-adaptive modeling in 
sports data analysis.

Literature review
In recent years, monitoring and evaluating changes in physical function in volleyball and other specialized sports 
training have attracted increasing attention6,7. Wang et al. (2023) developed a training load evaluation system 
using heart rate variability (HRV) and lactate concentration as core indicators. Although effective for detecting 
phasic fatigue states, this system employed a static evaluation model that lacked responsiveness to time-series 
fluctuations8. Salim et al. (2024) created a volleyball training system integrating inertial measurement units, 
pressure-sensitive floors, and machine learning. This system enabled automatic action recognition, real-time 
feedback, and a highly interactive training environment, significantly enhancing the intelligence level of sports 
performance monitoring9. Wang et al. (2025) introduced a fuzzy comprehensive evaluation method for periodic 
function scoring, but its heavy subjectivity and limited robustness in handling outliers restricted its practical 
value10.

With the rise of intelligent algorithms in sports science, techniques such as neural networks, ensemble 
learning, and time-series modeling have been widely applied to predicting and diagnosing athletes’ physical 
functions11,12. Chen et al. (2023) used a multi-layer perceptron to identify fatigue status in adolescent basketball 
players, accurately predicting recovery within 24  h after training13. Sattaburuth and Piriyasurawong (2022) 
applied an LSTM network to heart rate prediction in football training, demonstrating the effectiveness of time-
series modeling for slowly varying physiological states14. Imperiali et al. (2025) employed the XGBoost algorithm 
to construct a function scoring model, which eliminated redundant indicators through feature importance 
ranking and enabled automated annotation of training load levels15. However, most existing methods rely on 
single-kernel functions or static structures, limiting their ability to adjust response pathways in real-time to 
sudden fluctuations during training16,17.

In recent years, several scholars have proposed neural network models with strong structural convergence 
and noise resistance, mainly applied to solving dynamic nonlinear equations and time-varying matrix inversion 
problems. For instance, Li et al. (2020) developed a finite-time convergent and noise-rejection zeroing neural 
network (FTNRZNN) for robust dynamic equation solving18. Zhang et al. (2022) presented a structurally 
simplified unified gradient neural network (GNN) that achieved fast and stable inversion of time-varying 
matrices while improving noise tolerance19. Ying et al. (2025) further designed a neural differential structure 
incorporating an adaptive noise learning mechanism to handle dynamic disturbance responses in constrained 
optimization problems20. These works provide effective methods for addressing high-dimensional, complex 
structural problems. However, their focus primarily lies in mathematical problem-solving and robotic control 
tasks, resulting in limited adaptability for evaluating human physiological functions, which involve highly 
redundant features and multi-disturbance physiological time series. By contrast, the VSGRNN model proposed 
in this study targets multi-scale disturbance modeling and elastic structural response tailored to physiological 
data. It combines multi-kernel nonlinear mapping with a structural embedding and compression mechanism to 
accommodate the real-time demands and individual heterogeneity characteristic of volleyball training scenarios.

Although existing studies have made progress in indicator modeling and the application of intelligent 
algorithms, several limitations remain. These include limited capability to model nonlinear coupling among 
multiple indicators and to respond effectively to local perturbations. Additionally, there is a lack of a comprehensive 
framework that balances accuracy, compression efficiency, and real-time feedback. Therefore, there is an urgent 
need to develop an intelligent evaluation model with structural flexibility and stable output performance, capable 
of adapting to the high variability and heterogeneity present in volleyball training scenarios.

Research model
Identifying bottleneck of nonlinear mode in training monitoring
In the long-duration and highly variable environment of volleyball-specific training, traditional machine 
learning methods often struggle with weak nonlinear identification when modeling changes in athletes’ physical 
functions21,22. This issue is especially pronounced during instantaneous fluctuations in training load—such 
as sprints or rapid offense-defense transitions—or periodic oscillations like alternating phases of fatigue and 
recovery. Under these conditions, models tend to produce unstable outputs and exhibit delayed responses23,24.

For example, when using the BPNN to model multi-dimensional physiological indicators—such as lactate 
concentration, explosive load, and HRV—the model often suffers from highly nonlinear local fitting issues, as 
illustrated by Eq. (1)25.
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	 ŷ (x) = f(W2 · σ (W1x + b1) + b2)� (1)

σ represents activation function. W1 and W2 are weight matrices. b1 and b2 are bias terms. Although the 
expression has a certain nonlinear fitting ability, under multivariable interference (such as sudden change of 
training intensity), ŷ (x) is prone to excessive oscillation, which is called local over-fitting problem, and it is 
difficult to extract patterns with physical significance26.

Meanwhile, SVMs often depend on the mapping capabilities of kernel functions when modeling complex 
training response processes27. However, in the presence of locally redundant features—such as repeated heart 
rate recordings during recovery periods—the high-dimensional mapping can actually weaken the model’s ability 
to capture essential trends28,29. The kernel function transformation is illustrated in Eq. (2):

	 K(xi, xj) = exp
(
−γ ∥ xi − xj∥ 2)

� (2)

When the value of γ is unreasonable or the sample distribution is densely overlapped, the response of the kernel 
function tends to be flat, resulting in response lag and training blind area30.

A Multi-core variable structure GRNN modeling strategy
To provide a clearer illustration of the overall architecture and data flow of the proposed VSGRNN model, Fig. 1 
presents a structural flowchart of the model, highlighting key components such as feature construction, kernel 
function fusion, gradient adjustment, and local weighted prediction.

Figure 1 illustrates the overall architecture of the VSGRNN model. It integrates structural feature construction, 
multi-scale compression, dynamic kernel fusion, and gradient-aware adjustment techniques to achieve robust 
and adaptive prediction in complex training scenarios.

Unlike the traditional GRNN, which is relatively static in structure, VSGRNN introduces three heterogeneous 
kernel functions in the kernel function layer: Gaussian Kernel (Eq. (3)), Radial Basis Kernel (Eq. (4)) and Matern 
Kernel (Eq. (5)):

	
KG(x, xi) = exp

(
−∥ x − xi∥ 2

2σ 2

)
� (3)

	
KR(x, xi) = 1

1 + α ∥ x − xi∥ 2 � (4)

	
KM (x, xi) =

(
1 +

√
3 ∥ x − xi ∥

l

)
exp

(
−

√
3 ∥ x − xi ∥

l

)
� (5)

σ, α and l are the shape parameters corresponding to each kernel function, respectively. These kernel functions 
will not be combined with equal weights, but the dynamic weight ωk will be calculated through the local gradient 
sensitivity distribution to construct a multi-core fusion kernel function, as shown in Eq. (6):

	
Kmin(x, xi) =

∑
3
k=1 ω k (x) · Kk(x, xi)� (6)

Fig. 1.  Model Architecture Flowchart.
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To avoid the response redundancy of the kernel function in the dense area of training samples, the smoothing 
factor control mechanism based on local gradient disturbance is introduced into the model31,32. Specifically, let 
the perturbation gradient of the j-th input feature in the local neighborhood be Eq. (7):

	
∇ j = 1

n

∑
n
i=1

∣∣∣∣
∂ yi

∂ xij

∣∣∣∣� (7)

Then, the adjustment form of the overall nuclear response function for this disturbance is Eq. (8):

	
σ ∗

j = σ 0

1 + β ∇ j
� (8)

σ 0 is the initial smoothing factor and β is the adjustment coefficient. This strategy makes the response function 
of high gradient features in the model “sharper”, while the flat region maintains the generalized response, 
forming adaptive compression of gradient sensitive regions33.

Finally, the output estimation of the model is not the equal weight average of all sample responses, but the 
exponential decay local weighting mechanism is introduced, as shown in Eq. (9):

	
ŷ (x) =

∑
N
i=1 yi · exp (−λ · d(x, xi)) · Kmin(x, xi)∑

N
i=1 exp (−λ · d(x, xi)) · Kmin(x, xi)

� (9)

d(x, xi) represents the input spatial distance and λ is the attenuation factor. This mechanism essentially 
introduces a dual attention mechanism: spatial distance attention + kernel function adaptive attention to 
suppress the interference of remote redundant samples and realize the spatial local convergence of the response 
structure34.

Feature configuration mechanism and embedded dimension reduction design
Let the original feature matrix be X∈Rn×m, where n is the number of samples and m is the original index 
dimension. Generate a map by defining a mutual exclusion tensor, as shown in Eq. (10):

	
Tijk = φ (xij , xik) = |xij − xik|

xij + xik + ϵ
� (10)

ε is a perturbation constant used to prevent the denominator from approaching zero. This mapping encodes the 
relative difference between any two indicators as a mutual exclusion coefficient within the tensor, reflecting their 
“relative expressive ability.” This allows the subsequent compression process to identify variable groups with 
strong mutual exclusion and high representativeness35.

Once the embedded tensor is constructed, a multi-scale linear compression (MSLC) framework is applied to 
reconstruct and compress the structural tensor. Unlike Principal Component Analysis (PCA), MSLC does not 
rely on the covariance matrix to extract principal components. Instead, it introduces a scale window function 
matrix Ws to map the feature tensor into a multi-scale projection space36,37, as shown in Eq. (11):

	 T (s) = T · Ws� (11)

s ∈ {s1, s2, s3} represent layers with different compression scales. Ws ∈ Rm× ds , and ds<m. Different scale 
windows retain different levels of discrimination information to realize dynamic reconstruction from coarse 
granularity to fine granularity.

Finally, the reconstructed tensors at multiple scales are merged into a fused spatial representation, as shown 
in Eq. (12):

	
Z = ⊕

s
ReLU

(
T (s))

� (12)

⨁ stands for splicing operation, and ReLU activation is used to compress nonlinear redundant items.

Experimental design and performance evaluation
Datasets collection
The training sample data in this study were collected from a volleyball-specific experimental platform at a 
national sports institute. The subjects included 30 male elite athletes from the school team’s main lineup. 
Data collection spanned a continuous six-week training camp. Each week featured a fixed basic training load, 
special simulated matches, and periodic fatigue recovery cycles, ensuring that the indicators exhibited sufficient 
dynamic evolution.

A total of 19 data dimensions were recorded, covering two main categories: exercise physiology and physical 
fitness structure. The monitored indicators are detailed in Table 1.

Due to the multi-source heterogeneity and varying sampling frequencies among indicators—where some 
devices use continuous sensing and others intermittent detection—the overall data exhibit the following 
characteristics:
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	1.	 Strong structural fluctuations and significant non-stationarity between time segments. Typical physiological 
perturbations, such as abnormal lactate spikes and delayed heart rate drift, occur on certain training days.

	2.	 Asymmetric cross-correlation structures among indicators. For example, a positive correlation between VE 
and TRIMP rapidly weakens or even reverses during fatigue periods. The overall data distribution deviates 
from Gaussian, showing pronounced heavy tails.

To ensure data quality for model input, all data undergo a standardized preprocessing pipeline: Sampling 
frequency unification: Data from different sources are aligned by timestamps and resampled using a sliding 
window with a 30-second interval. Noise filtering: Discrete wavelet transform combined with soft-thresholding is 
applied to denoise the signals. Standardization: All input variables are normalized using Z-score standardization. 
Missing value imputation: For occasional missing segments in HRV and lactate indicators, third-order local 
linear interpolation is used to reconstruct the data at the segment level, preserving the original trend patterns. 
The final training sample matrix has dimensions X ∈ RT × 19, where T = 6450 represents the number of 
sample frames. This corresponds to data collected from 30 athletes over six consecutive weeks with a 30-second 
sampling interval.

To further validate the applicability of the VSGRNN model beyond volleyball team data, the publicly available 
PAMAP2 (Physical Activity Monitoring 2) dataset was introduced for generalization testing and comparative 
analysis, thereby supplementing the external robustness evidence of the evaluation framework.

Experimental environment
The specific software configuration and hardware deployment are shown in Table 2.

The experimental environment was designed with the following priorities:

•	 Stability: Ensuring no crashes, memory leaks, or GPU deadlocks occur during multiple training cycles.
•	 Reproducibility: Locking all dependency versions and providing deployment images to facilitate replication 

of results and ease of engineering adoption.
•	 Debugging flexibility: Supporting multi-level training log tracking at both batch and epoch levels, with imme-

diate annotation of any abnormal gradients.
•	 Resource isolation: Completely separating the operating environments of each model to prevent cross-inter-

ference.

Parameters setting
The main parameter configuration and control logic of each model are shown in Table 3.

Category Project Explanation

software configuration
Subject development environment Python 3.10 + TensorFlow 2.12

Appurtenance Scikit-learn (contrast model) Matplotlib (visualization) NumPy (numerical processing)

hardware configuration

Processor Intel Xeon Gold 6338 CPU (Central Processing Unit) @ 2.00 GHz, 40 cores

Memory 128GB (Gigabyte) DDR (Double Data Rate)4 ECC (Error-Correcting Code)

Graphics Processing Unit (GPU) accelerator card Nvidia Rtx A6000 48GB (Gigabytes), optimal start of video memory scheduling

Deployment strategy

Model operation mode Local off-line training (no remote application programming interface (API) communication)

Containerized training environment Self-built container system supports version freezing and resource isolation.

Log and parameter control mechanism Training logs are automatically archived, and hot loading parameter injection is supported.

Table 2.  Software configuration and hardware deployment.

 

Types of monitoring indicators Specific indicators

Dynamic physiological monitoring class

Heart Rate Variability (HRV)

Training Impulse (TRIMP)

Lactate Concentration

Peak Power Output

Minute Ventilation (VE)

Motor nerve response class

Reaction Time

Muscle Fatigue Index

Central Activation Ratio

Static physical structure class

Vital Capacity

Skeletal Muscle Mass

Basic items such as body fat ratio and Basal Metabolic Rate (BMR)

Table 1.  Monitoring indicators.
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During parameter initialization, sensitivity tests on the smoothing factor σ revealed that when σ₀ is less 
than 0.1, the network output exhibits high-frequency noise and is easily misled by distant disturbance samples. 
Conversely, when σ₀ exceeds 0.2, the response becomes overly flat, resulting in a loss of discrimination ability. 
Therefore, σ₀ was set to 0.15 and is adaptively adjusted through a local gradient feedback mechanism.

At the start of training, the kernel function fusion coefficients ω are uniformly distributed. However, after 
several iterations, they spontaneously bias toward the Matern kernel (kernel 3), indicating its superior fitting 
capability in non-stationary regions.

In the MSLC module, incorporating varying compression ratios (dₛ) endows VSGRNN with a multi-scale 
response mechanism. Specifically, when handling cross-fluctuation regions such as HRV and lactate levels, the 
lower-dimensional compression layers provide effective feature filtering. Meanwhile, the higher-dimensional 
windows preserve complex structural relationships to maintain prediction stability.

Performance evaluation
To systematically assess the performance of the proposed VSGRNN in evaluating physical functions during 
volleyball training, five model comparison groups were established: the proposed VSGRNN (featuring multi-
kernel fusion and smooth self-tuning mechanisms), Lightweight Artificial Neural Network (LightANN), LSTM 
with Attention, Extreme Gradient Boosting (XGBoost), and Tabular Data Network (TabNet). All models were 
trained and tested under identical data partitions and training protocols. Their performance was evaluated across 
five dimensions: global fitting accuracy, nonlinear disturbance response, structural compression adaptability, 
response delay stability, and overall multi-dimensional score.

Global fitting performance analysis
On the full validation set, VSGRNN achieved the best overall prediction accuracy. It particularly maintained 
stable error rates when predicting lactate rise segments and heart rate buffering periods during non-stationary 
phases. Three mainstream evaluation metrics were used: goodness of fit (R²), which measures the trend coverage 
of predictions; root mean square error (RMSE); and symmetric mean absolute percentage error (SMAPE), 
which evaluates the symmetry of prediction fluctuations. Figure 2 presents the global prediction performance of 
each model on the validation set.

Figure 2 shows that VSGRNN outperforms all other models across the three evaluation metrics. With an 
R² of 0.927, it demonstrates strong capability in fitting complex nonlinear changes. Its RMSE is only 1.68, 
indicating minimal prediction error. The SMAPE stands at 8.21%, reflecting the smallest prediction fluctuations 
in segments with significant changes, such as lactate levels, heart rate, and explosive power. LSTM with Attention 
ranks second with an R² of 0.884. It slightly surpasses TabNet in short-term trend prediction but has higher 

Fig. 2.  Global prediction performance of each model on the verification set.

 

Module type Parameters/policies Setting value and description

VSGRNN core parameters

Initial value of smoothing factor σ0 0.15, which is used for the initial control of the response curvature of the kernel function.

Dynamic adjustment coefficient β 1.8, according to the local gradient disturbance adjustment σ ∗
j

Multi-kernel weight vector ω [0.33, 0.33, 0.34], dynamic fusion of three kinds of kernel functions

Attenuation coefficient λ 0.45, distance sensitivity control for weight sample space

Compressive mapping mechanism
Multiscale compression ratio ds [0.7 m, 0.5 m, 0.3 m], three-level dimension compression

Projection function type Offset-based Orthogonal Basis Transformation (OBTF)

Table 3.  Main parameter configuration and control logic of each model.
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RMSE and SMAPE values than VSGRNN, showing mild overfitting on highly heterogeneous samples. TabNet 
and XGBoost perform moderately: TabNet benefits from its ability to learn tabular features but is limited by 
the absence of deep convolutional fusion; XGBoost tends to deviate when faced with strong nonlinear coupling 
and imbalanced samples. LightANN performs the worst. Although it offers fast inference, it struggles to capture 
asymmetric changes among indicators, with an SMAPE near 15%—almost double that of VSGRNN.

Evaluation of local disturbance and nonlinear response capability
Two typical local scenarios were constructed for this evaluation: (1) the lactate surge segment—occurring 
30  min after peak exercise intensity during the rapid lactate rise phase; and (2) segments exhibiting intense 
HRV fluctuations—during training periods alternating between high- and low-intensity exercises, resulting 
in asymmetric physiological responses. For these non-stationary sample regions, five structured micro-scale 
indicators were defined to assess model response performance, as detailed in Table 4.

Comparison of prediction deviation and response index of local disturbance interval is shown in Fig. 3.
As shown in Fig.  3, VSGRNN maintains a Peak Response Deviation Bound (PRDB) of 6.7%, which is 

significantly lower than LightANN’s 14.6%. This demonstrates VSGRNN’s excellent peak-tracking ability 
without suffering from peak-blunting issues. For Local Perturbation Drift Bound (LPDB), VSGRNN records a 
value of 1.02, markedly lower than other models, effectively avoiding sudden oscillation errors. Regarding the 
Trend Inversion Rate (TIR), VSGRNN achieves a low trend error rate of 4.3%, outperforming TabNet (7.4%) and 
XGBoost (9.0%), both of which frequently misjudge the direction of edge fluctuations. With a Local Variation 
Sensitivity (LVS) score of 0.91, VSGRNN surpasses XGBoost and LightANN (both below 0.75), as these latter 
models tend to linearly smooth local fluctuations, losing important details. In terms of Adaptive Drift Following 
(ADF), VSGRNN’s drift delay rate is only 3.5%, better than LSTM + Attention’s 5.7%, demonstrating its superior 
sensitivity not only to abrupt changes but also to slow-varying indicator trends.

Compressive mapping and structural adaptability verification
To further assess the model’s adaptability to feature dimension compression for practical deployment, three 
compression ratios are tested under the MSLC mechanism: retaining 70% (light compression), 50% (medium 
compression), and 30% (heavy compression) of the original feature dimensions. For each compression level, four 
evaluation metrics are calculated: RMSE, Structure Compression Error Tolerance (SCET), Computation Time 
Gain (CTG), and Memory Footprint Drop Rate (MFDR). Since LSTM + Attention and XGBoost lack a unified 
dimension compression mechanism, they are excluded from the MSLC compression evaluation group in this 
section. Figure 4 presents the error tolerance and resource gain results under the different compression ratios.

Fig. 3.  Comparison between prediction deviation and response index of local disturbance interval. 
Note: PRDB, LPDB, TIR, and ADF (left vertical axis) are metrics where lower values indicate better 
performance. The LVS metric (right vertical axis) is plotted on a secondary axis, with higher values indicating 
stronger sensitivity to local fluctuations.

 

Indicator name Full name Meaning

PRDB Peak Response Deviation Bias Maximum deviation ratio of model to physiological peak prediction

LPDB Local Prediction Deviation Bias Maximum prediction error difference in continuous time window

TIR Trend Inversion Rate The ratio of the measured trend to the predicted trend in the disturbed section.

LVS Local Variability Sensitivity Relative reconstruction ability of local fluctuation amplitude

ADF Adaptive Drift Following The delay rate of the model to the slow drift of the index measures the lag of the response.

Table 4.  Five structured microscale indicators.
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In Fig. 4, VSGRNN shows only a 2.1% increase in RMSE at a 70% compression rate, with error growth remaining 
below 8% even at 30% compression. This stability surpasses that of TabNet (12.4% error increase) and LightANN 
(17.1%). These results indicate that VSGRNN’s kernel response function effectively suppresses error propagation, 
demonstrating strong structural shear resistance. The Structure Compression Error Tolerance (SCET) changes 
in sync with RMSE, confirming that the model’s compression process is a “continuous contraction” rather than 
an “abrupt collapse.” Regarding computational efficiency, VSGRNN achieves a computation time gain (CTG) of 
33.6% and 46.1% during medium and heavy compression stages, respectively, as the shortened feature pathways 
reduce inference burden. The memory footprint drop rate (MFDR) reaches 55.6%, facilitating deployment 
on edge computing devices and portable terminals. By comparison, TabNet exhibits a nearly 7.2% increase in 
error at 50% compression, with only modest gains in CTG and MFDR, indicating considerable performance 
degradation under dimension compression. LightANN’s errors nearly double at 30% compression, reflecting its 
shallow architecture’s sensitivity to input dimension changes and lack of elastic adjustment capability.

Inference delay and response jitter evaluation
In practical volleyball training applications, physical function evaluation systems require rapid response and 
stable inference. This study assesses the real-time performance of different models based on three key metrics:

•	 Average Prediction Time (APT): The inference time per single sample, measured in milliseconds.
•	 Max Response Jitter (MRJ): The maximum deviation in response time for individual samples during batch 

inference.
•	 Cold Start Latency (CSL): The total time from model loading to readiness for inference.

All models were tested on a unified GPU platform, each running 1,000 inference tasks. The results, averaged over 
these runs, are presented in Table 5.

As shown in Table 5, VSGRNN maintains high prediction accuracy while keeping inference delay within 
24.1 ms, second only to the minimalist LightANN. The MRJ is just 3.8 ms, indicating extremely low variability 
during inference and making the model well-suited for stable output in continuous sampling scenarios. 
Although VSGRNN’s CSL is not as low as LightANN’s, it still offers faster loading times compared to other 
complex models. In contrast, despite LSTM + Attention’s strength in time-series modeling, it suffers from high 

Model APT (ms) MRJ (ms) CSL (s)

VSGRNN 24.1 3.8 1.2

LSTM + Attention 42.3 8.4 3.1

TabNet 28.6 6.1 2.3

XGBoost 35.4 7.9 2.6

LightANN 18.2 9.2 0.6

Table 5.  Comparison of model inference delay and response stability.

 

Fig. 4.  Error tolerance and resource benefit evaluation under different compression ratios. a is VSGRNN; b is 
TabNet; c is LightANN.
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inference delays and long loading times, which limit its suitability for edge deployment. TabNet and XGBoost 
deliver moderate performance in both loading speed and inference time but demonstrate weaker control over 
response fluctuations.

Generalization capability validation based on a public dataset
To further evaluate the adaptability and generalization performance of the VSGRNN model across non-specific 
training populations, this study incorporates the PAMAP2 public dataset as an external validation platform. 
This dataset includes multi-channel sensor data from nine participants performing various physical activities, 
such as walking, running, and stair climbing. It contains typical physiological and motion indicators, including 
accelerometer, gyroscope, and heart rate data, providing strong generality and dynamic diversity. To align with 
the model’s input structure, six physiological parameters closely related to training response were selected, 
and temporal window inputs were constructed to simulate fluctuations in exercise function segments. Five 
comparative models—VSGRNN, LSTM + Attention, XGBoost, TabNet, and LightANN—were evaluated under 
the same training strategy as used with the volleyball team data: sliding window, standardized preprocessing, 
Z-score normalization, and an 80/20 train-validation split. Since the PAMAP2 dataset does not directly provide 
fatigue scoring labels, a “load estimation metric” was constructed based on heart rate and activity intensity for 
regression prediction tasks. The results are presented in Table 6:

Based on Table 6, VSGRNN achieves the highest R² of 0.891, outperforming all other models, indicating 
strong structural expressiveness in dynamic multi-channel environments. Its RMSE is controlled below 1.92, 
approximately 14.7% lower than XGBoost. The SMAPE of 9.34% further demonstrates its stable advantage 
in prediction symmetry. LSTM + Attention ranks second, showing certain strengths in capturing temporal 
sequences but slightly weaker compression performance on high-dimensional heterogeneous features compared 
to VSGRNN. TabNet and XGBoost perform moderately, while LightANN remains the weakest model, indicating 
limited generalization capability. These results suggest that although VSGRNN was primarily designed 
based on volleyball-specific data, its structural elasticity and multi-kernel fusion mechanism provide strong 
transferability. The model maintains stable performance on general sports datasets and shows good cross-task 
adaptability. This further validates VSGRNN’s robustness and engineering deployment potential in non-specific 
data environments.

Discussion
VSGRNN outperforms comparative models in multiple aspects because its structural mechanisms closely align 
with the dynamic characteristics of volleyball training data. Traditional neural networks and ensemble models 
possess rigid architectures when processing multi-source heterogeneous physiological signals. In contrast, 
VSGRNN’s multi-kernel fusion strategy dynamically adjusts local response behaviors, enabling stable predictions 
in scenarios characterized by uneven feature activation intensities and nonlinear indicator correlations. The 
dynamic adjustment mechanism for the smoothing factor effectively mitigates the overfitting issue common in 
traditional GRNN models within high-gradient regions. This grants the model enhanced “local punishment” 
and “boundary repair” capabilities during high-perturbation intervals, explaining its superior performance 
on micro-scale indicators such as peak prediction and trend following. The synergistic design of the MSLC 
compression strategy combined with structural embedded mapping allows the model to preserve discriminative 
feature expression pathways after dimensionality reduction, thereby minimizing performance loss. Unlike LSTM-
based architectures that rely on long-term sequence memory, VSGRNN achieves rapid fitting through localized 
kernel responses, excelling in inference delay and jitter control. Its “local regulation plus kernel structural 
elasticity” architecture satisfies the dual requirements of sports evaluation systems for real-time performance 
and interpretability, providing strong theoretical support and practical feasibility for deployment on mobile 
platforms and edge devices. Furthermore, the testing results on the PAMAP2 public dataset further validate 
VSGRNN’s strong generalization ability across non-specific sports scenarios. This dataset includes a variety 
of common physical activities and multimodal physiological sensor data, which differ significantly from the 
volleyball-specific training environment. Without any modifications to the model structure or core parameters, 
VSGRNN consistently outperforms traditional models on multiple evaluation metrics, demonstrating that its 
structural elasticity and multi-kernel fusion mechanism offer robust cross-domain adaptability.

Conclusion
Research contribution
This study proposed an enhanced VSGRNN for the intelligent evaluation of physical functions in volleyball 
training. The model integrated a heterogeneous combination of Gaussian, radial basis, and Matern kernels with 
a local gradient-driven dynamic smoothing factor adjustment mechanism, improving responsiveness to highly 

Model R² RMSE SMAPE (%)

VSGRNN 0.891 1.92 9.34

LSTM + Attention 0.853 2.13 10.85

XGBoost 0.826 2.25 11.27

TabNet 0.799 2.38 12.15

LightANN 0.755 2.67 14.42

Table 6.  Comparative performance of models on the PAMAP2 public Dataset.
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fluctuating samples. At the feature input level, a collaborative framework combining structural embedding 
mapping and multi-scale linear compression was developed to suppress high-dimensional data redundancy 
and reduce deployment costs. Comparative experiments with four mainstream models demonstrated that 
VSGRNN achieved superior performance across multiple dimensions, including prediction accuracy, structural 
compression adaptability, and inference delay control, highlighting its engineering feasibility and practical 
potential for large-scale deployment.

Future work and research limitations
Although the VSGRNN model exhibited strong performance across various metrics, several limitations remained. 
The model relied heavily on structured input data and faced challenges in directly processing unstructured 
information, such as subjective evaluation categories (e.g., fatigue perception scores). Furthermore, its stability 
in micro-sample environments required additional validation. Future research may focus on two directions: 
(1) developing highly elastic model architectures tailored to non-Euclidean index distributions by integrating 
Transformer or graph-based structures, and (2) applying knowledge distillation and model pruning techniques 
to further enhance the lightweight performance of VSGRNN for mobile and edge deployment.

Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author Kaiyuan 
Dong on reasonable request via e-mail dkykaiyuan@gmail.com.
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