
Analysis of variable-order fractional 
enzyme kinetics model with time 
delay
K. Agilan, S. Naveen, S. Suganya & V. Parthiban

In enzymatic reactions, studying reaction rates and mechanisms helps us understand how 
concentration, temperature, and catalysts influence the speed of chemical transformations. This field 
is critical for optimizing processes in biotechnology, pharmaceuticals, and food industries. Traditional 
enzyme kinetics models may overlook the influence of past system states. In this paper, we propose 
a variable-order Caputo fractional derivative enzyme kinetics model that incorporates constant time 
delays to capture memory effects and nonlocal behavior more accurately. We establish the existence 
and uniqueness of solutions using fixed-point theory. The proposed model stability is analyzed through 
Ulam–Hyers and generalized Ulam–Hyers concepts. A robust and an effective numerical approach 
is employed to reveal the intricate dynamics of the model and demonstrate the significance of the 
variable-order Caputo fractional derivative with time delay. Incorporating a delay term and employing 
the variable-order Caputo fractional derivative, this model refines conventional enzyme kinetics, 
leading to a more precise characterization of biological catalytic processes.

Keywords  Enzyme kinetics, Variable-order Caputo fractional derivative, Stability analysis, Delay differential 
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Enzyme kinetics is a fundamental component of systems biology, which aims to understand how complex 
biological networks function. Studying mathematical models for enzyme kinetics is crucial for understanding 
the fundamental principles governing biochemical reactions. Enzymes play a vital role in regulating metabolic 
processes, and their reaction rates are influenced by factors such as substrate concentration, enzyme availability, 
and environmental conditions. Traditional experimental approaches provide valuable insights, but they are often 
limited in capturing complex interactions and predicting system behavior under varying conditions. Recently 
many researchers have been investigating dynamics of fractional-order models. See1–13

Mathematical models offer a systematic framework to describe enzyme-substrate dynamics, estimate 
key parameters, and simulate reaction mechanisms with high accuracy. These models are essential for 
optimizing industrial and pharmaceutical applications, such as drug development, fermentation processes, and 
biotechnology, where precise control of enzymatic reactions is required14. Fractional calculus has emerged as 
a powerful framework to model complex biochemical processes that exhibit memory and hereditary effects. 
The application of fractional-order dynamics in science and technology has expanded across various fields, 
including physics, chemistry, biology, viscoelasticity, bioengineering, nanoparticle-substrate interactions, 
control theory, epidemiology, ecology, sociology, signal processing, robotics, system modeling and identification, 
telecommunications, electronics, finance, engineering, and other applied sciences15–23. These models are very 
useful in biological systems because they can capture intricate dynamics that are not captured by integer-order 
models. Long-term memory and residual effects, which are crucial to biological processes, can be well described 
using fractional calculus. In recent years, fractional calculus has emerged as a compelling mathematical 
framework for modeling complex biochemical processes that exhibit memory and hereditary effects. Unlike 
classical integer-order models, such as the Michaelis–Menten formulation24, which assume that reaction rates 
depend only on the present state and respond instantaneously to changes, fractional-order models incorporate 
the influence of past system states through non-local operators. This is particularly relevant in enzyme kinetics, 
where processes such as slow substrate binding and unbinding, conformational rearrangements of enzymes, and 
allosteric regulation introduce time-dependent behavior and history-dependent dynamics. By accounting for 
these effects, fractional derivatives provide a more realistic and flexible representation of enzymatic reactions, 
capturing features like delayed response, long-range temporal correlations, and gradual adaptation to changing 
biochemical environments that classical models may overlook. Recent studies have shown that the fractional 
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order in fractional calculus models can be conceptually linked to fractal dimensions, as both characterize the 
complexity and irregularity of a system. In the context of enzyme kinetics, enzyme binding sites and reaction 
interfaces often exhibit fractal-like geometries whose irregular structures can significantly affect reaction rates. 
This perspective finds parallels in materials science, where, for instance, the fractal dimensions of porous concrete 
have been correlated with its mechanical strength. Drawing on this analogy helps to justify the use of fractional 
calculus in modeling enzymatic processes, as it naturally captures the influence of complex, heterogeneous 
structures on system dynamics and reaction kinetics. The study of variable-order fractional derivatives enhances 
the realism and accuracy of dynamic process modeling, resulting in superior predictive capabilities and 
optimized solutions across various scientific and industrial domains. Current developments have introduced 
numerous dynamical systems incorporating fractional variable-order derivatives, as seen in25–29. By extending 
to variable-order fractional derivatives, the model can further capture dynamic changes in memory effects over 
time, reflecting how enzymatic activity adapts to changing biochemical environments. This enriched framework 
provides a closer representation of the true kinetics of enzymatic processes compared to classical integer-order 
models.

In30 the authors are discussed the stability and bifurcation analysis of fractional-order tumor–macrophages 
interaction model with multi-delays. Optimal control analysis of fractional order delayed SIQR model for 
COVID-19 is presented in31. In32 the authors are investigated the analysis of a class of fractal hybrid fractional 
differential equation with application to a biological model. In33 dynamical behavior of a time-fractional 
biological model via an efficient numerical method. Modeling and optimal analysis of lung cancer cell growth and 
apoptosis with fractional-order dynamics is investigated in34. In35 the authors discussed the chaos in fractional-
order glucose–insulin models with variable derivatives: Insights from the Laplace–adomian decomposition 
method and generalized Euler techniques. In36 on variable-order Salmonella bacterial infection mathematical 
model is presented. A new numerical strategy for solving nonlinear singular Emden-Fowler delay differential 
models with variable order is studied in37. In38 the authors are discussed the variable order fractional diabetes 
models with numerical treatment. The optimal control problem of hybrid fracInt variable-order mathematical 
model for Covid-19 with time delay is presented in39. Additionally the fractional and variable order derivative 
systems are applied in the various fields: application of Chen system40, finite-time fuzzy synchronization of 
chaotic systems41, adaptive fuzzy control for practical fixed-time synchronization of fractional-order chaotic 
system42, reversible two-step enzymatic reaction with time fractional derivative43.

Various mathematical models have been introduced to explore the complex regulation of enzyme kinetics, 
shedding light on key factors that influence enzymatic reactions and their efficiency. For instance, Khan et al.44 
proposed a fractional-order model that provides multiple solutions compared to classical models, suggesting 
increased complexity and a potentially more comprehensive representation of enzyme kinetics. In45, the authors 
applied hybrid proportional fractional derivatives, namely the constant proportional Caputo-Fabrizio (CPCF) 
and constant proportional Atangana-Baleanu-Caputo (CPABC) operators, to enzyme kinetics, demonstrating 
improved forecasting and dynamic modeling. Furthermore, various numerical methods have been developed 
to model enzyme kinetics by incorporating different fractional-order derivatives, which have been extensively 
studied. Moreover, the Ulam-Hyers stability analysis are applied in different scenarios: Applications of RLC 
circuit system46, ψ-Hilfer abstract fractional functional differential equation47, nonlinear fractional reaction–
diffusion equations with delay48, neutral stochastic functional differential equations49. For instance, Ahmad et 
al50 performed a comparative analysis of cooperative chemical reactions using both singular and nonsingular 
kernels, revealing how kernel choice affects reaction speed and system memory. Chethan et al.51 proposed a 
high-performance computational approach to study a reversible two-step enzymatic reaction described by time-
fractional derivatives, demonstrating improved simulation accuracy. Sabarinathan et al.52 explored the stability 
of enzyme kinetics through a fractal-fractional framework, offering new mathematical insights into reaction 
dynamics. Additionally, Radhakrishnan et al.53 analyzed a nonlinear fractional-order biochemical reaction 
model, supporting their findings with detailed numerical simulations. Collectively, these works underscore the 
growing importance and versatility of fractional and fractal-fractional modeling approaches in biochemical 
kinetics, motivating our present study. Furthermore, the various numerical approximations are applied for 
fractional order and variable order differential equations such as, in54, the variable order Adams-Bashforth-
Milton methodology for Lotka-Volterra predator prey system, Runge-Kutta 4th order and Modified Euler 
method for Caputo derivative of LC and RC circuits system55. In56, fractional derivative with non-local and 
non-singular kernel: application to chaotic model. In57, Two dimensional fractional Euler polynomial method 
for fractional diffusion-wave equation in58. In59 the application of Newton’s polynomial interpolation scheme for 
power-law kernel.

The proposed work’s motivations and contributions
In this study, we adopt the Caputo definition of the variable-order fractional derivative for modeling enzyme 
kinetics. This choice is motivated by its important physical advantage: the Caputo derivative allows the use of 
standard initial conditions expressed in terms of integer-order derivatives, such as experimentally measurable 
initial concentrations of substrate and enzyme. In contrast, other commonly used definitions like the Riemann–
Liouville derivative require initial conditions involving fractional integrals, which lack direct physical or 
biological interpretation. Although the Atangana–Baleanu derivative offers benefits for modeling non-singular 
kernel processes, our focus is specifically on enzyme systems characterized by classical power-law memory 
effects, for which the Caputo approach is particularly suitable and widely accepted. This ensures that the 
model remains both mathematically rigorous and biologically meaningful, closely aligning with experimental 
observations in biochemical kinetics. Enzymatic reactions are often influenced by complex environmental and 
cellular factors such as temperature fluctuations, pH variations, or substrate/enzyme concentration changes, 
which naturally introduce time-varying memory effects. The variable-order fractional derivative allows the 
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model to reflect that the “memory strength” (the influence of past states) is not constant but can evolve over time, 
capturing phenomena like enzyme saturation, inhibition, or activation phases. This approach acknowledges 
that enzyme systems might exhibit adaptation or fatigue, making the reaction kinetics history-dependent in 
a non-uniform way. The proposed variable-order fractional model has practical relevance in several biological 
and industrial contexts. For instance, in pharmaceutical manufacturing, enzyme-catalyzed reactions often 
experience variations in activity due to fluctuating temperature or pH levels over time. Similarly, in food 
technology processes like fermentation, enzyme efficiency changes gradually as substrates deplete and products 
accumulate. Classical integer-order models, which assume memoryless kinetics, may not capture these subtle 
time-dependent behaviors. By contrast, the variable-order fractional approach accounts for evolving memory 
effects, providing a more accurate and flexible description of reaction dynamics. This can lead to improved 
predictions of process outcomes and better control strategies in industrial applications.

Recent developments have demonstrated how useful delay fractional differential equations (DFDEs) can 
be in simulating dynamics in the real world60–64. These mathematical frameworks propose that the evolution 
of a function at a given time is governed by its prior states. By incorporating time delays, the model accounts 
for biochemical reaction steps that do not occur instantaneously, such as conformational changes in enzymes 
or intermediate complex formation. Allosteric enzymes like phosphofructokinase demonstrate time lags 
through cooperative binding mechanisms, multi-enzyme complexes such as pyruvate dehydrogenase exhibit 
delays during substrate channeling, and cofactor-dependent systems show lags during regeneration cycles. 
Additionally, inducible enzyme systems and processive enzymes display characteristic time delays that are 
physiologically significant65,66. Due to time delays, the intricate interactions between different reaction stages 
and regulatory mechanisms in enzyme kinetics can cause oscillatory behavior in solutions. Understanding these 
oscillations is essential for optimizing enzymatic processes and improving their applications in biotechnology 
and pharmaceutical industries. Even fixed-order fractional models, though capable of representing long-term 
memory, are limited by the assumption of a constant memory strength throughout the reaction. Moreover, many 
existing models neglect biologically realistic time delays that arise from intermediate complex formation or 
conformational changes.Traditional constant-order fractional models assume that the memory effect quantified 
by a fixed fractional order α remains unchanged over the course of the reaction. While these models have 
been effective in capturing long-term memory and non-local behavior, they may oversimplify biological systems 
where the memory effect itself can evolve over time. In contrast, our variable-order approach, where the order 
δ(t) is allowed to vary as a smooth function of time, reflects adaptive processes such as substrate depletion, 
enzyme activation or inhibition, and conformational changes. This additional flexibility enables the model to 
more accurately describe complex kinetic behaviors, like transient dynamics or delayed product accumulation, 
which are often observed experimentally. Consequently, the variable-order model not only generalizes the 
constant-order case but also offers enhanced predictive power and biological interpretability. Motivated by 
the above discussion, we propose a delay model with a variable-order Caputo fractional derivative for enzyme 
kinetics, which characterizes the system’s variable memory and allows us to capture both adaptive memory 
effects and intrinsic time-lag behaviors observed in real enzymatic processes. To the best of our knowledge, this 
model remains unexplored in the existing literature. Thus, the mathematical findings presented here are both 
innovative and significant.

The key contributions of this study are as follows:

•	 Developed a novel variable-order Caputo fractional derivative (VOCFD) enzyme kinetics model with con-
stant time delays, capturing adaptive memory effects and biologically realistic time-lag behavior.

•	 Performed a comprehensive qualitative analysis, demonstrating positivity, boundedness, and proving the ex-
istence and uniqueness of solutions using fixed-point theorems.

•	 Conducted a detailed stability analysis of the model within the Ulam–Hyers and generalized Ulam–Hyers 
frameworks, ensuring the reliability of the solution under perturbations.

•	 Designed and implemented a new, robust numerical method to simulate the proposed model and illustrate 
the effects of variable-order memory and delays on enzymatic reaction dynamics.

To enhance clarity, Fig.  1 presents a complete workflow diagram diagram summarizing the proposed 
methodology. The diagram outlines the main components of this study, including the formulation of the enzyme 
kinetics model with variable-order Caputo fractional derivative and time delays, the qualitative analysis ensuring 
well-posedness, the stability analysis within the Ulam–Hyers framework, and the implementation of a numerical 
method to simulate and analyze the model dynamic behavior.

Structure of the paper
The structure of this paper is as follows: A VOCFD model for enzyme kinetics with delay is presented in "A 
mathematical model for the enzyme kinetics" section. In "Preliminaries" section, basic definitions have been 
discussed. In Fundamental properties" section, positivity and boundness, and in "Existence and uniqueness 
of solution" section, existence and uniqueness results of the system are determined; the stability analysis is 
discussed in "Stability analysis of variable-order enzyme kinetics model" section. In "Numerical simulation" 
section, discussions and simulations using numerical approaches are provided. The study is summarized in the 
conclusion given in "Conclusion" section.

A mathematical model for the enzyme kinetics
To examine the mathematical model in order to use the previously described research data to look into the 
presence of solutions in an enzyme kinetics model67. The proposed fractional-order enzyme kinetics model 
provides several advantages over the classical integer-order model. In real biochemical systems, reactions exhibit 
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memory and hereditary properties because the present state depends not only on the current concentrations but 
also on the past history of the system. The fractional-order derivative effectively captures this memory effect, 
whereas the integer-order model assumes an instantaneous response and ignores past dynamics. Furthermore, 
the fractional-order framework offers greater flexibility in describing complex kinetic behaviors, including 
anomalous diffusion and subdiffusion commonly observed in biochemical processes. By incorporating variable 
order, the model adapts to time-dependent dynamics and better reflects the biological reality compared to the 
rigid structure of integer-order models. Furthermore, the existence of a solution means that the enzyme kinetics 
process described by model (2) is mathematically and biologically feasible; that is, for given initial concentrations 
of substrate, enzyme, and product, the system will evolve in a well-defined way over time. Uniqueness ensures 
that the reaction follows a single predictable pathway under the same initial and parameter conditions, avoiding 
multiple or conflicting behaviors for the same situation, which aligns with the deterministic nature of biochemical 
reactions. The boundedness of the solution implies that the concentrations of substrate, enzyme, complex, and 
product remain finite and biologically realistic over time, avoiding unphysical scenarios such as negative or 
infinitely large concentrations. Together, these properties guarantee that the proposed fractional-order model 
reflects a stable and meaningful biological process.

The given conditions in the proposed system are independent of one another and satisfy N(t) =S(t)+E(t)+
+H(t)+P(t). The N value represents the terms presented in the relevant system of reactions. The concentration 
of a substance is represented by square brackets [ ] and [S] = S, [E] = E, and [H] = H as follows:

	




dS
dt

= β2H − β1E,
dE
dt

= β3H + β2H − β1ES,
dH
dt

= −β3H − β2H + β1E(t − τ1)S(t − τ2),
dP
dt

= β3P.

� (1)

Examine the variable-order Caputo fractional derivative in the enzyme kinetics and study existence, uniqueness, 
and numerical simulations into account. Here is a summary of our methodology:

	





Dδ(t)S(t) = β2H − β1ES,
Dδ(t)E(t) = β3H + β2H − β1ES,
Dδ(t)H(t) = −β3H − β2H + β1E(t − τ1)S(t − τ2),
Dδ(t)P(t) = β3P.

� (2)

Figure 1.  Schematic workflow of the proposed study.
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With the initial condition, the enzyme kinetics model’s impact becomes S(0) = S0,E(0) = E0,H(0) = H0,
P(0) = P0. Here, it Dδ(t) stands for the variable order Caputo fractional derivative for δ(t) ∈ (0, 1].

In this work, the fractional order δ(t) is defined as a smooth, time-dependent function reflecting gradual 
biological changes, such as temperature shifts or product inhibition, that affect system memory. Biologically, 
δ(t) quantifies how strongly past states influence current reaction rates. Its variation can be inferred from 
experimental observations like slow relaxation or delayed responses in enzyme activity, thus linking the abstract 
mathematical concept of variable-order derivatives to measurable biochemical behavior. When one molecule of 
enzyme E is combined with one molecule of substrate S, an enzyme substrate H composed of one molecule and 
the product P is created, as can be seen when examining the chemical reaction (2). Here, β1 the rate at which 
enzymes develop β2 denotes the rate at which products are created and β3 denotes catalysis. We introduce two 
constant delays, τ1 and τ2, to represent fixed time-lags associated with intermediate steps in the enzymatic 
reaction process, such as conformational changes or complex formation. These constant delays simplify 
numerical implementation within the Fractional Runge Kutta method of the fourth order (FRK4M) framework 
while effectively capturing biologically relevant time-lag effects. A detailed description of the model parameters 
is provided in Table 1.

Preliminaries
In this section, we discuss basic concepts of the variable order Caputo fractional derivative and provide definitions 
that are necessary to obtain the main results of this study. Moreover, in this study, we consider the Banach space 
denoted as {G : G(t) ∈ C([0, 1]) → R} under the norm ∥G∥ = maxt∈[0,1] |G(t)|.

Definition 3.1  55Regarding the same function G as discussed earlier, the RL integral of order 0 < δ(t) ≤ 1, can 
be defined as follows:

	
I δ(t)G(t) = 1

Γ(δ(t)

∫ t

0
G(v)(t − v)δ(t)−1dv.

By using a successive iterative technique, the variable order Caputo fractional model is used (2). To accomplish 
this, we apply Definition 3.1’s integral to the suggested model (2).

	




S(t) = S(0) + 1
Γ(δ(t))

∫ t

0 (t − v)δ(t)−1 [β2H − β1ES] dv

E(t) = E(0) + 1
Γ(δ(t))

∫ t

0 (t − v)δ(t)−1 [β3H + β2H − β1ES] dv

H(t) = H(0) + 1
Γ(δ(t))

∫ t

0 (t − v)δ(t)−1 [−β3H − β2H + β1E(t − τ1)S(t − τ2)] dv

P(t) = P(0) + 1
Γ(δ(t))

∫ t

0 (t − v)δ(t)−1 [β3P ] dv.

� (3)

Setting Lj  for j = 1, 2, 3, 4, then we have

	




L1(t, S) = β2H − β1ES
L2(t,E) = β3H + β2H − β1ES
L3(t,H) = −β3H − β2H + β1E(t − τ1)S(t − τ2)
L4(t,P) = β3P.

� (4)

Fundamental properties
Here, we demonstrate that the model (2) has the boundedness and positivity.

Positivity of the model
Theorem 4.1  The solution to the model (2) has the positivity property.

Proof  From model (2), we have

Symbol Meaning

S(t) Substrate concentration at time t

E(t) Free enzyme concentration at time t

H(t) Enzyme-substrate complex concentration at time t

P(t) Product concentration at time t

β1 Rate constant for enzyme binding

β2 Rate constant for product formation

β3 Rate constant for catalysis

τ1, τ2 Constant delays

Table 1.  Description of the model parameters.
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


S(t)|S=0 = β2H − β1ES > 0,
E(t)|E=0 = β3H + β2H − β1ES > 0,
H(t)|H=0 = −β3H − β2H + β1E(t − τ1)S(t − τ2) > 0,
P(t)|P=0 = β3P.

� (5)

The outcome shows that none of the model’s parameters or reactions are negative. The proof can be effectively 
concluded since all solutions for our model (2) are guaranteed to be non-negative.� □

Boundedness of the model
Theorem 4.2  The solution of our model (2), denoted as

Y = {S(t),E(t), H(t),P(t) ∈ R4 : 0 < N ≤ φ
ρ

}
, adheres to this invariant. The solution remains bounded 

within the positive invariant region R4 while considering initial conditions of S > 0,E > 0,H ≥ 0, and P ≥ 0.

Proof  Assume that N(t) = S(t) + E(t) + H(t) + P (t) and N̂(t) = S(t) + E(t) + H(̂t) + P̂(t) sum of the 
model (2), we get

	 N̂(t) = φ − ρN,� (6)

then integrating Eq. 6, we obtain Y =
{
S(t) + E(t) + H(t) + P(t) ≤ φ

ρ

}
.

When t becomes very large i.e., t → ∞, it implies that φ
ρ  is the supremum of N, making it a positive invariant 

for the model (2).� □

Existence and uniqueness of solution
In this context, we employ a fixed-point approach to examine the existence and uniqueness of a solution. To 
simplify the analysis, under assumption (H ) : (H), we take into account the following considerations. For 
the S(t), Ŝ(t),E, Ê(t),H(t), Ĥ(t),P(t) and P̂(t) ∈ L[0, 1] be continuous function, such that ∥S∥ ≤ b1,∥E
∥ ≤ b2, ∥H∥ ≤ b3,∥P∥ ≤ b4 for non-negative constant b1, b2, b3, b4 > 0. Additionally, we introduce the 
following constants Φ1 = β1b2, Φ2 = β1b1, Φ3 = β3 + β2, Φ4 = β3.

Theorem 5.1  The kernels Lj , for j = 1, 2, 3, 4 holds on Lipschitz condition, if the assumption (H ) is satisfied 
and Φj < 1 for j = 1, 2, 3, 4.

Proof  The desired outcome is achieved under the assumption (H ). Similarly, by applying analogous reasoning 
to L1(t, S)(t,S) and utilizing the Lipschitz condition, we derive the following result.

	

∥∥L1(S) − L1(Ŝ)
∥∥ =

∥∥[β2H − β1ES] −
[
β2H − β1EŜ

]∥∥ ,

≤β1∥S − Ŝ∥∥E∥ = Φ1∥S − Ŝ∥

this shows that Φ1 = β1b2.
Consequently, L1 satisfies the Lipschitz condition with a Lipschitz constant Φ1. Similarly, the other kernels 

also adhere to the Lipschitz condition.

	

∥∥L2(E) − L2(Ê)
∥∥ =

∥∥[β3H + β2H − β1ES] −
[
β3H + β2H − β1ÊS

]∥∥ ,

≤β1∥E − Ê∥∥S∥ = Φ2∥E − Ê |,

where Φ2 = β1b1. Thus, L2 fulfiles the Lipschitz condition with constant Φ2. Then

	

∥∥L3(H) − L3(Ĥ)
∥∥ =

∥∥[−β3H − β2H + β1ES] −
[
−β3Ĥ − β2Ĥ + β1ES

]∥∥ ,

≤ (β3 + β2) ∥H − Ĥ∥ = Φ3∥H − Ĥ∥,

where Φ3 = β3 + β2. Thus, L3 fulfiles the Lipschitz condition with constant Φ3. Then

	
∥∥L4(P) − L4(P̂)

∥∥ =
∥∥[β3P] −

[
β3P̂

]∥∥ , ≤ β3∥P − P̂∥ = Φ4∥P − P̂|∥.,

Where Φ4 = β3, it follows that L3 satisfies the Lipschitz condition with the constant Φ4. Consequently, from 
Eq. (3), all kernels Lj , for j = 1, 2, 3, 4, satisfy the Lipschitz property, leading to the desired result.

	





S(t) = S(0) + 1
Γ(δ(t))

∫ t

0 (t − v)δ(t)−1L1(v, S(v))dv

E(t) = E(0) + 1
Γ(δ(t))

∫ t

0 (t − v)δ(t)−1L2(v,E(v))dv

H(t) = H(0) + 1
Γ(δ(t))

∫ t

0 (t − v)δ(t)−1L3(v,H(v))dv

P(t) = P(0) + 1
Γ(δ(t))

∫ t

0 (t − v)δ(t)−1L4(v,P(v))dv. � □
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Theorem 5.2  If the variable-order Caputo fractional model (2) has a solution under assumption ( Ĥ  ), then

	 ζ = max [Φ1, Φ2, Φ3, Φ4] < 1.

Proof  We define four functions ω1κ, ω2κ, ω3κ, and ω4κ using a sequential iterative approach based on (2), as 
follows.

	

{
ω1κ(t) = Sκ+1(t) − S(t), ω2κ(t) = Eκ+1(t) − E(t),
ω3κ(t) = Hκ+1(t) − H(t), ω4κ(t) = Pκ+1(t) − P(t). � (7)

As a result, we obtain the following.

	





∥ω1κ(t)∥ = 1
Γ(δ(t))

∫ t

0 (t − v)δ(t)−1 ∥[L1 (v, Sκ(v)) − L1 (v, Sκ(v))]∥ dv

≤ tδ(t)

Γ(δ(t)+1) Φ1 ∥Sκ − S∥
≤ tδ(t)

Γ(δ(t))+1) Φκ
1 ∥S1 − S∥.

� (8)

According that, we can estimate

	





∥ω2κ(t)∥ = 1
Γ(δ(t))

∫ t

0 (t − v)δ(t)−1 ∥[L2 (v,Eκ(v)) − L2 (v,Eκ(v))]∥ dv

≤ tδ(t)

Γ(δ(t)+1) Φ2 ∥Eκ − E∥
≤

[
tδ(t)

Γ(δ(t)+1)

]κΦκ
2 ∥E1 − E∥.

� (9)

	




∥ω3κ(t)∥ = 1
Γ(δ(t))

∫ t

0 (t − v)δ(t)−1 ∥[L3 (v,Hκ(v)) − L3 (v,Hκ(v))]∥ dv

≤ tδ(t)

Γ(δ(t)+1) Φ3 ∥Hκ − H∥
≤

[
tδ(t)

Γ(δ(t)+1)

]κΦκ
3 ∥H1 − H∥.

� (10)

Finally, we obtain

	




∥ω4κ(t)∥ = 1
Γ(δ(t))

∫ t

0 (t − v)δ(t)−1 ∥[L4 (v,Pκ(v)) − L4 (v,Pκ(v))]∥ dv

≤ tδ(t)

Γ(δ(t)+1) Φ4 ∥Pκ − P∥
≤

[
tδ(t)

Γ(δ(t)+1)

]κΦκ
4 ∥P1 − P∥.

� (11)

Using Eqs. (8)-(11) and taking the limit on both sides as κ → ∞, the aforementioned functions demonstrate the 
following property of ωjκ (t) → 0 for j = 1, 2, 3, 4, given that Φj < 1, (j = 1, 2, 3, 4). Thus, we establish that 
the model (2) has a solution, thereby completing the proof.� □

Theorem 5.3  The variable-order Caputo fractional model (2) possesses a unique solution provided that assumption 
( H ) holds and tδ(t)

Γ(δ(t)+1) Φj ≤ 1, for j ∈ N 4
1 .

Proof  Let us consider an alternative existing solution (Ŝ, Ê, Ĥ, P̂) with initial values (Ŝ(0), Ê(0), Ĥ(0), P̂(0)), 
we have

	
Ŝ(t) =Ŝ(0) + 1

Γ(δ(t))

∫ t

0
(t − v)δ(t)−1L1(v, Ŝ(v))dv

then, following:

	

Ê(t) =Ê(0) + 1
Γ(δ(t))

∫ t

0
(t − v)δ(t)−1L2(v, Ê(v))dv

Ĥ(t) =Ĥ(0) + 1
Γ(δ(t))

∫ t

0
(t − v)δ(t)−1L3(v, Ĥ(v))dv

P̂(t) =P̂(0) + 1
Γ(δ(t))

∫ t

0
(t − v)δ(t)−1L4(v, P̂(v))dv.

Again we have,
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|S − Ŝ| = 1
Γ(δ(t))

∫ t

0
(s − v)δ(t)−1 ∥∥L1(v, Ê(v)) − L1(v,E(v))

∥∥ dv

≤ 1
Γ(δ(t))

∫ t

0
(s − v)δ(t)−1Φ1

∥∥S1 − Ŝ
∥∥

≤ sδ(t)

Γ(δ(t) + 1)Φ1
∥∥S1 − Ŝ

∥∥.

Then, we have

	
sδ(t)

Γ(δ(t) + 1)Φ1∥S1 − Ŝ∥ ≤ 0.� (12)

The inequality (12) mentioned above holds true in the case where ∥S− Ŝ∥ = 0. This subsequently leads to the 
conclusion that S = Ŝ, thereby establishing the uniqueness of the solution. The same results also exist for E,H, 
and P. Thus, it can be concluded that a unique solution is admitted by the model (2).� □

 Stability analysis of variable-order enzyme kinetics model
To strengthen the clarity of the stability analysis, we now provide a detailed explanation of the application of 
the Hyers-Ulam and generalized Hyers-Ulam stability concepts to the proposed variable-order enzyme kinetics 
model. Following the framework outlined in68–71, we establish conditions under which the approximate solution 
remains close to the exact solution, despite small perturbations. This analysis demonstrates that the model 
exhibits robustness against minor modeling errors or parameter uncertainties, which is critical for reliable 
simulation and interpretation of enzymatic dynamics. The inclusion of these references also situates our analysis 
within the broader context of stability studies for fractional and variable-order systems.The primary focus of 
this paper is the Hyers-Ulam stability analysis of the model (2). If and only if there is a continuous function 
ϑ1 (depending on S ), then the function S is a solution (13).

The novelty of this work lies in extending the Hyers–Ulam stability analysis to a variable-order Caputo 
fractional derivative model of enzyme kinetics, which has not been widely studied in the existing literature. Unlike 
most previous works that consider a constant fractional order, our model allows δ(t) ∈ (0, 1], introducing a 
time-dependent memory effect and making the analysis applicable to more realistic, non-stationary biochemical 
processes. Additionally, we incorporate time delays in the interaction terms, which significantly increases the 
complexity and requires modifying the stability framework compared to models without delays. Another 
important distinction is that our study combines existence, uniqueness, boundedness, and Hyers–Ulam stability 
within the same theoretical setting, ensuring a comprehensive understanding of the system’s behavior. Finally, 
we support the theoretical results with numerical simulations using a generalized predictor–corrector scheme 
adapted for variable-order systems, whereas many previous works are limited to theoretical discussion only. 
These aspects collectively highlight the novelty and originality of the proposed research methods.

Definition 6.1  71 Hyers-Ulam stability provides in the variable order Caputo fractional enzyme kinetics model 
(2). If there exists non-negative constants, ψj  such that ϵj  for j ∈ 1, 2, 3, 4 the function that (Ŝ, Ê, Ĥ, P̂) satisfies

	

{
| Dδ(t)Ŝ(t) − L1(t, Ŝ)

∣∣≤ ϵ1, | Dδ(t)Ê(t) − L2(t, Ê)
∣∣ ≤ ϵ2

| Dδ(t)Ĥ(t) − L3(t, Ĥ)
∣∣≤ ϵ3, | Dδ(t)P̂(t) − L4(t, P̂)

∣∣ ≤ ϵ4
� (13)

Fulfills the model (2), and exists (S,E,H,P)

	

{
∥S − Ŝ∥ ≤ ψ1ϵ1, ∥E − Ê∥ ≤ ψ2ϵ2,
∥H − Ĥ∥ ≤ ψ3ϵ3, ∥P − P̂∥ ≤ ψ4ϵ4.

� (14)

where Lj , j ∈ 1, 2, 3, 4 are given in (4).

Remark 6.1  Suppose there exists a continuous function ϑ1 such that S satisfies the first inequality in (3).

	1.	 |ϑ1(s)| ≤ ϵ, and
	2.	 Dδ(t)Ŝ(s) = L1(s, Ŝ(s)) + ϑ1(s).

Theorem 6.1  Assuming the hypothesis H , then the model (2) is Hyers-Ulam stable if tδ(t)

Γ(δ(t)+1) Φj ≤ 1, for 
j ∈ N 4

1 .

Proof  Consider ϵ1 > 0, and the function S be arbitrary for that, | Dδ(t)Ŝ(t) − L1(t, Ŝ) |≤ ϵ1.

Then it follows as a function ϑ1 with |ϑ1(t)| < ϵ1, satisfying Dδ(t)Ŝ(t) = L1(t, Ŝ) + ϑ1(t).
As a result,
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Ŝ(t) = Ŝ(0) + 1
Γ(δ(t))

∫ t

0
(t − v)δ(t)−1L1(v, Ŝ(v))dv

+ 1
Γ(δ(t))

∫ t

0
(t − v)δ(t)−1ϑ1(v)dv.

Here S be the variable order Caputo fractional for the enzyme model (2) as a unique solution. Finally, we obtain

	
Ŝ(t) = Ŝ(0) + 1

Γ(δ(t))

∫ t

0
(t − v)δ(t)−1L1(v, Ŝ(v))dv

	

as so far,

|Ŝ(t) − S(t)| = 1
Γ(δ(t))

∫ t

0
(t − v)δ(t)−1|L1(v, Ŝ(v)) − L1(v, S(v))|dv

+ 1
Γ(δ(t))

∫ t

0
(t − v)δ(t)−1|ϑ1(v)|dv.

	

By this way, ∥S − Ŝ∥ =

[
tδ(t)

Γ(δ(t)+1) ϵ1
]

[
1 − tδ(t)

Γ(δ(t)+1) Φ1

]

Finally, we have

	

ψ1 :=

[
tδ(t)

Γ(δ(t)+1)

]
[
1 − tδ(t)

Γ(δ(t)+1) Φ1

]

then ∥Ŝ − S∥ ≤ ψ1ϵ1. In the same way, we can obtain the other solutions of

	




∥Ê − E∥ ≤ ψ2ϵ2,
∥Ĥ − H∥ ≤ ψ3ϵ3,
∥P̂ − P∥ ≤ ψ4ϵ4.

Hence, the variable-order Caputo fractional enzyme model (2) is Hyers-Ulam stable.� □

Numerical simulation
In this section, we utilize the FRK4M to solve the variable order enzyme kinetics model with distinct constant 
delays. Here, we consider the FRK4M order method for solving this model for t = 200 and 0 < δ(t) ≤ 1 with 
initial conditions S(0) = 10, E(0) = 5, H(0) = 4, and P (0) = 0.1. The system parameter values x = 0.0530 
y = 0.012, z = 0.040.

Figure 2 and Table 2 illustrates the time responses of a variable-order enzyme kinetic model governed by 
the fractional-order function δ(t) = 0.98 + 0.008 cos(t/10). The simulations are conducted under three delay 
scenarios: τ1 = τ2 = 0, τ1 = 0.5 & τ2 = 0, and τ1 = 0.5 & τ2 = 2. These variations aim to assess the impact 
of delay on the system’s components: substrate (S), enzyme (E), enzyme-substrate complex (H), and product (P). 
In Fig. 2a, the substrate concentration S(t) decreases rapidly in all cases, showing typical substrate consumption 
behavior. The constant delay scenario accelerates this decay slightly, suggesting enhanced enzyme-substrate 
interactions under memory effects. Figure 2b displays the time evolution of enzyme E(t), which increases over 
time and eventually stabilizes. Notably, the final concentration is higher under variable and constant delay 
conditions, indicating more efficient enzyme regeneration when memory is incorporated. Figure 2c shows 
the enzyme-substrate complex H(t), which initially peaks and then gradually decays. The magnitude of the 
peak is more prominent in the presence of delay, especially the time-varying case, implying a stronger initial 
reaction. Finally, Fig.  2d highlights the product concentration P(t), which exhibits an exponential increase, 
especially after t > 100. The variable delay enhances product accumulation compared to the no-delay case, 
demonstrating the significant effect of memory on the late-stage dynamics of the reaction. Figure 3 and Table 
3 presents the time responses of a distinct variable-order enzyme kinetic model, characterized by a fractional-
order function δ(t) = 0.95 + 0.001 sin(t/10). The figure compares the system behavior under three delay 
conditions: τ1 = τ2 = 0, τ1 = τ2 = 0.5, and τ1 = 0.5, τ2 = 2. These simulations highlight how delays and 
memory effects influence the dynamic behavior of substrate (S), enzyme (E), enzyme-substrate complex (H), 
and product (P). Figure 3a, the substrate S(t) shows a decreasing trend across all cases, reflecting the typical 
consumption behavior as the enzyme reaction proceeds. The decay is slightly faster under time-dependent delay, 
which may be attributed to enhanced catalytic interaction due to stronger memory effects. Figure 3b illustrates 
the time evolution of the enzyme E(t), which initially dips slightly and then increases towards a saturation point. 
The response is more pronounced in the variable delay scenario, where enzyme concentration reaches higher 
steady-state levels compared to the constant or zero-delay cases. Figure 3c shows the enzyme-substrate complex 
H(t), which exhibits an initial peak followed by a gradual decline. As seen in previous figures, this behavior is 
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amplified when delay is introduced, especially under time-varying conditions. The heightened peak suggests a 
more significant initial formation of the complex under memory-influenced kinetics. Finally, Fig. 3d shows the 
product concentration P(t), which grows exponentially over time. While all three delay settings yield similar 
qualitative trends, the time-dependent delay leads to a faster accumulation rate after t > 150, demonstrating the 
effect of fractional memory and delay on long-term product formation.

t δ(t) = 1 δ(t) = 0.97 δ(t) = 0.99 − (0.001/100)t

0 4 4 4

20 8.6746 8.0696 8.4733

40 5.2773 5.2181 5.2641

60 2.5465 2.7669 2.6209

80 1.1966 1.4502 1.2788

100 0.5589 0.7726 0.6261

120 0.2604 0.4215 0.3097

140 0.1212 0.2369 0.1557

160 0.0564 0.138 0.0801

180 0.0564 0.138 0.0801

200 0.0122 0.0533 0.0237

Table 2.  Enzyme-substrate complex concentration compartment for τ1 = 0.5, τ2 = 2 for different orders.

 

Figure 2.  Time responses of Variable order Enzyme model with δ(t) = 0.98 + 0.008 cos(t/10).
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Figure 4 and Table 4 illustrates the time-domain behavior of the enzyme system under three scenarios: integer-
order (δ = 1), constant fractional-order (δ = 0.97), and variable-order δ(t) = 0.99 − 0.001 sin(t/100). The 
plots show the concentration evolution of substrate S(t), enzyme E(t), enzyme-substrate complex H(t), and 
product P(t) over the simulation horizon.

As seen in Fig. 4a, the substrate concentration S(t) decreases over time in all cases due to substrate consumption 
in the enzymatic reaction. The variable-order model exhibits the fastest decay, indicating a stronger memory 

t δ(t) = 1 δ(t) = 0.97 δ(t) = 0.99(0.01/100)t

0 4 4 4

20 7.5752 7.0755 7.4095

40 4.5005 4.502 4.5078

60 2.1466 2.3824 2.2259

80 0.9959 1.2421 1.0753

100 0.4596 0.659 0.5219

120 0.2116 0.3586 0.2563

140 0.0974 0.2014 0.1281

160 0.0448 0.1174 0.0657

180 0.0448 0.1174 0.0657

200 0.0095 0.0458 0.0195

Table 3.  Enzyme-substrate complex concentration compartment for τ1 = τ2 = 0.5 for different orders.

 

Figure 3.  Time responses of distinct variable order Enzyme model with δ(t) = 0.95 + 0.001 sin(t/10).
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effect that accelerates the initial substrate conversion. The fractional-order model lags slightly behind, while the 
integer-order model maintains the slowest consumption rate.

In Fig. 4b, the enzyme concentration E(t) increases and stabilizes at a steady state. The integer-order case 
reaches the highest enzyme level, whereas the fractional and variable-order cases stabilize at lower values due 
to persistent memory damping. This suggests that non-integer dynamics may better capture enzyme regulation 
mechanisms that hinder excessive accumulation.

t δ(t) = 1 δ(t) = 0.97 δ(t) = 0.99(0.01/100)t

0 4 4 4

20 6.7753 6.3323 6.6285

40 4.1958 4.1811 4.1979

60 2.028 2.2559 2.1049

80 0.9414 1.1798 1.0183

100 0.4339 0.6261 0.4939

120 0.1995 0.3406 0.2422

140 0.0916 0.1912 0.121

160 0.0421 0.1115 0.062

180 0.0421 0.1115 0.062

200 0.0089 0.0434 0.0184

Table 4.  Composed of one molecule compartment for τ1 = τ2 = 0 for different orders.

 

Figure 4.  Comparison analysis of integer, fractional and variable order Enzyme model.
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Fig. 4c shows the enzyme-substrate complex H(t), peaking early before declining. The variable-order response 
has a slightly higher and sharper peak, indicating a more active initial binding process. This transient behavior 
highlights the impact of variable memory in amplifying reaction rates during early dynamics.

Finally, Figure 4d demonstrates the product formation P(t), which grows rapidly in all models. The variable-
order model leads to the fastest accumulation, surpassing both fractional and integer cases after t > 150. This 
behavior underscores the enhanced memory-driven reaction kinetics in variable-order systems, which capture 
long-term accumulation effects more accurately.

To highlight the effectiveness of the proposed variable-order fractional model, we compare its dynamics with 
those of the corresponding classical integer-order model (where the order δ(t) = 1). The simulation results 
show that the fractional model exhibits smoother and more gradual transitions, capturing memory effects that 
slow down or accelerate the reaction based on historical states. In contrast, the integer-order model responds 
more abruptly, lacking the capacity to represent fading or adaptive memory. This comparative study underscores 
the ability of the fractional framework to more accurately reflect the complex and time-dependent behavior of 
enzymatic processes, providing deeper biological insight.

Conclusion
In this study, we introduced a variable-order Caputo fractional derivative into an enzyme kinetics model with time 
delay to better capture memory effects and the nonlocal behavior of enzymatic reactions. The proposed variable-
order Caputo fractional model offers a significant advancement over both classical enzyme kinetics and existing 
fixed-order fractional models. While the classical Michaelis–Menten model assumes constant, memoryless 
dynamics, and fixed-order fractional models impose a constant memory effect, our approach allows the model 
memory to adapt dynamically over time. This enables the model to capture complex kinetic phenomena observed 
in real enzymatic processes, such as delayed product formation and prolonged transient responses, providing a 
richer and more realistic representation of biochemical reaction dynamics. By employing fixed-point theory, we 
established the existence and uniqueness of solutions for the proposed model. Furthermore, the stability analysis 
was conducted using Ulam–Hyers and generalized Ulam–Hyers concepts, confirming the model’s robustness 
under perturbations. Through numerical simulations, we demonstrated the intricate dynamics of the system 
and highlighted the significance of incorporating variable-order fractional differentiation and delay terms in 
refining enzyme kinetics models. The findings of this work contribute to a more accurate and comprehensive 
representation of biological catalytic processes, providing a valuable framework for further research in enzyme 
kinetics and related fields. Future research will extend the variable-order fractional enzyme kinetics model 
to complex reaction networks and multi-enzyme systems, incorporating state-dependent fractional orders to 
capture adaptive memory effects from environmental conditions. Machine learning integration will enhance 
parameter estimation and predictive accuracy, while distributed delays will improve biological realism. 
Experimental validation against real enzyme data and implementation in biotechnology and pharmaceutical 
processes will demonstrate practical applicability, supported by robust numerical methods and computational 
optimization for large-scale industrial applications.

Data availibility
All data generated or analysed during this study are included in this published article.
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