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Analysis of variable-order fractional
enzyme kinetics model with time
delay
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In enzymatic reactions, studying reaction rates and mechanisms helps us understand how
concentration, temperature, and catalysts influence the speed of chemical transformations. This field
is critical for optimizing processes in biotechnology, pharmaceuticals, and food industries. Traditional
enzyme kinetics models may overlook the influence of past system states. In this paper, we propose

a variable-order Caputo fractional derivative enzyme kinetics model that incorporates constant time
delays to capture memory effects and nonlocal behavior more accurately. We establish the existence
and uniqueness of solutions using fixed-point theory. The proposed model stability is analyzed through
Ulam-Hyers and generalized Ulam-Hyers concepts. A robust and an effective numerical approach

is employed to reveal the intricate dynamics of the model and demonstrate the significance of the
variable-order Caputo fractional derivative with time delay. Incorporating a delay term and employing
the variable-order Caputo fractional derivative, this model refines conventional enzyme kinetics,
leading to a more precise characterization of biological catalytic processes.

Keywords Enzyme kinetics, Variable-order Caputo fractional derivative, Stability analysis, Delay differential
equation, Numerical simulation

Enzyme kinetics is a fundamental component of systems biology, which aims to understand how complex
biological networks function. Studying mathematical models for enzyme kinetics is crucial for understanding
the fundamental principles governing biochemical reactions. Enzymes play a vital role in regulating metabolic
processes, and their reaction rates are influenced by factors such as substrate concentration, enzyme availability,
and environmental conditions. Traditional experimental approaches provide valuable insights, but they are often
limited in capturing complex interactions and predicting system behavior under varying conditions. Recently
many researchers have been investigating dynamics of fractional-order models. See'~!?

Mathematical models offer a systematic framework to describe enzyme-substrate dynamics, estimate
key parameters, and simulate reaction mechanisms with high accuracy. These models are essential for
optimizing industrial and pharmaceutical applications, such as drug development, fermentation processes, and
biotechnology, where precise control of enzymatic reactions is required'. Fractional calculus has emerged as
a powerful framework to model complex biochemical processes that exhibit memory and hereditary effects.
The application of fractional-order dynamics in science and technology has expanded across various fields,
including physics, chemistry, biology, viscoelasticity, bioengineering, nanoparticle-substrate interactions,
control theory, epidemiology, ecology, sociology, signal processing, robotics, system modeling and identification,
telecommunications, electronics, finance, engineering, and other applied sciences'>-?. These models are very
useful in biological systems because they can capture intricate dynamics that are not captured by integer-order
models. Long-term memory and residual effects, which are crucial to biological processes, can be well described
using fractional calculus. In recent years, fractional calculus has emerged as a compelling mathematical
framework for modeling complex biochemical processes that exhibit memory and hereditary effects. Unlike
classical integer-order models, such as the Michaelis—Menten formulation??, which assume that reaction rates
depend only on the present state and respond instantaneously to changes, fractional-order models incorporate
the influence of past system states through non-local operators. This is particularly relevant in enzyme kinetics,
where processes such as slow substrate binding and unbinding, conformational rearrangements of enzymes, and
allosteric regulation introduce time-dependent behavior and history-dependent dynamics. By accounting for
these effects, fractional derivatives provide a more realistic and flexible representation of enzymatic reactions,
capturing features like delayed response, long-range temporal correlations, and gradual adaptation to changing
biochemical environments that classical models may overlook. Recent studies have shown that the fractional
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order in fractional calculus models can be conceptually linked to fractal dimensions, as both characterize the
complexity and irregularity of a system. In the context of enzyme kinetics, enzyme binding sites and reaction
interfaces often exhibit fractal-like geometries whose irregular structures can significantly affect reaction rates.
This perspective finds parallels in materials science, where, for instance, the fractal dimensions of porous concrete
have been correlated with its mechanical strength. Drawing on this analogy helps to justify the use of fractional
calculus in modeling enzymatic processes, as it naturally captures the influence of complex, heterogeneous
structures on system dynamics and reaction kinetics. The study of variable-order fractional derivatives enhances
the realism and accuracy of dynamic process modeling, resulting in superior predictive capabilities and
optimized solutions across various scientific and industrial domains. Current developments have introduced
numerous dynamical systems incorporating fractional variable-order derivatives, as seen in>>~%°. By extending
to variable-order fractional derivatives, the model can further capture dynamic changes in memory effects over
time, reflecting how enzymatic activity adapts to changing biochemical environments. This enriched framework
provides a closer representation of the true kinetics of enzymatic processes compared to classical integer-order
models.

In* the authors are discussed the stability and bifurcation analysis of fractional-order tumor-macrophages
interaction model with multi-delays. Optimal control analysis of fractional order delayed SIQR model for
COVID-19 is presented in’!. In®? the authors are investigated the analysis of a class of fractal hybrid fractional
differential equation with application to a biological model. In** dynamical behavior of a time-fractional
biological model via an efficient numerical method. Modeling and optimal analysis of lung cancer cell growth and
apoptosis with fractional-order dynamics is investigated in**. In®® the authors discussed the chaos in fractional-
order glucose-insulin models with variable derivatives: Insights from the Laplace-adomian decomposition
method and generalized Euler techniques. In* on variable-order Salmonella bacterial infection mathematical
model is presented. A new numerical strategy for solving nonlinear singular Emden-Fowler delay differential
models with variable order is studied in*’. In*® the authors are discussed the variable order fractional diabetes
models with numerical treatment. The optimal control problem of hybrid fracInt variable-order mathematical
model for Covid-19 with time delay is presented in*. Additionally the fractional and variable order derivative
systems are applied in the various fields: application of Chen system?, finite-time fuzzy synchronization of
chaotic systems?!, adaptive fuzzy control for practical fixed-time synchronization of fractional-order chaotic
system*?, reversible two-step enzymatic reaction with time fractional derivative®.

Various mathematical models have been introduced to explore the complex regulation of enzyme kinetics,
shedding light on key factors that influence enzymatic reactions and their efficiency. For instance, Khan et al.*4
proposed a fractional-order model that provides multiple solutions compared to classical models, suggesting
increased complexity and a potentially more comprehensive representation of enzyme kinetics. In*°, the authors
applied hybrid proportional fractional derivatives, namely the constant proportional Caputo-Fabrizio (CPCF)
and constant proportional Atangana-Baleanu-Caputo (CPABC) operators, to enzyme kinetics, demonstrating
improved forecasting and dynamic modeling. Furthermore, various numerical methods have been developed
to model enzyme kinetics by incorporating different fractional-order derivatives, which have been extensively
studied. Moreover, the Ulam-Hyers stability analysis are applied in different scenarios: Applications of RLC
circuit system46, -Hilfer abstract fractional functional differential equation*’, nonlinear fractional reaction-
diffusion equations with delay?3, neutral stochastic functional differential equations*’. For instance, Ahmad et
al®® performed a comparative analysis of cooperative chemical reactions using both singular and nonsingular
kernels, revealing how kernel choice affects reaction speed and system memory. Chethan et al>' proposed a
high-performance computational approach to study a reversible two-step enzymatic reaction described by time-
fractional derivatives, demonstrating improved simulation accuracy. Sabarinathan et al.>? explored the stability
of enzyme kinetics through a fractal-fractional framework, offering new mathematical insights into reaction
dynamics. Additionally, Radhakrishnan et al.>* analyzed a nonlinear fractional-order biochemical reaction
model, supporting their findings with detailed numerical simulations. Collectively, these works underscore the
growing importance and versatility of fractional and fractal-fractional modeling approaches in biochemical
kinetics, motivating our present study. Furthermore, the various numerical approximations are applied for
fractional order and variable order differential equations such as, in®, the variable order Adams-Bashforth-
Milton methodology for Lotka-Volterra predator prey system, Runge-Kutta 4th order and Modified Euler
method for Caputo derivative of LC and RC circuits system®>. In%, fractional derivative with non-local and
non-singular kernel: application to chaotic model. In>’, Two dimensional fractional Euler polynomial method
for fractional diffusion-wave equation in®. In** the application of Newton’s polynomial interpolation scheme for
power-law kernel.

The proposed work’s motivations and contributions

In this study, we adopt the Caputo definition of the variable-order fractional derivative for modeling enzyme
kinetics. This choice is motivated by its important physical advantage: the Caputo derivative allows the use of
standard initial conditions expressed in terms of integer-order derivatives, such as experimentally measurable
initial concentrations of substrate and enzyme. In contrast, other commonly used definitions like the Riemann-
Liouville derivative require initial conditions involving fractional integrals, which lack direct physical or
biological interpretation. Although the Atangana-Baleanu derivative offers benefits for modeling non-singular
kernel processes, our focus is specifically on enzyme systems characterized by classical power-law memory
effects, for which the Caputo approach is particularly suitable and widely accepted. This ensures that the
model remains both mathematically rigorous and biologically meaningful, closely aligning with experimental
observations in biochemical kinetics. Enzymatic reactions are often influenced by complex environmental and
cellular factors such as temperature fluctuations, pH variations, or substrate/enzyme concentration changes,
which naturally introduce time-varying memory effects. The variable-order fractional derivative allows the
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model to reflect that the “memory strength” (the influence of past states) is not constant but can evolve over time,
capturing phenomena like enzyme saturation, inhibition, or activation phases. This approach acknowledges
that enzyme systems might exhibit adaptation or fatigue, making the reaction kinetics history-dependent in
a non-uniform way. The proposed variable-order fractional model has practical relevance in several biological
and industrial contexts. For instance, in pharmaceutical manufacturing, enzyme-catalyzed reactions often
experience variations in activity due to fluctuating temperature or pH levels over time. Similarly, in food
technology processes like fermentation, enzyme efficiency changes gradually as substrates deplete and products
accumulate. Classical integer-order models, which assume memoryless kinetics, may not capture these subtle
time-dependent behaviors. By contrast, the variable-order fractional approach accounts for evolving memory
effects, providing a more accurate and flexible description of reaction dynamics. This can lead to improved
predictions of process outcomes and better control strategies in industrial applications.

Recent developments have demonstrated how useful delay fractional differential equations (DFDEs) can
be in simulating dynamics in the real world®*-%4. These mathematical frameworks propose that the evolution
of a function at a given time is governed by its prior states. By incorporating time delays, the model accounts
for biochemical reaction steps that do not occur instantaneously, such as conformational changes in enzymes
or intermediate complex formation. Allosteric enzymes like phosphofructokinase demonstrate time lags
through cooperative binding mechanisms, multi-enzyme complexes such as pyruvate dehydrogenase exhibit
delays during substrate channeling, and cofactor-dependent systems show lags during regeneration cycles.
Additionally, inducible enzyme systems and processive enzymes display characteristic time delays that are
physiologically significant®>¢. Due to time delays, the intricate interactions between different reaction stages
and regulatory mechanisms in enzyme kinetics can cause oscillatory behavior in solutions. Understanding these
oscillations is essential for optimizing enzymatic processes and improving their applications in biotechnology
and pharmaceutical industries. Even fixed-order fractional models, though capable of representing long-term
memory, are limited by the assumption of a constant memory strength throughout the reaction. Moreover, many
existing models neglect biologically realistic time delays that arise from intermediate complex formation or
conformational changes.Traditional constant-order fractional models assume that the memory effect quantified
by a fixed fractional order o remains unchanged over the course of the reaction. While these models have
been effective in capturing long-term memory and non-local behavior, they may oversimplify biological systems
where the memory effect itself can evolve over time. In contrast, our variable-order approach, where the order
0(t) is allowed to vary as a smooth function of time, reflects adaptive processes such as substrate depletion,
enzyme activation or inhibition, and conformational changes. This additional flexibility enables the model to
more accurately describe complex kinetic behaviors, like transient dynamics or delayed product accumulation,
which are often observed experimentally. Consequently, the variable-order model not only generalizes the
constant-order case but also offers enhanced predictive power and biological interpretability. Motivated by
the above discussion, we propose a delay model with a variable-order Caputo fractional derivative for enzyme
kinetics, which characterizes the system’s variable memory and allows us to capture both adaptive memory
effects and intrinsic time-lag behaviors observed in real enzymatic processes. To the best of our knowledge, this
model remains unexplored in the existing literature. Thus, the mathematical findings presented here are both
innovative and significant.

The key contributions of this study are as follows:

« Developed a novel variable-order Caputo fractional derivative (VOCFD) enzyme kinetics model with con-
stant time delays, capturing adaptive memory effects and biologically realistic time-lag behavior.

o Performed a comprehensive qualitative analysis, demonstrating positivity, boundedness, and proving the ex-
istence and uniqueness of solutions using fixed-point theorems.

o Conducted a detailed stability analysis of the model within the Ulam-Hyers and generalized Ulam-Hyers
frameworks, ensuring the reliability of the solution under perturbations.

« Designed and implemented a new, robust numerical method to simulate the proposed model and illustrate
the effects of variable-order memory and delays on enzymatic reaction dynamics.

To enhance clarity, Fig. 1 presents a complete workflow diagram diagram summarizing the proposed
methodology. The diagram outlines the main components of this study, including the formulation of the enzyme
kinetics model with variable-order Caputo fractional derivative and time delays, the qualitative analysis ensuring
well-posedness, the stability analysis within the Ulam-Hyers framework, and the implementation of a numerical
method to simulate and analyze the model dynamic behavior.

Structure of the paper

The structure of this paper is as follows: A VOCFD model for enzyme kinetics with delay is presented in "A
mathematical model for the enzyme kinetics" section. In "Preliminaries” section, basic definitions have been
discussed. In Fundamental properties” section, positivity and boundness, and in "Existence and uniqueness
of solution" section, existence and uniqueness results of the system are determined; the stability analysis is
discussed in "Stability analysis of variable-order enzyme kinetics model" section. In "Numerical simulation"
section, discussions and simulations using numerical approaches are provided. The study is summarized in the
conclusion given in "Conclusion" section.

A mathematical model for the enzyme kinetics

To examine the mathematical model in order to use the previously described research data to look into the
presence of solutions in an enzyme kinetics model®’. The proposed fractional-order enzyme kinetics model
provides several advantages over the classical integer-order model. In real biochemical systems, reactions exhibit
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Figure 1. Schematic workflow of the proposed study.

memory and hereditary properties because the present state depends not only on the current concentrations but
also on the past history of the system. The fractional-order derivative effectively captures this memory effect,
whereas the integer-order model assumes an instantaneous response and ignores past dynamics. Furthermore,
the fractional-order framework offers greater flexibility in describing complex kinetic behaviors, including
anomalous diffusion and subdiffusion commonly observed in biochemical processes. By incorporating variable
order, the model adapts to time-dependent dynamics and better reflects the biological reality compared to the
rigid structure of integer-order models. Furthermore, the existence of a solution means that the enzyme kinetics
process described by model (2) is mathematically and biologically feasible; that is, for given initial concentrations
of substrate, enzyme, and product, the system will evolve in a well-defined way over time. Uniqueness ensures
that the reaction follows a single predictable pathway under the same initial and parameter conditions, avoiding
multiple or conflicting behaviors for the same situation, which aligns with the deterministic nature of biochemical
reactions. The boundedness of the solution implies that the concentrations of substrate, enzyme, complex, and
product remain finite and biologically realistic over time, avoiding unphysical scenarios such as negative or
infinitely large concentrations. Together, these properties guarantee that the proposed fractional-order model
reflects a stable and meaningful biological process.

The given conditions in the proposed system are independent of one another and satisfy N(¢) =S(¢)+E(¢)+
+H(t)+P(t). The N value represents the terms presented in the relevant system of reactions. The concentration
of a substance is represented by square brackets [ ] and [S] = S, [E] = E, and [H] = H as follows:

f = B2H — BE,

g*% — BsH + BoH — BiES,

- = —,BgH — ,BQH —+ BlE(t — 7'1)S(t — TQ),
&= BsP.

(1)

S

Examine the variable-order Caputo fractional derivative in the enzyme kinetics and study existence, uniqueness,
and numerical simulations into account. Here is a summary of our methodology:

2°VS(t) = BoH — B ES,

2°VE(t) = BsH + f2H — B ES,

P°OH(t) = —BsH — BoH + BiE(t — 71)S(t — T2),
Z°OP(t) = BsP.
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With the initial condition, the enzyme kinetics model’s impact becomes S(0) = So,E(0) = Eo,H(0) = Ho,
P(0) = Po. Here, it 7°® stands for the variable order Caputo fractional derivative for §(t) € (0, 1].

In this work, the fractional order §(t) is defined as a smooth, time-dependent function reflecting gradual
biological changes, such as temperature shifts or product inhibition, that affect system memory. Biologically,
0(t) quantifies how strongly past states influence current reaction rates. Its variation can be inferred from
experimental observations like slow relaxation or delayed responses in enzyme activity, thus linking the abstract
mathematical concept of variable-order derivatives to measurable biochemical behavior. When one molecule of
enzyme [E is combined with one molecule of substrate S, an enzyme substrate H composed of one molecule and
the product IP is created, as can be seen when examining the chemical reaction (2). Here, 81 the rate at which
enzymes develop 2 denotes the rate at which products are created and 3 denotes catalysis. We introduce two
constant delays, 71 and 72, to represent fixed time-lags associated with intermediate steps in the enzymatic
reaction process, such as conformational changes or complex formation. These constant delays simplify
numerical implementation within the Fractional Runge Kutta method of the fourth order (FRK4M) framework
while effectively capturing biologically relevant time-lag effects. A detailed description of the model parameters
is provided in Table 1.

Preliminaries
In this section, we discuss basic concepts of the variable order Caputo fractional derivative and provide definitions

that are necessary to obtain the main results of this study. Moreover, in this study, we consider the Banach space
denoted as {G : G(t) € C([0,1]) — R} under the norm ||G|| = max,¢[,1) |G (%)].

Definition 3.1 5°Regarding the same function G as discussed earlier, the RL integral of order 0 < 6(¢) < 1, can
be defined as follows:

7 OG) :%/ Go)(t — 0D o,

By using a successive iterative technique, the variable order Caputo fractional model is used (2). To accomplish
this, we apply Definition 3.1’s integral to the suggested model (2).

S(t) = S(0) + Wt)) [y (¢ —v)° O~ [BH — B1ES)] dv
E(t) ( ) + F(é(t)) fO t - 'U 5(t) ! [ﬁSH + ﬁQH ﬂlES} dv

H(t) = ( ) + F(é(t)) f t— 6(t> 1 [ ﬁ3H /BQH + ﬁﬂE(t — 7‘1)S(t — 7'2)} dv (3)
P(t) = Neio)) Jo (¢ 6(1) "[BsPldv
Setting .Z; for j = 1,2, 3,4, then we have
2 (t,S) = B2H — S1ES
L (t,E) = BsH + SoH — 51ES 4)
ﬁg@ %) :ﬁ—%H — BoH + B1E(t — 71)S(t — 2)
4(t, IP) = BsP.

Fundamental properties
Here, we demonstrate that the model (2) has the boundedness and positivity.

Positivity of the model
Theorem 4.1 The solution to the model (2) has the positivity property.

Proof From model (2), we have

Symbol | Meaning

S(t) Substrate concentration at time #

]E(t) Free enzyme concentration at time ¢

H(t) Enzyme-substrate complex concentration at time ¢
P(t) Product concentration at time ¢

B1 Rate constant for enzyme binding

B2 Rate constant for product formation

Bs Rate constant for catalysis

71,72 | Constant delays

Table 1. Description of the model parameters.
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S(t)|S:O = BoH — B1ES > 0,

E(t)|g—g = BsH + G2H — 51ES > 0, 5)
H(t |]HI:0 = —53H BQH + ﬁﬂE(t — Tl)S(t — 7'2) >0,

P(t)h}):o = B3P

The outcome shows that none of the model’s parameters or reactions are negative. The proof can be effectively
concluded since all solutions for our model (2) are guaranteed to be non-negative. O

Boundedness of the model
Theorem 4.2 The solution of our model (2), denoted as
Y = {S(t),E(t), H(t),P(t) cR*: 0 < N < %}, adheres to this invariant. The solution remains bounded

within the positive invariant region R* while considering initial conditions of S > 0,E > 0,H > 0, and P > 0.

Proof Assume that N(t) = S(t) + E(t) + H(t) + P(t) and N(t) = S(t) + E(t) + H(t) + P(t) sum of the
model (2), we get

N(t) = ¢ — pN, (6)

then integrating Eq. 6, we obtain Y = {S E(t) + H(t) + P(¢) < f}
When t becomes very largei.e., t — o0, it 1mphes that “" is the supremum of N, making it a positive invariant
for the model (2). O

Existence and uniqueness of solution

In this context, we employ a fixed-point approach to examine the existence and uniqueness of a solution. To
simplify the analysis, under assumption (.7#) : (H), we take into account the following considerations. For
the S(t),S(t), E, E(t), H(t), H(t),P(t) and P(t) € L[0,1] be continuous function, such that ||S|| < b,|[E
| < b2, [H| < bg,H]P’H < by for non-negative constant b1, b2, b3, by > 0. Additionally, we introduce the
following constants ®1 = 1b2, P2 = B1b1, 3 = B3 + B2, Ps = fs.

Theorem 5.1 The kernels £}, for j = 1,2, 3,4 holds on Lipschitz condition, if the assumption () is satisfied
and ®j < 1forj=1,2,3,4.

Proof The desired outcome is achieved under the assumption (7). Similarly, by applying analogous reasoning
to Z1(t, S)(t,S) and utilizing the Lipschitz condition, we derive the following result.

] — [BH — BES] ||,
<B1|IS - S|IE| = ®1[IS - §||

|1(8) — £1(S)

this shows that &1 = S1bs.
Consequently, £ satisfies the Lipschitz condition with a Lipschitz constant ®;. Similarly, the other kernels
also adhere to the Lipschitz condition.

||-22(B) — ()| = ||[8sH + B2H — B1ES] — [BsH + B2H — piS] ||,

<B|E ~ BI|[S]| = ®2[|E~E |,

where @2 = £1b;. Thus, £ fulfiles the Lipschitz condition with constant ®2. Then

Hiﬂs(H) - XS(H)H = H[—BSH — BoH + 51 ES] — [—Bsﬁ — B H + /31155}
< (B3 + B2) |H — H]| = &5||H — HJ|,

where &3 = (3 + (2. Thus, .Z5 fulfiles the Lipschitz condition with constant ®3. Then

| - 2@ = |ligF - [5:2]]],

P — Bl = ®a[P ~ P,

Where &4 = [, it follows that %3 satisfies the Lipschitz condition with the constant ®4. Consequently, from
Eq. (3), all kernels .Z}, for j = 1, 2, 3, 4, satisfy the Lipschitz property, leading to the desired result.

S(t) = S(O) + F((S(t)) f t - U 6(t> 131 (U S(v))dv

E(t) = E(0) + F(é(t)) Jo (& =) O™ L0, E(v))dv

() = H(O) + gy Jy (¢ = )"~ (0, Hw)do

P(t) = P(0) + rracyy [t —v) 5<f> L 2 (v, P(v))dv. O
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Theorem 5.2 If the variable-order Caputo fractional model (2) has a solution under assumption ( H ), then
C = max [@1, CI)Q, q)g, @4] < 1.

Proof We define four functions w1, wax, w3k, and w4, using a sequential iterative approach based on (2), as
follows.

{ wlﬁ(t) = Si€+1 ) S(t)vw N(t) n+1(t) E(t 5 7)
wsr(t) = Het1(t) — H(t), wan(t) = Pesa(t) — P(2).
As a result, we obtain the following.
i@ = wmy Jo t =)D [ (v,8(v) = i (v,Sk(0))]] do
5(t)
< m‘bl HSK all (8)
5(t) -
< o+ 21 181 =S|l
According that, we can estimate
[wan ()] = m(t)) [yt =0)°D 7 [ (v, Ex(v) — Lo (v, Ex(v))]]| dv
< W)(t)l)(bz IE~ —E )
< [m] @3 [|E1 — E|.
t _
lwse(®)] = F(él(t)) Jo ¢ =)’ O[5 (v, He(v) — L5 (v, He(v))]]] do
< WWQB [|H.. — H]| (10)
t
< [W] 5 ||Hy — H]|.
Finally, we obtain
loan(l = iy Jo (t =)’ O L (0, Pu(v) = Zi (v, Pu(0))] | dv
< W(b‘l [P — Pl (11)
8(t)
< [W)H)] of ||]P1 - ]PH

Using Egs. (8)-(11) and taking the limit on both sides as K — oo, the aforementioned functions demonstrate the
following property of w;,. (t) — 0 for j = 1, 2,3, 4, given that ®; < 1, (j = 1, 2, 3,4). Thus, we establish that
the model (2) has a solution, thereby completing the proof. O

Theorem 5.3 The varzable order Caputo fractional model (2) possesses a unique solution provided that assumption
(H) holds and W@ <1, forje M2

Proof Let us consider an alternative existing solution (S, &, Hl, P) with initial values (S(0), E(0), H(0), P(0)),
we have

S(t) =S(0) + L /(t—v)(‘“*lﬂ(v,S(v))dv

T'(6() Jo

then, following:

—_

A1) <H0) + / (t — )"0 4 (0, B(w) o
0

P(t) =P(0) + m / (t —v)° D1 L (v, P(v))dv.
0

Again we have,
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1

=81 = Gy

/ (s =)’ || £ (v, E(v) — 21 (v, E(v))|] dv
0

1 ! 5(t)—1 &
< - _ _
—r(é(t))/o(s LA
5(t)
S N
< -8l
=T + 1)‘1)1 Is: =]
Then, we have
Y 81 —§) <0 (12)
o ) s Sl= 0

The inequality (12) mentioned above holds true in the case where ||S— S|| = 0. This subsequently leads to the
conclusion that S = §, thereby establishing the uniqueness of the solution. The same results also exist for E, H,
and P. Thus, it can be concluded that a unique solution is admitted by the model (2). d

Stability analysis of variable-order enzyme kinetics model

To strengthen the clarity of the stability analysis, we now provide a detailed explanation of the application of
the Hyers-Ulam and generalized Hyers-Ulam stability concepts to the proposed variable-order enzyme kinetics
model. Following the framework outlined in®*-71, we establish conditions under which the approximate solution
remains close to the exact solution, despite small perturbations. This analysis demonstrates that the model
exhibits robustness against minor modeling errors or parameter uncertainties, which is critical for reliable
simulation and interpretation of enzymatic dynamics. The inclusion of these references also situates our analysis
within the broader context of stability studies for fractional and variable-order systems.The primary focus of
this paper is the Hyers-Ulam stability analysis of the model (2). If and only if there is a continuous function
Y1 (depending on S ), then the function S is a solution (13).

The novelty of this work lies in extending the Hyers-Ulam stability analysis to a variable-order Caputo
fractional derivative model of enzyme kinetics, which has not been widely studied in the existing literature. Unlike
most previous works that consider a constant fractional order, our model allows d(t) € (0, 1], introducing a
time-dependent memory effect and making the analysis applicable to more realistic, non-stationary biochemical
processes. Additionally, we incorporate time delays in the interaction terms, which significantly increases the
complexity and requires modifying the stability framework compared to models without delays. Another
important distinction is that our study combines existence, uniqueness, boundedness, and Hyers—Ulam stability
within the same theoretical setting, ensuring a comprehensive understanding of the system’s behavior. Finally,
we support the theoretical results with numerical simulations using a generalized predictor-corrector scheme
adapted for variable-order systems, whereas many previous works are limited to theoretical discussion only.
These aspects collectively highlight the novelty and originality of the proposed research methods.

Definition 6.1 7! Hyers-Ulam stability provides in the variable order Caputo fractional enzyme kinetics model

(2). If there exists non-negative constants, 1; such that e; for j € 1,2, 3, 4 the function that (S, E, H, PP) satisfies

|D6(t)g(t) - gl(t,g) ’S €1, |D6(t)E(t) - gz(t,EA‘) S €2 (13)
| D°DH(t) — Z5(t, H) |< es, | DPVP(t) — Za(t,P)| < e
Fulfills the model (2), and exists (S, E, H, P)
IS =8|l < e, |E - E|| < ¢oer, (14)
[H — H|| <zes,  [|P—P|| < ¢paca.
where %, j € 1,2, 3,4 are given in (4).
Remark 6.1 Suppose there exists a continuous function 91 such that S satisfies the first inequality in (3).
L [9(s)] <eand
2. D°WS(s) = A (s,S(s)) + 1(s).
Theorem 6.1 Assuming the hypothesis J, then the model (2) is Hyers-Ulam stable if %ij <1, for

jeMmt
Proof Consider €1 > 0, and the function S be arbitrary for that, | D‘S(t)g(t) - AU, /S\) < er.

Then it follows as a function ¥, with [91(t)| < e1, satisfying D°DS(t) = 21 (t,S) + 91 (t).
As a result,
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Here S be the variable order Caputo fractional for the enzyme model (2) as a unique solution. Finally, we obtain

S(t)zs(owm / (t — )DL (v, S(v))dv

as so far,

1

IS(t) — S(t)] =TG50 / (t —0)°D7H 2 (v, 8(v)) — Z (v, S(v))|dv

1 ‘ s(t)—1
+ = [ =) | (v)|dv.
I'(s(t)) /0
ety
By this way, S — §|| = —— =
|1~ reii )
INCIOETD I
Finally, we have
RO}
,_ [F(5(t)+1)]
Y= I
1— 20 ¢
T+ 1

then ||S — S|| < tb1¢€1. In the same way, we can obtain the other solutions of

IE —E| < tes,
|IH — H| < tses,
[P =P < haea.
Hence, the variable-order Caputo fractional enzyme model (2) is Hyers-Ulam stable. g

Numerical simulation

In this section, we utilize the FRK4M to solve the variable order enzyme kinetics model with distinct constant
delays. Here, we consider the FRK4M order method for solving this model for ¢t = 200 and 0 < §(¢) < 1 with
initial conditions S(0) = 10, E(0) = 5, H(0) = 4, and P(0) = 0.1. The system parameter values z = 0.0530
y = 0.012, z = 0.040.

Figure 2 and Table 2 illustrates the time responses of a variable-order enzyme kinetic model governed by
the fractional-order function 6(¢) = 0.98 + 0.008 cos(¢/10). The simulations are conducted under three delay
scenarios: 71 = 72 = 0,71 = 0.5 & 72 = 0,and 71 = 0.5 & 72 = 2. These variations aim to assess the impact
of delay on the system’s components: substrate (S), enzyme (E), enzyme-substrate complex (H), and product (P).
In Fig. 2a, the substrate concentration S(t) decreases rapidly in all cases, showing typical substrate consumption
behavior. The constant delay scenario accelerates this decay slightly, suggesting enhanced enzyme-substrate
interactions under memory effects. Figure 2b displays the time evolution of enzyme E(t), which increases over
time and eventually stabilizes. Notably, the final concentration is higher under variable and constant delay
conditions, indicating more efficient enzyme regeneration when memory is incorporated. Figure 2c shows
the enzyme-substrate complex H(t), which initially peaks and then gradually decays. The magnitude of the
peak is more prominent in the presence of delay, especially the time-varying case, implying a stronger initial
reaction. Finally, Fig. 2d highlights the product concentration P(t), which exhibits an exponential increase,
especially after ¢ > 100. The variable delay enhances product accumulation compared to the no-delay case,
demonstrating the significant effect of memory on the late-stage dynamics of the reaction. Figure 3 and Table
3 presents the time responses of a distinct variable-order enzyme kinetic model, characterized by a fractional-
order function §(¢) = 0.95 + 0.001sin(¢/10). The figure compares the system behavior under three delay
conditions: 71 = 72 =0, 71 = 72 = 0.5, and 71 = 0.5, 72 = 2. These simulations highlight how delays and
memory effects influence the dynamic behavior of substrate (S), enzyme (E), enzyme-substrate complex (H),
and product (P). Figure 3a, the substrate S(f) shows a decreasing trend across all cases, reflecting the typical
consumption behavior as the enzyme reaction proceeds. The decay is slightly faster under time-dependent delay,
which may be attributed to enhanced catalytic interaction due to stronger memory effects. Figure 3b illustrates
the time evolution of the enzyme E(t), which initially dips slightly and then increases towards a saturation point.
The response is more pronounced in the variable delay scenario, where enzyme concentration reaches higher
steady-state levels compared to the constant or zero-delay cases. Figure 3¢ shows the enzyme-substrate complex
H(t), which exhibits an initial peak followed by a gradual decline. As seen in previous figures, this behavior is
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Figure 2. Time responses of Variable order Enzyme model with §(¢) = 0.98 4 0.008 cos(t/10).

t 6(t) =1 |6(t) =0.97 | 6(t) = 0.99 — (0.001/100)¢t
0 4 4 4

20 | 8.6746 8.0696 8.4733
40 |5.2773 5.2181 5.2641
60 | 2.5465 2.7669 2.6209
80 | 1.1966 1.4502 1.2788
100 | 0.5589 0.7726 0.6261
120 | 0.2604 0.4215 0.3097
140 | 0.1212 0.2369 0.1557
160 | 0.0564 0.138 0.0801
180 | 0.0564 0.138 0.0801
200 | 0.0122 0.0533 0.0237

Table 2. Enzyme-substrate complex concentration compartment for 71 = 0.5, 72 = 2 for different orders.

amplified when delay is introduced, especially under time-varying conditions. The heightened peak suggests a
more significant initial formation of the complex under memory-influenced kinetics. Finally, Fig. 3d shows the
product concentration P(t), which grows exponentially over time. While all three delay settings yield similar
qualitative trends, the time-dependent delay leads to a faster accumulation rate after t > 150, demonstrating the
effect of fractional memory and delay on long-term product formation.

Scientific Reports |

(2025) 15:34255 | https://doi.org/10.1038/s41598-025-16382-x nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

80 100
time

120 140

(a) Time response S

160 180

200

7,=05,7,=2

.
80 100
time

L L
120 140

(¢) Time response of H

T
160 180

200

30

60 80 100
time

120 140 160

(b) Time response of E

180

200

20

40

.
60 80 100
time

L L L
120 140 160

(d) Time response P

L
180

Figure 3. Time responses of distinct variable order Enzyme model with §(¢) = 0.95 4 0.001 sin(¢/10).

t [0(%) =1 |5(t) =0.97 | 5(t) = 0.99(0.01/100)¢
0 |4 4 4

20 7.5752 7.0755 7.4095
40 4.5005 4.502 4.5078
60 2.1466 2.3824 2.2259
80 |0.9959 1.2421 1.0753
100 | 0.4596 0.659 0.5219
120 | 02116 0.3586 0.2563
140 | 0.0974 02014 0.1281
160 | 0.0448 0.1174 0.0657
180 | 0.0448 0.1174 0.0657
200 | 0.0095 0.0458 0.0195

Table 3. Enzyme-substrate complex concentration compartment for 71 = 72 = 0.5 for different orders.

200

Figure 4 and Table 4 illustrates the time-domain behavior of the enzyme system under three scenarios: integer-
order (6 = 1), constant fractional-order (6 = 0.97), and variable-order §(¢) = 0.99 — 0.001 sin(¢/100). The
plots show the concentration evolution of substrate S(t), enzyme E(f), enzyme-substrate complex H(f), and
product P(t) over the simulation horizon.

Asseen in Fig. 4a, the substrate concentration S(t) decreases over time in all cases due to substrate consumption
in the enzymatic reaction. The variable-order model exhibits the fastest decay, indicating a stronger memory
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Figure 4. Comparison analysis of integer, fractional and variable order Enzyme model.

t [06(t) =1 |§(t) =0.97 | 5(t) = 0.99(0.01/100)¢
0 |4 4 4

20 [6.7753 6.3323 6.6285
40 [ 41958 41811 41979
60 |2.028 2.2559 2.1049
80 |0.9414 1.1798 1.0183
100 | 0.4339 0.6261 0.4939
120 | 0.1995 0.3406 02422
140 | 0.0916 0.1912 0.121
160 | 0.0421 0.1115 0.062
180 | 0.0421 0.1115 0.062
200 | 0.0089 0.0434 0.0184

Table 4. Composed of one molecule compartment for 7, = 72 = 0 for different orders.

effect that accelerates the initial substrate conversion. The fractional-order model lags slightly behind, while the

integer-order model maintains the slowest consumption rate.

In Fig. 4b, the enzyme concentration E(f) increases and stabilizes at a steady state. The integer-order case
reaches the highest enzyme level, whereas the fractional and variable-order cases stabilize at lower values due
to persistent memory damping. This suggests that non-integer dynamics may better capture enzyme regulation
mechanisms that hinder excessive accumulation.
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Fig. 4c shows the enzyme-substrate complex H(t), peaking early before declining. The variable-order response
has a slightly higher and sharper peak, indicating a more active initial binding process. This transient behavior
highlights the impact of variable memory in amplifying reaction rates during early dynamics.

Finally, Figure 4d demonstrates the product formation P(), which grows rapidly in all models. The variable-
order model leads to the fastest accumulation, surpassing both fractional and integer cases after ¢ > 150. This
behavior underscores the enhanced memory-driven reaction kinetics in variable-order systems, which capture
long-term accumulation effects more accurately.

To highlight the effectiveness of the proposed variable-order fractional model, we compare its dynamics with
those of the corresponding classical integer-order model (where the order 6(¢) = 1). The simulation results
show that the fractional model exhibits smoother and more gradual transitions, capturing memory effects that
slow down or accelerate the reaction based on historical states. In contrast, the integer-order model responds
more abruptly, lacking the capacity to represent fading or adaptive memory. This comparative study underscores
the ability of the fractional framework to more accurately reflect the complex and time-dependent behavior of
enzymatic processes, providing deeper biological insight.

Conclusion

In this study, we introduced a variable-order Caputo fractional derivative into an enzyme kinetics model with time
delay to better capture memory effects and the nonlocal behavior of enzymatic reactions. The proposed variable-
order Caputo fractional model offers a significant advancement over both classical enzyme kinetics and existing
fixed-order fractional models. While the classical Michaelis-Menten model assumes constant, memoryless
dynamics, and fixed-order fractional models impose a constant memory effect, our approach allows the model
memory to adapt dynamically over time. This enables the model to capture complex kinetic phenomena observed
in real enzymatic processes, such as delayed product formation and prolonged transient responses, providing a
richer and more realistic representation of biochemical reaction dynamics. By employing fixed-point theory, we
established the existence and uniqueness of solutions for the proposed model. Furthermore, the stability analysis
was conducted using Ulam-Hyers and generalized Ulam-Hyers concepts, confirming the model’s robustness
under perturbations. Through numerical simulations, we demonstrated the intricate dynamics of the system
and highlighted the significance of incorporating variable-order fractional differentiation and delay terms in
refining enzyme kinetics models. The findings of this work contribute to a more accurate and comprehensive
representation of biological catalytic processes, providing a valuable framework for further research in enzyme
kinetics and related fields. Future research will extend the variable-order fractional enzyme kinetics model
to complex reaction networks and multi-enzyme systems, incorporating state-dependent fractional orders to
capture adaptive memory effects from environmental conditions. Machine learning integration will enhance
parameter estimation and predictive accuracy, while distributed delays will improve biological realism.
Experimental validation against real enzyme data and implementation in biotechnology and pharmaceutical
processes will demonstrate practical applicability, supported by robust numerical methods and computational
optimization for large-scale industrial applications.

Data availibility
All data generated or analysed during this study are included in this published article.

Received: 17 June 2025; Accepted: 14 August 2025
Published online: 01 October 2025

References
1. Li, P. et al. Dynamics exploration for a fractional-order delayed zooplankton-phytoplankton system. Chaos, Solit. Fractals 166,
112975 (2023).
2. Xua, C,, Liaob, M., Farman, M. & Shehzade, A. Hydrogenolysis of glycerol by heterogeneous catalysis: A fractional order kinetic
model with analysis. MATCH Commun. Math. Comput. Chem 91, 635-664 (2024).
3. Xu, C. et al. Mathematical analysis and dynamical transmission of SEI r I s R model with different infection stages by using
fractional operator. International Journal of Biomathematics 2450151 (2025).
4. Du, X,, Xiao, M., Qiu, ], Lu, Y. & Cao, J. Stability and dynamics analysis of time-delay fractional-order large-scale dual-loop neural
network model with cross-coupling structure. IEEE Trans. Neural Netw. Learn. Syst. 36, 7873-7887 (2024).
5. Wang, H. et al. Improving dynamics of integer-order small-world network models under fractional-order PD control. Sci. China
Inf. Sci. 63, 112206 (2020).
6. Liu, C.-G. & Wang, J.-L. Passivity of fractional-order coupled neural networks with multiple state/derivative couplings.
Neurocomputing 455, 379-389 (2021).
7. Zhao, Y., Sun, Y., Liu, Z. & Wang, Y. Solvability for boundary value problems of nonlinear fractional differential equations with
mixed perturbations of the second type. AIMS Math. 5, 557-567 (2020).
8. Jiang, C., Zada, A., Senel, M. T. & Li, T. Synchronization of bidirectional n-coupled fractional-order chaotic systems with ring
connection based on antisymmetric structure. Adv. Differ. Eq. 2019, 1-16 (2019).
9. Jia, T, Chen, X., He, L., Zhao, E & Qiu, J. Finite-time synchronization of uncertain fractional-order delayed memristive neural
networks via adaptive sliding mode control and its application. Fract. Fract. 6, 502 (2022).
10. Liu, Z., Ding, Y., Liu, C. & Zhao, C. Existence and uniqueness of solutions for singular fractional differential equation boundary
value problem with p-Laplacian. Adv. Differ. Eq. 2020, 83 (2020).
11. Zhao, Y. et al. Mathematical exploration on control of bifurcation for a 3D predator-prey model with delay. AIMS Math. 9, 29883—
29915 (2024).
12. Lin, J. et al. Bifurcation and controller design in a 3D delayed predator-prey model. AIMS Math 9, 33891-33929 (2024).
13. Cui, Q. et al. Bifurcation and controller design of 5D BAM neural networks with time delay. Int. J. Num. Model. Electron. Netw. Dey.
Fields 37, 3316 (2024).
14. Finnigan, W. et al. Engineering a seven enzyme biotransformation using mathematical modelling and characterized enzyme parts.
ChemCatChem 11, 3474-3489 (2019).

Scientific Reports |

(2025) 15:34255 | https://doi.org/10.1038/s41598-025-16382-x nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

15. West, B.J. Fractional calculus in bioengineering (2007).

16. Chow, T. Fractional dynamics of interfaces between soft-nanoparticles and rough substrates. Phys. Lett. A 342, 148-155 (2005).

17. Suganya, S., Parthiban, V., Shangerganesh, L. & Hariharan, S. Transmission dynamics of fractional order SVEIR model for African
swine fever virus with optimal control analysis. Sci. Rep. 14, 27185 (2024).

18. Pan, J. Fractional-order sliding mode control of manipulator combined with disturbance and state observer. Robot. Auton. Syst.
183, 104840 (2025).

19. Chaudhary, K. S. & Kumar, N. Hybrid neural network-based fractional-order sliding mode controller for tracking control problem
of reconfigurable robot manipulators using fast terminal type switching law. Eng. Appl. Artif. Intel. 139, 109515 (2025).

20. Al-Awad, N. A,, Humaidi, A. J. & Al-Araji, A. S. Fractional multi-loop active disturbance rejection control for a lower knee
exoskeleton system. Acta Polytech. 63, 158-170 (2023).

21. Hasan, A. F et al. Fractional order extended state observer enhances the performance of controlled tri-copter UAV based on active
disturbance rejection control. In Mob. Robot Motion Control Path Plann. 439-487 (Springer, 2023).

22. Hasan, A. F, Al-Shamaa, N., Husain, S. S., Humaidi, A. & Al-dujaili, A. Spotted hyena optimizer enhances the performance of
fractional-order PD controller for tri-copter drone. Int. Rev. Appl. Sci. Eng. 15, 82-94 (2024).

23. Azar, A. T. et al. Robust fractional-order sliding mode control design for UAVs subjected to atmospheric disturbances. In
Unmanned Aerial Systems 103-128 (Elsevier, Amsterdam, 2021).

24. Michaelis, L. & Menten, M. L. Die kinetik der invertinwirkung. Biochemische Zeitschrift 49, 333-369 (1913).

25. Bushnag, S. et al. Existence theory and numerical simulations of variable order model of infectious disease. Results Appl. Math. 19,
100395 (2023).

26. Boukhobza, M., Debbouche, A., Shangerganesh, L. & Torres, D. F. Modeling the dynamics of the Hepatitis B virus via a variable-
order discrete system. Chaos Solit. Fract. 184, 114987 (2024).

27. Zada, M. B,, Rashid, H., Shah, K. & Abdeljawad, T. Study of fractional variable order COVID-19 environmental transformation
model. Open Phys. 21, 20230123 (2023).

28. Alimbekova, N., Bakishev, A. & Berdyshev, A. Numerical method for the variable-order fractional filtration equation in
heterogeneous media. Fractal Fract. 8, 640 (2024).

29. Naveen, S. & Parthiban, V. Existence, uniqueness and error analysis of variable-order fractional Lorenz system with various type
of delays. Int. J. Bifurc. Chaos 34, 2450152 (2024).

30. Padder, A., Mokkedem, F. Z. & Lotfi, E. M. Stability and bifurcation analysis of fractional-order tumor-macrophages interaction
model with multi-delays. Math. Methods Appl. Sci. 47, 6143-6171 (2024).

31. Suganya, S. & Parthiban, V. Optimal control analysis of fractional order delayed SIQR model for COVID-19. Eur. Phys. J. Special
Top. 1-13 (2024).

32. Abdeljawad, T. et al. Analysis of a class of fractal hybrid fractional differential equation with application to a biological model. Sci.
Rep. 14, 18937 (2024).

33. Alshammari, A. O. Dynamical behavior of a time-fractional biological model via an efficient numerical method. J. Appl. Math.
Comput. 71, 2543 (2024).

34. Swain, S., Swain, S., Panda, B. & Tripathy, M. C. Modeling and optimal analysis of lung cancer cell growth and apoptosis with
fractional-order dynamics. Comput. Biol. Med. 188, 109837 (2025).

35. Saber, S., Solouma, E., Alharb, R. A. & Alalyani, A. Chaos in fractional-order glucose-insulin models with variable derivatives:
Insights from the Laplace-Adomian decomposition method and generalized euler techniques. Fractal Fract. 9, 149 (2025).

36. Sweilam, N. H., Abou Hasan, M. M. & Al-Mekhlafi, S. M. On variable-order Salmonella bacterial infection mathematical model.
Math. Methods Appl. Sci. 47, 3443-3456 (2024).

37. Ahmed, H. F. & Melad, M. B. A new numerical strategy for solving nonlinear singular Emden-Fowler delay differential models
with variable order. Math. Sci. 17, 399-413 (2023).

38. Abou Hasan, M. M. Variable order fractional diabetes models: Numerical treatment. Int. J. Model. Simul. https://doi.org/10.1080/
02286203.2024.2349508 (2024).

39. Sweilam, N., Abdel Kareem, W., AL-Mekhlafi, S. & Soliman, T. Optimal control problem of hybrid fracint variable-order
mathematical model for Covid-19 with time delay. Frontiers in Scientific Research and Technology (2025).

40. Naveen, S. & Parthiban, V. Qualitative analysis of variable-order fractional differential equations with constant delay. Math.
Methods Appl. Sci. 47, 2981-2992 (2024).

41. Boulkroune, A., Boubellouta, A., Bouzeriba, A. & Zouari, E. Practical finite-time fuzzy synchronization of chaotic systems with
non-integer orders: Two chattering-free approaches. J. Syst. Sci. Syst. Eng. 34, 334-359 (2025).

42. Boulkroune, A., Zouari, F. & Boubellouta, A. Adaptive fuzzy control for practical fixed-time synchronization of fractional-order
chaotic systems. Journal of Vibration and Control 10775463251320258 (2025).

43. Chethan, H., Turki, N. B. & Prakasha, D. High performance computational approach to study model describing reversible two-step
enzymatic reaction with time fractional derivative. Sci. Rep. 14, 21114 (2024).

44. Khan, M. et al. Dynamics of two-step reversible enzymatic reaction under fractional derivative with Mittag-LefHler kernel. Plos One
18, €0277806 (2023).

45. Naik, P. A. et al. Forecasting and dynamical modeling of reversible enzymatic reactions with a hybrid proportional fractional
derivative. Front. Phys. 11, 1307307 (2024).

46. Naveen, S., Venkatachalam, K. & Parthiban, V. Analysis of variable-order derivative with Mittag-Leffler kernel and integral
boundary conditions for RLC circuit system. Int. . Comput. Math. 102, 1163 (2025).

47. Kunduy, S. & Bora, S. N. On Ulam type stability of the solution to a ¥-Hilfer abstract fractional functional differential equation.
Phys. Script. 100, 045235 (2025).

48. Shah, R. & Irshad, N. Ulam-Hyers-Mittag-Leffler stability for a class of nonlinear fractional reaction-diffusion equations with
delay. Int. J. Theoret. Phys. 64, 20 (2025).

49. Selvam, A., Sabarinathan, S., Pinelas, S. & Suvitha, V. Existence and stability of Ulam-Hyers for neutral stochastic functional
differential equations. Bull. Iran. Math. Soc. 50, 1 (2024).

50. Ahmad, Z., Ali, E, Alqahtani, A. M., Khan, N. & Khan, I. Dynamics of cooperative reactions based on chemical kinetics with
reaction speed: A comparative analysis with singular and nonsingular kernels. Fractals 30, 2240048 (2022).

51. Chethan, H., Turki, N. B. & Prakasha, D. High performance computational approach to study model describing reversible two-step
enzymatic reaction with time fractional derivative. Sci. Rep. 14, 21114 (2024).

52. Sabarinathan, S., Sivashankar, M., Nisar, K. S., Ravichandran, C. & Alsoud, A. R. Fractal-fractional approach to stability in enzyme
kinetics: A mathematical model perspective. Part. Differ. Eq. Appl. Math. 13, 101028 (2025).

53. Radhakrishnan, B., Chandru, P. & Nieto, J. J. A study of nonlinear fractional-order biochemical reaction model and numerical
simulations. Nonlinear Anal. Model. Control 29, 588-605 (2024).

54. Naik, P. A. et al. Advancing Lotka-Volterra system simulation with variable fractional order Caputo derivative for enhanced
dynamic analysis. J. Appl. Anal. Comput. 15, 1002-1019 (2025).

55. Naveen, S. & Parthiban, V. Variable-order Caputo derivative of LC and RC circuits system with numerical analysis. Int. J. Circuit
Theory Appl. 53, 3136-3156 (2025).

56. Toufik, M. & Atangana, A. New numerical approximation of fractional derivative with non-local and non-singular kernel:
Application to chaotic models. Eur. Phys. J. Plus 132, 444 (2017).

Scientific Reports|  (2025) 15:34255 | https://doi.org/10.1038/s41598-025-16382-x nature portfolio


https://doi.org/10.1080/02286203.2024.2349508
https://doi.org/10.1080/02286203.2024.2349508
http://www.nature.com/scientificreports

www.nature.com/scientificreports/

57. Raja Balachandar, S., Venkatesh, S., Balasubramanian, K. & Uma, D. Two-dimensional fractional Euler polynomials method for
fractional diffusion-wave equations. Fractals 31, 2340058 (2023).

58. Balachandar, S. R., Venkatesh, S., Kumar, A. D. & Balasubramanian, K. Two dimensional fractional Euler polynomials method for
space-time fractional differential equations. In AIP Conf. Proc. Vol. 3180 020022 (AIP Publishing LLC, 2024).

59. Naveen, S. & Parthiban, V. Application of Newton’s polynomial interpolation scheme for variable order fractional derivative with
power-law kernel. Sci. Rep. 14, 16090 (2024).

60. Rihan, E, Lakshmanan, S., Hashish, A., Rakkiyappan, R. & Ahmed, E. Fractional-order delayed predator-prey systems with
Holling type-ii functional response. Nonlinear Dyn. 80, 777-789 (2015).

61. Rihan, F. A. & Udhayakumar, K. Fractional order delay differential model of a tumor-immune system with vaccine efficacy:
Stability, bifurcation and control. Chaos Solit. Fract. 173, 113670 (2023).

62. Latha, V. P, Rihan, E A., Rakkiyappan, R. & Velmurugan, G. A fractional-order model for Ebola virus infection with delayed
immune response on heterogeneous complex networks. J. Comput. Appl. Math. 339, 134-146 (2018).

63. Kumar, P. & Suat Erturk, V. The analysis of a time delay fractional Covid-19 model via caputo type fractional derivative. Math.
Methods Appl. Sci. 46, 7618-7631 (2023).

64. Rihan, F, Arafa, A., Rakkiyappan, R., Rajivganthi, C. & Xu, Y. Fractional-order delay differential equations for the dynamics of
hepatitis C virus infection with IFN-cv treatment. Alex. Eng. J. 60, 4761-4774 (2021).

65. Cornish-Bowden, A. Fundamentals of enzyme kinetics (Wiley, Hoboken, 2013).

66. Segel, 1. H. Enzyme kinetics: Behavior and analysis of rapid equilibrium and steady state enzyme systems Vol. 115 (Wiley, New York,
1975).

67. Sabarinathan, S., Sivashankar, M., Nisar, K. S., Ravichandran, C. & Alsoud, A. R. Fractal-fractional approach to stability in enzyme
kinetics: A mathematical model perspective. Part. Differ. Eq. Appl. Math. 13, 101028 (2025).

68. Ulam, S. M. A collection of mathematical problems (Interscience Publishers, New York, 1960).

69. Hyers, D. H. On the stability of the linear functional equation. Proc. National Acad. Sci. United States Am. 27, 222-224 (1941).

70. Jung, S.-H. Hyers-Ulam stability of derivations on Banach algebras. J. Math. Anal. Appl. 316, 91-97 (2006).

71. Wang, Z. & He, J.-H. Generalized Ulam-Hyers stability of fractional differential equations with Caputo derivative. J. Comput. Appl.
Math. 350, 207-214 (2019).

Author contributions

KA and VP conceived of the presented idea. KA, SN, SS developed the theory and performed the computations.
KA and VP verified the analytical methods. VP encouraged KA, SN, SS to investigate and supervised the find-
ings of this work. All authors discussed the results and contributed to the final manuscript.

Funding
Not applicable.

Declarations

Competing interests
The authors declare no competing interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information
Correspondence and requests for materials should be addressed to V.P.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives
4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in
any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide
a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have
permission under this licence to share adapted material derived from this article or parts of it. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence
and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommo
ns.org/licenses/by-nc-nd/4.0/.

© The Author(s) 2025

Scientific Reports |

(2025) 15:34255 | https://doi.org/10.1038/s41598-025-16382-x nature portfolio


http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.nature.com/scientificreports

	﻿Analysis of variable-order fractional enzyme kinetics model with time delay
	﻿The proposed work’s motivations and contributions
	﻿Structure of the paper
	﻿﻿A mathematical model for the enzyme kinetics
	﻿﻿Preliminaries
	﻿﻿Fundamental properties
	﻿Positivity of the model
	﻿Boundedness of the model

	﻿﻿Existence and uniqueness of solution
	﻿﻿ Stability analysis of variable-order enzyme kinetics model
	﻿﻿Numerical simulation
	﻿﻿Conclusion
	﻿References


