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Physical function evaluation
in volleyball training based on
intelligent GRNN
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This study aims to improve both the evaluation accuracy and the real-time feedback capability

in monitoring athletes’ physical function changes during volleyball training. Firstly, based on the
framework of the generalized regression neural network, a variable-structure generalized regression
neural network (VSGRNN) is proposed and developed. Three heterogeneous kernel functions, namely
Gaussian kernel, radial basis kernel, and Matern kernel, are introduced, and a local weighted response
mechanism is constructed to enhance the expression ability of nonlinear physiological signals. Second,
a dynamic adjustment mechanism for smoothing factors based on local gradient perturbation is
proposed, enabling the model to have response compression capability in high-fluctuation samples.
Finally, combining the structure embedding mapping mechanism with a multi-scale linear compression
framework, the reconstruction of high-dimensional physiological indicators and the elimination of
redundant features are achieved, improving model deployment efficiency. Comparative experiments
conducted on training data of a high-level university men’s volleyball team show that VSGRNN has

a goodness-of-fit R2=0.927 on the validation set, with a Root Mean Square Error (RMSE) only 1.68

and Symmetric Mean Absolute Percentage Error (SMAPE) controlled at 8.21%. Within the local
perturbation interval, the peak response deviation is 6.7%, far better than the comparative models
(Long Short-Term Memory (LSTM) + Attention at 8.5% and Tabular Data Network (TabNet) at 9.8%).
When compressed to 30% of the original feature dimension, the error only increases by 7.9%, and

the inference time is shortened by 46.1%. The research conclusion shows that VSGRNN outperforms
traditional models in terms of accuracy, robustness, structural compression adaptability, and real-time
feedback capability. This study provides an engineerable structure-response modeling method for

the intelligent evaluation of physical functions in volleyball-specific training, which has high practical
application value.

Keywords Volleyball training, Physical function assessment, Generalized regression neural network, Multi-
kernel adaptive modeling

As competitive sports training becomes more advanced, traditional evaluation methods increasingly fail to
meet the demands for individualized, real-time, and dynamically adaptive assessments required by elite sports
teams. For instance, in volleyball training, athletes’ physiological indicators exhibit high volatility and nonlinear
functional responses. Indicators such as heart rate, lactate, and explosive power often show short-term phase lag,
delayed changes, and asymmetric coupling, which pose challenges to function monitoring and load regulation.
Therefore, it is necessary to construct an intelligent evaluation model with dynamic response and structure
perception capabilities.

In recent years, artificial intelligence technologies have been increasingly applied to modeling sports
training data, including Back Propagation Neural Networks (BPNN), Long Short-Term Memory (LSTM) time-
series networks, and Support Vector Machines (SVM:s). However, these methods often struggle to capture the
complex nonlinear relationships among indicators and are less effective in addressing high-dimensional feature
redundancy®*. Consequently, developing an evaluation model with both a flexible response structure and high
compression adaptability has become an important research focus®.

This study introduces a Variable-Structure Multi-Kernel Generalized Regression Neural Network (VSGRNN).
Building on the generalized regression neural network (GRNN), the proposed model incorporates a multi-
kernel fusion mechanism, integrating Gaussian, Matern, and radial basis kernel functions to expand its capacity
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for modeling nonlinear relationships. In addition, a dynamic smoothing factor adjustment mechanism based on
local gradient sensitivity is employed to improve the model’s stability under training perturbations. For feature
construction, the model combines the Structural Embedding and Encoding Mechanism (SEEM) with the Multi-
Scale Linear Compression (MSLC) framework, enabling automatic screening and semantic reconstruction
of redundant physiological features. This approach enhances computational efficiency and adaptability for
deployment.

The proposed method was tested using six consecutive weeks of training data from a high-level university
mens volleyball team. A multi-dimensional indicator input matrix was constructed, and the VSGRNN’s
performance was systematically compared with various mainstream models. Experimental results demonstrated
that VSGRNN achieved superior global prediction accuracy, improved response to local perturbations, greater
tolerance to structural compression, and shorter real-time feedback delays. These findings highlight the
model’s strong potential for engineering applications and practical promotion. Overall, this study provides a
novel approach for the intelligent evaluation of physical function in volleyball-specific training, offering both
theoretical foundations and methodological support for the broader use of structure-adaptive modeling in
sports data analysis.

Literature review

In recent years, monitoring and evaluating changes in physical function in volleyball and other specialized sports
training have attracted increasing attention®”. Wang et al. (2023) developed a training load evaluation system
using heart rate variability (HRV) and lactate concentration as core indicators. Although effective for detecting
phasic fatigue states, this system employed a static evaluation model that lacked responsiveness to time-series
fluctuations®. Salim et al. (2024) created a volleyball training system integrating inertial measurement units,
pressure-sensitive floors, and machine learning. This system enabled automatic action recognition, real-time
feedback, and a highly interactive training environment, significantly enhancing the intelligence level of sports
performance monitoring®. Wang et al. (2025) introduced a fuzzy comprehensive evaluation method for periodic
function scoring, but its heavy subjectivity and limited robustness in handling outliers restricted its practical
value'®,

With the rise of intelligent algorithms in sports science, techniques such as neural networks, ensemble
learning, and time-series modeling have been widely applied to predicting and diagnosing athletes’ physical
functions'"2. Chen et al. (2023) used a multi-layer perceptron to identify fatigue status in adolescent basketball
players, accurately predicting recovery within 24 h after training'®. Sattaburuth and Piriyasurawong (2022)
applied an LSTM network to heart rate prediction in football training, demonstrating the effectiveness of time-
series modeling for slowly varying physiological states'®. Imperiali et al. (2025) employed the XGBoost algorithm
to construct a function scoring model, which eliminated redundant indicators through feature importance
ranking and enabled automated annotation of training load levels'>. However, most existing methods rely on
single-kernel functions or static structures, limiting their ability to adjust response pathways in real-time to
sudden fluctuations during training!'®'”.

In recent years, several scholars have proposed neural network models with strong structural convergence
and noise resistance, mainly applied to solving dynamic nonlinear equations and time-varying matrix inversion
problems. For instance, Li et al. (2020) developed a finite-time convergent and noise-rejection zeroing neural
network (FTNRZNN) for robust dynamic equation solving'®. Zhang et al. (2022) presented a structurally
simplified unified gradient neural network (GNN) that achieved fast and stable inversion of time-varying
matrices while improving noise tolerance®. Ying et al. (2025) further designed a neural differential structure
incorporating an adaptive noise learning mechanism to handle dynamic disturbance responses in constrained
optimization problems?. These works provide effective methods for addressing high-dimensional, complex
structural problems. However, their focus primarily lies in mathematical problem-solving and robotic control
tasks, resulting in limited adaptability for evaluating human physiological functions, which involve highly
redundant features and multi-disturbance physiological time series. By contrast, the VSGRNN model proposed
in this study targets multi-scale disturbance modeling and elastic structural response tailored to physiological
data. It combines multi-kernel nonlinear mapping with a structural embedding and compression mechanism to
accommodate the real-time demands and individual heterogeneity characteristic of volleyball training scenarios.

Although existing studies have made progress in indicator modeling and the application of intelligent
algorithms, several limitations remain. These include limited capability to model nonlinear coupling among
multiple indicators and to respond effectively tolocal perturbations. Additionally, there is alack of a comprehensive
framework that balances accuracy, compression efficiency, and real-time feedback. Therefore, there is an urgent
need to develop an intelligent evaluation model with structural flexibility and stable output performance, capable
of adapting to the high variability and heterogeneity present in volleyball training scenarios.

Research model

Identifying bottleneck of nonlinear mode in training monitoring

In the long-duration and highly variable environment of volleyball-specific training, traditional machine

learning methods often struggle with weak nonlinear identification when modeling changes in athletes’ physical

functions??2. This issue is especially pronounced during instantaneous fluctuations in training load—such

as sprints or rapid offense-defense transitions—or periodic oscillations like alternating phases of fatigue and

recovery. Under these conditions, models tend to produce unstable outputs and exhibit delayed responses?>24,
For example, when using the BPNN to model multi-dimensional physiological indicators—such as lactate

concentration, explosive load, and HRV—the model often suffers from highly nonlinear local fitting issues, as

illustrated by Eq. (1)
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o represents activation function. Wi and W5 are weight matrices. b1 and b2 are bias terms. Although the
expression has a certain nonlinear fitting ability, under multivariable interference (such as sudden change of
training intensity), 7 (z) is prone to excessive oscillation, which is called local over-fitting problem, and it is
difficult to extract patterns with physical significance?.

Meanwhile, SVMs often depend on the mapping capabilities of kernel functions when modeling complex
training response processes”’. However, in the presence of locally redundant features—such as repeated heart
rate recordings during recovery periods—the high-dimensional mapping can actually weaken the model’s ability
to capture essential trends?®?°. The kernel function transformation is illustrated in Eq. (2):

K(xi,x;) = exp (= || @i — ;] %) )

When the value of y is unreasonable or the sample distribution is densely overlapped, the response of the kernel
function tends to be flat, resulting in response lag and training blind area®.

A Multi-core variable structure GRNN modeling strategy

To provide a clearer illustration of the overall architecture and data flow of the proposed VSGRNN model, Fig. 1
presents a structural flowchart of the model, highlighting key components such as feature construction, kernel
function fusion, gradient adjustment, and local weighted prediction.

Figure 1 illustrates the overall architecture of the VSGRNN model. It integrates structural feature construction,
multi-scale compression, dynamic kernel fusion, and gradient-aware adjustment techniques to achieve robust
and adaptive prediction in complex training scenarios.

Unlike the traditional GRNN, which is relatively static in structure, VSGRNN introduces three heterogeneous
kernel functions in the kernel function layer: Gaussian Kernel (Eq. (3)), Radial Basis Kernel (Eq. (4)) and Matern
Kernel (Eq. (5)):

2
Ka(x,x:) = exp <_ I 5"203251” > (3)

1

T+a | z—=z?
Ky (z,x) = (1 + M) exp (_M) (5)

0, « and [ are the shape parameters corresponding to each kernel function, respectively. These kernel functions
will not be combined with equal weights, but the dynamic weight w, will be calculated through the local gradient
sensitivity distribution to construct a multi-core fusion kernel function, as shown in Eq. (6):

Kr(z,xi) = (4)

Kumin(z,2:) = Z hoiwk (2) - Ki(2,2:) (6)

Input Layer:
Multi-dimensional Physiological Indicators
(Heart Rate, Lactate, Explosive Power, etc.)

Feature Construction Module:
Structural Embedding and Encoding Mechanism;
Antagonistic Tensor Mapping

Dimensionality Compression Module:
Multi-Scale Linear Compression;
Feature Fusion

Multi-Kernel Function Layer:
Gaussian Kernel;
Radial Basis Function (RBF) Kernel;
Matern Kernel;
Dynamic Weighting;
Kemel Fusion

Gradient-Sensitive Adjustment:
Spatial Distance W eighting;
Final Output

Output Layer:
Functional Evaluation Result;
Real-Time Feedback / Training Adaptation

Fig. 1. Model Architecture Flowchart.
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To avoid the response redundancy of the kernel function in the dense area of training samples, the smoothing
factor control mechanism based on local gradient disturbance is introduced into the model*!*2. Specifically, let
the perturbation gradient of the j-th input feature in the local neighborhood be Eq. (7):

1 n 8 Yi
Vi HZ =1 | 5 )
Then, the adjustment form of the overall nuclear response function for this disturbance is Eq. (8):
. * g0
IT14+8V, (®)

0 ¢ is the initial smoothing factor and f3 is the adjustment coefficient. This strategy makes the response function
of high gradient features in the model “sharper”, while the flat region maintains the generalized response,
forming adaptive compression of gradient sensitive regions*.

Finally, the output estimation of the model is not the equal weight average of all sample responses, but the

exponential decay local weighting mechanism is introduced, as shown in Eq. (9):

SN Niyiexp (=X - d(@,2:)) - Kmin(w,z:)

Yo Niexp(=A - d(z, @) - Kmin(z, ) ®

y(x) =

d(x,z;) represents the input spatial distance and A is the attenuation factor. This mechanism essentially
introduces a dual attention mechanism: spatial distance attention+kernel function adaptive attention to
suppress the interference of remote redundant samples and realize the spatial local convergence of the response
structure®,

Feature configuration mechanism and embedded dimension reduction design
Let the original feature matrix be XeR™"™, where n is the number of samples and m is the original index
dimension. Generate a map by defining a mutual exclusion tensor, as shown in Eq. (10):

|zij — Tik]

(10)
Tij + Tik + €

Tijk = @ (Tij, zir) =

¢ is a perturbation constant used to prevent the denominator from approaching zero. This mapping encodes the
relative difference between any two indicators as a mutual exclusion coeflicient within the tensor, reflecting their
“relative expressive ability” This allows the subsequent compression process to identify variable groups with
strong mutual exclusion and high representativeness®.

Once the embedded tensor is constructed, a multi-scale linear compression (MSLC) framework is applied to
reconstruct and compress the structural tensor. Unlike Principal Component Analysis (PCA), MSLC does not
rely on the covariance matrix to extract principal components. Instead, it introduces a scale window function
matrix W to map the feature tensor into a multi-scale projection space®*’, as shown in Eq. (11):

T =T W, (11)

s € {s1, s2, s3} represent layers with different compression scales. W € R™* s and d5<m. Different scale
windows retain different levels of discrimination information to realize dynamic reconstruction from coarse
granularity to fine granularity.

Finally, the reconstructed tensors at multiple scales are merged into a fused spatial representation, as shown
in Eq. (12):

Z =@ ReLU (T) (12)

€P stands for splicing operation, and ReLU activation is used to compress nonlinear redundant items.

Experimental design and performance evaluation
Datasets collection
The training sample data in this study were collected from a volleyball-specific experimental platform at a
national sports institute. The subjects included 30 male elite athletes from the school teams main lineup.
Data collection spanned a continuous six-week training camp. Each week featured a fixed basic training load,
special simulated matches, and periodic fatigue recovery cycles, ensuring that the indicators exhibited sufficient
dynamic evolution.

A total of 19 data dimensions were recorded, covering two main categories: exercise physiology and physical
fitness structure. The monitored indicators are detailed in Table 1.

Due to the multi-source heterogeneity and varying sampling frequencies among indicators—where some
devices use continuous sensing and others intermittent detection—the overall data exhibit the following
characteristics:
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Types of monitoring indicators Specific indicators

Heart Rate Variability (HRV)

Training Impulse (TRIMP)

Dynamic physiological monitoring class | Lactate Concentration

Peak Power Output

Minute Ventilation (VE)

Reaction Time

Motor nerve response class Muscle Fatigue Index

Central Activation Ratio

Vital Capacity

Static physical structure class Skeletal Muscle Mass

Basic items such as body fat ratio and Basal Metabolic Rate (BMR)

Table 1. Monitoring indicators.

Category

Project

Explanation

software configuration

Subject development environment

Python 3.10 + TensorFlow 2.12

Appurtenance Scikit-learn (contrast model) Matplotlib (visualization) NumPy (numerical processing)
Processor Intel Xeon Gold 6338 CPU (Central Processing Unit) @ 2.00 GHz, 40 cores
hardware configuration | Memory 128GB (Gigabyte) DDR (Double Data Rate)4 ECC (Error-Correcting Code)

Graphics Processing Unit (GPU) accelerator card

Nvidia Rtx A6000 48GB (Gigabytes), optimal start of video memory scheduling

Deployment strategy

Model operation mode

Local off-line training (no remote application programming interface (API) communication)

Containerized training environment

Self-built container system supports version freezing and resource isolation.

Log and parameter control mechanism

Training logs are automatically archived, and hot loading parameter injection is supported.

Table 2. Software configuration and hardware deployment.

1. Strong structural fluctuations and significant non-stationarity between time segments. Typical physiological
perturbations, such as abnormal lactate spikes and delayed heart rate drift, occur on certain training days.

2. Asymmetric cross-correlation structures among indicators. For example, a positive correlation between VE
and TRIMP rapidly weakens or even reverses during fatigue periods. The overall data distribution deviates
from Gaussian, showing pronounced heavy tails.

To ensure data quality for model input, all data undergo a standardized preprocessing pipeline: Sampling
frequency unification: Data from different sources are aligned by timestamps and resampled using a sliding
window with a 30-second interval. Noise filtering: Discrete wavelet transform combined with soft-thresholding is
applied to denoise the signals. Standardization: All input variables are normalized using Z-score standardization.
Missing value imputation: For occasional missing segments in HRV and lactate indicators, third-order local
linear interpolation is used to reconstruct the data at the segment level, preserving the original trend patterns.
The final training sample matrix has dimensions X ¢ RT* 19, where T=6450 represents the number of
sample frames. This corresponds to data collected from 30 athletes over six consecutive weeks with a 30-second
sampling interval.

To further validate the applicability of the VSGRNN model beyond volleyball team data, the publicly available
PAMAP2 (Physical Activity Monitoring 2) dataset was introduced for generalization testing and comparative
analysis, thereby supplementing the external robustness evidence of the evaluation framework.

Experimental environment
The specific software configuration and hardware deployment are shown in Table 2.
The experimental environment was designed with the following priorities:

o Stability: Ensuring no crashes, memory leaks, or GPU deadlocks occur during multiple training cycles.

« Reproducibility: Locking all dependency versions and providing deployment images to facilitate replication
of results and ease of engineering adoption.

« Debugging flexibility: Supporting multi-level training log tracking at both batch and epoch levels, with imme-
diate annotation of any abnormal gradients.

« Resource isolation: Completely separating the operating environments of each model to prevent cross-inter-
ference.

Parameters setting
The main parameter configuration and control logic of each model are shown in Table 3.

Scientific Reports|  (2025) 15:30124 | https://doi.org/10.1038/s41598-025-16240-w nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

Module type Parameters/policies Setting value and description
Initial value of smoothing factor g, | 0.15, which is used for the initial control of the response curvature of the kernel function.
Dynamic adjustment coefficient § | 1.8, according to the local gradient disturbance adjustment o }
VSGRNN core parameters :
Multi-kernel weight vector w [0.33, 0.33, 0.34], dynamic fusion of three kinds of kernel functions
Attenuation coefficient A 0.45, distance sensitivity control for weight sample space
Multiscale compression ratio dS [0.7 m, 0.5 m, 0.3 m], three-level dimension compression
Compressive mapping mechanism
Projection function type Offset-based Orthogonal Basis Transformation (OBTF)

Table 3. Main parameter configuration and control logic of each model.

SMAPE (%)
t727 below SMAPE (%)

Value
>
H

VSGRNN LSTM+Attention = TabNet XGBoost LightANN
Model

Fig. 2. Global prediction performance of each model on the verification set.

During parameter initialization, sensitivity tests on the smoothing factor o revealed that when o, is less
than 0.1, the network output exhibits high-frequency noise and is easily misled by distant disturbance samples.
Conversely, when o, exceeds 0.2, the response becomes overly flat, resulting in a loss of discrimination ability.
Therefore, o, was set to 0.15 and is adaptively adjusted through a local gradient feedback mechanism.

At the start of training, the kernel function fusion coefficients w are uniformly distributed. However, after
several iterations, they spontaneously bias toward the Matern kernel (kernel 3), indicating its superior fitting
capability in non-stationary regions.

In the MSLC module, incorporating varying compression ratios (ds) endows VSGRNN with a multi-scale
response mechanism. Specifically, when handling cross-fluctuation regions such as HRV and lactate levels, the
lower-dimensional compression layers provide effective feature filtering. Meanwhile, the higher-dimensional
windows preserve complex structural relationships to maintain prediction stability.

Performance evaluation

To systematically assess the performance of the proposed VSGRNN in evaluating physical functions during
volleyball training, five model comparison groups were established: the proposed VSGRNN (featuring multi-
kernel fusion and smooth self-tuning mechanisms), Lightweight Artificial Neural Network (LightANN), LSTM
with Attention, Extreme Gradient Boosting (XGBoost), and Tabular Data Network (TabNet). All models were
trained and tested under identical data partitions and training protocols. Their performance was evaluated across
five dimensions: global fitting accuracy, nonlinear disturbance response, structural compression adaptability,
response delay stability, and overall multi-dimensional score.

Global fitting performance analysis
On the full validation set, VSGRNN achieved the best overall prediction accuracy. It particularly maintained
stable error rates when predicting lactate rise segments and heart rate buffering periods during non-stationary
phases. Three mainstream evaluation metrics were used: goodness of fit (R*), which measures the trend coverage
of predictions; root mean square error (RMSE); and symmetric mean absolute percentage error (SMAPE),
which evaluates the symmetry of prediction fluctuations. Figure 2 presents the global prediction performance of
each model on the validation set.

Figure 2 shows that VSGRNN outperforms all other models across the three evaluation metrics. With an
R? of 0.927, it demonstrates strong capability in fitting complex nonlinear changes. Its RMSE is only 1.68,
indicating minimal prediction error. The SMAPE stands at 8.21%, reflecting the smallest prediction fluctuations
in segments with significant changes, such as lactate levels, heart rate, and explosive power. LSTM with Attention
ranks second with an R of 0.884. It slightly surpasses TabNet in short-term trend prediction but has higher

Scientific Reports|  (2025) 15:30124 | https://doi.org/10.1038/541598-025-16240-w nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

Indicator name | Full name Meaning

PRDB Peak Response Deviation Bias | Maximum deviation ratio of model to physiological peak prediction

LPDB Local Prediction Deviation Bias | Maximum prediction error difference in continuous time window

TIR Trend Inversion Rate The ratio of the measured trend to the predicted trend in the disturbed section.

LVS Local Variability Sensitivity Relative reconstruction ability of local fluctuation amplitude

ADF Adaptive Drift Following The delay rate of the model to the slow drift of the index measures the lag of the response.

Table 4. Five structured microscale indicators.
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S .
s TIR (%)
5 ADF (%) e
p ——LVS s
&\';
% 1.4 .
= >
m -
) F1.2
o
-
;\? 1.0
m i
a \Nﬁ Losg
A~ xﬁﬁ\ﬁ .
0.6

T T B T T T
VSGRNN, (e AUEntiOn et yGBoost ot ANN

Model

Fig. 3. Comparison between prediction deviation and response index of local disturbance interval.

Note: PRDB, LPDB, TIR, and ADF (left vertical axis) are metrics where lower values indicate better
performance. The LVS metric (right vertical axis) is plotted on a secondary axis, with higher values indicating
stronger sensitivity to local fluctuations.

RMSE and SMAPE values than VSGRNN, showing mild overfitting on highly heterogeneous samples. TabNet
and XGBoost perform moderately: TabNet benefits from its ability to learn tabular features but is limited by
the absence of deep convolutional fusion; XGBoost tends to deviate when faced with strong nonlinear coupling
and imbalanced samples. Light ANN performs the worst. Although it offers fast inference, it struggles to capture
asymmetric changes among indicators, with an SMAPE near 15%—almost double that of VSGRNN.

Evaluation of local disturbance and nonlinear response capability

Two typical local scenarios were constructed for this evaluation: (1) the lactate surge segment—occurring
30 min after peak exercise intensity during the rapid lactate rise phase; and (2) segments exhibiting intense
HRV fluctuations—during training periods alternating between high- and low-intensity exercises, resulting
in asymmetric physiological responses. For these non-stationary sample regions, five structured micro-scale
indicators were defined to assess model response performance, as detailed in Table 4.

Comparison of prediction deviation and response index of local disturbance interval is shown in Fig. 3.

As shown in Fig. 3, VSGRNN maintains a Peak Response Deviation Bound (PRDB) of 6.7%, which is
significantly lower than LightANN’s 14.6%. This demonstrates VSGRNN’s excellent peak-tracking ability
without suffering from peak-blunting issues. For Local Perturbation Drift Bound (LPDB), VSGRNN records a
value of 1.02, markedly lower than other models, effectively avoiding sudden oscillation errors. Regarding the
Trend Inversion Rate (TIR), VSGRNN achieves a low trend error rate of 4.3%, outperforming TabNet (7.4%) and
XGBoost (9.0%), both of which frequently misjudge the direction of edge fluctuations. With a Local Variation
Sensitivity (LVS) score of 0.91, VSGRNN surpasses XGBoost and LightANN (both below 0.75), as these latter
models tend to linearly smooth local fluctuations, losing important details. In terms of Adaptive Drift Following
(ADEF), VSGRNNs drift delay rate is only 3.5%, better than LSTM + Attention’s 5.7%, demonstrating its superior
sensitivity not only to abrupt changes but also to slow-varying indicator trends.

Compressive mapping and structural adaptability verification

To further assess the model’s adaptability to feature dimension compression for practical deployment, three
compression ratios are tested under the MSLC mechanism: retaining 70% (light compression), 50% (medium
compression), and 30% (heavy compression) of the original feature dimensions. For each compression level, four
evaluation metrics are calculated: RMSE, Structure Compression Error Tolerance (SCET), Computation Time
Gain (CTG), and Memory Footprint Drop Rate (MFDR). Since LSTM + Attention and XGBoost lack a unified
dimension compression mechanism, they are excluded from the MSLC compression evaluation group in this
section. Figure 4 presents the error tolerance and resource gain results under the different compression ratios.
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Fig. 4. Error tolerance and resource benefit evaluation under different compression ratios. a is VSGRNN; b is
TabNet; ¢ is Light ANN.

Model APT (ms) | MR] (ms) | CSL (s)
VSGRNN 24.1 3.8 1.2
LSTM + Attention | 42.3 8.4 3.1
TabNet 28.6 6.1 2.3
XGBoost 354 7.9 2.6
LightANN 18.2 9.2 0.6

Table 5. Comparison of model inference delay and response stability.

InFig. 4, VSGRNN shows onlya2.1% increase in RMSE ata 70% compression rate, with error growth remaining
below 8% even at 30% compression. This stability surpasses that of TabNet (12.4% error increase) and Light ANN
(17.1%). These results indicate that VSGRNN's kernel response function effectively suppresses error propagation,
demonstrating strong structural shear resistance. The Structure Compression Error Tolerance (SCET) changes
in sync with RMSE, confirming that the model’s compression process is a “continuous contraction” rather than
an “abrupt collapse” Regarding computational efficiency, VSGRNN achieves a computation time gain (CTG) of
33.6% and 46.1% during medium and heavy compression stages, respectively, as the shortened feature pathways
reduce inference burden. The memory footprint drop rate (MFDR) reaches 55.6%, facilitating deployment
on edge computing devices and portable terminals. By comparison, TabNet exhibits a nearly 7.2% increase in
error at 50% compression, with only modest gains in CTG and MFDR, indicating considerable performance
degradation under dimension compression. Light ANN’s errors nearly double at 30% compression, reflecting its
shallow architecture’s sensitivity to input dimension changes and lack of elastic adjustment capability.

Inference delay and response jitter evaluation
In practical volleyball training applications, physical function evaluation systems require rapid response and
stable inference. This study assesses the real-time performance of different models based on three key metrics:

o Average Prediction Time (APT): The inference time per single sample, measured in milliseconds.

o Max Response Jitter (MR]): The maximum deviation in response time for individual samples during batch
inference.

« Cold Start Latency (CSL): The total time from model loading to readiness for inference.

All models were tested on a unified GPU platform, each running 1,000 inference tasks. The results, averaged over
these runs, are presented in Table 5.

As shown in Table 5, VSGRNN maintains high prediction accuracy while keeping inference delay within
24.1 ms, second only to the minimalist Light ANN. The MR] is just 3.8 ms, indicating extremely low variability
during inference and making the model well-suited for stable output in continuous sampling scenarios.
Although VSGRNN’s CSL is not as low as Light ANNs, it still offers faster loading times compared to other
complex models. In contrast, despite LSTM + Attention’s strength in time-series modeling, it suffers from high
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Model R* | RMSE | SMAPE (%)
VSGRNN 0.891 | 192 | 934
LSTM + Attention | 0.853 | 2.13 | 10.85
XGBoost 0.826 | 225 |11.27
TabNet 0799 | 238 | 1215
LightANN 0.755 | 2.67 14.42

Table 6. Comparative performance of models on the PAMAP2 public Dataset.

inference delays and long loading times, which limit its suitability for edge deployment. TabNet and XGBoost
deliver moderate performance in both loading speed and inference time but demonstrate weaker control over
response fluctuations.

Generalization capability validation based on a public dataset

To further evaluate the adaptability and generalization performance of the VSGRNN model across non-specific
training populations, this study incorporates the PAMAP2 public dataset as an external validation platform.
This dataset includes multi-channel sensor data from nine participants performing various physical activities,
such as walking, running, and stair climbing. It contains typical physiological and motion indicators, including
accelerometer, gyroscope, and heart rate data, providing strong generality and dynamic diversity. To align with
the model’s input structure, six physiological parameters closely related to training response were selected,
and temporal window inputs were constructed to simulate fluctuations in exercise function segments. Five
comparative models—VSGRNN, LSTM + Attention, XGBoost, TabNet, and Light ANN—were evaluated under
the same training strategy as used with the volleyball team data: sliding window, standardized preprocessing,
Z-score normalization, and an 80/20 train-validation split. Since the PAMAP2 dataset does not directly provide
fatigue scoring labels, a “load estimation metric” was constructed based on heart rate and activity intensity for
regression prediction tasks. The results are presented in Table 6:

Based on Table 6, VSGRNN achieves the highest R* of 0.891, outperforming all other models, indicating
strong structural expressiveness in dynamic multi-channel environments. Its RMSE is controlled below 1.92,
approximately 14.7% lower than XGBoost. The SMAPE of 9.34% further demonstrates its stable advantage
in prediction symmetry. LSTM + Attention ranks second, showing certain strengths in capturing temporal
sequences but slightly weaker compression performance on high-dimensional heterogeneous features compared
to VSGRNN. TabNet and XGBoost perform moderately, while Light ANN remains the weakest model, indicating
limited generalization capability. These results suggest that although VSGRNN was primarily designed
based on volleyball-specific data, its structural elasticity and multi-kernel fusion mechanism provide strong
transferability. The model maintains stable performance on general sports datasets and shows good cross-task
adaptability. This further validates VSGRNN’s robustness and engineering deployment potential in non-specific
data environments.

Discussion

VSGRNN outperforms comparative models in multiple aspects because its structural mechanisms closely align
with the dynamic characteristics of volleyball training data. Traditional neural networks and ensemble models
possess rigid architectures when processing multi-source heterogeneous physiological signals. In contrast,
VSGRNN'’s multi-kernel fusion strategy dynamically adjusts local response behaviors, enabling stable predictions
in scenarios characterized by uneven feature activation intensities and nonlinear indicator correlations. The
dynamic adjustment mechanism for the smoothing factor effectively mitigates the overfitting issue common in
traditional GRNN models within high-gradient regions. This grants the model enhanced “local punishment”
and “boundary repair” capabilities during high-perturbation intervals, explaining its superior performance
on micro-scale indicators such as peak prediction and trend following. The synergistic design of the MSLC
compression strategy combined with structural embedded mapping allows the model to preserve discriminative
feature expression pathways after dimensionality reduction, thereby minimizing performanceloss. Unlike LSTM-
based architectures that rely on long-term sequence memory, VSGRNN achieves rapid fitting through localized
kernel responses, excelling in inference delay and jitter control. Its “local regulation plus kernel structural
elasticity” architecture satisfies the dual requirements of sports evaluation systems for real-time performance
and interpretability, providing strong theoretical support and practical feasibility for deployment on mobile
platforms and edge devices. Furthermore, the testing results on the PAMAP2 public dataset further validate
VSGRNN'’s strong generalization ability across non-specific sports scenarios. This dataset includes a variety
of common physical activities and multimodal physiological sensor data, which differ significantly from the
volleyball-specific training environment. Without any modifications to the model structure or core parameters,
VSGRNN consistently outperforms traditional models on multiple evaluation metrics, demonstrating that its
structural elasticity and multi-kernel fusion mechanism offer robust cross-domain adaptability.

Conclusion

Research contribution

This study proposed an enhanced VSGRNN for the intelligent evaluation of physical functions in volleyball
training. The model integrated a heterogeneous combination of Gaussian, radial basis, and Matern kernels with
a local gradient-driven dynamic smoothing factor adjustment mechanism, improving responsiveness to highly
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fluctuating samples. At the feature input level, a collaborative framework combining structural embedding
mapping and multi-scale linear compression was developed to suppress high-dimensional data redundancy
and reduce deployment costs. Comparative experiments with four mainstream models demonstrated that
VSGRNN achieved superior performance across multiple dimensions, including prediction accuracy, structural
compression adaptability, and inference delay control, highlighting its engineering feasibility and practical
potential for large-scale deployment.

Future work and research limitations

Although the VSGRNN model exhibited strong performance across various metrics, several limitations remained.
The model relied heavily on structured input data and faced challenges in directly processing unstructured
information, such as subjective evaluation categories (e.g., fatigue perception scores). Furthermore, its stability
in micro-sample environments required additional validation. Future research may focus on two directions:
(1) developing highly elastic model architectures tailored to non-Euclidean index distributions by integrating
Transformer or graph-based structures, and (2) applying knowledge distillation and model pruning techniques
to further enhance the lightweight performance of VSGRNN for mobile and edge deployment.

Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author Kaiyuan
Dong on reasonable request via e-mail dkykaiyuan@gmail.com.
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