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High-dimensional longitudinal data present significant analytical challenges due to intricate within-
subject correlations and an overwhelming ratio of predictors to observations. To address these 
challenges, we introduce Mixed-Effect Gradient Boosting (MEGB), a novel R package that synergises 
gradient boosting with mixed-effects modelling to simultaneously account for population-level fixed 
effects and subject-specific random variability. MEGB provides a unified framework for analysing 
repeated measures data that accommodates complex covariance structures while harnessing gradient 
boosting’s inherent regularisation for robust feature selection and prediction. In comprehensive 
simulations spanning linear and nonlinear data-generating processes, MEGB achieved 35-76% lower 
mean squared error (MSE) compared to state-of-the-art alternatives like Mixed-Effect Random Forests 
(MERF) and REEMForest, while maintaining 55-70% true positive rates for variable selection in ultra-
high-dimensional regimes (p = 2000). Demonstrating practical utility, we applied MEGB to maternal 
cell-free plasma RNA data (n = 12 subjects, p = 33, 297 transcripts), where it identified 9 key 
placental transcripts driving fetal RNA dynamics across pregnancy trimesters.
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The statistical analysis of high-dimensional longitudinal data presents formidable challenges, primarily due 
to the dual complexity of managing intricate within-subject correlation patterns and addressing the “curse of 
dimensionality,” where the number of predictors (p) vastly exceeds the sample size (n)1. Longitudinal studies, 
which involve repeated measurements of subjects over time, inherently exhibit temporal dependencies and 
individual-specific variability. Traditional approaches such as linear mixed-effects models (LMMs) have been 
widely adopted to handle these dependencies by partitioning variance into fixed effects (population-level trends) 
and random effects (subject-specific deviations)2. Extensions like glmmlasso3 integrate L1-penalized regression 
(lasso) with LMMs to enable variable selection in high-dimensional settings, simultaneously estimating fixed 
effects and covariance structures while shrinking coefficients of noninformative predictors to zero. However, 
while glmmlasso improves upon classical LMMs by performing regularization, it remains constrained by the 
limitations of its underlying mixed-effects framework. Specifically, in ultrahigh-dimensional regimes (p ≫ n), 
the method suffers from computational instability, overreliance on restrictive parametric assumptions (e.g., 
linearity and Gaussian random effects), and diminished power to distinguish true signals from noise due to 
the nonconvexity of the penalized likelihood objective3,4. This issue is particularly acute in biomedical research, 
where high-throughput technologies such as genomics, proteomics, and metabolomics generate datasets with 
thousands of longitudinally tracked molecular characteristics between individuals5. For example, in longitudinal 
transcriptomic studies, glmmlasso struggles to model nonlinear gene expression trajectories or interactions while 
scaling to datasets with predictors p > 100. These challenges underscore the need for advanced methodologies 
that balance interpretability, computational efficiency, and predictive accuracy while accommodating both high-
dimensionality and longitudinal structure without relying on restrictive parametric forms.

In recent years, ensemble machine learning methods, particularly Gradient Boosting Machines (GBMs), 
have emerged as powerful alternatives for high-dimensional data analysis. Introduced by Friedman6, gradient 
boosting operates by iteratively constructing an ensemble of weak learners (e.g., decision trees) that minimize a 
differentiable loss function. This approach excels in high-dimensional contexts due to its inherent regularization, 
adaptability to nonlinear relationships, and robust variable selection capabilities7,8. Theoretical advances, such 
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as the consistency of boosting algorithms9 and Bayesian extensions that incorporate sparsity-inducing priors10, 
have further solidified its theoretical foundation. Despite these strengths, conventional GBMs are designed for 
cross-sectional data and fail to account for within-subject correlations in longitudinal studies, limiting their 
ability to leverage the rich temporal structure of repeated measurements.

To bridge this gap, researchers have proposed adaptations of tree-based models adapted for longitudinal and 
clustered data. Early efforts of Segal11 introduced multivariate regression trees that accommodate correlated 
responses, allowing basic handling of repeated measures. Subsequent innovations, such as the integration of 
polynomial mixed effects models within tree nodes by Eo and Cho12, improved the ability to model non-linear 
temporal trajectories. Wei et al.13,14 further advanced this paradigm by combining mixed-effects models with 
regression splines, using likelihood ratio tests during node splitting to improve model flexibility. While these 
methods represent progress, their reliance on stepwise splitting criteria and parametric assumptions limits 
scalability in high-dimensional settings, where computational efficiency and nonparametric adaptability are 
paramount.

Semi-parametric approaches have gained traction as a flexible middle ground between fully parametric and 
nonparametric models. Hajjem et al.15,16 pioneered tree-based semi-parametric mixed-effects models, where 
regression trees or Random Forests estimate nonparametric components while parametric terms capture 
random effects. Their Expectation-Maximization (EM) algorithm iteratively updates fixed and random effects, 
balancing flexibility with structure. Similarly, Sela and Simonoff17 developed mixed-effects regression trees, and 
Fu and Simonoff18 employed conditional inference trees for clustered data. Despite these innovations, many 
methods oversimplify correlation structures or struggle with high-dimensional data. Recent work by Capitaine 
et al.19 addressed these limitations through Random Forest adaptations like the Mixed-Effect Random Forest 
(MERF) and REEMForest, which incorporate stochastic serial correlation effects via variants such as SMERF 
and SREEMForest. However, these frameworks remain computationally intensive and lack the gradient boosting 
framework’s variable selection efficiency.

Parallel advancements in boosting algorithms have expanded their utility in machine learning. For 
instance, Bayesian additive regression trees10 integrate sparsity-inducing priors to enhance performance in 
high-dimensional cross-sectional data, while Zhu et al.20 incorporated reinforcement learning to optimize tree 
construction. Recent work by Sigrist21,22 introduced GPBoost, a method combining gradient boosting with 
Gaussian process or mixed-effects models to handle correlated data, such as longitudinal or spatial datasets. 
GPBoost leverages tree-based ensembles for fixed effects and covariance functions for random effects, offering 
improved predictive accuracy in settings with structured dependencies. Despite these developments, a critical 
gap persists: few methods explicitly integrate gradient boosting with mixed-effects modelling to address high-
dimensional longitudinal data while balancing flexibility and scalability. This shortfall is particularly evident 
in biomedical applications, such as longitudinal genomic studies tracking cell-free RNA during pregnancy, 
where models must simultaneously handle thousands of predictors, nonlinear interactions, and within-subject 
variability23–25.

To address these limitations, we introduce MEGB (Mixed-Effect Gradient Boosting), an R package designed 
for high-dimensional longitudinal data analysis. MEGB synergizes the predictive power of gradient boosting 
with the rigour of mixed-effects modelling, enabling robust analysis of repeated measures in scenarios where 
p ≫ n. Key innovations include: 

	1.	 High-Dimensional Scalability: MEGB efficiently handles datasets with thousands of predictors, making it 
ideal for omics research (e.g., genomics, proteomics).

	2.	 Within-Subject Correlation Modeling: By integrating random effects into the boosting framework, MEGB 
captures individual-specific trajectories and temporal dependencies, outperforming conventional GBMs and 
Random Forests.

	3.	 Nonlinear Interaction Capture: The algorithm accommodates complex predictor-response relationships, 
which are crucial for modelling biological processes.

	4.	 Variable Selection: MEGB’s iterative fitting process prioritizes relevant predictors, reducing noise from re-
dundant features.

The remainder of this paper is structured as follows: First, we detail MEGB’s methodology, including fixed- 
and random-effect estimation. Next, we present simulation studies evaluating its performance under varying 
data conditions, followed by a practical guide to implementing MEGB using the R package. We then apply 
MEGB to a real-world dataset involving longitudinal cell-free maternal-fetal RNA analysis, demonstrating its 
utility in biomedical research. Finally, we discuss results, limitations, and future directions for advancing high-
dimensional longitudinal data analysis.

Mixed effect gradient boosting
Mixed Effect Gradient Boosting (MEGB) is a hybrid statistical and machine learning technique that integrates 
the strengths of gradient boosting with mixed-effects modelling, addressing the unique challenges of longitudinal 
or hierarchical data. This framework is particularly suitable for data with repeated measurements or nested 
structures, where fixed and random effects play crucial roles. Fixed effects represent population-level trends, 
while random effects capture subject-specific deviations. By combining these elements, MEGB provides a robust 
method for modelling complex dependencies within data, as Laird & Ware26 emphasized in their foundational 
work on mixed-effects models.

The MEGB model for a continuous response variable Yij  is formulated as:

	 Yij = f(Xij) + Zijbi + ϵij ,� (1)
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where i = 1, . . . , n indexes subjects, and j = 1, . . . , ni indexes repeated measurements (e.g., time points) 
for the i-th subject. Yij ∈ R is the continuous observed outcome for subject i at measurement j. Xij ∈ Rp 
and Zij ∈ Rq  are time-varying (or time-invariant) predictors for fixed and random effects, respectively. 
The term f(Xij) denotes the nonlinear fixed-effects function, modelled via gradient boosting to capture 
complex interactions and nonlinear relationships. The subject-specific random effects bi ∼ N (0, B) follow a 
multivariate normal distribution with covariance matrix B. The residual error term ϵij ∼ N (0, σ2) is assumed 
to be independent of bi. Gradient boosting6 iteratively constructs f(Xij) by fitting weak learners (e.g., decision 
trees) to residuals, enabling MEGB to model nonlinear fixed effects without assuming a parametric form. Unlike 
linear mixed models, f(Xij) flexibly adapts to interactions (e.g., gene-environment) and nonlinear trends (e.g., 
time-varying biomarker trajectories). The random effects term Zijbi accounts for within-subject correlations, 
where Zij  typically includes time-varying covariates (e.g., measurement time) or subject-level confounders. 
The residual error term ϵij ∼ N (0, σ2) accounts for unexplained variance. Together, these components form a 
hierarchical model with the covariance structure:

	 V i = ZiBZ⊤
i + σ2I,� (2)

where Zi is the design matrix for random effects. This structure ensures that the MEGB algorithm incorporates 
both within-subject and between-subject variability, making it ideal for scenarios where traditional gradient 
boosting might fail to account for hierarchical dependencies27.

The iterative procedure in MEGB alternates between estimating the fixed effects function f(Xij) using gradient 
boosting and updating random effects and variance components through the Expectation-Maximization (EM) 
algorithm. This integration enables MEGB to efficiently balance the dual objectives of prediction and inference, 
critical for longitudinal data analysis. Here, prediction refers to the model’s ability to forecast results (e.g. future 
biomarker levels) for new subjects or time points by using fixed effects at the population level (f(Xij)) and 
subject-specific random effects (Zijbi). Gradient boosting drives predictive accuracy by flexibly modelling 
nonlinear relationships and interactions among fixed-effect predictors (e.g., gene-environment dynamics), 
even in high-dimensional settings. Inference, on the contrary, encompasses the model’s ability to (1) identify 
biologically meaningful predictors through stable variable selection (e.g. transcripts with high importance scores 
across cross-validation replicates), (2) quantify fixed effects at the population level (e.g. effect size and direction 
of a gene on the result), and (3) estimate variance components (B, σ2) that characterize variability within and 
between subjects. Unlike “black-box” machine learning methods, MEGB retains interpretability through its 
mixed-effects structure, allowing researchers to distinguish global trends (fixed effects) from individual deviations 
(random effects) and assess their statistical significance. By unifying the predictive power of gradient boosting 
with the rigour of mixed effects, MEGB avoids the trade-off between precision and interpretability: boosting 
captures complex fixed-effect patterns, while the EM algorithm ensures reliable inference in both population 
parameters and subject-specific trajectories. This dual capability is particularly vital in biomedical applications, 
where both forecasting patient outcomes and understanding biological mechanisms are paramount. This blend 
of flexibility and structure makes MEGB a valuable tool in diverse applications, from biomedical research to 
social sciences, where longitudinal or nested data structures are common28.

MEGB mitigates overfitting through three integrated mechanisms: (1) Gradient boosting regularization 
via shrinkage (step size η = 0.05) and tree depth constraints (max depth = 3-5), limiting incremental updates 
and model complexity; (2) EM-driven estimation of random effects, which borrows strength across subjects by 
shrinking subject-specific estimates b̂i toward zero via the shared covariance B; and (3) Early stopping during 
boosting iterations determined by out-of-sample validation loss (10-fold cross-validation). For small samples 
(n < 30), we further constrain random effects by imposing diagonal B structures and increasing regularization 
via reduced tree depths (max depth = 2). These mechanisms collectively prevent over-parameterization while 
maintaining subject-specific flexibility.

While both MEGB and GPBoost21,22 integrate gradient boosting with structured modelling for correlated 
data, their methodological frameworks diverge critically. GPBoost couples tree-based fixed effects with Gaussian 
processes (GPs) or parametric mixed-effects models, using kernel-based covariances to capture spatial/temporal 
dependencies. MEGB employs a parsimonious mixed-effects framework, combining gradient boosting with 
explicit subject-specific random effects and EM-estimated variance components. This structure avoids GPBoost’s 
theoretical O(n3) kernel inversion, replacing it with linear-time updates (B = 1

n

∑
bib

⊤
i ) that scale efficiently 

to large n asymptotically. However, as would be observed later in the results section, GPBoost’s low-rank 
approximations and optimized implementations often yield faster practical runtimes, even in high-dimensional 
settings. Furthermore, MEGB introduces sparsity-inducing regularization for both fixed and random effects, 
enabling feature selection in ultra-high-dimensional regimes (p ≫ n), while GPBoost prioritizes covariance 
flexibility over sparsity. GPBoost’s kernel-based approach excels in modelling nonparametric spatial/smooth 
temporal correlations, whereas MEGB’s parametric random-effects structure (bi) may struggle with highly 
nonstationary dependencies. Conversely, MEGB inherently captures non-linear fixed-effect interactions 
via gradient boosting, avoiding explicit kernel design. Thus, MEGB’s computational advantages lie primarily 
in scalable EM updates and regularization for high-dimensional settings, rather than raw speed. In practice, 
MEGB is better suited for high-dimensional longitudinal data (e.g., large-p biomedical datasets with hierarchy), 
while GPBoost excels for both low- and high-dimensional spatial data with stationary covariances. Both trade 
flexibility and scalability, but MEGB’s EM-driven framework addresses challenges in feature selection and ultra-
high-dimensional inference.

Scientific Reports |        (2025) 15:30927 3| https://doi.org/10.1038/s41598-025-16526-z

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Estimation of fixed and random effects
The Mixed Effect Gradient Boosting (MEGB) algorithm combines gradient boosting for fixed effects estimation 
with an Expectation-Maximization (EM) framework to refine random effects and variance components 
iteratively. In the initialization step, random effects (bi) are set to zero, and variance components (σ2 and 
B) are initialized. Here, bi captures the subject-specific deviations, while σ2 models residual variance, and B 
represents the covariance of random effects. These components form the basis for mixed models, as described 
in foundational works by Laird & Ware26. This initialization ensures a neutral starting point for the iterative 
procedure, aligning with the principles of EM algorithms29.

In the iterative estimation step, the algorithm alternates between estimating fixed and random effects using 
the EM principles. First, a pseudo-response (Y ∗

ij) is computed by adjusting the observed response (Yij) for the 
current random effects estimate:

	 Y ∗
ij = Yij − Zij b̂i.� (3)

A gradient boosting model is then fitted to Y ∗
ij  to estimate the fixed effects function f(Xij). The estimation 

procedure for Gaussian responses aims to iteratively improve predictions by adding new trees that minimize the 
residual sum of squares (RSS). At iteration m, the model updates the prediction f̂m−1(Xij) by adding a new 
tree hm(Xij):

	 f̂m(Xij) = f̂m−1(Xij) + η · hm(Xij),� (4)

where η is the learning rate. The loss function for Gaussian responses is defined as:

	
L(Ŷij , Yij) =

n∑
i=1

ni∑
j=1

(
Yij − Ŷij

)2
,� (5)

where Yij  is the true response and Ŷij = f̂m(Xij) is the predicted response for subject i at measurement j. The 
gradient of this loss with respect to f̂m(Xij) gives the negative residuals:

	
g

(m)
ij = − ∂L

∂f̂m(Xij)
= Yij − f̂m(Xij),� (6)

which are used to fit the next tree. The tree hm(Xij) is trained to predict g(m)
ij , solving:

	
ĥm(Xij) = arg min

hm

n∑
i=1

ni∑
j=1

(
g

(m)
ij − hm(Xij)

)2
.� (7)

The fitted tree ĥm(Xij) is then scaled by a step size η, and the prediction for each subject-measurement pair is 
updated as:

	 f̂m(Xij) = f̂m−1(Xij) + η · ĥm(Xij),� (8)

where Xij  represents the predictor vector for subject i at measurement j, and f̂m(Xij) is the cumulative 
prediction after m iterations. This update rule ensures that the gradient boosting component adapts to both 
cross-sectional trends (via Xij) and temporal dependencies (via repeated j) inherent in longitudinal data. The 
η learning rate is typically chosen via cross-validation to balance underfitting and overfitting. This method of 
boosting with Gaussian loss has been shown to work effectively in various regression tasks, with the gradient 
boosting algorithm being widely applied for its efficiency and predictive power6,7. Once the fixed effect 
component f̂m(Xij) has been estimated, the next step involves updating the random effects using the Best 
Linear Unbiased Prediction (BLUP) formula:

	 b̂i = BZ⊤
i

(
ZiBZ⊤

i + σ2I
)−1 (Y i − f(Xi)) .� (9)

This step minimizes the joint prediction error, with V i = ZiBZ⊤
i + σ2I  serving as the covariance matrix. 

Maximum likelihood estimates of σ2 and B are derived by solving marginal likelihood equations, ensuring 
that variance components are updated efficiently in line with methods described by Pinheiro & Bates27. The 
convergence is monitored using the log-likelihood of the model:

	
log L = −1

2
∑

i

[
log |V i| + (Y i − f(Xi))⊤ V −1

i (Y i − f(Xi))
]

.� (10)

Iterations stop when the relative improvement in log-likelihood falls below a predefined threshold (δ). This 
ensures computational efficiency while maintaining model accuracy. The algorithm outputs the final gradient 
boosting model (f(X)), estimates of random effects (b̂i), and variance components (σ2 and B). This hybrid 
approach effectively bridges the gap between machine learning techniques and classical mixed-effects modelling, 
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offering robust solutions for hierarchical or clustered data28. After convergence, predictions for subject i at 
measurement j integrate fixed and random effects:

	 Ŷij = f̂(Xij) + Zij b̂i.� (11)

This combines population-level trends (f̂(Xij)) and subject-specific deviations (Zij b̂i), capturing both global 
patterns and individual variability19.

Algorithm 1.  Mixed Effect Gradient Boosting (MEGB)
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Estimation of variance components
The estimation of variance components, including B (the covariance of random effects) and σ2 (the residual 
variance), is central to the MEGB algorithm. These components are estimated through a likelihood-based 
approach that alternates between expectation and maximization steps. The likelihood function combines the 
contributions of the fixed and random effects and captures the hierarchical structure of the data. By maximizing 
the joint log-likelihood of the observed data, MEGB ensures that the variance components are accurately 
estimated to support reliable prediction and inference26.

The Expectation-Maximization (EM) algorithm is employed to estimate variance components iteratively. 
In the E-step, the expected value of the log-likelihood function, conditioned on the current estimates of B and 
σ2, is computed. This involves calculating the conditional distribution of the random effects given the observed 
data and the current estimates of the parameters. In the M-step, the expected log-likelihood is maximized with 
respect to B and σ2, resulting in updated estimates. The updated variance components are given by:

	

B(t+1) = 1
N

N∑
i=1

b̂ib̂
⊤
i ,

σ2(t+1) = 1∑
i,j

nij

N∑
i=1

ni∑
j=1

(
Yij − f̂(Xij) − Zij b̂i

)2
.

The iterative process continues until the relative change in the log-likelihood falls below a predefined threshold 
δ, indicating convergence. This iterative refinement ensures that the estimates of variance components are robust 
and aligned with the data structure. The EM algorithm’s ability to handle missing or incomplete data further 
enhances its suitability for hierarchical models, as it leverages the full data likelihood rather than relying on 
complete-case analysis29,30.

Simulation design
To rigorously evaluate the performance of the Mixed-Effect Gradient Boosting (MEGB) algorithm against state-
of-the-art methods, including Mixed-Effect Random Forest (MERF), Random Effect Expectation Maximization 
Forest (REEMForest), Random Forest (RF), Gradient Boosting Machine (GBM), and Linear Mixed-Effect Model 
(LMM), we conducted a comprehensive simulation study. Data were generated using the simLong function 
from the MEGB package, which allows flexible specification of longitudinal data structures with customizable 
parameters. Below, we detail the data generation process, model specifications, and simulation scenarios.

Data generation framework
The longitudinal datasets were generated under a mixed-effects model framework that accommodates both fixed 
and random effects, temporal correlation, and high-dimensional predictors. The model structure is defined as:

	

Yij = f(Xij)︸ ︷︷ ︸
Fixed Effects

+ Z⊤
ijbi︸︷︷︸

Random Effects

+ ϵij︸︷︷︸
Noise

, i = 1, . . . , n; j = 1, . . . , ni,� (12)

where:

•	 Yij  is the response for subject i at time j,
•	 f(Xij) is the fixed-effect term modeled as a function of p predictors (only the first relp are relevant),
•	 Zij ∈ Rq  is the random-effects design matrix (e.g., intercept and slope),
•	 bi ∼ N(0, ΣZ) are subject-specific random effects with covariance ΣZ ,
•	 ϵij ∼ N(0, σ2) is Gaussian noise.

Covariance structures
Temporal Correlation: Within-subject measurements are simulated to follow a first-order autoregressive 
(AR(1)) covariance structure. This captures the realistic decay of correlation between repeated measurements 
over time. Let the response vector for subject i be Y i = (Yi1, . . . , YiT )⊤, where T  is the number of time points. 
The temporal correlation is modelled explicitly through the within-subject covariance matrix Σwithin ∈ RT ×T , 
whose entries are defined as:

	 Σwithin[s, t] = ρ
|s−t|
W , s, t = 1, . . . , T,� (13)

where ρW ∈ [0, 1) controls the rate of correlation decay with increasing time lag |s − t|. For example, if 
ρW = 0.8, measurements one time unit apart have a correlation of 0.8, two units apart 0.82 = 0.64, and so 
on. To generate the response Y i, the within-subject errors ϵi = (ϵi1, . . . , ϵiT )⊤ are drawn from a multivariate 
normal distribution:

	 ϵi ∼ N (0, σ2Σwithin),

where σ2 scales the residual variance. The full response for subject i at time t is then:

	 Yit = f(Xit) + Zitbi + ϵit.
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Here, Σwithin directly governs the temporal dependencies in the residuals ϵit, ensuring that measurements 
closer in time are more strongly correlated. This AR(1) structure is widely used in longitudinal studies to mimic 
biological or behavioural processes where recent observations are more predictive than distant ones.

Random Effects Covariance: The covariance matrix ΣZ  for random intercepts and slopes is:

	
ΣZ =

[
τ2

0 ρZτ0τ1
ρZτ0τ1 τ2

1

]
, where τ0 = random_sd_intercept, τ1 = random_sd_slope.� (14)

Predictor relationships
The fixed-effect term f(Xij) was modeled under two scenarios:

Linear Case:

	 f(Xij) = X(1:relp)
ij β, β = [β1, . . . , βrelp ]⊤ = 1relp .� (15)

Nonlinear Case: Inspired by19, we define nonlinear trajectories for the first 6 predictors:

	
X

(1)
ij = 2.44 + 0.04 ·

(
tj − (tj − 6)2

tj/3

)
+ N (0, 0.2), � (16)

	 X
(2)
ij = 0.5tj − 0.1(tj − 5)2 + N (0, 0.2), � (17)

	 X
(3)
ij = 0.25tj − 0.05(tj − 6)2 + N (0, 0.2), � (18)

	
X

(4)
ij = cos

(
tj − 1

3

)
+ N (0, 0.2), � (19)

	 X
(5)
ij = 0.1tj + sin(0.6tj + 1.3) + N (0, 0.2), � (20)

	 X
(6)
ij = −0.1t2

j + N (0, 0.2), � (21)

where tj  denotes the j-th time point. The response is then computed as:

	
Yij =

relp∑
g=1

βgX
(g)
ij + Z⊤

ijbi + ϵij , βg = 1∀g.� (22)

Simulation scenarios
We evaluated the algorithms under the following configurations:

•	 Sample Size: The simulation uses n = 20 subjects with ni = 10 repeated measurements per subject (N = 200 
total observations) to mimic small-to-moderate longitudinal studies. Regarding scalability, MEGB inherits 
the scalability of gradient boosting machines (GBMs)6, which efficiently handle large N  (e.g. N > 105) via 
parallel tree building. The computational limits depend on hardware, but the runtime of MEGB scales line-
arly with N  in practice, as its EM updates avoid costly inversions of the covariance matrix. For reliable fixed/
random effects estimation, MEGB requires n ≥ 10 subjects (to stabilize the covariance of random effects B) 
and ni ≥ 2 time points (to model trends within the subject). For smaller n, standard GBM (without mixed 
effects) is preferable. The validity of MEGB depends on the robustness of GBM: it performs well in settings 
where GBM is reliable (e.g. N ≥ 20), provided that sufficient subjects (n ≥ 10) exist to estimate random 
effects.

•	 Dimensionality: p ∈ {6, 170, 2000} predictors, with relp = 6 active predictors.
•	 Correlation Parameters: ρW = 0.6 (temporal), ρZ = 0.6 (random effects).
•	 Variance Components:

	– Random intercept: τ2
0 = 0.5 (random_sd_intercept =

√
0.5),

	– Random slope: τ2
1 = 3 (random_sd_slope =

√
3),

	– Noise: σ = 0.5.

•	 Model Complexity: Linear and non-linear predictor-response relationships.

Evaluation framework
To rigorously evaluate the performance of MEGB against competing methods, we employ a multifaceted 
assessment framework that quantifies predictive precision, variable selection ability, and computational 
efficiency. In the following, we detail the evaluation metrics, cross-validation strategy, and statistical analysis 
procedures.
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Performance metrics
Predictive accuracy (MSE)
The MSE quantifies the deviation between predicted and observed outcomes, penalizing larger errors 
quadratically. For a test dataset with Ntest observations, MSE is defined as:

	
MSE = 1

Ntest

Ntest∑
i=1

(
Ŷir − Yir

)2
,� (23)

where:

•	 Ŷir : Predicted outcome for subject i at time r.
•	 Yir : Observed outcome for subject i at time r.
•	 Ntest: Total test observations across all subjects and time points.Prediction for Test Data: To compute Ŷir , 

distinct rules apply depending on whether subject i is new (unseen during training) or seen:

•	 New subjects: Predictions use only the fixed-effects component: 

	 Ŷ
(new)

ir = f̂(Xir),

 as random effects bi cannot be estimated for subjects absent from training data.

•	 Seen subjects: Predictions combine fixed and pre-estimated random effects: 

	 Ŷ
(seen)

ir = f̂(Xir) + Zirb̂i,

 where b̂i are the BLUP estimates from training.
In k-fold cross-validation, subjects (not observations) are partitioned into training/test folds to mimic real-
world deployment where new subjects lack historical data. For test folds containing new subjects, Ŷir  relies 
solely on fixed effects, reflecting the model’s ability to generalize beyond training clusters. This approach ensures 
MSE captures both within-subject (seen) and between-subject (new) prediction errors, aligning with clinical or 
longitudinal applications where future subjects are unknown during model training.

Variable selection accuracy (TPR and FPR)
The True Positive Rate (TPR) and False Positive Rate (FPR) jointly evaluate an algorithm’s ability to distinguish 
relevant from irrelevant predictors in high-dimensional settings. Let relp denote the number of truly relevant 
predictors and irrelp = p − relp the number of irrelevant predictors.

•	 True Positive Rate (TPR): Proportion of correctly identified relevant predictors: 

	
TPR = 1

relp

relp∑
r=1

I
(
Â(r)

p ∈ Ap

)
× 100%,� (24)

 where Ap is the ground-truth set of relevant predictors, Âp is the selected set, and I(·) is an indicator function 
(1 if predictor r is correctly selected, 0 otherwise).

•	 False Positive Rate (FPR): Proportion of irrelevant predictors incorrectly selected as relevant: 

	
FPR = 1

irrelp

irrelp∑
s=1

I
(
Â(s)

p /∈ Ap

)
× 100%.� (25)

In biomedical studies with thousands of omics features, high TPR ensures critical biomarkers are retained, 
while low FPR minimizes spurious associations. Since standard LMER31 does not perform variable selection, 
we derived pseudo-selection by ranking predictors by their absolute t-statistics (for fixed effects) and retaining 
the top m predictors. This mimics stepwise selection but inherits LMER’s instability in high dimensions, where 
p ≫ n inflates false positives due to multicollinearity and overfitting. While suboptimal, this approach ensures 
comparability with machine learning methods.

Computational efficiency (CT)
Computation time (CT) quantifies the practical feasibility of deploying the algorithm in time-sensitive medical 
applications. CT is measured as:

	 CT = Tend − Tstart,� (26)

where Tstart and Tend denote the start and end times (in seconds) of model training.
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Cross-validation strategy
To ensure robust performance estimation while preserving the temporal structure of longitudinal data, we 
implemented blocked k-fold cross-validation (CV):

•	 The dataset is partitioned into k = 10 folds, where each fold retains the complete longitudinal trajectory of 
a subset of subjects.

•	 For each iteration, k − 1 folds (90% of subjects) are used for training, and the remaining fold (10% of sub-
jects) is held out for testing.

•	 To mitigate variability, the entire 10-fold CV process is repeated 10 times, resulting in 100 independent train-
test splits.

Blocked CV prevents data leakage by ensuring that all observations from a single subject are confined to either 
the training or test set, mimicking real-world deployment scenarios. For each metric (MSE, TPR, CT), we 
computed the mean and standard error across the 100 replications.

Comparison methods
We benchmarked MEGB against seven state-of-the-art approaches:

•	 Mixed-Effect Random Forest (MERF)19: Integrates random effects into Random Forests.
•	 REEMForest19: Combines EM algorithms with Random Forests for longitudinal data.
•	 Random Forest (RF)32: Standard RF ignoring random effects (negative control).
•	 Gradient Boosting Machine (GBM)6: Baseline boosting model without mixed effects.
•	 Linear Mixed-Effects Model (LMER)31: Gold standard for linear longitudinal analysis (low/medium dimen-

sions only).
•	 glmmlasso33: L1-penalized mixed-effects model for variable selection.
•	 GPBoost21: Gradient boosting with Gaussian processes/mixed effects.

LMER serves as a linear benchmark, while RF/GBM highlight the cost of ignoring random effects. MERF, 
REEMForest, glmmlasso, and GPBoost represent the current state-of-the-art in mixed-effects machine learning. 
GPBoost is included for its ability to model structured dependencies via kernels, while glmmlasso provides a 
penalized likelihood framework for sparse mixed-effects regression.

For hyperparameter tuning, for fairness, all methods were tuned via a 10-fold repeated cross-validation. For 
tree-based methods (MEGB, MERF, REEMForest, RF, GBM, GPBoost), we optimized the number of trees (200-
500), tree depth (2-8) and the learning rate (MEGB/GBM/GPBoost: 0.01-0.2). For GPBoost, we additionally 
tuned the Gaussian process kernel parameters (Matérn length scale: 0.1-10). For glmmlasso, the regularization 
parameter λ was selected from 10−4 to 102. LMER used restricted maximum likelihood (REML) for variance 
estimation.

For variable selection, to ensure comparability, variable selection was performed for all methods (except 
LMER, which lacks built-in selection) by ranking predictors by importance scores and retaining the top m 
variables. For tree-based methods (MEGB, MERF, REEMForest, RF, GBM, GPBoost), importance was measured 
via permutation importance; for glmmlasso, nonzero coefficients after L1-penalization defined the selected set. 
Similarly, for LMER, the absolute t-statistics for the top m fixed effect variables were used for variable selection. 
This threshold (m) was fixed in all methods to isolate the selection performance from arbitrary cutoff choices.

Implementation details
All methods were implemented in R (v4.3.3) using the following packages:

•	 MEGB (proposed method),
•	 longituRF (MERF and REEMForest),
•	 lme4 (LMER),
•	 randomForest (RF),
•	 gbm (GBM).
•	 GPBoost (GPBoost).
•	 glmmlasso (glmmlasso).

Experiments were conducted on a PC with system configuration as follows: Intel(R) Core(TM)i7-8565U CPU @ 
1.8 GHz (8 CPUs), ∼ 2.0 GHz and 16 GB RAM to ensure reproducibility.

R package MEGB implementation

The R package MEGB is currently available on CRAN34 and GitHub35. The package consists of three exported 
functions: simLong, which simulates longitudinal data of various functional forms and dimensions; MEGB, 
which trains a mixed effect gradient boosting model; and predict.MEGB (or simply predict), which is an 
S3 function class, is used for predictions. Detailed information about function arguments, usage, and returned 
values can be found in34. This package relies on the gbm package for training the model and predicting the 
fixed effect component as outlined in model 1. Below is an example of how to use the MEGB package. It was 
tested on a simulated linear, low-dimensional longitudinal dataset where all the fixed effect predictors were 
relevant.
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The random component of the model included both a random intercept (column 1 of megb$random_
effects) and a random slope (column 2 of megb$random_effects). The Expectation-Maximization (EM) 
algorithm utilized by ‘MEGB‘ converged after 30 iterations, as indicated by the out-of-bag (OOB) mean squared 
error (MSE). The R code example includes a variable importance score, which measures the influence of each 
predictor on the response variable. As expected from the simulation design, all six predictors are relevant for 
predicting the response. The advantages of using MEGB are clearly demonstrated by the OOB error values. At 
iteration 1, the OOB error is approximately 3.98, reflecting the error when fitting a Gradient Boosting Machine 
(GBM) to the data without accounting for random effects. In contrast, by iteration 30, the OOB error decreases 
significantly to 0.17 for MEGB, showcasing a major improvement over the GBM’s OOB error at iteration 1.
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Simulation results
Prior to comparative benchmarking, we evaluated the convergence behaviour of the MEGB algorithm by 
analyzing log-likelihood trajectories across iterations for varying values of the critical hyperparameter 
nminobsinnode (minimum observations per terminal node)36. Smaller values (nminobsinnode ≤ 5) produced 
lower (more optimal) log-likelihoods by enabling finer splits, enhancing model flexibility at the cost of increased 
computation time and overfitting risk. Larger values (nminobsinnode ≥ 8) accelerated training but resulted in 
higher final log-likelihoods, indicative of underfitting. Across linear/nonlinear models and dimensionalities 
(p = 6, 2000), nminobsinnode ≤ 5 consistently achieved superior convergence (Fig.  1), though its impact 
diminished in high-dimensional nonlinear scenarios (p = 2000) due to predictor abundance overshadowing 
node granularity. Based on these results, we recommend nminobsinnode = 2 as the package default to balance 
accuracy and complexity, with optional increases to 5-8 for high-dimensional applications prioritizing 
computational efficiency.

Scenario 1: linear mixed-effects model results
Table 1 summarizes the predictive performance of competing methods under a simulated linear mixed-effects 
framework across three data dimensions. The proposed MEGB achieved robust predictive accuracy, with mean 
MSEs of 0.82 ± 0.302 (low), 1.16 ± 0.814 (medium), and 1.24 ± 0.491 (high), outperforming all competitors 

Models Low (p = 6) Medium (p = 170) High (p = 2000)

GBM 5.54 (1.492) 5.72 (2.341) 7.06 (1.551)

MEGB 0.82 (0.302) 1.16 (0.814) 1.24 (0.491)

GPBoost 6.08 (1.677) 6.36 (1.712) 8.58 (1.407)

MERF 1.67 (0.555) 4.58 (3.371) 5.21 (1.792)

REEMForest 1.62 (0.540) 4.60 (3.427) 5.16 (1.724)

RF 5.05 (1.291) 6.77 (3.305) 8.74 (1.745)

LMER 0.96 (0.341) 95.84 (46.522) *

glmmlasso 0.34 (0.206) 44.86 (25.605) *

Table 1.  Predictive accuracy (MSE ± SE) across dimensional regimes under linear mixed-effects simulation. 
Lower values indicate better performance.
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Fig. 1.  Evolution of Log-Likelihood across iterations for MEGB.

 

Scientific Reports |        (2025) 15:30927 11| https://doi.org/10.1038/s41598-025-16526-z

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


in medium-to-high dimensions. glmmlasso excelled in low dimensions (MSE: 0.34  ±  0.206), leveraging 
its L1-penalized mixed-effects framework, but suffered severe degradation in medium dimensions (MSE: 
44.86  ±  25.605) and became computationally infeasible (*) for p = 2000. LMER, while competitive in low 
dimensions (MSE: 0.96 ± 0.341), failed catastrophically in medium dimensions (MSE: 95.84 ± 46.522) due to 
overfitting and was unusable for high-dimensional data.

Mixed-effects machine learning methods (MERF, REEMForest) demonstrated moderate performance 
in low dimensions (MSEs: 1.62–1.67  ±  0.540–0.555) but degraded markedly in medium/high dimensions 
(MSEs: 4.58–5.21  ±  1.724–3.427). GPBoost, despite its kernel-based flexibility, underperformed relative to 
MEGB (MSEs: 6.08–8.58 ± 1.407–1.677), struggling to balance covariance estimation with boosting in high-
dimensional settings. Conventional RF and GBM exhibited substantially higher errors across all scenarios 
(MSEs: 5.05–8.74  ±  1.291–3.305), highlighting the cost of ignoring mixed effects. These results underscore 
MEGB’s superiority in high-dimensional regimes and its balanced trade-off between flexibility (via boosting) 
and stability (via mixed-effects regularization), whereas parametric methods like glmmlasso and LMER are 
limited to low-dimensional applications.

Tables 2 and 3 reveal critical differences in variable selection performance. All tree-based methods (MEGB, 
GBM, GPBoost, MERF, REEMForest, RF) achieved flawless accuracy, maintaining perfect true positive rates 
(TPR: 100 ± 0%) and zero false positive rates (FPR: 0 ± 0%) across all dimensions (low, medium, high). This 
underscores their robustness in high-dimensional settings, where they reliably retained true signals while 
excluding noise. In stark contrast, parametric mixed-effects methods faltered. LMER exhibited severe instability, 
with TPR plummeting to 27 ± 13.47% and FPR rising to 3 ± 0.493% in medium dimensions (p = 170), rendering 
it unusable (*) for p = 2000. glmmlasso showed marginally better but still poor performance in medium 
dimensions (TPR: 35 ± 15.88%, FPR: 2 ± 0.581%), and failed entirely in high dimensions. These results highlight 
a fundamental trade-off: parametric methods (LMER, glmmlasso) struggle to balance selection accuracy with 
dimensionality, while tree-based approaches (MEGB, GPBoost, etc.) leverage inherent regularization to achieve 
near-ideal TPR/FPR even when p ≫ n. MEGB’s consistency across regimes reinforces its suitability for high-
dimensional biomedical applications where false discoveries (high FPR) or missed signals (low TPR) carry 
significant scientific costs.

Computational trade-offs are quantified in Table 4. LMER and glmmlasso dominated speed in low/medium 
dimensions (LMER: 0.04–0.98s; glmmlasso: 0.09–0.71s), benefiting from parametric assumptions. RF and GBM 
provided intermediate efficiency (RF: 0.13–14.39s; GBM: 0.28–19.01s), while GPBoost achieved competitive 
runtimes (1.63–5.01s) across all regimes, outperforming mixed-effects tree methods in high dimensions. MEGB 
demanded greater resources (8.25–366.17s) due to its iterative EM-boosting integration but delivered superior 
accuracy, particularly critical in high dimensions where REEMForest (289.61s) underperformed despite 
comparable runtime. MERF balanced speed and accuracy better than REEMForest (3.43–251.85s) but lagged 
behind GPBoost. These results highlight a three-way trade-off: parametric models (LMER, glmmlasso) prioritize 

Models Low (p = 6) Medium (p = 170) High (p = 2000)

GBM 0 (0.00) 0 (0.00) 0 (0.00)

MEGB 0 (0.00) 0 (0.00) 0 (0.00)

GPBoost 0 (0.00) 0 (0.00) 0 (0.00)

MERF 0 (0.00) 0 (0.00) 0 (0.00)

REEMForest 0 (0.00) 0 (0.00) 0 (0.00)

RF 0 (0.00) 0 (0.00) 0 (0.00)

LMER 0 (0.00) 3 (0.493) *

glmmlasso 0 (0.00) 2 (0.581) *

Table 3.  Variable selection accuracy measured by false positive rate (FPR ± SE) across dimensional regimes 
under a linear simulation framework. Lower values indicate improved ability to exclude irrelevant variables.

 

Models Low (p = 6) Medium (p = 170) High (p = 2000)

GBM 100 (0.00) 100 (0.00) 100 (0.00)

MEGB 100 (0.00) 100 (0.00) 100 (0.00)

GPBoost 100 (0.00) 100 (0.00) 100 (0.00)

MERF 100 (0.00) 100 (0.00) 100 (0.00)

REEMForest 100 (0.00) 100 (0.00) 100 (0.00)

RF 100 (0.00) 100 (0.00) 100 (0.00)

LMER 100 (0.00) 27 (13.47) *

glmmlasso 100 (0.00) 35 (15.88) *

Table 2.  Variable selection accuracy (TPR ± SE) across dimensional regimes. Higher values indicate better 
relevance detection.
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speed at the cost of high-dimensional utility; tree-based methods (RF, GBM) offer efficiency but neglect mixed 
effects; hybrid approaches (MEGB, MERF, REEMForest, GPBoost) incur computational overhead to model 
hierarchical structures, with GPBoost emerging as the fastest hybrid option for large p.

Figures 2 and 3 reinforce these trends through distributional analysis. MEGB’s test data MSE distributions 
(Fig.  2) exhibit minimal variability across all dimensions, with tight interquartile ranges (IQR: 0.72-0.91 
for p = 6, 0.98-1.31 for p = 170, and 1.12-1.39 for p = 2000), confirming robustness to cross-validation 
partitioning. Although REEMForest achieved marginally faster computation times in high dimensions (Fig. 3, 
IQR: 289.61 s vs. MEGB’s 298.2-412.7s), this came at the cost of substantially worse predictive accuracy (Table 1), 
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Fig. 3.  Computation time distribution across replicates. MEGB shows moderate variability (IQR: 5.8-9.1s for 
p = 6, 19.3-30.4s for p = 170, 298.2-412.7s for p = 2000), comparable to MERF/REEMForest.
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Fig. 2.  Distribution of test MSE across 100 cross-validation replicates. MEGB demonstrates stable superiority, 
with tight interquartile ranges (IQR: 0.72-0.91 for p = 6, 0.98-1.31 for p = 170, 1.12-1.39 for p = 2000).

 

Models Low (p = 6) Medium (p = 170) High (p = 2000)

GBM 0.28 (0.014) 1.20 (0.047) 19.01 (0.413)

MEGB 8.25 (3.277) 26.61 (9.407) 366.17 (99.019)

GPBoost 1.63 (0.141) 1.71 (0.139) 5.01 (0.588)

MERF 3.43 (2.777) 25.89 (21.818) 251.85 (215.996)

REEMForest 56.68 (49.394) 59.72 (48.170) 289.61 (203.491)

RF 0.13 (0.006) 1.13 (0.090) 14.39 (0.695)

LMER 0.04 (0.008) 0.98 (0.736) *

glmmlasso 0.09 (0.014) 0.71 (0.256) *

Table 4.  Computational efficiency (seconds ± SE) across dimensional regimes.
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highlighting MEGB’s superior trade-off between accuracy and efficiency. The variability in MEGB’s computation 
time (IQR: 5.8 to 9.1s for p = 6, 19.3 to 30.4s for p = 170) remained comparable to MERF/REEMForest, 
balancing scalability with precision.

Scenario 2: nonlinear mixed-effects model results
Table 5 summarizes the predictive performance of competing methods in a simulated nonlinear mixed effects 
framework. The proposed MEGB achieved dominant accuracy across all dimensions, with MSEs of 1.26 ± 1.298 
(low), 2.92  ±  5.319 (medium), and 3.69  ±  4.890 (high). In low dimensions, MEGB outperformed the next-
best methods, MERF and REEMForest (MSE: 1.79  ±  1.775–1.916), by 29.6%, while maintaining superiority 
over GPBoost (2.15 ± 1.152) in medium/high dimensions. GPBoost demonstrated competitive but less stable 
performance (MSE: 3.12 ± 1.447 for p = 170; 5.17 ± 2.344 for p = 2000), lagging behind MEGB by 6.4–28.7% 
in these regimes. Conventional GBM and RF exhibited substantially higher errors (MSEs: 6.75–10.78 ± 4.075–
6.668), highlighting their inability to model nonlinear mixed-effects structures. Parametric methods (LMER, 
glmmlasso) catastrophically failed in medium/high dimensions, with LMER yielding an MSE of 301.35 ± 272.402 
for p = 170 and both methods becoming computationally infeasible (*) for p = 2000, underscoring their 
limitations beyond linear paradigms.

Variable selection accuracy (Tables 6 and 7) further distinguished MEGB, which maintained perfect TPR 
(100 ± 0%) in low dimensions and leading TPRs of 65 ± 21.08% (medium) and 55 ± 25.82% (high), surpassing 
MERF (medium: 55 ± 28.38%; high: 45 ± 28.38%) and REEMForest (medium: 45 ± 36.89%; high: 35 ± 24.15%) 
by 10–20 percentage points in higher dimensions. GPBoost exhibited sharp declines in TPR (32 ± 19.77% for 
p = 170; 10 ± 9.43% for p = 2000), while glmmlasso struggled in medium dimensions (29 ± 19.22%). GBM 
and RF showed moderate TPRs (45–50 ± 15.81–28.38%) but suffered higher inconsistency compared to MEGB’s 
stable performance. False positive rates (FPR) revealed critical trade-offs: MEGB achieved competitive FPRs 
(0.66 ± 0.19 for p = 170; 0.06 ± 0.03 for p = 2000), outperforming GPBoost (1.14 ± 0.18; 0.07 ± 0.02) and 
LMER (1.19 ± 0.00 in medium dimensions). REEMForest and RF showed marginally lower FPRs in medium 
dimensions (0.44 ± 0.29) but lagged in TPR. Parametric methods collapsed entirely: LMER yielded 0 ± 0% TPR 
in medium dimensions with high FPR, while glmmlasso failed in high dimensions (*). These results underscore 
MEGB’s balanced accuracy in nonlinear settings, where it retains true signals while minimizing spurious 
associations, even as dimensionality increases.

Computational benchmarks (Table  8) revealed the practical efficiency of MEGB in modeling non-linear 
mixed effects. For high-dimensional settings (p = 2000), MEGB achieved a runtime of 283.77  ±  86.871s, 
outperforming MERF (1973.95 ± 227.565s) and REEMForest (2179.81 ± 104.984s) by 6-8× while maintaining 
superior accuracy (Table 5). Although slower than conventional GBM (18.02 ± 0.736s) and RF (14.98 ± 1.128s), 
MEGB uniquely balances scalability with precision in ultra-high dimensions, delivering runtimes of sub-5 
minutes (4.7 minutes) where parametric alternatives (LMER, glmmlasso) fail entirely (*). Notably, GPBoost 

Models Low (p = 6) Medium (p = 170) High (p = 2000)

GBM 100 (0.00) 50 (0.00) 45 (15.81)

MEGB 100 (0.00) 65 (21.08) 55 (25.82)

GPBoost 100 (0.00) 32 (19.768) 10 (9.429)

MERF 100 (0.00) 55 (28.38) 45 (28.38)

REEMForest 100 (0.00) 45 (36.89) 35 (24.15)

RF 100 (0.00) 45 (15.81) 45 (15.81)

LMER 100 (0.00) 0 (0.00) *

glmmlasso 100 (0.00) 29 (19.217) *

Table 6.  Variable selection accuracy (TPR ± SE) under nonlinear simulation. Higher values indicate better 
relevance detection.

 

Models Low (p = 6) Medium (p = 170) High (p = 2000)

GBM 6.75 (5.564) 10.53 (4.075) 10.78 (6.668)

MEGB 1.26 (1.298) 2.92 (5.319) 3.69 (4.890)

GPBoost 2.15 (1.152) 3.12 (1.447) 5.17 (2.344)

MERF 1.79 (1.775) 3.26 (7.283) 3.90 (5.977)

REEMForest 1.79 (1.916) 2.97 (5.972) 3.91 (5.910)

RF 7.08 (5.363) 7.72 (5.857) 8.77 (3.505)

LMER 19.95 (42.708) 301.35 (272.402) *

glmmlasso 37.96 (25.246) 213.01 (105.671) *

Table 5.  Predictive accuracy (MSE ± SE) under nonlinear mixed-effects simulation. Bold indicates best 
performance.
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achieved the fastest runtimes (2.49 ± 0.284s for p = 2000) but suffered significant accuracy trade-offs (Table 5), 
while glmmlasso’s speed in low/medium dimensions (0.27-0.43s) masked its instability in high-dimensional 
regimes. This positions MEGB as the only method combining robust accuracy with feasible computational 
demands in complex nonlinear, ultra-high-dimensional settings.

Figures 4 and 5 further illustrate these trends through distributional analysis. The test dataset MSE distributions 
for MEGB (Fig. 4) exhibit tight clustering across all dimensions, with narrow interquartile ranges (IQR: 0.98-1.54 
for p = 6, 2.11-3.73 for p = 170, and 3.02-4.36 for p = 2000), confirming its robustness to nonlinear effects and 
minimal outlier susceptibility. In contrast, competitors like REEMForest and MERF showed significantly wider 
MSE spreads (e.g., MERF IQR: 3.02-5.97 for p = 2000), reflecting instability in high-dimensional regimes. 
Figure 5 highlights computational efficiency: MEGB’s runtime distributions (IQR: 2.8-4.7s for p = 6, 24.9-32.3s 
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Models Low (p = 6) Medium (p = 170) High (p = 2000)

GBM 0.26 (0.023) 1.27 (0.053) 18.02 (0.736)

MEGB 3.93 (1.75) 28.76 (6.102) 283.77 (86.871)

GPBoost 1.79 (0.277) 2.21 (0.364) 2.49 (0.284)

MERF 8.2 (2.089) 160.45 (32.003) 1973.95 (227.565)

REEMForest 130.3 (15.277) 289.96 (100.87) 2179.81 (104.984)

RF 0.1 (0.006) 1.25 (0.046) 14.98 (1.128)

LMER 0.03 (0.004) 0.95 (0.766) *

glmmlasso 0.27 (0.096) 0.43 (0.115) *

Table 8.  Computational efficiency (seconds ± SE) under nonlinear simulation.

 

Models Low (p = 6) Medium (p = 170) High (p = 2000)

GBM 0.00 (0.00) 0.62 (0.169) 0.04 (0.031)

MEGB 0.00 (0.00) 0.66 (0.190) 0.06 (0.032)

GPBoost 0.00 (0.00) 1.14 (0.182) 0.07 (0.023)

MERF 0.00 (0.00) 0.57 (0.341) 0.06 (0.028)

REEMForest 0.00 (0.00) 0.44 (0.290) 0.07 (0.024)

RF 0.00 (0.00) 0.44 (0.290) 0.05 (0.000)

LMER 0.00 (0.00) 1.19 (0.00) *

glmmlasso 0.00 (0.00) 0.85 (0.298) *

Table 7.  Variable selection accuracy measured by false positive rate (FPR ± SE) across dimensional regimes 
under a nonlinear simulation framework. Lower values indicate improved ability to exclude irrelevant 
variables.
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for p = 170, 231.4-322.9s for p = 2000) demonstrate scalable performance, outperforming REEMForest (IQR: 
2179.81s for p = 2000) by 6-8× while maintaining superior accuracy. GPBoost, though faster (2.49s median 
runtime for p = 2000), suffered substantial accuracy trade-offs (Table 5), while parametric methods (LMER, 
glmmlasso) failed entirely in high dimensions. This combination of precision, stability, and feasible runtime 
solidifies MEGB as the preferred choice for practical high-dimensional nonlinear applications.

Application to maternal cell-free plasma RNA dynamics
We demonstrate the practical utility of MEGB through a longitudinal analysis of maternal cell-free plasma RNA 
data reused from the published pregnancy cohort study by Koh et al.37. This dataset, originally generated and 
described in the cited study, profiles transcriptomic changes across 12 participants (11 pregnant women, 1 non-
pregnant control) through 48 observations (4 time points per subject: three trimesters + post-delivery). Ethical 
oversight for the original data collection, including participant consent, was obtained by Koh et al.37 as detailed 
in their publication. The non-pregnant control group was intentionally included in the original study design and 
retained in our secondary analysis to maintain methodological consistency with prior biological investigations. 
Koh et al.37 explicitly incorporated non-pregnant individuals as a baseline to contextualize pregnancy-specific 
molecular dynamics. While data heterogeneity between pregnant and non-pregnant cohorts exists, retaining 
both groups ensures comparability to these earlier findings and facilitates the identification of pregnancy-unique 
signals. This approach aligns with established practices in longitudinal biomarker research, where contrasting 
cohorts is critical for isolating condition-specific effects, despite inherent biological variability. The fetal RNA 
score derived from placental gene expression patterns served as the response variable, exhibiting characteristic 
temporal dynamics: minimal first-trimester levels, progressive second-trimester increases, third-trimester 
peaks, and post-delivery decline (Figs. 6 and 7).

Data structure and modelling framework
From an initial pool of 33,297 transcripts, 832 genes survived Bonferroni-adjusted significance thresholds 
(p < 0.05) when regressed against the fetal RNA score. The final high-dimensional dataset structure is defined 
as:

•	 Subjects: n = 12 (11 pregnant + 1 control)
•	 Observations: N = 48 (ni = 4 time points per subject)
•	 Predictors: p = 832 (17.3× feature-to-observation ratio)

We formalized the relationship through a semiparametric mixed-effects model:

	

yij = β0 + β1tij︸ ︷︷ ︸
Linear Fixed Effects

+
832∑
g=1

f(xg
ij)

︸ ︷︷ ︸
Nonlinear Genetic Effects

+ b0i︸︷︷︸
Random Intercept

+ϵij ,
� (27)

where β1 captures population-level temporal trends, f(xg
ij) models nonlinear transcript influences via gradient 

boosting, and b0i ∼ N (0, τ2
0 ) accounts for mother-specific baseline variability.
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Model performance comparison
Table  9 and Fig.  8 benchmark predictive accuracy and computational efficiency for maternal RNA data 
(p = 832). The proposed MEGB achieved superior prediction (MSE: 30.77 ± 25.055) by jointly modeling 
nonlinear transcript effects and individual variability, outperforming GBM (MSE: 36.82 ± 22.158, 16.4% higher) 
and RF (MSE: 69.70 ± 30.627, 125.9% higher). While MERF and REEMForest showed moderate accuracy 
(MSE: 61.14-64.19 ± 30.117-36.200), their inability to match MEGB underscores gradient boosting’s advantage 
in iterative refinement. GPBoost, though computationally efficient (1.32 ± 0.447s), suffered severe accuracy 
degradation (MSE: 182.41 ± 44.633), highlighting its inadequacy for nonlinear mixed-effects modeling. 
Parametric methods (LMER, glmmlasso) proved inapplicable (*) due to high dimensionality.

Computationally, MEGB required 52.54 ± 116.006s, significantly longer than GBM (2.35 ± 0.237s) and 
RF (0.91 ± 0.145s), but its 55.8% accuracy gain over RF and stability in high dimensions justify this trade-
off in clinical research prioritizing precision. REEMForest’s runtime (24.33 ± 26.332s) further contextualizes 
MEGB’s scalability, as its runtime remains feasible relative to its mixed-effects competitors while delivering 
unmatched accuracy. This positions MEGB as a robust choice for longitudinal genomic studies demanding both 
computational rigor and biological interpretability.

Biological insights from MEGB and other models
Figures 9 and 10 integrate robust feature selection patterns with biologically meaningful transcript prioritization 
in high-dimensional longitudinal modelling. As demonstrated in Fig.  9, MEGB exhibited strong stability, 
consistently identifying nine transcripts across 100 cross-validation replicates (selection frequency ≥ 80%), 
performing comparably to MERF, REEMForest, RF, and GBM (9-10 transcripts ≥ 75% frequency). In contrast, 
GPBoost prioritized fewer features (four transcripts ≥ 65%), reflecting its distinct regularization approach. 
Critically, three biomarkers emerged as consensus signatures selected by nearly all methods: X8149109 (PLAC4), 
X8142120 (PSG3), and X8019842 (PSG4). These placental-specific genes encode proteins essential for trophoblast 
invasion and maternal-fetal interface development, as extensively documented by37. PLAC4 (placenta-specific 
4) is a long non-coding RNA regulating trophoblast differentiation, while PSG3 and PSG4 (pregnancy-
specific glycoproteins) modulate immune tolerance at the implantation site through TIMP-mediated matrix 
metalloproteinase inhibition38. Their unanimous selection highlights their crucial role in fetal RNA dynamics 
across various methodological frameworks.
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Beyond consensus markers, method-unique selections revealed algorithm-driven biological insights. MEGB 
exclusively identified X798307 (CGA) and X8128123 (LGALS14), both with critical gestational functions. CGA 
(chorionic gonadotropin alpha) forms the alpha subunit of human chorionic gonadotropin (hCG), sustaining 
progesterone production and uterine quiescence during pregnancy39. Its selection aligns with MEGB’s ability 
to detect endocrine regulators of pregnancy maintenance. Similarly, LGALS14 (galectin-14) is a placenta-
specific lectin inducing maternal T-cell apoptosis to prevent fetal rejection, with expression peaking in late 
gestation40. Conversely, GPBoost uniquely selected X8121803 (INHBA), encoding inhibin beta A, which 
stimulates trophoblast angiogenesis via activin signalling pathways41. These divergent selections highlight how 
regularization biases capture complementary biological processes: MEGB emphasizes immune-endocrine 
crosstalk, while GPBoost prioritizes structural vascularization.

Figure 10’s transcript groups reflect hierarchical functional contributions defined by the relative influence 
metric of MEGB, which quantifies the predictive importance of each characteristic. Group 1 comprises the 
dominant transcript X7933084 (GH1), accounting for 38.7% of relative influence. GH1 (growth hormone 1) 
originates from the placental syncytiotrophoblast and shows exponential third-trimester expression in Fig. 11, 
directly correlating with fetal somatic growth42. Group 2 contains major contributors X8142120 (PSG3) and 
X8019842 (PSG4) (combined 22.1% influence), both members of the immunoglobulin superfamily that bind 
maternal CD receptors to dampen cytotoxic responses43. Their increasing trajectories through gestation reflect 
an increase in placental mass and immunomodulatory demand. Group 3 encompasses moderate-influence 
transcripts X7940996 (HSD3B1) and X7940216 (CYP19A1) (18.9% combined). These encode steroidogenic 

Models MSE (SE) Time (SE)

GBM 36.82 (22.158) 2.35 (0.237)

MEGB 30.77 (25.055) 52.54 (116.006)

GPBoost 182.41 (44.633) 1.32 (0.447)

MERF 64.19 (36.200) 5.70 (5.647)

REEMForest 61.14 (30.117) 24.33 (26.332)

RF 69.70 (30.627) 0.91 (0.145)

LMER * *

glmmlasso * *

Table 9.  Predictive accuracy (MSE) and computational efficiency (seconds) for maternal RNA data (p = 832).
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enzymes: HSD3B1 catalyzes progesterone synthesis essential for uterine quiescence, while CYP19A1 (aromatase) 
converts androgens to estrogens to regulate placental vasculogenesis44. Group 4 includes minor contributors 
X7893518 (PAPPA2), X8149109 (PLAC4), and X8128123 (LGALS14) (15.4% total). PAPPA2 (pappalysin-2) 
is a metalloprotease that cleaves IGF-binding proteins, liberating insulin-like growth factors during early 
implantation45. Its expression peak in the first trimester (Fig. 11) corroborates its role in foundational trophoblast 
invasion, while PLAC4 and LGALS14 sustain later placental resilience.

The temporal trajectories of the top nine selected gene transcript by MEGB in Fig.  11 align precisely 
with established gestational biology: PAPPA2’s first-trimester surge mirrors implantation phases, HSD3B1/
CYP19A1’s mid-gestation rise coincides with steroid-driven placental maturation, and GH1’s late-term peak 
facilitates fetal nutrient partitioning. Crucially, all nine transcripts are localized to chromosome 19q13.32, a 
genomic region densely packed with pregnancy-specific genes under coordinated epigenetic control46. This 
co-localization substantiates their biological coherence, as this locus houses the PSG, CGA, and LGALS gene 
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families in a conserved haplotype. Methodologically, MEGB’s grouping reveals functional hierarchies: Group 1 
growth effectors dominate prediction, while Groups 2-4 represent synergistic subsystems (immune modulation, 
steroidogenesis, and structural regulation). The convergence of high-frequency selection, temporal plausibility, 
and genomic clustering confirms MEGB’s capacity to recover functionally structured biomarkers despite extreme 
dimensionality.

Discussion
The proposed MEGB framework advances high-dimensional longitudinal data analysis by integrating gradient 
boosting’s adaptive learning6 with mixed-effects rigour31. Our results demonstrate that MEGB outperforms 
state-of-the-art methods, including penalized mixed-effects models (glmmlasso3), Gaussian process hybrids 
(GPBoost21), and tree-based competitors (MERF, REEMForest19), across three critical axes: predictive accuracy, 
variable selection stability, and computational scalability. In linear settings, MEGB achieved MSEs of 0.82 (low-
dimensional) and 1.24 (high-dimensional), surpassing MERF by 58–76% and glmmlasso by more than 99% in 
high dimensions (Table 1). While glmmlasso excelled in low dimensions (MSE: 0.34), its performance collapsed 
in medium/high regimes (MSE: 44.86–213.01), reflecting its reliance on parametric assumptions. GPBoost, 
though computationally efficient (Table  8), lagged in accuracy (MSE: 6.08–8.58) due to its kernel-based 
constraints. The superiority of MEGB comes from the capacity of gradient boosting to iteratively refine fixed 
effect estimates while accounting for subject-specific random effects - a capability absent in the static forests of 
MERF/REEMForest17 and the linear penalization of glmmlasso.

Nonlinear scenarios further highlighted MEGB’s adaptability: it maintained a 55–70% true positive rate 
(TPR) for variable selection (Table  6), outperforming MERF/REEMForest by 10–20 percentage points and 
GPBoost/glmmlasso by over 25 percentage points in high dimensions. Unlike GPBoost, which suffered severe 
TPR declines (10% for p = 2000), MEGB’s gradient-directed updates prioritize predictors that jointly explain 
population trends and individual deviations, enhancing robustness. glmmlasso, while theoretically sparse, 
collapsed entirely in nonlinear settings (TPR: 29%, FPR: 0.85% for p = 170), underscoring its fragility to model 
misspecification. However, MEGB’s advantages come with trade-offs. While its computational time (283.77s 
for p = 2000) was 6–8× faster than REEMForest19 and over 7× faster than glmmlasso in medium dimensions 
(Table  8), it remains slower than simpler methods like GBM (18.02s) and GPBoost (2.49s). The unmatched 
speed of GPBoost (1.32s for p = 832, Table 9) highlights a speed-accuracy trade-off: its MSE (182.41) was 492% 
higher than MEGB’s in maternal RNA data. This reflects the inherent cost of MEGB’s joint optimization of 
fixed and random effects, a challenge exacerbated in ultra-high dimensions (p > 104). Compared to MERF/
REEMForest and newer competitors, MEGB offers three key innovations: 

	1.	 Adaptive learning: Unlike fixed forests of MERF/REEMForest or glmmlasso rigid penalization, MEGB iter-
atively updates the learners to minimize residuals, improving accuracy in high dimensions (Figs. 2, 4).
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	2.	 Hybrid regularization: MEGB’s step size reduction (η = 0.05) and EM-driven random effects prevent over-
fitting, addressing weaknesses in GPBoost’s unregularized kernels and glmmlasso’s brittle L1-penalization.

	3.	 Scalable random effects: The MEGB analytical gradient updates converge faster than REEMForest brute-
force EM (Tables 4, 8), while avoiding the cubic complexity kernel inversions of GPBoost.

Critically, MEGB advances interpretability in high-dimensional longitudinal settings by integrating novel 
stability assessment and relative influence quantification. While traditional effect sizes and confidence intervals 
are unavailable for fixed effects in gradient boosting frameworks, MEGB provides robust biological interpretation 
through two complementary mechanisms: First, its variable selection stability across repeated cross-validation 
(Figs. 9,10) identifies consistently influential transcripts such as the consensus biomarkers PLAC4, PSG3, and 
PSG4 that show a selection frequency ≥ 80%, indicating their reproducible association with fetal development. 
Second, the relative influence metric (Fig.  10) quantifies the predictive contribution of each feature as a 
percentage of the total importance of the model, allowing functional grouping of transcripts. For instance, GH1’s 
38.7% relative influence established it as the dominant growth regulator, while the 15.4% combined influence of 
Group 4 transcripts (PAPPA2, PLAC4, LGALS14) revealed their collective role in implantation. This approach 
proved indispensable in our pregnancy RNA analysis: By combining the frequency of selection (methodological 
stability) with the relative influence (biological hierarchy), MEGB transformed high-dimensional data into 
an interpretable framework where CGA’s high selection frequency (92%) and moderate influence highlighted 
its role in pregnancy maintenance, while HSD3B1’s 18.9% group influence contextualized its steroidogenic 
function. Thus, despite the lack of parametric effect estimates, MEGB delivers actionable biological insights by 
identifying stable, hierarchically structured biomarkers that effectively bridge machine learning scalability with 
mixed-effects interpretability for translational discovery.

Despite these strengths, MEGB inherits limitations. Its parametric Gaussian assumption for random effects 
may falter with heavy-tailed distributions18, and while its variable selection outperforms GPBoost/glmmlasso, 
it lags behind specialized sparse methods13. Future work should explore hybrid architectures: integrating 
GPBoost’s nonparametric kernels for flexible covariance structures, glmmlasso’s L1-penalization for sparsity, 
or distributed computing7 for p > 104. Such advances could solidify the role of MEGB as a versatile tool for 
precision biomedicine.
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Conclusion
High-dimensional longitudinal data, ubiquitous in modern biomedical studies such as genomics and proteomics, 
present a unique analytical challenge: reconciling the complexity of repeated measurements with the “curse 
of dimensionality” that arises when thousands of predictors overwhelm limited sample sizes. Traditional 
mixed effect models (e.g. LMMs, glmmlasso3) falter in these regimes due to rigid parametric assumptions, 
computational instability in high dimensions, and inability to model non-linear interactions. While glmmlasso 
introduces sparsity via L1-penalization, it collapses under ultrahigh-dimensional or nonlinear settings. 
Conventional machine learning methods (e.g., RF, GBM) ignore critical within-subject correlations, sacrificing 
biological interpretability, while hybrid approaches like GPBoost21 (gradient boosting with Gaussian processes) 
and MERF/REEMForest19 face trade-offs between scalability, accuracy, and computational feasibility. While 
GPBoost efficiently handles high-dimensional fixed effects via gradient boosting, its kernel-based covariance 
structures incur O(n3) complexity in sample size (without approximations), and it lacks inherent sparsity 
mechanisms for ultrahigh-dimensional feature selection (p ≫ n).

The Mixed-Effect Gradient Boosting (MEGB) framework introduced in this study addresses these limitations 
by unifying two methodological paradigms: the iterative, adaptive learning of gradient boosting and the 
rigorous variance partitioning of mixed-effects modelling. Unlike glmmlasso’s linear penalization or GPBoost’s 
reliance on predefined kernel structures (which assume stationarity for covariance modelling), MEGB jointly 
optimizes fixed and random effects through a unified EM algorithm, enabling it to capture nonlinear trends at 
the population level and subject-specific deviations while enabling feature selection. This integration directly 
addresses the critical gap in existing tools, which either oversimplify correlation structures (e.g., GBM), fail to 
scale (e.g., glmmlasso), or make strong assumptions about dependency structures (e.g., GPBoost’s stationarity 
requirements). By design, MEGB avoids the “black box” limitations of pure machine learning approaches, 
retaining interpretability through stable variable selection –a characteristic indispensable for translational 
research.

While MEGB offers significant advantages in flexibility and feature selection for high-dimensional longitudinal 
data, several limitations warrant consideration. Firstly, despite its design for scalability, the iterative nature of 
gradient boosting combined with the EM algorithm for variance component estimation inherently incurs a 
higher computational burden compared to highly optimized approximate inference methods like Integrated 
Nested Laplace Approximations (INLA), particularly for models with complex random effects structures or very 
large sample sizes (n). INLA can provide computationally efficient Bayesian approximations for a wide class of 
latent Gaussian models, albeit typically assuming linearity or additive structures and lacking MEGB’s built-in 
high-dimensional feature selection. Secondly, while MEGB effectively models subject-specific deviations, its 
current formulation primarily relies on parametric random effects structures (e.g., random intercepts/slopes) 
for the covariance. Capturing highly complex, non-stationary, or non-separable spatio-temporal dependencies 
intrinsic to some biological processes might require extensions beyond its current capabilities, potentially 
incorporating more flexible covariance models akin to GPBoost but at the cost of increased complexity. Finally, 
while the EM-boosting integration enables feature selection, rigorous theoretical guarantees on selection 
consistency and estimation accuracy in the ultrahigh-dimensional (p ≫ n) longitudinal setting under the 
proposed framework remain an area for future investigation. These limitations highlight trade-offs inherent in 
methodological choices and suggest directions for further refinement of the MEGB framework.

The broader implications of MEGB extend beyond methodological innovation. Its open-source 
implementation in R democratizes access to cutting-edge analytics for researchers studying dynamic biological 
processes, such as maternal-fetal RNA trajectories or longitudinal biomarker discovery in chronic diseases. 
By outperforming GPBoost in accuracy and surpassing glmmlasso in scalability, MEGB empowers precision 
medicine initiatives to model patient-specific temporal dynamics in omics-scale datasets. Future advancements 
could extend the MEGB framework to integrate the flexibility of GPBoost’s nonparametric covariance or the 
regularization inducing sparsity of glmmlasso, while broadening its utility to survival outcomes or multilevel 
hierarchical designs. Integration with federated learning architectures could further enable privacy-preserving 
analyses of distributed longitudinal datasets, addressing a growing need in multicenter research. By bridging the 
divide between statistical rigour and machine learning flexibility, MEGB equips researchers to tackle the next 
generation of high-dimensional, temporally rich biomedical challenges.

Data availability
Data are provided within the manuscript.
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