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Chronic kidney disease (CKD) can induce chronic heart failure (CHF), a condition referred to as type 
4 cardiorenal syndrome (CRS4). The pathophysiological mechanisms remain unclear, and suitable 
early warning biomarkers for CHF in CKD patients are lacking. A total of 258 CHF key genes and 383 
CKD-related secreted proteins were identified through differential expression analysis and WGCNA. 
PPI analysis revealed 81 genes as potential pathogenic genes related to CRS4. Enrichment analysis 
of these pathogenic genes highlighted pathways involved in cytokine activity, extracellular matrix 
remodeling, and immune response. Three machine learning algorithms identified two hub genes 
(MME and SERPINF1) as potential biomarkers for CHF, and a nomogram model was constructed. 
ROC analysis demonstrated that the model achieved an AUC greater than 0.80 in both the CHF 
merged dataset and two external cohorts. Furthermore, immune cell infiltration analysis indicated a 
correlation between these biomarkers and the infiltration scores of fibroblasts, CD8 T cells, and mast 
cells in CHF. Finally, our clinical cohort validated the expression patterns of these two biomarkers in 
serum, with the diagnostic model achieving an AUC of 0.880. CKD may promote the progression of CHF 
through proteins secreted by the kidneys and blood cells. MME and SERPINF1 may serve as potential 
biomarkers for CHF in CKD patients.
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XGB	� eXtreme gradient boosting
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AUC	� Area under the curve
TLRs	� Toll-like receptors
PRRs	� Pattern recognition receptors
RAAS	� Renin–angiotensin–aldosterone system
ME	� Module eigengene
ssGSEA	� Single sample enrichment analysis
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Chronic kidney disease (CKD) ranks among the top ten global disease burdens1. Epidemiological studies 
have revealed a significantly higher incidence of cardiovascular diseases (CVDs) in patients with CKD, with 
approximately 50% of end-stage renal disease (ESRD) patients succumbing to CVDs2. Among these, chronic 
heart failure (CHF) represents a common outcome of various CVDs, with a 10-year cumulative incidence of 
up to 20% in CKD patients, making it one of the leading causes of death in this population3. CHF resulting 
from CKD is referred to as type 4 cardiorenal syndrome (CRS4)4. However, the progression of CHF in CKD 
patients is often insidious, with a prolonged disease course and clinical features that overlap with the underlying 
manifestations of CKD. This is particularly true in the early stages of CHF, where symptoms are easily overlooked 
or underestimated in CKD patients. Therefore, early identification of high-risk CKD patients prone to CHF is 
of paramount importance.

Traditional heart failure biomarkers, such as high-sensitivity troponin (hs-TnT) and N-terminal B-type 
natriuretic peptide precursor (NT-proBNP), are influenced by renal function, and no universally accepted cutoff 
values exist for these markers in the CKD population. Moreover, their serum concentrations are often elevated 
only when overt clinical symptoms are already present, reflecting a delayed response. As a result, their clinical 
utility remains controversial5. Consequently, identifying novel and precise biomarkers for CHF in CKD patients 
is necessary.

In recent years, numerous studies have been published focusing on novel biomarkers for CHF based on the 
pathophysiological mechanisms in CKD patients. For instance, soluble suppression of tumorigenicity 2 (sST2) 
is a biomarker of myocardial fibrosis. A study by Gaggin et al. dynamically monitored changes in sST2 levels 
among CKD patients, revealing a positive correlation with the risk of developing CHF6. Galectin-3 (Gal-3), 
which promotes inflammation and fibrosis during kidney injury, can lead to remote myocardial damage and 
cardiac remodeling7. Research by Voroneanu et al. indicated that CKD patients with elevated Galectin-3 had a 
1.11-fold increased risk of CHF8. However, current reports on novel CHF biomarkers often focus on a limited 
selection of candidate molecules of interest to researchers, lacking large-scale screening and comparative analyses, 
which poses significant limitations. Recently, studies have explored biomarker screening from the perspective 
of secreted proteins to investigate inter-organ interactions9–11. Secreted proteins, including various hormones, 
cytokines, and membrane proteins, are recognized for their role in mediating inter-organ communication and 
altering the pathophysiological states of distant organs. These proteins can be released into the bloodstream, 
making them suitable for clinical detection and offering unique advantages in disease biomarker screening.

Therefore, this study is based on gene expression datasets from the heart, kidneys, and blood cells, aiming 
to screen the most valuable potential novel biomarkers for CHF from 3947 secreted proteins and establish a 
diagnostic model, with the goal of helping clinicians to early identify high-risk CKD patients who are likely to 
develop CHF, enabling them to benefit from early treatment.

Materials and methods
Data collection and consolidation
Two CHF microarray datasets, GSE19303 and GSE21610, were obtained from the GEO database ​(​​​h​t​t​p​s​:​/​/​w​w​
w​.​n​c​b​i​.​n​l​m​.​n​i​h​.​g​o​v​/​g​e​o​/​​​​​)​. In addition, raw expression profile datasets for kidney tissues from CKD patients 
(GSE66494) and whole blood (WB) (GSE37171) were retrieved from the GEO database. R software (version 
4.4.0) was used to merge the CHF datasets using the “ComBat” function from the “SVA” package.

Differentially expressed genes (DEGs) analysis
Initially, the CHF merged dataset and the CKD-related dataset were subjected to gene symbol conversion and 
normalization. The “Limma” package in R was then used to identify DEGs in the CKD and CHF datasets. The 
criteria for screening DEGs were an adjusted p-value < 0.05 and a fold change > 1.5. Volcano plots were generated 
using the “ggplot2” package, and heatmaps were created with the “pheatmap” package to visualize the expression 
patterns of DEGs in R.

Weighted gene co-expression network analysis (WGCNA)
In the first step, a median absolute deviation of 0 was used to filter genes from each sample. The second step 
involved the use of the “goodSamplesGenes” function to detect missing values and exclude samples with over 
20,000 values as outliers. In the third step, the optimal soft threshold was determined using cex1 = 0.85 to 
establish a scale-free co-expression gene network. After gene clustering, modules were obtained based on the 
criterion of MEDissThres = 0.25, and similar modules were merged. The fourth step involved creating heatmaps 
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to illustrate the relationship between modules and traits. Lastly, we generated scatter plots depicting the MM-GS 
correlation for each module by calculating module membership (MM) and gene significance (GS) values.

Secreted protein gene set
The Human Protein Atlas database (https://www.proteinatlas.org/) is a public database that provides information 
on human encoded proteins. From the “SPOCTOPUS predicted of secreted proteins” category, 3947 genes 
encoding secreted proteins were identified.

Networks of protein–protein interactions (PPI)
This study explored the interactions between CHF key genes and CKD-related secreted proteins, leading to the 
construction of a PPI network. This network was implemented based on STRING database ​(​​​h​t​t​p​s​:​/​/​c​n​.​s​t​r​i​n​g​-​d​
b​.​o​r​g​/​​​​​)​, applying a confidence score threshold of 0.4. The MCODE plugin in Cytoscape software (version 3.9.1, 
https://cytoscape.org/) was then used to evaluate important subsets and visualize the network. The top three 
subsets were identified as CRS4-related pathogenic genes and selected for further analysis and investigation.

Functional enrichment analysis
Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses 
are used to investigate the biological functions and mechanisms of CRS4-related pathogenic genes12. To this 
end, these genes are input into the SangerBox website (http://www.sangerbox.com/) for functional enrichment 
analysis, and bubble charts or circle diagrams are used for visualization.

cMAP (Connectivity Map) analysis
The cMAP database (https://clue.io) can reveal the associations between gene expression and small molecule 
compounds by analyzing differences in gene expression. The upregulated genes from the CRS4-related pathogenic 
genes are uploaded to the cMAP online repository for analysis to screen out the top ten small molecule drugs 
that can reverse the expression of the aforementioned genes.

Machine learning (ML) algorithms
This study combined three ML algorithms—Generalized Linear Model (GLM), Random Forest (RF), and 
Extreme Gradient Boosting (XGB)—to identify potential biomarkers for CHF. First, the intersection of CHF 
DEGs, CHF key module genes, and CKD-related secreted proteins was taken, resulting in 12 intersecting 
genes. Then, the XGB, RF, and GLM algorithms were used to perform CHF diagnostic importance ranking for 
these 12 intersecting genes within the CHF merged dataset. These three ML algorithms were realized using the 
“randomForest,” “kernlab,” “glmnet,” and “caret” packages in R 4.4.0. Subsequently, the intersection of the top 
six important genes identified by each algorithm was determined, and these intersecting genes are designated as 
hub genes, which are used to develop a CKD-related CHF diagnostic model. Violin plots are used to analyze the 
expression patterns of the hub genes in the CHF merged dataset.

Establishment and evaluation of the diagnostic nomogram model
Based on the two hub genes obtained, a CHF diagnostic nomogram model was established using the “rms” 
package in R software. The reliability of the model in diagnosing CHF were assessed using calibration curves. 
And the diagnostic performance of model for CHF was evaluated by generating decision curve analysis (DCA) 
and receiver operating characteristic (ROC) curves.

External validation of hub gene for CHF diagnosis
Two independent CHF datasets (GSE1145 and GSE141910) were obtained from the GEO database, which 
include CHF cases and control groups. Violin plots were used to examine hub gene expression patterns in the 
external datasets, and ROC analysis was used to evaluate the hub genes’ diagnostic performance.

Immune cell infiltration analysis
Two immune cell infiltration analysis algorithms, MCPcounter and single sample enrichment analysis (ssGSEA), 
were used to analyze the degree of immune cell and stromal cell infiltration in the CHF combined dataset. 
Box plots generated using the “ggplot2” package displayed the cell infiltration scores obtained from the two 
algorithms. Subsequently, Spearman’s rank correlation test was employed to analyze the correlation between 
the immune cell infiltration scores and the expression levels of hub genes, which were then presented using a 
correlation heatmap.

Patient sample collection
Participants were stratified into three groups: (1) Control group: healthy individuals lacking CKD, CHF, or 
major organic diseases; (2) CKD group: stage 3–5 CKD patients without CHF; (3) CRS4 group: stage 3–5 CKD 
patients with CHF diagnosed ≥ 3 months after initial CKD identification. CKD diagnosis complied with the 
2024 CKD Clinical Practice Guidelines13, while CHF diagnosis followed the 2022 Heart Failure Management 
Guidelines14. Common exclusion criteria across all groups comprised: (i) receipt of any dialysis within 1 month; 
(ii) exposure to major stressful events (e.g., unemployment, bereavement) within 1 month; (iii) new-onset major 
organic diseases (e.g., stroke, severe infection) within 3 months; (iv) comorbidities affecting plasma MME or 
SERPINF1 levels (including malignancies, osteoarthritis); (v) pregnancy or lactation status.

We collected clinical characteristics including baseline comorbidities, total cholesterol, low-density 
lipoprotein (LDL), NT-proBNP, cardiac troponin T (cTnT), left ventricular ejection fraction (LVEF), and 
estimated glomerular filtration rate (eGFR). The study protocol for human samples was approved by the Ethics 
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Committee of the Shaoxing Second Hospital (Ethics batch number: 2024053), and all participants provided 
written informed consent. Additionally, the serum levels of membrane metalloendopeptidase (MME) and 
serpin family F member 1 (SERPINF1) were measured using enzyme-linked immunosorbent assay (ELISA) kits 
(Cloud-Clone Corp., Wuhan, China) following the manufacturer’s instructions.

Statistical analysis
Statistical analyses were performed using GraphPad Prism 10.0.2 (GraphPad Software Inc., San Diego, CA, 
USA). Quantitative data were presented as mean ± standard deviation, and qualitative data were presented as 
number (percentage). The Kolmogorov–Smirnov test was employed for the normality test. The comparison of 
quantitative data between groups was performed using unpaired Student’s t-test or one-way analysis of variance, 
while the comparison of qualitative data between groups was performed using Chi-square test. P values less 
than 0.05 were considered statistically significant. For all figures, significance levels were defined as *p < 0.05, 
**p < 0.01, ***p < 0.001, and ****p < 0.0001.

Results
Identification of CHF key genes
The analytical workflow of this study is illustrated in Fig. 1. After batch correction, the CHF merged dataset 
included 61 CHF patients and 16 healthy controls. The box plot of mRNA expression showed that the batch 
effect between the two datasets was significantly reduced after batch effect elimination (Figs. 2A,B). Differential 
Expression Analysis (DEA) between the CHF and control groups identified a total of 364 DEGs, of which 227 
genes were upregulated and 137 genes were downregulated. The expression characteristics of DEGs in the CHF 
merged dataset were visualized using volcano and heatmap (Figs. 2C,D). To further identify CHF key genes, we 
performed WGCNA to screen for gene modules highly correlated with CHF. Based on considerations of scale 
independence and mean connectivity, the soft-threshold power was set to 3. Using this threshold, nine modules 
were generated, and the clustering of module eigengenes is shown in Fig. 2E. We then analyzed the relationship 
between CHF and the nine gene modules, as depicted in Fig. 2F. The analysis revealed that the turquoise module 
had the strongest positive correlation with CHF (r = 0.42, p = 1 × 10−4). Additionally, the blue and yellow modules 
also showed statistical significance and, along with the turquoise module, were identified as CHF key modules. 
To identify CHF key genes, we intersected the DEGs with the genes in the CHF key modules, resulting in 258 
CHF key genes (Fig. 2G).

Identification of CKD-related secreted proteins
As illustrated by the volcano plot and heatmap, a total of 997 DEGs were identified in the WB samples of CKD 
patients (Fig. 3A,B), while 1,400 DEGs were identified in kidney tissue samples (Fig. 3C,D). Subsequently, the 
DEGs from WB (Fig. 3E) and kidney tissues (Fig. 3F) were intersected with the secreted proteins gene set. The 
union of these two intersections yielded a collection of CKD-related secreted proteins.

PPI analysis, functional enrichment, and drug screening for CRS4-related pathogenic genes
To investigate the potential mechanisms of action of secreted proteins in CRS4, we utilized the STRING database 
to examine the interactions between CKD-related secreted proteins and CHF key genes. Using the MCODE 
plugin, three significant clusters comprising a total of 81 genes were identified as potential CRS4-related 
pathogenic genes. Gene Ontology (GO) enrichment analysis of these CRS4-related pathogenic genes revealed that 
biological processes (BP) such as “cellular response to cytokine stimulus” and “extracellular matrix organization” 
were among the top-ranked entries (Fig.  4A). Moreover, molecular function (MF) analysis indicated strong 
associations between the pathogenic genes and functions like “cytokine activity” and “endopeptidase activity” 
(Fig. 4A). KEGG pathway analysis demonstrated a robust correlation between CRS4-related pathogenic genes 
and key pathways, including the “renin-angiotensin system” and “hypertrophic cardiomyopathy” (Fig.  4B). 
Additionally, these genes were found to be enriched in several metabolic pathways, such as “arachidonic acid 
metabolism,” “glutathione metabolism,” and “phenylalanine metabolism.”

Furthermore, cMAP drug analysis identified the top 10 small molecule compounds capable of reversing 
the CRS4-related pathogenic genes’ expression, including dexamethasone, 3,3′-diindolylmethane, 
dimercaptosuccinic acid, voriconazole, dapsone, γ-homolinolenic acid, BRD-K97951054, orantinib, 
BRD-A61599461, and albendazole, which may serve as potential therapeutic agents for CRS4 (Fig. 4C). The 
targets or pathways affected by these small molecule compounds are depicted in Fig. 4D.

Biomarker screening and diagnostic model construction for CKD-related CHF
CKD related secreted proteins play a critical role in promoting the onset and progression of CHF. We further 
intersected CHF DEGs, genes of CHF key modules, and CKD-related secreted proteins, resulting in the 
identification of 12 intersecting genes (Fig. 5A). These genes may serve as unique biomarkers for early warning 
in CKD-related CHF. To narrow down the scope of potential biomarkers and enhance their clinical applicability, 
we employed three ML algorithms: GLM, RF, and XGB, to rank the importance scores of the 12 intersecting 
genes (Figs. 5B–D). Notably, after identifying the common genes from all three ML algorithms, only two hub 
genes—MME and SERPINF1—were consistently present in all three subsets (Fig. 5E).

Compared to the control group, the mRNA expression levels of MME and SERPINF1 were significantly 
elevated in the CHF group (Figs. 5F,G). ROC analysis showed that the area under the curve (AUC) values for 
both hub genes exceeded 0.8 (Fig. 5H,I). To improve diagnostic accuracy and predictive capacity, a nomogram 
model incorporating these two hub genes was constructed (Fig.  5J). Calibration curves indicated that the 
predicted probabilities from the nomogram model closely aligned with those from the ideal model (Fig. 5K). 
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DCA demonstrated that the nomogram model provides clinical benefit for the diagnosis of CHF (Fig. 5L). In the 
ROC analysis, the nomogram’s AUC reached 0.892, demonstrating excellent diagnostic performance (Fig. 5M).

External verification of the expression patterns and diagnostic performance of two 
biomarkers
Datasets GSE1145 and GSE141910 served as two independent external CHF datasets for validation. Violin plots 
demonstrated that both biomarkers were significantly upregulated in the CHF groups of GSE1145 (Fig. 6A,B) 
and GSE141910 (Fig.  6C,D). ROC analysis indicated that the two biomarkers exhibited strong diagnostic 
performance for CHF in the external datasets (Fig.  6E,G). Additionally, the AUC values for the nomogram 
model reached 0.939 and 0.833 for the GSE1145 and GSE141910 datasets, respectively (Fig. 6F,H).

Fig. 1.  The flow chart explains the design of this study.
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Immune cell infiltration analysis of CHF merged dataset
Enrichment analysis revealed a strong association between immune processes and CRS4, prompting us to 
perform two immune cell infiltration analyses. The enrichment ratio of 8 kinds of immune cells and 2 kinds of 
stromal cells was calculated in MCPcounter algorithm, while the enrichment fraction of 16 kinds of immune 
cells was calculated in ssGSEA algorithm. In the MCPcounter algorithm, the proportion of CD8 T cells, cytotoxic 
lymphocytes and fibroblasts increased significantly in the CHF group (Fig. 7A). And SERPINF1 expression was 
positively correlated with the proportion of CD8 T cells, cytotoxic lymphocytes and fibroblasts (Fig. 7B). In the 
ssGSEA algorithm, CD8T cells and mast cells rose significantly in the CHF group (Fig. 7C). And SERPINF1 
expression was positively correlated with the proportion of CD8 T cells and mast cells (Fig.  7D). In both 
algorithms, the expression of MME was significantly positively correlated with CD8T cells (Fig. 7B,D).

Clinical serological validation of the diagnostic performance of two biomarkers
To further validate the clinical significance of these two biomarkers, this study collected serum samples to measure 
protein concentrations. The clinical characteristics of the study cohort are shown in Table  1. No significant 

Fig. 2.  Identification of CHF key genes. (A,B) Box plots of the expression profiles before (A) and after (B) 
batch correction of CHF datasets. (C) Volcano plot of differentially expressed genes in the CHF merged 
dataset. (D) Heatmap of the top 30 differentially expressed genes in the CHF merged dataset. (E) Gene 
dendrogram displaying the cleaved gene modules. (F) Heatmap showing the correlation between gene modules 
and traits. (G) Venn diagram illustrating the overlap between CHF differential genes and key module genes.
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differences were observed in age or sex among the three groups. Compared with the Control group, the two 
disease groups (CKD group and CRS4 group) exhibited significantly reduced renal function indices. Except 
for cardiac function indices (LVEF and NT-proBNP), no other significant differences were observed between 
the CKD group and the CRS4 group. These results indicate consistency between the clinical characteristics and 
disease grouping.

Fig. 3.  Identification of CKD-related secreted proteins. (A,B) Volcano plot (A) and heatmap (B) of 
differentially expressed genes in the GSE37171 dataset. (C,D) Volcano plot (C) and heatmap (D) of 
differentially expressed genes in the GSE66494 dataset. (E,F) Venn diagrams showing the overlap between the 
secreted protein gene set and differentially expressed genes in CKD whole blood (E) and kidney tissues (F).
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Compared with the healthy control group and the CKD group, the concentrations of the two biomarkers 
were significantly elevated in the CRS4 group, with statistically significant differences (Fig. 8A,B). ROC analysis 
revealed that the AUC values for diagnosing CRS4 were 0.811 and 0.790 for MME and SERPINF1, respectively 
(Fig. 8C,D). As shown in Fig. 8E, a nomogram model incorporating these two biomarkers was constructed. 
Analysis of the calibration curve indicated that the predicted probabilities generated by the nomogram closely 
matched those of the ideal model (Fig. 8F). Furthermore, DCA was performed to evaluate the performance of 
the nomogram model, demonstrating its advantage in identifying CRS4 (Fig. 8G). Additionally, ROC analysis 
of the nomogram model yielded an AUC value of 0.880, indicating excellent diagnostic performance (Fig. 8H).

A comprehensive diagnostic model established based on MME, SERPINF1 and NT-proBNP
NT-proBNP and cTnT are established cardiac biomarkers. In this cohort, serum cTnT levels were significantly 
elevated in both CKD and CRS4 groups compared to control group (Fig. 9A), while serum NT-proBNP levels 
showed greater elevation in the CRS4 group versus both control and CKD patients (Fig.  9B). ROC analysis 
revealed AUC values of 0.682 and 0.865 for cTnT and NT-proBNP in diagnosing CRS4, respectively (Fig. 9C,D). 
Given the superior diagnostic value of NT-proBNP, we developed a nomogram integrating MME, SERPINF1, 
and NT-proBNP (Fig. 9E). Analysis of the calibration curve indicated that the predicted probabilities generated 
by the nomogram closely matched those of the ideal model (Fig. 9F). DCA confirmed the clinical utility of the 
nomogram for CRS4 identification (Fig. 9G). The model achieved an AUC of 0.942 in ROC analysis, indicating 
excellent diagnostic performance (Fig. 9H).

Discussion
This study investigates the relationship between CKD and the subsequent development of CHF through 
bioinformatics analysis. The potential humoral mechanisms through which CKD induces CHF may involve 
cytokine activity, adhesion molecule binding, and immune- and metabolism-related signaling pathways. ML 

Fig. 4.  Functional enrichment, and drug screening for CRS4-related pathogenic genes. (A) The lollipop chart 
displays the results of the GO enrichment analysis, including the BP, CC, and MF terms associated with the 
CRS4-related pathogenic genes. (B) The circle diagram shows the pathways that are significantly enriched 
in the KEGG analysis for CRS4-related pathogenic genes. (C) Heatmap of the top 10 small-molecule drug 
enrichment fractions obtained by cMAP analysis. (D) The Sankey diagram presents the target descriptions of 
the top 10 drugs.
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Fig. 5.  Biomarker screening and diagnostic model construction for CKD-related CHF. (A) Venn diagram 
showing the intersection of CHF DEGs, CHF key module genes, and CKD-related secreted proteins. (B–D) 
Importance rankings of the 12 overlapping genes using three ML algorithms: GLM (B), RF (C), and XGB (D). 
(E) Venn diagram of the intersection of the top 6 important genes ranked by each of the three algorithms. 
(F,G) Violin plots displaying the expression patterns of MME (F) and SERPINF1 (G) in the CHF merged 
dataset. (H,I) ROC analysis for diagnosing CHF using MME (H) and SERPINF1 (I). (J) Nomogram model for 
diagnosing CHF using MME and SERPINF1. (K) Calibration curve of the nomogram model. (L) DCA curve 
for diagnosing CHF using the nomogram model. (M) ROC analysis of the nomogram model for diagnosing 
CHF.
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algorithms facilitated the development of a diagnostic nomogram that integrates two hub genes, MME and 
SERPINF1, for CHF risk prediction. ROC curve analysis demonstrates that these two hub genes and the model 
exhibit strong performance in predicting CHF. Validation of MME and SERPINF1 upregulation patterns in two 
external GEO datasets confirmed their consistency with findings from this study. Additional validation with 
clinical cohort further confirmed the predictive value of MME and SERPINF1 as biomarkers for CHF in CKD 
patients.

The primary characteristics of heart damage in CRS4 include myocardial hypertrophy, interstitial fibrosis, and 
a subsequent decline in diastolic and contractile function. The pathogenesis of CRS4 is complex and challenging 
to fully elucidate. It is currently believed that the primary mechanism by which CRS4 induces heart damage 
involves activation of the sympathetic nervous system, the renin-angiotensin-aldosterone system (RAAS), the 
release of inflammatory factors, and the accumulation of uremic toxins in end-stage CKD patients4,15. This study 
investigates the pathogenesis of CRS4 from the perspective of secreted proteins. KEGG enrichment analysis of 
CRS4-related pathogenic genes revealed important risk factors for heart failure, such as the RAAS system and 
hypertrophic cardiomyopathy. GO enrichment analysis identified entries related to secreted proteins, including 
“cellular response to cytokine stimulus” and “cytokine activity.” Moreover, the top-ranked BP entries included 
“extracellular matrix remodeling,” while the top-ranked CC and MF entries also involved extracellular matrix-
related terms. This evidence suggests that CKD may interact with the heart through various cytokines secreted 
by kidney and circulatory blood cells, induce myocardial hypertrophy and myocardial fibrosis, and accelerate 
the progression of heart failure.

It is well established that CHF is a chronic inflammatory disease, and increasing evidence suggests that 
immune cell dysfunction plays a critical role in its pathogenesis16. In this study, both the MCPcounter and 
ssGSEA algorithms were applied to a combined CHF dataset to identify key immune cell alterations. The 
MCPcounter algorithm revealed a significant enrichment of fibroblasts in the hearts of CHF patients, consistent 
with prior findings. The ssGSEA algorithm identified an elevated mast cell infiltration score in the hearts of 
CHF patients. Previous studies have demonstrated that in the hearts of mice with experimental hypertension, 
myocardial infarction, or chronic cardiac volume overload, there is a significant increase in mast cell numbers. 
These cells store and release various active mediators, including TNF-α and proteases such as elastase, renin, 
and matrix metalloproteinases, which contribute to heart remodeling and the progression of heart failure17. 
Inhibition of mast cell proteases or degranulation has been shown to prevent the progression of heart fibrosis 
and improve left ventricular dysfunction18,19. Interestingly, both algorithms consistently identified a significant 
upregulation of CD8 T cell infiltration in the hearts of CHF patients. Previous studies have suggested that CD8 T 
cells are activated in hypertensive mice and release perforin, which promotes TGFβ1 release and heart fibrosis20. 
Further research has shown that in mice with myocardial remodeling following myocardial infarction or left 
ventricular dysfunction, CD8 T cells are recruited and activated, releasing granzyme B to induce inflammation 
and myocardial cell apoptosis, thus promoting heart failure progression. Moreover, CD8 T cell exhaustion 

Fig. 6.  External verification of the expression patterns and diagnostic performance of two biomarkers. (A,B) 
The violin plots display the expression patterns of MME (A) and SERPINF1 (B) in the GSE1145 dataset. (C,D) 
The violin plots show the expression patterns of MME (C) and SERPINF1 (D) in the GSE141910 dataset. (E,F) 
ROC analysis demonstrates the diagnostic performance for CHF of individual biomarkers (E) and the model 
(F) in the GSE1145 dataset. (G,H) ROC analysis presents the diagnostic performance for CHF of individual 
biomarkers (G) and the model (H) in the GSE141910 dataset.
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Clinical variables Control (n = 55) CKD (n = 62) CRS4 (n = 51) P value (control vs. CKD) P value (control vs. CRS4) P value (CKD vs. CRS4)

Age (year) 56.58 ± 8.36 60.55 ± 10.80 60.24 ± 8.13 0.056 0.107 0.982

Female/male (n) 29/26 34/28 25/26 0.819 0.703 0.538

Hypertension (n, %) 6 (10.91%) 29 (46.77%) 27 (52.94%) < 0.001 < 0.001 0.514

Diabetes (n, %) 0 (0%) 12 (19.35%) 12 (23.53) < 0.001 < 0.001 0.589

Cholesterol (mmol/L) 3.67 ± 0.95 4.15 ± 0.89 4.36 ± 0.94 0.015 < 0.001 0.470

LDL (mmol/L) 2.41 ± 0.60 2.31 ± 0.56 2.45 ± 0.57 0.618 0.932 0.406

LVEF (%) 67.97 ± 9.23 63.77 ± 6.61 54.92 ± 12.32 0.047 < 0.001 < 0.001

cTnT (ng/mL) 0.006 ± 0.003 0.009 ± 0.004 0.010 ± 0.004 < 0.001 < 0.001 0.410

NT-proBNP (pg/mL) 56.21 ± 26.27 85.56 ± 42.86 219.0 ± 130.6 < 0.001 < 0.001 < 0.001

eGFR (ml/min/1.73m2) 88.66 ± 8.91 33.79 ± 11.25 30.30 ± 12.43 < 0.001 < 0.001 0.275

CKD stage 3 (n, %) 0 (0%) 36 (58.06%) 24 (47.06%) < 0.001 < 0.001 0.243

CKD stage 4 (n, %) 0 (0%) 21 (33.87%) 22 (43.14%) < 0.001 < 0.001 0.313

CKD stage 5 (n, %) 0 (0%) 5 (8.06%) 5 (9.80%) 0.031 0.017 0.746

Table 1.  Clinical characteristics in our cohort.

 

Fig. 7.  Immune cell infiltration analysis of CHF merged dataset. (A) The box plot displays the differences in 
immune-related cells infiltration scores between CHF and the control group as obtained by the MCPCounter 
algorithm. (B) The heatmap shows the correlation between immune-related cells and two biomarkers in the 
MCPCounter algorithm. (C) The box plot presents the differences in immune cell infiltration scores between 
CHF and the control group as obtained by the ssGSEA algorithm. (D) The heatmap illustrates the correlation 
between immune cells and two biomarkers in the ssGSEA algorithm.
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significantly alleviates the progression of heart failure. Additionally, recruitment of CD8 T cells and elevated 
expression of granzyme B have been observed in pig models of ischemia-reperfusion and in human patients with 
myocardial infarction21,22. These findings suggest that CD8 T cell activation and cytokine release play a pivotal 
role in the progression of heart failure. Furthermore, GO and KEGG analyses of the CRS4 pathogenic genes in 
this study were enriched in the “Toll-like receptor signaling pathway.” Toll-like receptors (TLRs) are a family 
of pattern recognition receptors (PRRs) that recognize pathogen-associated molecular patterns (PAMPs) and 
damage-associated molecular patterns (DAMPs). TLRs play a critical role in innate immune responses, leading 
to both acute and chronic inflammation23. Recent evidence has shown that myocardial TLRs, including TLR224, 

Fig. 8.  Clinical serological validation of the diagnostic performance of two biomarkers. (A,B) Bar graphs 
showing the protein concentrations of MME (A) and SERPINF1 (B) in serum. (C,D) ROC analysis 
demonstrating the diagnostic efficacy of MME (C) and SERPINF1 (D) for CRS4. (E) A nomogram model 
for diagnosing CRS4 based on MME and SERPINF1. (F) Calibration curve of the nomogram model used for 
diagnosing CRS4. (G) DCA curve of the nomogram model for diagnosing CRS4. (H) ROC analysis showing 
the efficacy of the nomogram model in diagnosing CRS4.
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TLR325, TLR426, and TLR927, among others, contribute to the progression of CHF through innate immune 
activation and inhibiting TLRs has emerged as a promising therapeutic approach for CHF. These findings 
suggest that CKD-related secreted proteins may contribute to the onset and progression of CHF through various 
immune pathways, including the recruitment of mast cells and CD8 T cells, and activation of TLRs.

Despite the widespread occurrence of CHF, diagnosing it in CKD populations remains a significant challenge. 
Since CHF is diagnosed clinically based on characteristic medical history and physical examination, its accurate 
diagnosis depends on symptoms and signs of volume overload and increased cardiac filling pressure. These 
symptoms and signs are also observed in CKD patients, particularly as they approach end-stage, complicating 
the distinction between CHF and systemic volume overload due to CKD28. Therefore, identifying new early 

Fig. 9.  A comprehensive diagnostic model established based on MME, SERPINF1 and NT-proBNP. (A,B) Bar 
graphs showing the protein concentrations of cTnT (A) and NT-proBNP (B) in serum. (C,D) ROC analysis 
demonstrating the diagnostic efficacy of cTnT (C) and NT-proBNP (D) for CRS4. (E) A nomogram model for 
diagnosing CRS4 based on MME, SERPINF1, and NT-proBNP. (F) Calibration curve of the nomogram model 
used for diagnosing CRS4. (G) DCA curve of the nomogram model for diagnosing CRS4. (H) ROC analysis 
showing the efficacy of the nomogram model in diagnosing CRS4.
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biomarkers of CHF in CKD patients is crucial. This study, based on secreted proteins from CKD patients, 
identifies two CHF biomarkers and establishes a CHF diagnostic model using three machine learning algorithms. 
RNA detection in the external cohort and serum ELISA detection in the clinical cohort of this study suggest that 
these two biomarkers have high diagnostic value for CHF. MME encodes neprilysin, a protein that inactivates 
multiple peptide hormones, including enkephalin, substance P, and neurotensin, inducing vasoconstriction and 
playing a key role in the progression of CHF. Its inhibitor, sacubitril/valsartan, has been extensively studied 
and shown to improve the long-term prognosis of CHF patients29. SERPINF1, a member of the non-inhibitory 
serpin family, promotes myocardial cell apoptosis, thereby inducing the progression of CHF. Current research 
has shown that its serum concentration is significantly associated with the incidence of adverse events in patients 
with advanced heart failure30. Moreover, correlation studies have identified a significant positive correlation 
between these biomarkers and CD8 T cells, mast cells, or fibroblasts, suggesting that these markers may mediate 
the progression of CHF in CKD patients through an immunological pathway.

Providing appropriate CHF treatment for CKD patients can be challenging once diagnosed. Traditional CHF 
treatments, such as excessive use of diuretics, can decrease blood volume and worsen CKD progression. ACE 
inhibitors (ACEI) or angiotensin II receptor blockers (ARBs) may cause hyperkalemia, requiring cautious use in 
patients with severely reduced renal function. Emerging CHF treatments, such as sacubitril/valsartan and SGLT2 
inhibitors, show great potential for CKD patients, but more evidence from clinical studies is needed. This study 
performed a drug sensitivity analysis based on CKD-induced upregulated pathogenic genes, identifying ten small-
molecule drugs that significantly reverse their expression, with dexamethasone ranked first. Dexamethasone, a 
synthetic glucocorticoid with strong anti-inflammatory and immunosuppressive effects, is commonly used to 
treat CKD. In a mouse experiment, the leukemia drug ponatinib induced strong inflammation and significant 
cardiotoxicity. However, dexamethasone intervention nearly completely reversed the cardiac dysfunction caused 
by ponatinib31. Another study on rats with CHF found that dexamethasone improved symptoms by inhibiting 
the RAAS system and significantly increasing urine output32. Additionally, dexamethasone enhances NPRA 
expression in the renal collecting ducts, improving kidney sensitivity to ANP, promoting sodium excretion, 
and reducing left ventricular end-diastolic pressure33. It should be noted that short-term use of dexamethasone 
may prevent cardiac injury by exerting anti-inflammatory effects, inhibiting immune cells, and promoting 
diuresis, but long-term dexamethasone treatment may also lead to opposite results, similar to cardiovascular 
complications in patients with Cushing’s syndrome34. Therefore, rational use of dexamethasone could offer dual 
benefits for both CHF and CKD.

This study has several limitations: the single-center design and modest sample size limit the statistical power, 
while the restricted cohort precluded subgroup analyses across CKD stages. Additionally, the study could 
not follow up with the clinical cohort to further explore the predictive value of the two biomarkers for CHF 
progression and prognosis in CKD patients. Further research is also needed to understand the mechanisms by 
which these biomarkers contribute to CRS4 and to explore their potential as therapeutic targets.

Data availability
The public datasets were downloaded and analyzed in this study including GEO data repository (accession num-
bers: GSE19303, GSE21610, GSE37171, GSE66494, GSE1145, and GSE141910).
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