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Rumor spreading has been posing a significant threat to maintain the normal social order. In this paper, 
we propose a ISDR rumor propagation model on scale-free networks that considers fractional-order 
and refutation mechanism. we acquire basic reproduction number R0 based on the rumor equilibrium 
point E∗, which thoroughly characterizes the dynamics of rumor propagation. we have demonstrated 
that when R0 < 1, the rumor-free equilibrium point is globally asymptotically stable; when R0 > 1, 
the rumor equilibrium point is globally asymptotically stable. Numerical simulations are provided to 
illustrate the main theoretical results. By analyzing the existence and uniqueness of the equilibrium 
solution, we demonstrate the superiority of fractional-order dynamics and refutation mechanism in the 
rumor propagation model. Our findings are crucial for understanding the impact of network structure 
on the dynamics of fractional-order systems.
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Rumors are defined as unconfirmed elaborations or annotations related to common interests and are widely 
spread by online social media1. The convenience of social media, with its low barriers to entry and instantaneous 
communication capabilities, facilitates extensive user engagement in information dissemination processes. 
However, rumor spreading may cause a serious threat to society. For example, rumors during COVID-19 
outbreaks can quickly trigger a mass effect, causing some people to believe and propagate these rumors through 
various channels. Therefore, studying the spreading process of rumors can provide insights into the influence 
of different factors and significantly reduce the adverse effects of rumors, leading to the development of better 
control strategies to restrain rumor propagation2.

Numerous rumor models concerning transmission mechanism and forecasting the spread of rumors across 
populations have been proposed. In the early days, the D-K model, a classic rumor propagation model put forward 
by Daley and Kendall, was introduced3. In this D-K model, the population is grouped into three classes: people 
who contact with nothing of the rumor, people who push to spread the rumor, and people who know but will 
never spread the rumor. Based on the D-K model, Maki and Thomson proposed the M-K model which assumes 
that a spreader can change into a stifler who stops spreading the rumor4. Based on these two models, many 
extended rumor propagation models have been proposed and studied5–7. However, these rumor propagations 
are not appropriate for a social network environment, as they do not consider the influence of complex 
network topologies, such as regular networks, random networks, homogeneous networks and heterogeneous 
networks8–11. Zanette first researched the dynamic behavior of rumor spreading and found that the spreading 
threshold is observably influenced by the network topologies, especially in small- world networks8. Moreno et 
al. developed the mean-field theory in the scale-free network9. Zhu et al. proposed a rumor propagation model 
with a silence-forcing function and it was proven that optimal control can reduce the scale of rumor spreading 
in online social networks10. Yu et al. researched new 2I2SR rumor propagation models with and without time-
delay based on multilingual environment and proposed a real-time optimization method that minimizes the 
cost of restraining rumors to eliminate them within an expected time period11. Ai et al. improved the traditional 
Barabasi-Albert scale-free network and proposed a network topology model that conforms to the characteristics 
of sharing social networks, based on complex network theory and the actual characteristics of sharing social 
networks12.
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In recent years, a multitude of rumor propagation models have been proposed, aiming to gaining insight 
into the influence of different factors on the prevalence of rumors such as heterogeneity of transmission and 
network13,14, the hesitating mechanism15, the memory16, the skepticism and denial17, the education or scientific 
knowledge18,19, the latency20, super spreading effect21 and others22,23. Based on different rumor spreading 
models, true information or positive news is also an important factor affecting rumor spreading. Refutation 
mechanism can be the truth of the rumor released by the government or media in an emergency. There are 
many studies of true information24. Yang et al. proposed a competitive diffusion model to regulate rumors by 
propagating true information on social networks25. Tian et al. proposed a novel rumor spreading model that 
considering debunking behavior to describe the rumor dynamics in OSNs under emergencies26. Jiang et al. put 
forward a Spreading–debunking competitive model based on data from the real-world rumor case27. Zhang et al. 
came up with two-stage model and refutation mechanism with time delay on the different network topologies28. 
Huo et al. established a ISTR model of rumor by including influencing factors of true information spreader and 
social reinforcement in Heterogeneous Networks29. Thus, motivated by these aspect, it is more suitable to add a 
refutation mechanism into the rumor propagation model to improve the image of the relevant authorities and to 
strengthen other positive effects on social stability.

Fractional differential equations can depict the dynamics of plentiful physical systems in a more precise way 
than integer order method30. Many scholars have recommended fractional-order to describe real-life problems 
with a fractional order Caputo derivative31–38. Angstman et al. concluded a fractional-order SIR model with a 
stochastic process that contains Infectious individual along with a time effect31. Huo et al. studied a fractional-
order SIR model by means of birth and death rates on heterogeneous networks32. Alzahrani et al. proposed 
fractional-order derivative for the dynamical analysis of Hepatitis E model and optimal control33. Kheiri et 
al. studied a multi-patch model with fractional-order derivative to reveal the impact of human behavior on 
the HIV/AIDS propagate34. Singh et al. researched the dynamic model of rumor propagation associated with 
non-integer order in a social network35. Jajarmi et al. extended a fractional version of SIRS model to investigate 
the HRSV disease involving a new derivative operator with Mittag-Leffler kernel in the Caputo sense36. Ali 
et al. addressed the fractional mathematical model which describes the transmission dynamics of zika virus 
infection37. Alzahrani et al. utilized proportional fractional-order differential equations with time dela to predict 
each fractional change more realistically38. Although there have been numerous integer-order models to describe 
the dynamics of rumor propagation, few individuals probe into fractional-order rumor models on complex 
networks. Inspired by the above analysis, we will adopt Caputo derivative and propose a fractional-order ISDR 
rumor propagation model incorporating refutation mechanism on scale-free networks based on26,32.

The rest of this paper is organized as follows. In Sect. 2, fractional-order ISDR rumor model incorporating 
refutation mechanism on scale-free networks is represented and some properties of the fractional calculus are 
provided. In Sect. 3, on account of the existence of rumor equilibrium point, the threshold is proven. In Sect. 4, 
the stability of equilibrium point is shown. In Sect. 5, the influences of two immunization strategies are proposed 
and compared. In Sect. 6, Sensitivity analysis and several numerical simulations are proposed. Finally, several 
conclusions are given at the end of this paper.

The fractional-order ISDR rumor propagation model and basic properties of 
fractional calculus
The fractional-order ISDR rumor propagation model
In this section, we build a novel fractional-order ISDR rumor propagation model incorporating refutation 
mechanism on scale-free networks. The flow diagram of the model is shown in (Fig. 1). We have divided the 
total population into four categories: ignorants who have never known the rumor and consequently are open to 
trust the rumor, denoted by I; spreaders who know and spread the rumor actively, denoted by S; debunkers who 
know the true information about the rumor and become the debunker under social reinforcement, denoted by 
D; resisters who have contacted the spreaders or debunkers but resist and do not spread it, denoted by R. On 
scale-free networks, every individual represents for a node of the network and the connections are deemed to 
the relations between individuals meanwhile which the rumor can transmit. let Ik (t), Sk (t), Dk (t) and Rk (t) 

Fig. 1.  The flow diagram of the model.
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be the relative densities of ignorants, spreaders, debunkers and resisters by means of the degree k = 1, 2, . . . , n 
at time t respectively.

The transition among these states is subjected to the following rules.
(1) When the ignorants are connected to the spreaders, they will know the rumor thus become the spreaders 

with a probability of (1 − p) β and become the debunkers with a probability of pβ. p is used to describe the 
attractive degree of the debunkers andβ is the infection rate.

(2) The parameter γ is the recovery rate of the spreaders under the influence of forgetting mechanism. When 
the spreaders get in touch with debunkers, it will become a debunker with probability ε. Moreover, the debunker 
is likely to be a resister in the probability δ.

(3) We assume that the immigrate rate is Λ and emigrate rate is µ. All the newly added nodes are classified as 
ignorants. The parameters are all nonnegative.

According to the mean-field theory on complex networks39, we can obtain the equations of propagate 
dynamics as follows:

	




DαIk (t) = Λ − βkIk (t) Θ (t) − µIk (t) ,

DαSk (t) = (1 − p) βkIk (t) Θ (t) − εSk (t) − γSk (t) − µSk (t) ,

DαDk (t) = pβkIk (t) Θ (t) + εSk (t) − δDk (t) − µDk (t) ,

DαRk (t) = γSk (t) + δDk (t) − µRk (t) , k = 1, 2, . . . , n.

� (1)

where Dα is the Caputo derivative, α (0 < α ≤ 1) is the order parameter on the system (1). Θ (t) is the 
probability that a random selection ignorant from a node of degree k refers to a spreader with node of degree 

k
′
, which meets 

∑
k

′ p
(

k
′
∣∣∣ k

)
Sk

′ , and p
(

k
′
∣∣∣ k

)
 is assumed to the probability that a node with k degree 

refers to a node with k
′
 degree. The relationship of nodes is supposed to be uncorrelated for simplicity, so 

p
(

k
′
∣∣∣ k

)
=

k
′
p
(

k
′)

∑
k

kp(k)
, satisfying the relation as follows:

	
Θ (t) =

n∑
k

′ =1

k
′
p

(
k

′
∣∣∣ k

)
Sk

′

⟨k⟩ .
� (2)

where ⟨k⟩ =
n∑

k
′ =1

kp (k) is the average degree in regard to the network and p (k) stands for the degree of 

distribution.

Basic properties of fractional calculus
We firstly give the definitions of fractional-order integration and some properties of the fractional-order 
differential equation, since those have the advantages of dealing properly with initial value problems39. The 
Riemann–Liouville and the Caputo formula are two kinds of crucial and well-studied definitions40–44.

Definition 2.1  The Riemann–Liouville fractional integral of order α > 0 of a function f : R+ → R is provided 
by.

Iαf (x) = 1
Γ(α)

∫ x

0 (x − t)α−1f (t)dt.

Definition 2.2  The Riemann–Liouville fractional derivative of order α > 0 of a function f : R+ → R is pro-
vided by.

Dαf (x) =
(

d
dx

)n
In−αf (x) = 1

Γ(n−α)

(
d
dx

)n ∫ x

0 (x − t)n−α−1f (t)dt, n = [α] + 1.

Definition 2.3  The Caputo fractional derivative of order α ∈ (n − 1, n) of a continuous function f : R+ → R 
is provided by.

Dαf (x) = In−αDnf (x) = 1
Γ(n−α)

∫ x

0
fn(τ)dτ

(t−τ)α+1−n .

While when α → n, the Caputo fractional derivative of function f : R+ → R is given by.
lim

α→n
Dαf (x) = fn (0) +

∫ t

0 fn+1 (τ)dτ = fn (x) , n = 1, 2, . . . .

Definition 2.4  When function.

is a constant function f  (i.e.f (x) = u), the Riemann–Liouville fractional derivative and Caputo fractional 
derivative are respectively provided by
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Dαu = u

Γ (n − α)x−α, x > 0.

Dαu = 0.
Consider the following autonomous system.
Dαx (t) = f (x) , f (0) = 0.
To prove the globally asymptotical stability of equilibrium points, we proposed the following lemma.

Lemma 2.5  Let D is a positive invariant set. If the following conditions ∃V (x) : D → R with continuous first 
partial derivatives are satisfied:

DαV |(5) ≤ 0.

Let E =
{

DαV |(5) = 0, x ∈ D
}

 and M be the largest invariant set of E. Then every solution x (t) 
originating in D tends to M as t → ∞. Particularly, when M = {0}, then x → ∞, as t → ∞.

Lemma 2.6  Suppose x (t) ∈ R+ = [0, +∞) be a continuous and derivable function. Accordingly, for any time 
instantt ≥ t0.

Dα
[
x (t) − x∗ − x∗ ln x∗

x(t)

]
≤

(
1 − x∗

x(t)

)
Dαx (t) .

Equilibrium points and basic reproduction number
Due to the total number of nodes remains invariant, the normalization condition meets 
DαIk (t) + DαSk (t) + DαDk (t) + DαRk (t) ≡ 1 at any t. We obtain Rk (t) =1 − Ik (t) − Sk (t) − Tk (t) 
at any t. So, system (1) can be written as the following model:

	




DαIk (t) = Λ − βkIk (t) Θ (t) − µIk (t) ,

Dα
kS (t) = (1 − p) βkIk (t) Θ (t) − εSk (t) − γSk (t) − µSk (t) ,

DαDk (t) = pβkIk (t) Θ (t) + εSk (t) − δDk (t) − µDk (t) , k = 1, 2, . . . , n,

� (3)

Note that the equilibrium points of system (1) should satisfy

	




Λ − βkI∗
k Θ∗ − µI∗

k = 0,

(1 − p) βkI∗
k Θ∗ − εS∗

k − γS∗
k − µS∗

k = 0,

pβkI∗
k Θ∗ + εS∗

k − δD∗
k − µD∗

k = 0, k = 1, 2, . . . , n,

� (4)

The rumor-free equilibrium pointE0of system (1) corresponds to I∗
k = 0,(k = 1, 2, . . . , n), substituting them 

into Eq. (1), we have

	




I∗
k = Λ

µ
,

D∗
k = 0, k = 1, 2, . . . , n,

� (5)

So system (3) always exists a unique rumor-free equilibrium pointE0
(
I0

1 , 0, 0, . . . , I0
k , 0, 0, . . . ,

)
, where 

I0
k = Λ

µ
, k = 1, 2, . . . , n. The rumor equilibrium point of the system (1) is equal to the case which the rumor 

prevails among population (I∗
k ̸= 0, k = 1, 2, . . . , n). So, the equilibrium point E∗ (I∗

k , S∗
k , D∗

k) has the form

	




I∗
k = Λ

βkΘ∗ + µ
,

S∗
k = (1 − p) ΛβkΘ∗

(ε + γ + µ) (βkΘ∗ + µ) ,

D∗
k = ΛkΘ∗

ρ + µ

[
pβ

βkΘ∗ + µ
+ (1 − p) εβ

(ε + γ + µ) (βkΘ∗ + µ)

]
, k = 1, 2, . . . , n.

� (6)

Put the second equation of (6) into (2), we obtain the self-consistency equality

	
Θ∗ = 1

⟨k⟩

n∑

k
′ =1

k
′
p

(
k

′
∣∣∣ k

)
S∗

k
′ =

n∑

k
′ =1

k
′
p

(
k

′
)

⟨k⟩
(1 − p) Λβk

′
Θ∗

(ε + γ + µ) (βk′ Θ∗ + µ)
≜ F (Θ∗) .� (7)

To demonstrate the existence and uniqueness of equilibrium point E∗, we define a function.

F (Θ) = 1
⟨k⟩

n∑
k′=1

k
′
p

(
k

′
∣∣∣ k

)
Sk′ − Θ = (1−p)Λβ

⟨k⟩(ε+γ+µ)

n∑
k

′ =1

k
′
p
(

k
′)

k
′
Θ

⟨k⟩(βk
′ Θ+µ) − Θ.
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It is easy to see that Θ∗ = 0 is a solution of (7), then I∗
k = Λ

µ  and S∗
k = D∗

k = 0,which is a rumor-free 
equilibrium of system (1). so as to guarantee Eq. (7) has a nontrivial solution, i.e., Θ∗ ∈ (0, 1], the following 
situations must be met:

dF(Θ∗)
dΘ∗

∣∣∣
Θ∗=0

= dF(Θ∗)
dΘ∗

[
(1−p)Λβ

⟨k⟩(ε+γ+µ)

n∑
k

′ =1

k
′
p
(

k
′)

k
′
Θ∗

βk
′ Θ∗+µ

]∣∣∣∣∣
Θ∗=0

> 1 and F (1) ≤ 1.

Thus, we can obtain.
R0 = (1−p)Λβ⟨k2⟩

µ(ε+γ+µ)⟨k⟩ .

Where 
⟨
k2⟩

=
n∑

k=1
k2p (k). Therefore, if R0 > 1, then system (1) has a unique rumor equilibrium point E∗.

Theorem 3.1  Closed set Ω =
{

(Ik, Sk, Dk, Rk) ∈ R4n
+ , k = 1, 2, . . . , n

∣∣ 0 ≤ Nk = Ik+
Sk + Dk + Rk ≤ Λ

µ

}
 is a positive invariant set and global attractivity set of system (1).

Proof  Based on three equations of system (1), we get.

DαNk (t) = Λ − µ (Ik + Sk + Dk + Rk) = Λ − µNk.
Solving this equation, we have.
Nk (t) =

(
− Λ

µ
+ Nk (0)

)
Eα (−µtα) + Λ

µ
, k = 1, 2, . . . , n.

Especially, if Nk (0) ≤ Λ
µ , then Nk (t) ≤ Λ

µ , hence closed set Ω is the positive invariant set of system (1). 
Additionally, due to lim

t→∞
Eα (−µtα) = 0, if Nk (0) > Λ

µ , accordingly the solution of system (1) is inclined to Λ
µ  

when time turns to infinity. Therefore, closed set Ω attracts all the solution of R4n
+ , and Ω is the global attracting 

set of the system (1).

The stability of the equilibrium point
In this section, we will provide evidence of the stability of E0 and E∗, which is one of the most crucial topics 
in the research of rumor spreading. Specifically, we will study the local asymptotic stability and then the global 
attractivity of the rumor-free equilibrium pointE0. That is to say, the threshold value is R0 < 1, and E0 is 
globally asymptotically stable.

The dynamic of rumor-free equilibrium point E0
Theorem 4.1  The rumor-free equilibrium point E0 of system (1) is locally asymptotically stable if R0 < 1, or 
unstable if R0 > 1.

Proof  First of all, we linearize system (1) atE0

	




DαIk (t) = Λ − βkI0
kΘ∗ − µI∗

k ,

DαSk (t) = (1 − p) βkI0
kΘ∗ − εS∗

k − γS∗
k − µS∗

k ,

DαDk (t) = pβkI0
kΘ∗ + εS∗

k − δD∗
k − µD∗

k, k = 1, 2, . . . , n,

� (8)

That is,Dα(I1, . . . , In, S1, . . . , Sn, D1, . . . , Dn)T = J (E0) (I1, . . . , In, S1, . . . , Sn, D1, . . . , Dn)T , where.

J (E0) =




−µ · · · 0 − βI0
1 g (1) · · · − βI0

1 g (n) 0 · · · 0
...

. . .
...

...
...

...
...

. . .
...

0 · · · − µ − βnI0
ng (1) · · · − βnI0

ng (n) 0 · · · 0
0 · · · 0 − ε − γ − µ + (1 − p) βI0

1 g (1) · · · (1 − p) βI0
1 g (n) 0 · · · 0

...
. . .

...
...

...
...

...
. . .

...

0 · · · 0 (1 − p) βnI0
ng (1) · · · − ε − γ − µ + (1 − p) βnI0

ng (n) 0 · · · 0
0 · · · 0 ε + pβI0

1 g (1) · · · pβI0
1 g (n) − ρ − µ · · · 0

...
. . .

...
...

...
...

...
. . .

...

0 · · · 0 pβnI0
ng (1) · · · ε + pβnI0

ng (n) 0 · · · − ρ − µ




3n×3n

g
(

k
′
)

=
k

′
p
(

k
′)

⟨k⟩ , ⟨k⟩ =
n∑

k
′ =1

k
′
p

(
k

′
)

.

We primarily give the following lemma so as to demonstrate the stability of equilibrium point.

Lemma 4.2  The equilibrium point of system (1) is locally asymptotically stable, provided that all the eigenvalues 
λi (i = 1, 2, . . . , 3n) of the corresponding Jacobian matrix are equal to the following condition.

|arg (λi)| > απ
2 , i = 1, 2, . . . , 3n. The characteristic polynomial of linear system (8) is.

(λ + µ)n(λ + ρ + µ)n |λE − F | = 0,
where.
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F =




−ε − γ − µ + (1 − p) βnI0
1 g (1) (1 − p) βnI0

1 g (2) · · · (1 − p) βnI0
1 g (n)

(1 − p) β2I0
2 g (1) − ε − γ − µ + (1 − p) β2I0

2 g (2) · · · (1 − p) βnI0
2 g (n)

...
...

. . .
...

(1 − p) βnI0
ng (1) (1 − p) βnI0

ng (2) · · · − ε − γ − µ + (1 − p) βnI0
ng (n)




n×n

 

It is quite obvious to obtain that the Jacobian matrix J (E0) has n eigenvalues equivalent to −ρ − µ, and n 
eigenvalues equivalent to −µ. And the last n eigenvalues of matrix J (E0) are the eigenvalues of matrix F. The 
characteristic polynomial of matrix F is given by.

|λE − F | =

∣∣∣∣∣∣∣∣∣∣

λ + ε + γ + µ − (1 − p) βnI0
1 g (1) − (1 − p) βnI0

1 g (2) · · · − (1 − p) βnI0
1 g (n)

− (1 − p) β2I0
2 g (1) λ + ε + γ + µ − (1 − p) β2I0

2 g (2) · · · − (1 − p) βnI0
2 g (n)

...
...

. . .
...

− (1 − p) βnI0
ng (1) − (1 − p) βnI0

ng (2) · · · λ + ε + γ + µ − (1 − p) βnI0
ng (n)

∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣

λ + ε + γ + µ 0 · · · − (1 − p) βnI0
1 g (n)

0 λ + ε + γ + µ · · · − (1 − p) βnI0
2 g (n)

...
...

. . .
...

0 0 · · · λ + ε + γ + µ − (1 − p) β

n∑
k=1

[
kI0

kg (k)
]

∣∣∣∣∣∣∣∣∣∣∣∣∣

= (λ + ε + γ + µ)n−1

(
λ + ε + γ + µ − (1 − p) β

n∑
k=1

[
kI0

kg (k)
])

.

 

Obviously, the matrix F has n − 1 eigenvalues equal to −ε − γ − µ. The nth eigenvalue is 

λn = −ε − γ − µ + (1 − p) β
n∑

k=1

[
kI0

kg (k)
]

= (ε + γ + µ) (R0 − 1) . Therefore, on account of Lemma 

4.2, the rumor-free equilibrium point E0 is locally asymptotically stable if R0 < 1, and unstable if R0 > 1.

Theorem 4.3  If R0 < 1, then E0 is the unique equilibrium point of system (1), and it is globally asymptotically 
stable.

Proof  For system (1), we construct the following Lyapunov function:
V (t) =

n∑
k=1

ak

(
Ik − I0

k − I0
k ln Sk

S0
k

)
+

n∑
k=1

akSk,

where
 
ak = kp(k)

⟨k⟩ , ⟨k⟩ =
n∑

k
′ =1

kp (k) .
.

By Lemma 2.6, we have

	

DαV |(1) =
n∑

k=1

akDαIk −
n∑

k=1

akI0
kDα ln Ik

I0
k

+
n∑

k=1

akDαSk

≤
n∑

k=1

ak

(
1 − I0

k

Ik

)
DαSk +

n∑
k=1

akDαSk

=
n∑

k=1

ak

(
1 − I0

k

Ik

)
(Λ − βkIkΘ (t) − µIk) +

n∑
k=1

ak ((1 − p) βkIk (t) Θ (t) − εSk (t) − γSk (t) − µSk (t)) ,

� (9)

Based on the first equation of system (1), we have Λ = µI0
k , substituting into (9).

DαV |(1) =
n∑

k=1

ak

(
1 − I0

k

Ik

) (
µI0

k − βkIkΘ (t) − µIk

)
+

n∑
k=1

ak ((1 − p) βkIk (t) Θ (t) − εSk (t) − γSk (t) − µSk (t))

≤ −
n∑

k=1

ak

(
1 − I0

k

Ik

)
(βkIkΘ (t) + µIk) + (ε + γ + µ) (R0 − 1) Θ (t) .

When R0 < 1, DαV < 0 and we infer the only compact invariant set is the singleton {E0} for {DαV = 0}. 
Through the use of Lemma 2.5 and Theorem 4.1, the rumor-free equilibrium point E0 is globally asymptotically 
stable when R0 < 1, which means the rumor will fall into extinct ultimately in spite of the initial density of 
spreader.

Next, we will demonstrate the global asymptotical stability of the rumor equilibrium point E∗ of system (1) 
identical to the rumor-free equilibrium point E0.

The dynamic of rumor equilibrium point E∗

Theorem 4.4  If R0 > 1, then the rumor equilibrium point E∗ is locally asymptotically stable.
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Proof  In a similar way, we linearize the system (1) at E∗, and acquire the corresponding Jacobian matrixJ (E∗).

J (E∗) =




−µ − βp1 · · · 0 − βm1g (1) · · · − βmng (n) 0 · · · 0
...

. . .
...

...
. . .

...
...

. . .
...

0 · · · − µ − βpn − βmng (1) · · · − βmng (n) 0 · · · 0
bp1 · · · 0 − c + bm1g (1) · · · bmng (n) 0 · · · 0
...

. . .
...

...
. . .

...
...

. . .
...

0 · · · bpn bmng (1) · · · − c + bmng (n) 0 · · · 0
pβp1 · · · 0 ε + pβm1g (1) · · · pβmng (n) − d · · · 0

...
. . .

...
...

. . .
...

...
. . .

...
0 · · · pβpn pβmng (1) · · · ε + pβmng (n) 0 · · · − d




3n×3n

pk = kΘ∗, mk = kS∗
k , b = (1 − p) β, c = ε + γ + µ, d = δ + µ, g

(
k

′
)

=
k

′
p
(

k
′)

⟨k⟩ .

The characteristic equation of Jacobian matrix J (E∗) is.
(λ + µ)n(λ + δ + µ)n |λE − H| = 0,
where.

H =




−ε − γ − µ − h1 + (1 − p) βm1g (1) (1 − p) βm1g (1) · · · (1 − p) βmng (n)
(1 − p) βm2g (1) − ε − γ − µ − h2 + (1 − p) βm2g (2) · · · (1 − p) βmng (n)

...
...

. . .
...

(1 − p) βmng (1) (1 − p) βmng (2) · · · − ε − γ − µ − hn + (1 − p) βmng (n)




n×n

hk = β(ε+γ+µ)
µ

kΘ∗

Clearly, matrix J (E∗) has 2n negative eigenvalues. Following, we calculate the last n eigenvalues of matrix 
J (E∗).

|λE − H| =

∣∣∣∣∣∣∣∣∣

λ + ε + γ + µ + h1 − (1 − p) βm1g (1) (1 − p) βm1g (1) · · · (1 − p) βmng (n)
(1 − p) βm2g (1) λ + ε + γ + µ + h2 − (1 − p) βm2g (2) · · · (1 − p) βmng (n)

...
...

. . .
...

(1 − p) βmng (1) (1 − p) βmng (2) · · · λ + ε + γ + µ + hn − (1 − p) βmng (n)

∣∣∣∣∣∣∣∣∣
= 0

Consider the following two cases:

	(1)	 If λ + ε + γ + µ + hi = 0, namely, λi = −ε − γ − µ − hi (i = 1, 2, . . . , n), then.

|λE − H| = ((1 − p) β)n

∣∣∣∣∣∣∣∣∣

−m1g (1) − m1g (1) · · · − mng (n)
−m2g (1) − m2g (2) · · · − mng (n)

...
...

. . .
...

−mng (1) − mng (2) · · · − mng (n)

∣∣∣∣∣∣∣∣∣
≡ 0.

Therefore, we obtain n eigenvalues λi = −ε − γ − µ − hi < 0, i = 1, 2, . . . , n.
	(2)	 If λ + ε + γ + µ + hi ̸= 0

, then.
|λE − H| =

n∏
i=1

(λ + ε + γ + µ + hi)
(

1 −
n∑

i=1

(1−p)βmig(i)
λ+ε+γ+µ+hi

)
.

Let φ (x) =
n∏

i=1
(λ + ε + γ + µ + hi)

(
1 −

n∑
i=1

(1−p)βmig(i)
λ+ε+γ+µ+hi

)
, then.
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φ (x) = (x + ε + γ + µ + h1) (x + ε + γ + µ + h2) · · · (x + ε + γ + µ + hn)
− (1 − p) βm1g (1) (x + ε + γ + µ + h2) (x + ε + γ + µ + h3) · · · (x + ε + γ + µ + hn)
− (1 − p) βm2g (2) (x + ε + γ + µ + h1) (x + ε + γ + µ + h3) · · · (x + ε + γ + µ + hn)
− · · · − (1 − p) βmng (n) (x + ε + γ + µ + h1) (x + ε + γ + µ + h2) · · · (x + ε + γ + µ + hn−1) .

 

Since φ (x) is continuous, hkis increasing and note that.

φ [− (ε + γ + µ + hi)] φ [− (ε + γ + µ + hi+1)] < 0, i = 1, 2, . . . , n − 1.
Hence, it exists at least one root in [− (ε + γ + µ + hi) , − (ε + γ + µ + hi+1)]. in another word, there 

exist n − 1 negative roots in [− (ε + γ + µ + hn) , − (ε + γ + µ + h1)].
On the other hand, φ (− (ε + γ + µ + h1)) < 0, and.

φ (0) =
n∏

i=1

(ε + γ + µ + hi)

(
1 −

n∑
i=1

(1 − p) βmig (i)
ε + γ + µ + hi

)

=
n∏

i=1

(ε + γ + µ + hi)

(
1 −

n∑
i=1

(1 − p) βiS∗
i ip (i)

⟨k⟩
(
ε + γ + µ + β(ε+γ+µ)

µ
iΘ∗

)
)

>

n∏
i=1

(ε + γ + µ + hi)

(
1 −

n∑
i=1

(1 − p) βiS∗
i ip (i)

⟨k⟩
(
ε + γ + µ + β(ε+γ+µ)

µ
iΘ∗

)
)

= 0.
Hence, the matrix N has n negative roots in [− (ε + γ + µ + hn) , 0]. It is manifested that all the eigenvalues 

of the Jacobian matrix J (E∗) are negative so far. That is to say, the rumor equilibrium point E∗ is locally 
asymptotically stable.

Theorem 4.5  Suppose that (Ik (t) , Sk (t) , Dk (t)) is a solution of system (1) satisfying initial conditions 
Sk (t) > 0 or Dk (t) > 0. If R0 > 0, then lim

x→∞
(Ik (t) , Sk (t) , Dk (t)) =(I∗

k (t) , S∗
k (t) , T ∗

k (t)) is the ru-
mor-prevailing equilibrium of (1) satisfying for k = 1, 2, . . . , n.

Proof  In the following, k is fixed to be any integer in (1, 2, . . . , n). By Theorem 4, there exists a sufficiently 
small constant ξ (0 < ξ < 1) and a larger enough constant T > 0 such that Tk (t) ≥ ξ for t > T , therefore 
Θ (t) > ξΘ for t > T . Submit this into the equation of (8) gives.

DαIk (t) ≤ Λ − µIk (t) − βkΘξIk (t) , t > T.

By means of the standard comparison theorem, for any given constant 0 < ξ < βkΘξ
2(µ+βkΘξ) , there exists a 

t1 > T , such that Sk (t) ≤ A
(1)
k − ξ1 for t > t1, where.

A
(1)
k = r

µ+βkΘξ
+ 2ξ1 < 1.

From the second equation of (1), it follow that.
DαSk (t) ≤ (1 − p) βkΘ (1 − Sk (t)) − (ε + γ + µ) Sk (t) , t > t1.

Hence, for any given constant 0 < ξ2 < min
{

1
2 , ξ1, ε+γ+µ

2(ε+γ+µ+(1−p)βkΘ)

}
, there exists a t2 > t1, such that 

Ik (t) ≤ B
(1)
k − ξ2 for t > t2, where.

B
(1)
k = βkΘ

(1−p)βkΘ+ε+γ+µ
+ 2ξ2 < 1.

Then, it follows from the third equation of (1),
DαDk (t) ≤ pβkΘ (1 − Dk (t)) + ε (1 − Dk (t)) − (δ + µ) Dk (t) , t > t2.

Similarly, for any given constant 0 < ξ3 < min
{

1
3 , ξ2, δ+µ

2(ε+δ+µ+pβkΘ)

}
, there exists a t3 > t2, such that 

Dk (t) ≤ D
(1)
k − ξ3 for t > t3, where.

D
(1)
k = pβkΘ+ε

pβkΘ+ε+δ+µ
+ 2ξ3 < 1.

Since 
Θ (t) ≤ 1

⟨k⟩

n∑
i=1

ip (i) =: H
, we substitute this into the first equation of (1).

DαIk (t) ≥ Λ − µIk (t) − βkHIk (t) , t > T.

So for any given enough small constant 0 < ξ4 < min
{

1
4 , ξ3, r

2(µ+βkH)

}
, there exists a t4 > t3, such that 

Ik (t) ≥ a
(1)
k + ξ4,for t > t4, where.

a
(1)
k = r

µ+βkH
− 2ξ4 > 0.

It follows that.
DαSk (t) ≥ (1 − p) βkΘa

(1)
k − (ε + γ + µ) Sk (t) , t > t4.
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So for any given enough small constant 0 < ξ5 < min
{

1
5 , ξ4,

(1−p)βkΘa
(1)
k

2(ε+γ+µ)

}
, there exists a t5 > t4, such 

that Ik (t) ≥ b
(1)
k + ξ5 for t > t5, where.

b
(1)
k = (1−p)βkΘa

(1)
k

ε+γ+µ
− 2ξ5 > 0.

From the third equation of (1) implies that.
DαDk (t) ≥ pβkΘξa

(1)
k + εb

(1)
k − (δ + µ) Dk (t) ,

So for any given enough small constant 0 < ξ6 < min
{

1
6 , ξ5,

pβkΘξa
(1)
k

+εb
(1)
k

2(δ+µ)

}
, there exists a t6 > t5, 

such that Tk (t) ≥ d
(1)
k + ξ6 for t > t6.

As a result of ξ is a small positive constant, we can deduce that 0 < a
(1)
k < A

(1)
k < 1, 0 < b

(1)
k < B

(1)
k < 1 

and 0 < d
(1)
k < D

(1)
k < 1.

Let.

q(j) = 1
⟨k⟩

n∑
j=1

ip (i) d
(j)
i , Q(j) = 1

⟨k⟩

n∑
j=1

ip (i) D
(j)
i , j = 1, 2, . . . , n.

We can easily get 0 < q(j) ≤ Θ (t) ≤ Q(j) < H, t > t4..
Again, from the first equation of (8), it has.
DαIk (t) ≥ Λ − µIk (t) − βkq(1)Ik (t) , t > t4.
Hence, for any given constant 0 < ξ7 < min

{
1
7 , ξ6

}
, there exists a t7 > t6, such that.

DαSk (t) ≤ A
(2)
k ≜ min

{
A

(1)
k − ξ1, r

µ+βkq(1) + ξ7

}
, t > t7.

Then, from the second equation of (8), we have.
DαSk (t) ≤ (1 − p) βkQ(1)A

(1)
k − (ε + γ + µ) Sk (t) , t > t7.

So, for any given constant 0 < ξ8 < min
{

1
8 , ξ7

}
, there exists a t8 > t7, such that.

DαIk (t) ≤ B
(2)
k ≜ min

{
B

(1)
k − ξ2,

(1−p)βkQ(1)A
(2)
k

ε+γ+µ
+ ξ8

}
, t > t8.

Consequently, from the third equation of (8), we have.
DαDk (t) ≤ pβkQ(1)A

(2)
k + εB

(1)
k − (δ + µ) Dk (t) , t > t8.

Hence, for any given constant 0 < ξ9 < min
{

1
9 , ξ8

}
, there exists a t9 > t8, such that.

DαIk (t) ≤ D
(2)
k ≜ min

{
D

(1)
k − ξ3,

pβkQ(1)A
(2)
k

+εB
(1)
k

δ+µ
+ ξ9

}
, t > t8.

Turning back, one has.
DαIk (t) ≥ Λ − µIk (t) − βkQ(2)Ik (t) , t > t9.

So, for any given enough small constant 0 < ξ10 < min
{

1
10 , ξ9, r

2(µ+βkQ(2))

}
, there exists a t10 > t9, 

such that Tk (t) ≥ a
(2)
k + ξ10 for t > t10, where.

a
(2)
k = max

{
a

(1)
k + ξ4, r

µ+βkQ(2) − 2ξ10

}
.

It follows that.
DαSk (t) ≥ (1 − p) βkq(1)a

(2)
k − (ε + γ + µ) Sk (t) , t > t10.

So, for any given enough small constant 0 < ξ11 < min
{

1
11 , ξ10,

βkq(1)a
(2)
k

2(ε+γ+µ)

}
, there exists a t11 > t10, 

such that Ck (t) ≥ b
(2)
k + ξ11 for t > t10, where

	
b

(2)
k = max

{
b

(1)
k + ξ5,

(1 − p) βkq(1)a
(1)
k

ε + γ + µ
− 2ξ11

}

From the third equation of (8) implies that.
DαDk (t) ≥ pβkq(1)a

(2)
k + εb

(2)
k − (δ + µ) Dk (t) , t > t11.

So, for any given enough small constant 0 < ξ12 < min
{

1
12 , ξ11,

pβkq(1)a
(2)
k

+εb
(2)
k

2(δ+µ)

}
, there exists a 

t10 > t9, such that Dk (t) ≥ d
(2)
k + ξ12 for t > t12, where.

d
(2)
k = max

{
d

(1)
k + ξ6,

pβkq(1)a
(2)
k

+εb
(2)
k

σ+µ
− 2ξ12

}
.

Repeating the above analyses and calculation, we acquire six sequences A
(i)
k , B

(i)
k , D

(i)
k ,

a
(i)
k , b

(i)
k , d

(i)
k , i = 1, 2, . . . , n. The first three sequences are monotone decreasing continuous function, and the 

other three sequences are monotone increasing function, it exists a large positive integer L > 2, as l ≥ L:
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A
(l)
k = r

µ + βkq(l−1) + ξ6l−5, B
(l)
k =

(1 − p) βkQ(l−1)A
(l)
k

ε + γ + µ
+ ξ6l−4,

D
(l)
k =

pβkQ(l−1)A
(l)
k + εB

(l)
k

δ + µ
+ ξ6l−3, a

(l)
k = r

µ + βkQ(l) − 2ξ6l−2,

b
(l)
k =

(1 − p) βkq(l−1)a
(l−1)
k

ε + γ + µ
− 2ξ6l−1, d

(l)
k =

pβkq(1)a
(2)
k + εb

(2)
k

δ + µ
− 2ξ6l.

� (10)

We can easy get that

	 a
(l)
k ≤ Ik (t) ≤ A

(l)
k , b

(l)
k ≤ Sk (t) ≤ B

(l)
k , d

(l)
k ≤ Dk (t) ≤ D

(l)
k , t > t6l.� (11)

Since the sequential limits of (10) exist, let lim
x→∞

∆(l)
k = ∆k ,where ∆(l)

k ∈
{

A
(l)
k , B

(l)
k , D

(l)
k , a

(l)
k , b

(l)
k , d

(l)
k

}
 

and ∆k ∈ {Ak, Bk, Dk, ak, bk, dk}.
Noting that 0 < ξ1 < 1

l , one has ξ1 → 0 as l → ∞. In the six sequences of (10), by taking l → ∞, it follows 
from (10) that

	

A
(l)
k = r

µ + βkq
, B

(l)
k = βkQAk

ε + γ + µ
, D

(l)
k = pβkQAk + εBk

δ + µ
,

a
(l)
k = r

µ + βkQ
, b

(l)
k = (1 − p) βkqak

ε + γ + µ
, d

(l)
k = pβkqak + εbk

δ + µ
.

� (12)

where,

q = 1
⟨k⟩

n∑
i=1

ip (i)di, Q = 1
⟨k⟩

n∑
i=1

ip (i)Di.

further,

	

D
(l)
k = ((ε + µ) η + βε) rkQ

(δ + µ) (ε + γ + µ) (µ + βkq) ,

d
(l)
k = ((ε + µ) η + βε) rkq

(δ + µ) (ε + γ + µ) (µ + βkQ) .

� (13)

Substituting (13) into q and Q, respectively, one has

	
1 = ((ε + µ) η + βε) r

⟨k⟩ (ρ + µ) (ε + γ + µ)

n∑
i=1

i2p (i) µ + βiQ

(µ + (β + η) iq) (µ + (β + η) iQ) ,� (14)

	
1 = ((ε + µ) η + βε) r

⟨k⟩ (ρ + µ) (ε + γ + µ)

n∑
i=1

i2p (i) (µ + βiq)
(µ + (β + η) iQ) (µ + (β + η) iq) .� (15)

By subtracting (14) and (15), it arrives at.

0 = ((ε+µ)pβ+βε)pβ(Q−r)
⟨k⟩(δ+µ)(ε+γ+µ)(µ+βiQ)(µ+βiq)

n∑
i=1

i3p (i)

It is obviously that q = Q, so 1
⟨k⟩

n∑
i=1

i3p (i) (Di − di) = 0, which sees that Di = di, for i = 1, 2, . . . , n. 

From (9) and (11), it follows that.
lim

x→∞
Ik (t) = Ak = ak, lim

x→∞
Sk (t) = Bk = bk, lim

x→∞
Dk (t) = Dk = dk.

Finally, substituting q = Q into (11), in view of (4) and (12), it obtains Ik = I∗
k , Sk = S∗

k , and Tk = T ∗
k . The 

proof is completed.

Rumor control strategies
Rumor spreading can have incredible damage to maintain the normal social order, we need to take effective 
measures to control rumor propagation. Rumor control strategies are an important issue. The uniform 
immunization and the acquaintance immunization were adopted through immunizing a portion of the population 
based on different rumor transmission characteristics and channels45. Hence, we suppose immunization is 
effective completely, that is to say, the immunized nodes cannot be transmit rumors to their neighbors. In this 
case, two useful strategies to control the spreading of rumors and the effectiveness of these control strategies will 
be discussed and compared.

Uniform immunization control
Firstly, we consider the artificial immunization which should be carried out to reduce the transmission of the 
rumors, in other words, a certain percentage of the population is randomly chosen to be immunized46. In this 
section, for given transmission rates β, let 0 < σ < 1 be the immunization rate through adding the suitable 
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parameter σ to reduce the number of Ik . By substituting β → β (1 − σ) into system (2), we now give an 
uniform control system as

	




DαIk (t) = Λ − β (1 − σ) kIk (t) Θ (t) − µIk (t) ,

DαSk (t) = (1 − p) β (1 − σ) kIk (t) Θ (t) − εSk (t) − γSk (t) − µSk (t) ,

DαDk (t) = pβ (1 − σ) kIk (t) Θ (t) + εSk (t) − δDk (t) − µDk (t) , k = 1, 2, . . . , n.

� (16)

By arguments similar to those in Sect. 3 and calculating the basic reproduction number of system (16), the basic 
reproduction R0 can be determined by the following inequality.

dF (Θ)
dΘ

∣∣∣
Θ=0

> 0,

where,

F (Θ) = (1−p)βΛ(1−σ)
⟨k⟩(ε+γ+µ)

n∑
k=1

kp(k)kΘ
(1−p)βk(1−σ)Θ+µ

− Θ.

Hence, we obtain the basic reproduction number as.
R0 = (1−p)βΛ(1−σ)⟨k2⟩

µ(ε+γ+µ)⟨k⟩ = (1 − σ) R0.

In particular, when σ = 0, that is, no immunization is performed, then R0 = R0; When 0 < σ < σc, 
namely, 0 < R0 < R0, which means that the immunization strategy makes sense to reduce the transmission of 
the rumors. As σ → 1, R0 → 0, regarding the full immunization, it would be possible for the rumor to vanish 
in the network.

Acquaintance immunization control
Though the uniform immunization control is available, there is a more effective immune mechanism to 
regulate rumor propagation. The acquaintance immunization control strategy aimed at the heterogeneity of 
the complex network47. The core idea of the acquaintance immunization is to randomly select a new node with 
a ratio of ϑ from N nodes. In order to avoid the problem of a demand for knowing degree of each node in 
target immunization, The adjacent individuals are randomly selected for immunizing individuals with degree 

k among their neighbors by the probability kp(k)
N⟨k⟩ .Thus, the individuals with degree k in the complex networks 

are immunized by the probabilityϑk, which is equal to ϑkp(k)
⟨k⟩ . The basic idea is to randomly select a new node 

with a ratio of ϑ from N nodes. And then, for each selected node, another adjacent node is randomly selected, 
which can skillfully avoid the problem of a demand for knowing degree of each node in target immunization. 
The adjacent individuals with degree k can be selected for immunization by the probability kp(k)

N⟨k⟩ . Therefore, the 

individuals with degree k in the network are immunized among their neighbors by ϑk = ϑN × kp(k)
N⟨k⟩ = ϑkp(k)

⟨k⟩ . 
Considering the acquaintance immunization control, system (1.2) can be given as

	




DαIk (t) = Λ − β (1 − ϑk) kIk (t) Θ (t) − µIk (t) ,

DαSk (t) = (1 − p) β (1 − ϑk) kIk (t) Θ (t) − εSk (t) − γSk (t) − µSk (t) ,

DαDk (t) = pβ (1 − ϑk) kIk (t) Θ (t) + εSk (t) − δDk (t) − µDk (t) , k = 1, 2, . . . , n.

� (17)

Similarly, we obtain the basic reproduction number as.
R̃0 = R0 − (1−p)βΛ⟨ϑkk2⟩

µ(ε+γ+µ)⟨k⟩ ,

where 0 < ϑ ≤ 1, ϑ =
n∑

k=1
ϑ (k) p (k) is the average immunization 

rate.
⟨
ϑkk2⟩

= ϑ⟨k3p(k)⟩
⟨k⟩ = ⟨ϑk⟩

⟨
k2 + cov

(
ϑk, k2)⟩

= ϑ
⟨
k2⟩

+
⟨(

ϑk − ϑ
) (

k2 −
⟨
k2⟩)⟩

.

For appropriately small k, ϑk − ϑ and k2 −
⟨
k2⟩

 have the same signs, then cov
(
ϑk, k2)

> 0.

It is prone to infer that R̃0 < R0, which means that targeted immunization is valid, and R̃0 < 1−ϑ
1−ϑ

R0. If 

0 < ϑ = ϑ < 1, then R̃0 < R0. Hence, based on same average immunization rate, the effect of the targeted 
immunization strategy is superior to the uniform immunization strategy.

Numerical simulations
In this section, we provide some numerical simulations to explain the main theoretical results on scale-free 
networks with p (k) = (γ1 − 1) mγ1−1k−γ1 , where parameter m represents the smallest degree of the network 
nodes, parameter γ1 is the variable of power law exponent. Suppose m = 2, γ1 = 3 and the number of the 
nodes on scale-free networks is N, let N = 100.

The effect of network structure on rumor propagation
Consider system (2.1) with the following parameters Λ = 0.02, β = 0.05, ε = 0.28,
µ = 0.28, γ = 0.18, δ = 0.3, p = 0.1, α = 0.98, With this choice of parameter values and a simple calculation, 
one has the basic reproduction number R0 = 0.1229 < 1. In terms of Theorem 4.1, the unique rumor-free 
equilibrium point E0 is locally asymptotically stable as Fig. 2 show. These figures show that when R0 < 1, the 
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rumor-spreading will ultimately disappear, and the spreaders will ultimately extend to the maximum value, 
which indicates that rumor will disappear from society.

Here, we chooseΛ = 0.05, β = 0.5, ε = 0.38, µ = 0.3, γ = 0.3, δ = 0.3, p = 0.1, α = 0.98, By 
calculating, R0 = 2.1219 > 1, which suggests that system (1) also has a rumor equilibrium point E∗ and 
the rumor-free equilibrium point E0. In terms of Theorem 4.4, the rumor equilibrium point E∗ is locally 
asymptotically stable as Fig. 3 shows.

The above figures prove that when R0 > 1, the rumor maintains and the density of spreaders will converge to 
a positive constant. Namely, it is also proved that the larger the degree number is, the wider the spread of rumors 
will be, which implies the more individuals contact, the more people get rumors.

Global dynamics of system (1) with different initial values
Without loss of generality in system (1), we set Λ = 0.03, β = 0.05, ε = 0.28,
µ = 0.28, γ = 0.18, δ = 0.3, p = 0.1, α = 0.98. That is, the basic reproduction number isR0 = 0.1843 < 1. 
According to Remark 4.5, the rumor-free equilibrium point E0 is globally asymptotically stable. Next, we provide 
the image of k = 30. Figure 4 shows the global dynamics of E0 in Ω for the case R0 < 1. It indicates that the 
rumor-spreading vanishes with time, and the rumor will vanish ultimately.

Without loss of generality in system (1), we takeΛ = 0.1, β = 0.2, ε = 0.32, µ = 0.28,
γ = 0.28, δ = 0.2, p = 0.1, α = 0.98. That is, the basic reproduction number is R0 = 2.0667 > 1. On the 
basis of Theorem 4.5, the rumor equilibrium point E∗ is globally asymptotically stable. simultaneously, we only 
provide the profile of k = 30. Figure 5 shows the global dynamics of E∗ in Ω∗ for the case R0 > 1. It indicates 
that the rumor-spreading persists at a rumor equilibrium level if it initially exists.

The effect of parameter α in rumor propagation
Reference48 verified the effects of parameter α on the dynamic of the rumor propagation. Next, we will investigate 
the influences of the parameter in system (1) on scale-free networks, following the same approach as in32. We 
demonstrate some numerical simulations for different values of the parameter α. As Fig. 6 shows, the numerical 
results show that the lower values of parameter α, the peak of rumor propagation is wider and lower, which 
implies a more precise conclusion that fits the real data49–51. A wider rumor peak implies a longer period along 
with numerous spreaders, which can probably cause panic and unnecessary losses to the society. Therefore, we 
should implement appropriate control measures to block the spread of rumors.

The effectiveness of immunization strategy on rumor propagation
In this section, we will compare system (1) with and without immunization strategies on spread of rumors to prove 
the effectiveness of control strategy. To demonstrate the effectiveness of optimal control, we adopt the uniform 
immunization control as an example. Choose Λ = 0.1, β = 0.2, ε = 0.32,µ = 0.28, γ = 0.28, δ = 0.2, 
p = 0.1, α = 0.98 and immunization control proportion σ = 0.2, 0.4, 0.6, respectively. Figure 7 shows that the 

Fig. 2.  Each compartment population changes over time when R0 < 1.
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Fig. 4.  Profile of individual notes with Ik (0) = 1 − 0.05i, i = 1, 2, . . . , 10Sk (0) = 0.05i, i = 1, 2, . . . , 10..

 

Fig. 3.  Each compartment population changes over time when R0 > 1.
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Fig. 6.  Profile of individual notes with (Sk (t) and Dk (t)).

 

Fig. 5.  Profile of individual notes with Ik (0) = 1 − 0.05i, i = 1, 2, . . . , 10Sk (0) = 0.05i, i = 1, 2, . . . , 10..
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controlled system (17) can increase the density of spreaders, and decrease the density of resisters compared with 
the uncontrolled system (1). And the higher the immunization control proportion σ is, the lower the level of 
rumor propagation is. In fact, the rumor propagation can be eliminated if we make effort s to take immunization 
strategies actively.

Conclusions
In this paper, we have investigated the rumor dynamics of the fractional-order ISDR rumor propagation model 
incorporating a refutation mechanism on scale-free networks. We have established that there exists a basic 
reproduction numberR0, which determines not only the prevalence of the rumor equilibrium point E∗, but 
also the eradication of the rumor. Firstly, through simple calculations, we derived basic reproduction numberR0 
based on the rumor equilibrium point E∗, which thoroughly characterizes the dynamics of rumor propagation. 
Secondly, using the Lyapunov function, we analyzed the stability of the rumor-free equilibrium point E0 and 
the existence of rumor equilibrium point E∗. when R0 < 1, the rumor-free equilibrium point E0 is globally 
asymptotically stable and the rumor always vanishes in community, in other words, the rumor will eventually 
disappear regardless of the initial density of spreaders; when R0 > 1, the rumor-free equilibrium point E0 
comes unstable and there exists a unique rumor equilibrium point E∗, which is globally asymptotically stable 
and the rumor will continue, in other words, spreaders will sustain at an rumor equilibrium level on condition 
that it initially exists. Numerical simulations are provided to demonstrate the main theoretical results. The 
influences of the parameter α on the dynamics of rumor propagation has been confirmed. Finally, two control 
strategies are studied and compared. Simulations prove that targeted immunization strategy is more efficient.

Our research provides a quantifiable intervention framework for the governance of social network rumors. 
The immune strategy simulation in our research provides a direct basis for the containment of rumors in reality, 
Public health departments can refer to this threshold (such as σ = 0.4) to formulate a resource allocation plan 
for rumor-refuting, such as allocating 40% of official accounts to disseminate authoritative information during 
emergencies. The fractional-order parameter α in our research reveals the “memory effect” mechanism of social 
media, the platform can optimize the content attenuation algorithm based on this (such as reducing the α value), 
and shorten the life cycle of old rumors by reducing their exposure.

At the same time, the model in this paper can be more perfect, such as considering time delay, nonlinear 
incidence rate and so on, These work will be analyzed in more detail in the future research.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.

Fig. 7.  (a) The density of spreaders with degree k = 30 and α = 0.98; (b) The density of resisters with degree 
k = 30 and α = 0.98.
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