www.nature.com/scientificreports

scientific reports

OPEN

W) Check for updates

Dynamic fractional-order ISDR
rumor propagation model
incorporating refutation
mechanism in complex networks
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Rumor spreading has been posing a significant threat to maintain the normal social order. In this paper,
we propose a ISDR rumor propagation model on scale-free networks that considers fractional-order
and refutation mechanism. we acquire basic reproduction number R, based on the rumor equilibrium
point E*, which thoroughly characterizes the dynamics of rumor propagation. we have demonstrated
that when Ry < 1, the rumor-free equilibrium point is globally asymptotically stable; when Ry > 1,
the rumor equilibrium point is globally asymptotically stable. Numerical simulations are provided to
illustrate the main theoretical results. By analyzing the existence and uniqueness of the equilibrium
solution, we demonstrate the superiority of fractional-order dynamics and refutation mechanism in the
rumor propagation model. Our findings are crucial for understanding the impact of network structure
on the dynamics of fractional-order systems.
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Rumors are defined as unconfirmed elaborations or annotations related to common interests and are widely
spread by online social media!. The convenience of social media, with its low barriers to entry and instantaneous
communication capabilities, facilitates extensive user engagement in information dissemination processes.
However, rumor spreading may cause a serious threat to society. For example, rumors during COVID-19
outbreaks can quickly trigger a mass effect, causing some people to believe and propagate these rumors through
various channels. Therefore, studying the spreading process of rumors can provide insights into the influence
of different factors and significantly reduce the adverse effects of rumors, leading to the development of better
control strategies to restrain rumor propagation?.

Numerous rumor models concerning transmission mechanism and forecasting the spread of rumors across
populations have been proposed. In the early days, the D-K model, a classic rumor propagation model put forward
by Daley and Kendall, was introduced?’. In this D-K model, the population is grouped into three classes: people
who contact with nothing of the rumor, people who push to spread the rumor, and people who know but will
never spread the rumor. Based on the D-K model, Maki and Thomson proposed the M-K model which assumes
that a spreader can change into a stifler who stops spreading the rumor?. Based on these two models, many
extended rumor propagation models have been proposed and studied>’. However, these rumor propagations
are not appropriate for a social network environment, as they do not consider the influence of complex
network topologies, such as regular networks, random networks, homogeneous networks and heterogeneous
networks® . Zanette first researched the dynamic behavior of rumor spreading and found that the spreading
threshold is observably influenced by the network topologies, especially in small- world networks®. Moreno et
al. developed the mean-field theory in the scale-free network®. Zhu et al. proposed a rumor propagation model
with a silence-forcing function and it was proven that optimal control can reduce the scale of rumor spreading
in online social networks!?. Yu et al. researched new 212SR rumor propagation models with and without time-
delay based on multilingual environment and proposed a real-time optimization method that minimizes the
cost of restraining rumors to eliminate them within an expected time period!. Ai et al. improved the traditional
Barabasi-Albert scale-free network and proposed a network topology model that conforms to the characteristics
of sharing social networks, based on complex network theory and the actual characteristics of sharing social
networks'2.
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In recent years, a multitude of rumor propagation models have been proposed, aiming to gaining insight
into the influence of different factors on the prevalence of rumors such as heterogeneity of transmission and
network!>!4, the hesitating mechanism'®, the memory*®, the skepticism and denial'’, the education or scientific
knowledge!'®!, the latency®, super spreading effect’! and others?>?. Based on different rumor spreading
models, true information or positive news is also an important factor affecting rumor spreading. Refutation
mechanism can be the truth of the rumor released by the government or media in an emergency. There are
many studies of true information®!. Yang et al. proposed a competitive diffusion model to regulate rumors by
propagating true information on social networks*. Tian et al. proposed a novel rumor spreading model that
considering debunking behavior to describe the rumor dynamics in OSNs under emergencies®. Jiang et al. put
forward a Spreading-debunking competitive model based on data from the real-world rumor case?’. Zhang et al.
came up with two-stage model and refutation mechanism with time delay on the different network topologies?.
Huo et al. established a ISTR model of rumor by including influencing factors of true information spreader and
social reinforcement in Heterogeneous Networks?. Thus, motivated by these aspect, it is more suitable to add a
refutation mechanism into the rumor propagation model to improve the image of the relevant authorities and to
strengthen other positive effects on social stability.

Fractional differential equations can depict the dynamics of plentiful physical systems in a more precise way
than integer order method*’. Many scholars have recommended fractional-order to describe real-life problems
with a fractional order Caputo derivative®!-3. Angstman et al. concluded a fractional-order SIR model with a
stochastic process that contains Infectious individual along with a time effect’!. Huo et al. studied a fractional-
order SIR model by means of birth and death rates on heterogeneous networks®2. Alzahrani et al. proposed
fractional-order derivative for the dynamical analysis of Hepatitis E model and optimal control®. Kheiri et
al. studied a multi-patch model with fractional-order derivative to reveal the impact of human behavior on
the HIV/AIDS propagate®. Singh et al. researched the dynamic model of rumor propagation associated with
non-integer order in a social network®. Jajarmi et al. extended a fractional version of SIRS model to investigate
the HRSV disease involving a new derivative operator with Mittag-Leffler kernel in the Caputo sense®. Ali
et al. addressed the fractional mathematical model which describes the transmission dynamics of zika virus
infection®’. Alzahrani et al. utilized proportional fractional-order differential equations with time dela to predict
each fractional change more realistically*. Although there have been numerous integer-order models to describe
the dynamics of rumor propagation, few individuals probe into fractional-order rumor models on complex
networks. Inspired by the above analysis, we will adopt Caputo derivative and propose a fractional-order ISDR
rumor propagation model incorporating refutation mechanism on scale-free networks based on?¢32.

The rest of this paper is organized as follows. In Sect. 2, fractional-order ISDR rumor model incorporating
refutation mechanism on scale-free networks is represented and some properties of the fractional calculus are
provided. In Sect. 3, on account of the existence of rumor equilibrium point, the threshold is proven. In Sect. 4,
the stability of equilibrium point is shown. In Sect. 5, the influences of two immunization strategies are proposed
and compared. In Sect. 6, Sensitivity analysis and several numerical simulations are proposed. Finally, several
conclusions are given at the end of this paper.

The fractional-order ISDR rumor propagation model and basic properties of
fractional calculus

The fractional-order ISDR rumor propagation model

In this section, we build a novel fractional-order ISDR rumor propagation model incorporating refutation
mechanism on scale-free networks. The flow diagram of the model is shown in (Fig. 1). We have divided the
total population into four categories: ignorants who have never known the rumor and consequently are open to
trust the rumor, denoted by I; spreaders who know and spread the rumor actively, denoted by S; debunkers who
know the true information about the rumor and become the debunker under social reinforcement, denoted by
D; resisters who have contacted the spreaders or debunkers but resist and do not spread it, denoted by R. On
scale-free networks, every individual represents for a node of the network and the connections are deemed to
the relations between individuals meanwhile which the rumor can transmit. let I, (¢), Sk (¢), Dy (t) and Ry (t)
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Fig. 1. The flow diagram of the model.
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be the relative densities of ignorants, spreaders, debunkers and resisters by means of the degree k = 1,2,...,n
at time f respectively.

The transition among these states is subjected to the following rules.

(1) When the ignorants are connected to the spreaders, they will know the rumor thus become the spreaders
with a probability of (1 — p) 8 and become the debunkers with a probability of pS. p is used to describe the
attractive degree of the debunkers andg is the infection rate.

(2) The parameter 7 is the recovery rate of the spreaders under the influence of forgetting mechanism. When
the spreaders get in touch with debunkers, it will become a debunker with probability €. Moreover, the debunker
is likely to be a resister in the probability 4.

(3) We assume that the immigrate rate is A and emigrate rate is 1. All the newly added nodes are classified as
ignorants. The parameters are all nonnegative.

According to the mean-field theory on complex networks®, we can obtain the equations of propagate
dynamics as follows:

DIy, (t) = A — Bkl (£) © (t) — plx (1),

DS (£) = (1 — p) BRI (£) © (£) — £ (£) — vSk (£) — Sk (),
DDy, (t) = pBklx () © () + &Sk (t) — 6Dy () — pDy (t)
DRy (t) = vSk (t) + Dk (£) — uRi (), k = 1,2, ..., .

(1)

where D is the Caputo derivative, & (0 < a < 1) is the order parameter on the system (1). © (¢) is the
probability that a random selection ignorant from a node of degree k refers to a spreader with node of degree

k/, which meets Z o P (k’ ‘ k) S s and p (k/ ’ k) is assumed to the probability that a node with k degree

refers to a node with &’ degree. The relationship of nodes is supposed to be uncorrelated for simplicity, so

, k(K
D (k ‘ k) = Zpgcp(?c)’ satisfying the relation as follows:
k

él K p (k
(k)

k) S, o

o) =

where (k) = > kp (k) is the average degree in regard to the network and p (k) stands for the degree of

distribution.

Basic properties of fractional calculus

We firstly give the definitions of fractional-order integration and some properties of the fractional-order
differential equation, since those have the advantages of dealing properly with initial value problems®. The
Riemann-Liouville and the Caputo formula are two kinds of crucial and well-studied definitions**~*4.

Definition 2.1 The Riemann-Liouville fractional integral of order a > 0 of a function f : Rt — Ris provided
by.

I°f () = w5 Jy (@ =)' f (t)dt.

Definition 2.2 The Riemann-Liouville fractional derivative of order o > 0 of a function f : Rt — R s pro-
vided by.

Df(x) = ()" 1" f (@) = 7=y (&%) Jy @ = 0)" 7' f (t)dt,n = [a] + 1.

Definition 2.3 The Caputo fractional derivative of order o € (n — 1,n) of a continuous function f : R™ — R
is provided by.

Daf ($) _ Infaan (CL’) _ 1 T 7 (r)dr

F(n—a) Jo (t—r)xtl-—n"
While when o — n, the Caputo fractional derivative of function f : Rt — R is given by.
lim Df (z) = f* (0) + [} f** (r)dr = f" (z),n=1,2,....
a—n

Definition 2.4 When function.

is a constant function f (i.e.f (x) = u), the Riemann-Liouville fractional derivative and Caputo fractional
derivative are respectively provided by
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I'(n—a) v
D% = 0.

Consider the following autonomous system.

D2 (1) = f (x) . £ (0) = 0

To prove the globally asymptotical stability of equilibrium points, we proposed the following lemma.

D%u = ,x > 0.

Lemma 2.5 Let D is a positive invariant set. If the following conditions 3V (x) : D — R with continuous first
partial derivatives are satisfied:

DV| 4, < 0.
Let E {D Vg =0,z € D} and M be the largest invariant set of E. Then every solution x (t)
originating in D tends to M as ¢ — oo. Particularly, when M = {0}, then x — o0, ast — oo.

Lemma 2.6 Suppose x (t) € RT = [0, +00) be a continuous and derivable function. Accordingly, for any time
instantt > to.

D~ [m(t)—x —2"In (t)} < (1 (t))D z(t).

Equilibrium points and basic reproduction number
Due to the total number of nodes remains invariant, the normalization condition meets
D%I;, (t) + D*Sy (t) + D*Dy, (t) + DRy, (t) =1 atanyt. We obtain Ry, (t) =1—1I (t) — Sk (t) — Ty (t)
at any t. So, system (1) can be written as the following model:
DI (t) = A — BkI (t) O (t) — pulk (1),
DS (t) = (1 —p) Bkl (t) © (t) — &Sk (t) — Sk (t) — uSk (1), (3)
DDy, t) = pﬂk‘lk (t) (C] (t) + &Sy (t) — 0D (t) — MDk (t) Jk=1,2,....n

—_~

Note that the equilibrium points of system (1) should satisfy
A — BEI;©" — uly =0,
(1 p) BRIZO — Sf — S}, — pSi = 0, (4)
pBkILO* + ¢S, — 6Dy, — uD;, =0,k =1,2,...,n,

The rumor-free equilibrium pointEpof system (1) corresponds to I, = 0,(k = 1,2, ..., n), substituting them
into Eq. (1), we have

. A
Ik =
1 (5)
Di=0k=1,2,...,n,
So system (3) always exists a unique rumor-free equilibrium pointFEo (I? ,0,0,...,12,0,0,... 7), where
I = %, k=1,2,...,n. The rumor equilibrium point of the system (1) is equal to the case which the rumor

prevails among population (I}, # 0,k = 1,2,...,n). So, the equilibrium point E* (I};, Sj;, D) has the form
. A

b= Fre v

S* — (1 —p) ABLO”

P ety ) (BROT + ) )
Dk_P+M {ﬂke*—Fu (5+7+M)(5k@*+ﬂ)]’k_1’2""’n

Put the second equation of (6) into (2), we obtain the self-consistency equality

n n k'p (k/) "
1 ‘() * (1—p)ABE © a .
= S Kp (K |k) sy = , 2 pe). ?)
k)}; b Z (k) (e+~+n) (BKO" + 1) ©9
To demonstrate the existence and uniqueness of equilibrium point g*, we define a function.
_ 1y s S CL
F®) = E ( ‘k) S = O =T erm kz (k) (BK ©+p)
=1 =1
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It is easy to see that ©" = 0 is a solution of (7), then I, = % and S;; = Dj, = O,which is a rumor-free

equilibrium of system (1). so as to guarantee Eq. (7) has a nontrivial solution, i.e., ©" € (0, 1], the following
situations must be met:
ar(er)|  _ ar(er) l gpns 5 ¢ (k’)k/@*]
e~ =

>land F (1) <1
©*=0

0% —0 de* ) (e+y+m) Bk ©*+pn

Thus, we can obtain.
_ (-pAg(k?)
Ro = plety+p)(k)

Where <k2> = " k®p (k). Therefore, if Ry > 1, then system (1) has a unique rumor equilibrium point £*.
k=1

Theorem 3.1 Closed set Q= {(Ix, Sk, Dx, Ri) € RY", k =1,2,...,n|0 < Ny = I+
Sk 4+ Dr + Ry, < %} is a positive invariant set and global attractivity set of system (1).

Proof Based on three equations of system (1), we get.

DaNk(t) :Aflu(fk+sk+Dk+Rk) = A — uNy.

Solving this equation, we have.

Ni (t) = (=% + Nk (0)) Ea (—pt®) + &,k =1,2,...,n

Especially, if Ny (0) < A , then Ny (t) < %, hence closed set €2 is the positive invariant set of system (1).
Additionally, due to hm E (—pt*) = 0,if N (0) > A, accordingly the solution of system (1) is inclined to A

when time turns to mﬁmty Therefore, closed set € attracts all the solution of R3™, and € is the global attractmg
set of the system (1).

The stability of the equilibrium point

In this section, we will provide evidence of the stability of Ey and E*, which is one of the most crucial topics
in the research of rumor spreading. Specifically, we will study the local asymptotic stability and then the global
attractivity of the rumor-free equilibrium pointFEy. That is to say, the threshold value is Ro < 1, and Ey is
globally asymptotically stable.

The dynamic of rumor-free equilibrium point Eq
Theorem 4.1 The rumor-free equilibrium point Eg of system (1) is locally asymptotically stable if Ry < 1, or
unstable if Ro > 1.

Proof First of all, we linearize system (1) atEp
DI, (t) = A — BEILO* — Iy,
DS (t) = (1 — p) BEILO™ — Sy — Sk — pSk, (8)
DDy, (t) = pBkIf©* + S — 6Df — uDj, k=1,2,...,n

That is,D*(I1, ..., In,S1,...,Sn, D1,..., D) = J(Eo)(I1,...,In,S1,..., S0, D1,...,Dn)", where.

o 0 —BIlg (1) — BIig (n) 0 - 0
—n — Bnlng (1) — Bnlng(n) 0 - 0
0 —e—v—p+1-p)Blgl) - (1-p)BIg(n) 0 - 0
J(Eo) = : : : : oo
0 -~ 0 (1—p)Bnlng (1) o —e—y—p+(A-p)Brligln) 0 -+ 0
0 -+ 0 e+pBIlg (1) pBIig (n) —p—p - 0
0 - 0 phnlog (1) e +pBnlng (n) 0 o =p—t/ gxsn
’ k plk n ’ ’
g(k)z <£>)7<k>=kzlkp(k‘)-

We primarily give the following lemma so as to demonstrate the stability of equilibrium point.

Lemma 4.2 The equilibrium point of system (1) is locally asymptotically stable, provided that all the eigenvalues
i (1=1,2,...,3n) of the corresponding Jacobian matrix are equal to the following condition.

larg (A\:)| > %*,4 = 1,2,...,3n. The characteristic polynomial of linear system (8) is.
A+ )" A+ p+ 1) [NE — F| =0,
where.
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—e—7y—p+(1-p)pnlig(1) (1-p)Bnllg(2) (1—p)Bnllg(n)
o (1—p)p2I3g (1) —e—y—p+(1-p)B2I3g(2) - (1—p)Bnldg(n)
(1—p)Bnlng (1) (1-p)Bnrlng(2) o —e—y—p+(1—p)pnlng(n)

nxn

It is quite obvious to obtain that the Jacobian matrix J (Fo) has n eigenvalues equivalent to —p — 1, and n
eigenvalues equivalent to —. And the last 7 eigenvalues of matrix J (Eq) are the eigenvalues of matrix F. The
characteristic polynomial of matrix F is given by.

Ate+y+p—(1-p)pnllg(1) —(1-p)Bnlig(2) — (1 —p)Bnlig(n)
—(1-p)B2I39(1) Abety+u—(1-p)p2Lg(2) - — (1 —p)Bnl3g(n)
|AE — F| =
—(1—p)Bnlig (1) —(1=p)Bnlng(2) c Atety+p—(1—p)Bnlig(n)
Ate+v+p 0 *(1*1))/5"[?9(”)
0 Adbety+u - — (1=p)fnl3g(n)
0 0 v Aty p—(1=p) B [kRg (k)]

=A+et+y+p </\+€+’y+/1— (1 —p)ﬁz [M{?g(k)]) .
Obviously, the matrix F has n —1 eigenvalues equal to —e —~ — . The nth eigenvalue is

A=—c—v—pu+(1-p)p Z [k[kg ] = (e+~v+ u)(Ro —1). Therefore, on account of Lemma
4.2, the rumor-free equilibrium pomt E) is locally asymptotically stable if Ro < 1, and unstable if Ro > 1.
Theorem 4.3 If Ry < 1, then Ey is the unique equilibrium point of system (1), and it is globally asymptotically
stable.

Proof For system (1), we construct the following Lyapunov function:

Vi) =3 a (Ik—I,B—I,Bln%> + 3 ausi,
k=1 k =1

where Gk = kp(k) E kp (k
K =1
By Lemma 2.6, we have

D*V]yy = axDI ~ ZakaD“ In =% + ZakDaSk
k=1 k=1

- R\ peg N u D

Szak 17[7 D Sk+zakD Sk 9
k=1 k=1
" , "

=D (1 - —k) (A~ BRINO (1) = pul) + Y _ax (1= p) BRIk (1) © (1) — 5k (1) = 7Sk (1) — Sk (1)),
k=1 k=1

Based on the first equation of system (1), we have A = u[ 9, substituting into (9).

n

DV|,, = Z (1 - %) (1l — BEILO (t) — pl)) + Zak (1 —p) BEIx (t) © () — &Sk (t) — ¥Sk (t) — uSk (t))

< 72 (1**) (BEILO® (t) + pIr) + (e +v+p) (Ro—1)O (t) .

When Ry < 1, D*V < 0and we infer the only compact invariant set is the singleton { Eo } for { DV = 0}.
Through the use of Lemma 2.5 and Theorem 4.1, the rumor-free equilibrium point Ey is globally asymptotically
stable when Ro < 1, which means the rumor will fall into extinct ultimately in spite of the initial density of
spreader.

Next, we will demonstrate the global asymptotical stability of the rumor equilibrium point E* of system (1)
identical to the rumor-free equilibrium point Ejy.

The dynamic of rumor equilibrium point E*
Theorem 4.4 If Ry > 1, then the rumor equilibrium point E* is locally asymptotically stable.
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Proof In asimilar way, we linearize the system (1) at £*, and acquire the corresponding Jacobian matrix.J (E™).

—p=PBpr - 0 —pmig(l) -+ —=Pmag(n) 0 -+ 0
bp1 0 —c+bmig(1) bmng (n) o --- 0
J(E™) = : : : : : :
0 bpn bmng (1) <o —c+bmng(n) 0O --- 0
P 0 e+ pBrug(l) - pPmag(n) —d - 0
0 o pBpn pPmag(1) et pfmag(n) 0 -0 —d /g 0,
* * ! k/p(k:/)
zm:k@,mk=h%ﬁ=%1—Mﬁw=5+7+%d:5+“”(k): "
The characteristic equation of Jacobian matrix J (E™) is.
A+w)"A+0+w)" |AE - H| =0,
where.
—e—v—p—hi+(1-p)Bmyg (1) (1 =p)Bmag (1) (1 =p) Bmng (n)
(1 —p) Bmag (1) —e—y—p—ha+(1-p)Bmag(2) - (1= p) Bmag (n)
H = . .
(1 —p) Bmag (1) (1 =p) Bmag (2) o me=y—p—ha+ (1 —p)Bmagn)/ .,
hy = Bletr+i) po*
I
Clearly, matrix J (E™) has 2n negative eigenvalues. Following, we calculate the last n eigenvalues of matrix
J(E*
Atety+pth—(1-p)pmyg(1) (T =p) g (1) (1 =p) Bmng (n)
(1 —p) Bmag (1) Adtet+y+p+he—(1—p)Bmag(2) - (1 —p) Brmng (n)
IAE — H| = . . . . =0
(1 —p)Bmng (1) (1 —=p) Bmang(2) o Aded v+ pthy — (1 —p) Bmng (n)

Consider the following two cases:

(1) fA+e+~v+p+h;=0namely, \s = —e—~v—p—h; (:1=1,2,...,n), then.

—maig (1) —mig(l) -+ —mng(n)
—mag (1) —mag(2) --- —mug(n)

AE — H|[=((1-p)B)" =0.
—Mmupg (1)  —mng(2) -+ —mng(n)

Therefore, we obtain 7 eigenvalues \; = —e — v —p — h; < 0,i=1,2,..
@2) fA+e+vy+p+h #0

LN

n , then. .
— 1 Bm;
|>\E—H|—1:[(>\+s+fy+u+h ( Ziﬁﬁwui(h))
_” ) (1—p)Bmig(i)
Lettp 1_[1 )\+€+’Y+,u+hz) (1 1/%),(’,}181’1.
i= iz
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pE)=@+e+y+p+h)(@+e+y+u+the) - (+e+y+p+ha)
(A =p)Bmig(l)(x+e+y+pth)(@tety+tpths) -(z+et+vy+ptha)
—(1=p)Bmag2)(x+e+v+p+h)(z+e+y+pu+ths) - (x+e+y+p+hn)
== =p)Bmag(n) (x+e+v+tpth)(@te+ytpthe) -(@+ety+pt+hna).
Since ¢ () is continuous, hyis increasing and note that.
pl-(e+v+pu+h)]pl—(e+v+p+hiy1)] <0,i=1,2,...,n—1.
Hence, it exists at least one root in [— (¢ + v+ p+ hi), — (€ + v + p + hit1)]. in another word, there

existn — 1 negative rootsin [— (e + v+ p + hn), — (e + v+ p + h1)].
On the other hand, ¢ (— (¢ +v 4+ p + h1)) < 0, and.

) =[] E+v+n+h) (1_2017)5”“9(“)

" — etytuthi

<
1

Il
=

- (1 —p) BiSTip (i)
(e+v+np+hi) (1—2 By ety tut B(s+v+u>i@*)>

1 =1

o
Il

=

>

(s+'y+/x+hi)<1—z (1= ) 8i87in () )

" — <k> (EJF,YJFILLJF ﬁ(EJr:vHL)i@*)

.
Il

=0.
Hence, the matrix N has n negative roots in [— (¢ + v + p + hy) , 0]. It is manifested that all the eigenvalues
of the Jacobian matrix J (E™) are negative so far. That is to say, the rumor equilibrium point E* is locally
asymptotically stable.

Theorem 4.5 Suppose that (Ii (t), Sk (t), Dy (t)) is a solution of system (1) satisfying initial conditions

Sk (t) >0 or Dy (t) > 0.If Ry > 0, then lim (Ij (¢), Sk (t), Dk (t)) =L (t), Sk (t), Ty (t)) is the ru-
Tr—r00

mor-prevailing equilibrium of (1) satisfying for k = 1,2, ..., n.

Proof In the following, k is fixed to be any integer in (1,2,...,n). By Theorem 4, there exists a sufficiently

small constant £ (0 < £ < 1) and a larger enough constant 7" > 0 such that T}, (¢t) > £ for t > T, therefore
O (t) > €O for t > T'. Submit this into the equation of (8) gives.

DIy (t) < A — ply (t) — BROSI (1) 8 > T.

By means of the standard comparison theorem, for any given constant 0 < £ <
t1 > T, such that S, (t) < Agﬂl) — & fort > t1, where.

1) _ r

From the second equation of (1), it follow that.

DS (£) < (1— p) BkO (1 Sk (£) — (e + 7 + ) Si (1) .t > 1.

Hence, for any given constant 0 < & < min {
I (t) < B,(gl) — & for t > ta, where.

B = Bk 1 96 <1

~ (1-p)BkO+e+y+pn
Then, it follows from the third equation of (1),

DDy, (t) < pBkO© (1 — Dy (t)) + e (1 — Dy (t)) — (6 + ) D (£) , t > ta.
Similarly, for any given constant 0 < {3 < min {
Dy (t) < D,(C1> — &3 fort > t3, where.

BEOE

31 5ROE)° there exists a

1 ety+p :
2 517 W }, there exists a t2 > tl, SuCh that

1 s .
3,62, m }, there exists a t3 > ta, such that

1) _ BkO+e
Dy = shiererorn T 26 < 1.

@(t)gﬁéip(i)::H

Since , we substitute this into the first equation of (1).

DIy (t) > A — ply (t) — BkH I} (t) > T.

So for any given enough small constant 0 < §4 < min { }, there exists a t4 > t3, such that

1 13 r
4253 3(u+BEH)

Iy (t) > alil) —+ 54,fort > t4, where.

1 _ r
ak = W - 254 > 0.
It follows that.

DSy (t) > (1 —p) BkOal) — (e + v+ 1) Sk () ,t > ta.
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—p)BkaV
So for any given enough small constant 0 < &5 < min {é, &a, (12(2_% , there exists a t5 > t4, such
that Iy, (t) > bg) + &5 for t > ts5, where.

1) _ (1-p)pkealt)
bé):W*255>0.

From the third equation of (1) implies that.
DDy () > ppkOtal” + &bl — (8§ + ) Dy (t),

(1) (1)
p,Bk:@ﬁak +sbk

So for any given enough small constant 0 < s < min {é, &s, GTEEam)

}, there exists a tg > ts,
such that Ty, (t) > dgcl) + &6 for t > tg.

As aresult of £ is a small positive constant, we can deduce that 0 < af:) < AS) <1,0< bg) < B,il) <1
and0 < d{" < D < 1.

Let.

q(j):ﬁzip(i)dy),Q(j):%z 51)7.]_1 2,.

j=1 ‘:1

We can easily get 0 < ¢\ < O (1) < QY < H,t > ..

Again, from the first equation of (8), it has.

DI, (t) > A — ply, (t) — BkqM Ti () ,t > ta.

Hence, for any given constant 0 < &7 < min {%7 &e }, there exists a t7 > tg, such that.

(2) & s (1) r

DS (t) < A} 7m1n{A —51,W +§7} St >t

Then, from the second equation of (8), we have.

DSk (t) < (1= p) BEQW ALY — (e + 7+ ) S (1) £ > tr.

So, for any given constant 0 < &g < min { %, 57}, there exists a ts > t7, such that.

1-p)BLQ(1 A2
DI (1) < B® 2 mm{B}j) — g, TR A +58} > ts.

Consequently, from the third equation of (8), we have.
DDy (t) < pBkQW AP +eBM — (5 + u) Dy (t) ,t > ts.
Hence, for any given constant 0 < 59 < min { oL 58} there exists a t9 > tg, such that.

(1) 4(2) (1)
DeI (1) < DO £ mm{p,g“ g, PRQOAD ven)

Fm +§9}7t>t8.

Turning back, one has.
DI, (t) > A — uly, (t) — BEQP I (1) ,t > to.
So, for any given enough small constant 0 < £10 < min { %, o, m}’ there exists a t10 > to,
such that Tk (t) > a;’ (2) 4 &1o fort > tio, where.
o = max {a; NP 2510} :
It follows that.
DS (1) > (1 —p) BkgWal® — (e + v+ 1) Sk (1) ,t > tho.

) kaD g (2)
So, for any given enough small constant 0 < {11 < min { 175610, i(irTu) , there exists a t11 > t10,

such that Cy, (t) > b,(f) + &1 fort > tio, where

(1) (1)
@ _ M) (1 —p)Bkqa
by, —max{b,c —1—55,?_’_#1“_2&1

From the third equation of (8) implies that.
DDy, (t) > pBhqVal” +eb® — (6 + ) D () ,t > t11.

pBhaVal® 1ep(?

So, for any given enough small constant 0 < 12 < min {112,511, GICE)

}, there exists a

tio > tg, such that Dy (t) > d;f) +4 512 for t > t12, where.

(1) ,(2) (2)
dl(f) — max {d,(:) + &, pBkgCay teb 2512} .

o+p
Repeating the above analyses and calculation, we acquire six sequences Agj), B,(:), D,ii),
a](;), b?, d,(:>, 1 =1,2,...,n. The first three sequences are monotone decreasing continuous function, and the

other three sequences are monotone increasing function, it exists a large positive integer L > 2,asl > L:
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(1—p)BRQUVAY

AT g0 _ -

T+ Bkqt—D + &61—5, By, st 1p + &61—4,
kQU DAY +eBY ,

pw _ P8 k K G I P (10)
k 5+ + &e1—3, ay, ¥ BRQD Eo1—2,

po _ (=) Bk Ve 21, dy) = pBkgMal? +eb? 2o

b e+y+up Tk S+p -

We can easy get that

ag) <I (t) < Agcl)7bl(gl> < Sy (t) < B}(Cl>7d](gl> < Dy (t) < Dlil)’t > Lo, (11)

Since the sequential limits of (10) exist, let lim Ag) = Ag,where A,(Cl) € {Ag), B,(cl)7 D,(Cl), ag), bg), dg)}

r—00
and Ay, € {Ag, Bk, Dr, ax, bx, di.}.

Noting that 0 < &1 < %, onehas §&1 — Oas! — oo. In the six sequences of (10), by taking [ — oo, it follows
from (10) that

W__ T pn_ PEQA Hay_ pBEQAs +eBy
E = P = e =
p+ Bkq e+v+u S+ 1

oD = Ty _ (A=p)Bkgak ) _ pBkgak +eby
M u+BRQTF e+y+pu ¥ S4+p

)

where,
9= (llc) Yo ip(i)di, Q = 7<1> > ip (i) D;.
i—1 £

7

further,

po _ e+ p)n+pe)rkQ
PO+ eyt ) (n+ Bha)’
a0 = (e +p)n+ Be)rkq

B0+ ) ey +p) (p+ BRQ)

(13)

Substituting (13) into q and Q, respectively, one has

__((etmwn+per pr(z') u+ BiQ
(k) (p+ ) (e +~+mp) (n+ (B+n)ig) (u+ (B+n)iQ)’

=1

(14)

(e+pw)n+pe)r Zizp(i) (1 + Big)
(k) (p+ ) (€ + v+ p) (w+B+n)iQ) (u+ (B+mn)ig)

i=1

1=

(15)

By subtracting (14) and (15), it arrives at.

_ ((s+1)pB+B8e)pB(Q—T) N3
0= B Grm et tm (it BiQ) (T i) i_zlz p (i)

It is obviously that ¢ = @, so (17> ; i*p (i) (D; — d;) = 0, which sees that D; = d;, fori = 1,2,...,n.

From (9) and (11), it follows that.
lim Ik (t) = Ak = ag, lim Sk (t) = Bk = bk, lim Dk (t) = Dk = dk.
€Tr—r 00 &Tr—r 00

xr—r o0
Finally, substituting ¢ = @ into (11), in view of (4) and (12), it obtains I}, = I}, Sk = S}, and T, = T};. The
proof is completed.

Rumor control strategies

Rumor spreading can have incredible damage to maintain the normal social order, we need to take effective
measures to control rumor propagation. Rumor control strategies are an important issue. The uniform
immunization and the acquaintance immunization were adopted through immunizing a portion of the population
based on different rumor transmission characteristics and channels?®. Hence, we suppose immunization is
effective completely, that is to say, the immunized nodes cannot be transmit rumors to their neighbors. In this
case, two useful strategies to control the spreading of rumors and the effectiveness of these control strategies will
be discussed and compared.

Uniform immunization control

Firstly, we consider the artificial immunization which should be carried out to reduce the transmission of the
rumors, in other words, a certain percentage of the population is randomly chosen to be immunized?®. In this
section, for given transmission rates 3, let 0 < o < 1 be the immunization rate through adding the suitable
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parameter o to reduce the number of Ij. By substituting 8 — 8 (1 — o) into system (2), we now give an
uniform control system as
DI (t) =A—B(1—0) kI (t)O (t) — puli (t),
DSk (t) = (1 =p) B(1—0) klx (t) O (t) — €Sk (t) — ¥Sk (t) — uSk (1), (16)
DDy (t) =pB(1—0) kI (t)O(t) +eSk (t) — 0Dy (t) — uDi (¢) ,k =1,2,...,n
By arguments similar to those in Sect. 3 and calculating the basic reproduction number of system (16), the basic

reproduction Ry can be determined by the following inequality.
dF(©)

76 _ > 0,
where,
(1 p)BA<1 o) kp(k)k©
F(@) k) (e+y+u) Z (1-p)Bk(1—0)O+p - 0.

Hence, we obtain the bas1c reproductlon number as.

_ (1-p)BA(1-0)
Ro = u(5+w+u)<k<> > = (1 —0) Ro. _

In particular, when o = 0, that is, no immunization is performed, then Ry = Ro; When 0 < 0 < oo,
namely, 0 < Ro < Ro, which means that the immunization strategy makes sense to reduce the transmission of
the rumors. As 0 — 1, Ry — 0, regarding the full immunization, it would be possible for the rumor to vanish

in the network.

Acquaintance immunization control

Though the uniform immunization control is available, there is a more effective immune mechanism to
regulate rumor propagation. The acquaintance immunization control strategy aimed at the heterogeneity of
the complex network?”. The core idea of the acquaintance immunization is to randomly select a new node with
a ratio of ¥ from N nodes. In order to avoid the problem of a demand for knowing degree of each node in
target immunization, The adjacent individuals are randomly selected for immunizing individuals with degree
kp(k) .Thus, the individuals with degree k in the complex networks

N(k)
are immunized by the probabilityk, which is equal to ﬂ’zzgk) . The basic idea is to randomly select a new node

i among their neighbors by the probability

with a ratio of ¥ from N nodes. And then, for each selected node, another adjacent node is randomly selected,

which can skillfully avoid the problem of a demand for knowing degree of each node in target immunization.
The adjacent individuals with degree k can be selected for immunization by the probability Ij\f(:; Therefore, the

individuals with degree k in the network are immunized among their neighbors by 9, = 9N x =2 <(k>> ﬁ'zigk) .

Considering the acquaintance immunization control, system (1.2) can be given as
DI (t) = A — B (1 — %) kI (t) O (t) — ply (1),
DSy (t) = (L = p) B(1 = k) klx (t) © (t) — €Sk (t) — 7Sk (t) — Sk (1) , (17)
DDy, (t) =pB (1 — %) kli (t) O (t) + &Sk (t) — 8Dy (t) — uDy (t) , k= 1,2,...,n.

Similarly, we obtain the basic reproduction number as.
= —p)BA(9 k>
ROZRo—(l p)BA(91k?)

G EEDION
where 0<9<1, En: is the average immunization
rate.(9,k7) = LEPO) ¢ <k2 + cov (19,“ k2)> = D) + (9 — D) (K — (k2))).

For appropriately small k, 95, — 9 and k2 — <I€2> have the same signs, then cov (ﬁk, k2) > 0.

It is prone to infer that Ro < Ro, which means that targeted immunization is valid, and Ro <1 R() If

0< ¥ =19<1,then Ro < Ro. Hence, based on same average immunization rate, the effect of the targeted
immunization strategy is superior to the uniform immunization strategy.

Numerical simulations

In this section, we provide some numerical simulations to explain the main theoretical results on scale-free
networks with p (k) = (y1 — 1) m™ 1k, where parameter m represents the smallest degree of the network
nodes, parameter ; is the variable of power law exponent. Suppose m = 2,71 = 3 and the number of the
nodes on scale-free networks is N, let N = 100.

The effect of network structure on rumor propagation

Consider  system  (2.1) with the following parameters A =0.02,8=0.05, & =0.28,
w=0.28v=0.18,0 = 0.3,p = 0.1, @ = 0.98, With this choice of parameter values and a simple calculation,
one has the basic reproduction number Ry = 0.1229 < 1. In terms of Theorem 4.1, the unique rumor-free
equilibrium point Ej is locally asymptotically stable as Fig. 2 show. These figures show that when Rg < 1, the
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rumor-spreading will ultimately disappear, and the spreaders will ultimately extend to the maximum value,
which indicates that rumor will disappear from society.

Here, we chooseA =0.05,8=0.5,6 =0.38,4=0.3,vy=0.3,6=03,p=0.1, a=0.98 By
calculating, Ro = 2.1219 > 1, which suggests that system (1) also has a rumor equilibrium point E* and
the rumor-free equilibrium point Eo. In terms of Theorem 4.4, the rumor equilibrium point E* is locally
asymptotically stable as Fig. 3 shows.

The above figures prove that when Ry > 1, the rumor maintains and the density of spreaders will converge to
a positive constant. Namely, it is also proved that the larger the degree number is, the wider the spread of rumors
will be, which implies the more individuals contact, the more people get rumors.

Global dynamics of system (1) with different initial values

Without loss of generality in system (1), we set A=0.03,8=0.05 &=0.28,
1w =0.28v=0.18,0 =0.3,p = 0.1, « = 0.98. That is, the basic reproduction number isRo = 0.1843 < 1.
According to Remark 4.5, the rumor-free equilibrium point Ey is globally asymptotically stable. Next, we provide
the image of k = 30. Figure 4 shows the global dynamics of Ey in Q for the case Ry < 1. It indicates that the
rumor-spreading vanishes with time, and the rumor will vanish ultimately.

Without loss of generality in system (1), we takeA =0.1,8=0.2, ¢=0.32, pu=0.28,
v=10.28,0 =0.2,p = 0.1, = 0.98. That is, the basic reproduction number is Ry = 2.0667 > 1. On the
basis of Theorem 4.5, the rumor equilibrium point E* is globally asymptotically stable. simultaneously, we only
provide the profile of & = 30. Figure 5 shows the global dynamics of E* in Q* for the case Ro > 1. It indicates
that the rumor-spreading persists at a rumor equilibrium level if it initially exists.

The effect of parameter a in rumor propagation

Reference®® verified the effects of parameter v on the dynamic of the rumor propagation. Next, we will investigate
the influences of the parameter in system (1) on scale-free networks, following the same approach as in*2. We
demonstrate some numerical simulations for different values of the parameter a.. As Fig. 6 shows, the numerical
results show that the lower values of parameter c, the peak of rumor propagation is wider and lower, which
implies a more precise conclusion that fits the real data®->!. A wider rumor peak implies a longer period along
with numerous spreaders, which can probably cause panic and unnecessary losses to the society. Therefore, we
should implement appropriate control measures to block the spread of rumors.

The effectiveness of immunization strategy on rumor propagation

In this section, we will compare system (1) with and without immunization strategies on spread of rumors to prove
the effectiveness of control strategy. To demonstrate the effectiveness of optimal control, we adopt the uniform
immunization control as an example. Choose A =0.1,8=0.2,e =0.32,n = 0.28,y = 0.28,§ = 0.2,
p = 0.1, o = 0.98 and immunization control proportion o = 0.2, 0.4, 0.6, respectively. Figure 7 shows that the
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Fig. 2. Each compartment population changes over time when Ry < 1.
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Fig. 3. Each compartment population changes over time when Ry > 1.
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Fig. 7. (a) The density of spreaders with degree k = 30 and ae = 0.98; (b) The density of resisters with degree
k =30and o = 0.98.

controlled system (17) can increase the density of spreaders, and decrease the density of resisters compared with
the uncontrolled system (1). And the higher the immunization control proportion ¢ is, the lower the level of
rumor propagation is. In fact, the rumor propagation can be eliminated if we make effort s to take immunization
strategies actively.

Conclusions
In this paper, we have investigated the rumor dynamics of the fractional-order ISDR rumor propagation model
incorporating a refutation mechanism on scale-free networks. We have established that there exists a basic
reproduction numberRo, which determines not only the prevalence of the rumor equilibrium point £E*, but
also the eradication of the rumor. Firstly, through simple calculations, we derived basic reproduction numberRg
based on the rumor equilibrium point E*, which thoroughly characterizes the dynamics of rumor propagation.
Secondly, using the Lyapunov function, we analyzed the stability of the rumor-free equilibrium point Ey and
the existence of rumor equilibrium point E*. when Rg < 1, the rumor-free equilibrium point Ey is globally
asymptotically stable and the rumor always vanishes in community, in other words, the rumor will eventually
disappear regardless of the initial density of spreaders; when Ro > 1, the rumor-free equilibrium point Fo
comes unstable and there exists a unique rumor equilibrium point E*, which is globally asymptotically stable
and the rumor will continue, in other words, spreaders will sustain at an rumor equilibrium level on condition
that it initially exists. Numerical simulations are provided to demonstrate the main theoretical results. The
influences of the parameter o on the dynamics of rumor propagation has been confirmed. Finally, two control
strategies are studied and compared. Simulations prove that targeted immunization strategy is more efficient.

Our research provides a quantifiable intervention framework for the governance of social network rumors.
The immune strategy simulation in our research provides a direct basis for the containment of rumors in reality,
Public health departments can refer to this threshold (such as 6=0.4) to formulate a resource allocation plan
for rumor-refuting, such as allocating 40% of official accounts to disseminate authoritative information during
emergencies. The fractional-order parameter a in our research reveals the “memory effect” mechanism of social
media, the platform can optimize the content attenuation algorithm based on this (such as reducing the a value),
and shorten the life cycle of old rumors by reducing their exposure.

At the same time, the model in this paper can be more perfect, such as considering time delay, nonlinear
incidence rate and so on, These work will be analyzed in more detail in the future research.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.

Scientific Reports |

(2025) 15:31137

| https://doi.org/10.1038/s41598-025-16369-8 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

Received: 14 May 2025; Accepted: 14 August 2025
Published online: 24 August 2025

References
1. Yu, Z, Lu, S., Wang, D. & Li, Z. Modeling and analysis of rumor propagation in social networks. Inf. Sci. 580, 857-873 (2021).
2. Cinelli, M. et al. The COVID-19 social media infodemic. Sci. Rep. 10, 16598 (2020).
3. Daley, D. J. & Kendall, D. G. Epidemics and rumours. Nature 204, 1118 (1964).
4. Maki, D. P. & Thompson, M. Mathematical Models and Applications, With Emphasis on the Social, Life, and Management Sciences.
68-70 (Pearson College Div. 1973).
5. Kawachi, K. et al. A rumor transmission model with various contact interactions. J. Theor. Biol. 253, 55-60 (2008).
6. Huo, L. A,, Wang, L. & Zhao, X. M. Stability analysis and optimal control of a rumor spreading model with media report. Phys. A.
517, 551-562 (2019).
7. Cheng, Y. Y., Huo, L. A. & Zhao, L. ]. Dynamical behaviors and control measures of rumor-spreading model in consideration of the
infected media and time delay. Inf. Sci. 564, 237-253 (2021).
8. Zanette, D. H. Critical behavior of propagation on small-world networks. Phys. Rev. E. 64, 4-6 (2001).
9. Moreno, Y., Nekovee, M. & Pacheco, A. F Dynamics of rumor spreading in complex networks. Phys. Rev. E. 69, 7 (2004).
10. Zhu, L. H. & Wang, B. X. Stability analysis of a SAIR rumor spreading model with control strategies in online social networks. Inf.
Sci. 526, 1-19 (2020).
11. Yu,S.Z, Yu, Z. Y, Jiang, H. ]. & Yang, S. The dynamics and control of 2I2SR rumor spreading models in multilingual online social
networks. Inf. Sci. 581, 18-41 (2021).
12. Ai, S., Hong, S., Zheng, X. Y., Wang, Y. & Liu, X. Z. CSRT rumor spreading model based on complex network. Int. J. Intell. Syst. 36,
1903-1913 (2021).
13. Vega-Oliveros, D. A., da Costa, F. & Rodrigues, E L. A. Rumor propagation with heterogeneous transmission in social networks.
ArXiv, 13-15 (2016).
14. Zhou, J., Liu, Z. H. & Li, B. M. Influence of network structure on rumor propagation. Phys. Lett. A. 368, 458-463 (2007).
15. Xia, L. L, Jiang, G. P, Song, B. & Song, Y. R. Rumor spreading model considering hesitating mechanism in complex social
networks. Phys. A. 437, 295-303 (2015).
16. Zhao, L. ], Qiu, X. Y., Wang, X. L. & Wang, J. ]. Rumor spreading model considering forgetting and remembering mechanisms in
inhomogeneous networks. Phys. A. 392, 987-994 (2013).
17. Sun, X. L., Wang, Y. G. & Cang, L. Q. Correlation and trust mechanism-based rumor propagation model in complex social
networks. Chin. Phys. B. 31, 13 (2022).
18. Cheng, Y. Y,, Huo, L. A. & Zhao, L. J. Stability analysis and optimal control of rumor spreading model under media coverage
considering time delay and pulse vaccination. Chaos Solitons Fractals. 157, 17 (2022).
19. Huo, L. A. & Chen, S. J. Rumor propagation model with consideration of scientific knowledge level and social reinforcement in
heterogeneous network. Phys. A. 559, 15 (2020).
20. Liu, W. P, Wu, X, Yang, W,, Zhu, X. F & Zhong, S. M. Modeling cyber rumor spreading over mobile social networks: A
compartment approach. Appl. Math. Comput. 343, 214-229 (2019).
21. Zhang, Y. M,, Su, Y. Y., Li, W. G. & Liu, H. O. Rumor and authoritative information propagation model considering super spreading
in complex social networks. Phys. A. 506, 395-411 (2018).
22. Vosoughi, S., Roy, D. & Aral, S. The spread of true and false news online. Science 359, 1146 (2018).
23. Qiu, X. Y, Zhao, L. J., Wang, J. ]., Wang, X. L. & Wang, Q. Effects of time-dependent diffusion behaviors on the rumor spreading
in social networks. Phys. Lett. A. 380, 2054-2063 (2016).
24. Wang, Z., Wang, L., Ji, Y., Zuo, L. & Qu, S. A novel data-driven weighted sentiment analysis based on information entropy for
perceived satisfaction. J. Retail Consum. Serv. 68, 103038 (2022).
25. Yang, L., Li, Z. W. & Giua, A. American Control Conference (ACC). 5608-5613 (IEEE, 2019).
26. Tian, Y. & Ding, X. J. Rumor spreading model with considering debunking behavior in emergencies. Appl. Math. Comput. 363, 15
(2019).
27. Jiang, M. L., Gao, Q. W. & Zhuang, J. Reciprocal spreading and debunking processes of online misinformation: A new rumor
spreading-debunking model with a case study. Phys. A. 565, 17 (2021).
28. Zhang, Y. M,, Su, Y. Y,, Li, W. G. & Liu, H. O. Modeling rumor propagation and refutation with time effect in online social
networks. Int. J. Mod. Phys. C. 29, 22 (2018).
29. Huo, L. A. & Zhang, Y. Q. Effect of flobal and local refutation mechanism on rumor propagation in heterogeneous network.
Mathematics 10, 17 (2022).
30. Kilbas, A., Srivastava, H. M. & Trujillo, J. J. Theory and applications of fractional differential equations. North-Holland Math. Stud.
204, (2006).
31. Angstmann, C. N., Henry, B. I. & Mcgann, A. V. A fractional-order Infectivity SIR model. Phys. Stat. Mechan. Applic. 452, 86-93
(2015).
32. Huo, J. ]. & Zhao, H. Y. Dynamical analysis of a fractional SIR model with birth and death on heterogeneous complex networks.
Phys. A. 448, 41-56 (2016).
33. Alzahrani, E. O. & Khan, M. A. Modeling the dynamics of hepatitis E with optimal control. Chaos Solitons Fractals. 116, 287-301
(2018).
34. Kheiri, H. & Jafari, M. Stability analysis of a fractional order model for the HIV/AIDS epidemic in a patchy environment. J.
Comput. Appl. Math. 346, 323-339 (2019).
35. Singh, J. A new analysis for fractional rumor spreading dynamical model in a social network with Mittag-Leffler law. Chaos 29, 7
(2019).
36. Jajarmi, A., Yusuf, A., Baleanu, D. & Inc, M. A new fractional HRSV model and its optimal control: A non-singular operator
approach. Phys. A. 547, 11 (2020).
37. Ali, H. M. & Ameen, I. G. Optimal control strategies of a fractional order model for Zika virus infection involving various
transmissions. Chaos Solitons Fractals. 146, 15 (2021).
38. Alzahrani, F. et al. Repercussions of unreported populace on disease dynamics and its optimal control through system of fractional
order delay differential equations. Chaos Solitons Fractals. 158, 17 (2022).
39. Pastor-Satorras, R. & Vespignani, A. Epidemic spreading in scale-free networks. Phys. Rev. Lett. 86, 25 (2001).
40. Podlubny, I. Fractional Differential Equations. An Introduction To Fractional Derivatives 198 (Academic, 1998).
41. Cui, X. S., Xue, D. Y. & Pan, E. Dynamic analysis and optimal control for a fractional-order delayed SIR epidemic model with
saturated treatment. Eur. Phys. J. Plus. 137, 18 (2022).
42. Vargas-De-Leon, C. Volterra-type Lyapunov functions for fractional-order epidemic systems. Commun. Nonlinear Sci. Numer.
Simul. 24, 75-85 (2015).
43. Ahmed, E. & Elgazzar, A. S. On fractional order differential equations model for nonlocal epidemics. Phys. A. 379, 607-614 (2007).
44. Zhu, G. H, Fu, X. C. & Chen, G. R. Spreading dynamics and global stability of a generalized epidemic model on complex
heterogeneous networks. Appl. Math. Model. 36, 5808-5817 (2012).
45. Pastor-Satorras, R. & Vespignani, A. Immunization of complex networks. Phys. Rev. E. 65, 8 (2002).

Scientific Reports |

(2025) 15:31137

| https://doi.org/10.1038/s41598-025-16369-8 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

46. Zhu, L. H., Zhou, M. T. & Zhang, Z. D. Dynamical analysis and control strategies of rumor spreading models in both homogeneous
and heterogeneous networks. J. Nonlinear Sci. 30, 2545-2576 (2020).

47. Zhu, L. H., Guan, G. & Li, Y. M. Nonlinear dynamical analysis and control strategies of a network-based SIS epidemic model with
time delay. Appl. Math. Model. 70, 512-531 (2019).

48. Daudi, S., Luboobi, L., Kgosimore, M. & Kuznetsov, D. A fractional-order fall armyworm-maize biomass model with naturally
beneficial insects and optimal farming awareness. Results Appl. Math. 12, 20 (2021).

49. Koziol, K., Stanislawski, R. & Bialic, G. Fractional-Order SIR epidemic model for transmission prediction of COVID-19 disease.
Appl. Sci. -Basel. 10, 9 (2020).

50. Higazy, M. Novel fractional order SIDARTHE mathematical model of COVID-19 pandemic. Chaos Solitons Fractals. 138, 19
(2020).

51. Deressa, C. T. & Duressa, G. E. Investigation of the dynamics of COVID-19 with SETHR nonsingular and nonlocal kernel fractional
model. Int. J. Model. Simul. 42, 1030-1048 (2022).

Acknowledgements

This research was funded by the National Natural Science Foundation of China (Grant No.72171150, 72371150),
and the Fundamental Research Funds for the Central Universities, China: High-Quality Development of Digital
Econ-omy: An Investigation of Characteristics and Driving Strategies (Grant No. 2023110139).

Author contributions
Weiwei Zhu: Conceptualization, Writing- original draft, Writing—review & editing, Data curation.

Declarations

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to W.Z.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives
4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in
any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide
a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have
permission under this licence to share adapted material derived from this article or parts of it. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence
and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommo
ns.org/licenses/by-nc-nd/4.0/.

© The Author(s) 2025

Scientific Reports |

(2025) 15:31137 | https://doi.org/10.1038/s41598-025-16369-8 nature portfolio


http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.nature.com/scientificreports

	﻿Dynamic fractional-order ISDR rumor propagation model incorporating refutation mechanism in complex networks
	﻿The fractional-order ISDR rumor propagation model and basic properties of fractional calculus
	﻿The fractional-order ISDR rumor propagation model
	﻿Basic properties of fractional calculus

	﻿Equilibrium points and basic reproduction number
	﻿The stability of the equilibrium point
	﻿The dynamic of rumor-free equilibrium point ﻿￼﻿﻿
	﻿The dynamic of rumor equilibrium point ﻿￼﻿﻿

	﻿Rumor control strategies
	﻿Uniform immunization control
	﻿Acquaintance immunization control

	﻿Numerical simulations
	﻿The effect of network structure on rumor propagation
	﻿Global dynamics of system (﻿1﻿) with different initial values
	﻿The effect of parameter ﻿￼﻿﻿ in rumor propagation
	﻿The effectiveness of immunization strategy on rumor propagation

	﻿Conclusions
	﻿References


