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With the rapid expansion of social networks, efficiently mining and analyzing massive graph data 
has become a fundamental challenge in social network research. Graph partitioning plays a pivotal 
role in enhancing the performance of such analyses. However, conventional graph partitioning 
methods predominantly rely on local structural information and often overlook the rich attribute 
information associated with vertices in social network graphs. To overcome this limitation, this paper 
introduces GP-DQN (Graph Partitioning via Double Deep Q-Network), a large-scale graph partitioning 
algorithm that jointly considers structural correlations, attribute disparities among user vertices, and 
partition load balancing. GP-DQN encodes partition load metrics and vertex attributes into vector 
representations and employs a Graph Convolutional Network (GCN) to aggregate both vertex features 
and neighborhood structures, thereby improving the accuracy and scalability of the partitioning 
process. A tailored reward function is designed to guide partitioning actions, where a Double Deep 
Q-Network (DDQN) predicts the expected partitioning rewards based on GCN-extracted features 
for assigning each vertex to different partitions. The partitioning strategy is iteratively optimized 
using both immediate and expected rewards, ultimately achieving balanced load distribution while 
minimizing the number of edge cuts. Experimental results demonstrate that GP-DQN produces well-
balanced partitions with significantly fewer edge cuts, leading to enhanced computational efficiency 
within each partition.
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In recent years, with the rapid development of technologies such as mobile internet, the internet of things, 
social networks, and big data processing, various industries have begun to generate vast and diverse datasets 
continuously1. In most datasets, relationships often exist between data items, which can be modeled using 
graphs. Vertices in the graph represent data items, while edges represent relationships between them. As social 
networks scale up, the volume of data they produce grows exponentially. WeChat, for example, has 1.1 billion 
daily active users, with 45 billion messages sent daily, 780 million users browsing their moments, and 120 million 
users posting updates, that include 670  million photos and 100  million short videos. Facebook, the world’s 
largest social network, currently has about 1  billion users and tens of billions of relationship links, posing 
significant challenges to the timeliness of data analysis, data storage, and service delivery in social network-
based applications.

Social networks are typically represented as attributed graphs, where both vertices and edges carry attributes. 
Such graphs have complex community structures, where densely connected user vertices form communities 
with tighter internal connections and sparser inter-community links2. Moreover, social network graphs follow 
a pronounced power-law distribution: a few vertices have extremely high connectivity, while most vertices have 
few connections3. Leveraging community structures and vertex attributes can enhance social network analysis, 
value extraction, and applications like personalized recommendation and targeted advertising. The power-law 
property also helps more accurate anomaly detection in social network graphs and improves the efficiency of 
graph algorithms by capitalizing on the skewed connectivity pattern. Early social networks were sufficiently 
small to be stored and processed on a single machine. As their scale expanded, however, a single processing 
node could no longer efficiently handle large-scale social network graphs. It has driven the development of 
distributed graph processing models, which partition large graphs across multiple computing nodes to enable 
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parallel processing4. For instance, Ma et al.5 developed a distributed graph neural network that uses parallel 
strategies to reduce data transmission and redundant computations, enhancing the performance of processing 
large social network graphs. Weng et al.6 proposed a large-scale graph kernel decomposition algorithm, 
executing kernel decomposition based on global activation and hierarchical peeling in each superstep of the 
Bulk Synchronous Parallel (BSP) model, and optimizing performance through local priority and message 
pruning strategies. Graph partitioning is a foundational technique in distributed graph processing (also known 
as graph computation), and it plays a crucial role in enabling efficient graph storage, query execution, processing, 
and data mining7. Effective partitioning distributes graph data across computing nodes to balance storage loads 
and improve resource utilization. When queries involve only local partition data, searching within the partition 
significantly reduces the search scope and speeds up query response. Many graph mining algorithms rely on 
local information propagation or iterative updates; suitable partitioning helps these algorithms converge faster 
and reduces the need for global synchronization. Graph partitioning involves dividing a large graph into smaller 
subgraphs to facilitate distributed computing or optimize storage. It mainly falls into two categories based on 
the partitioned object: vertex partitioning and edge partitioning. Vertex partitioning assigns vertices to different 
partitions, with each partition containing a subset of vertices and their incident edges. An edge is cut if its two 
endpoints are in different partitions. The goal is to minimize the number of cut edges while balancing the vertex 
count across partitions to reduce inter-partition communication overhead. Graph processing systems that adopt 
vertex partitioning include PowerGraph and Pregel8. In contrast, edge partitioning assigns edges to partitions; 
a vertex is cut if its adjacent edges are in different partitions. The goal here is to minimize the number of cut 
vertices while balancing edge counts across partitions. Edge-partitioning-based systems include GraphX9. Given 
the prominent community structure in social networks, algorithms like community detection frequently require 
accessing adjacent vertex information. Vertex partitioning produces subgraphs that reduce the randomness 
of memory access for such algorithms, support large-scale parallel processing, and improve computational 
efficiency. Therefore, this paper employs vertex partitioning for large-scale social network processing.

However, traditional graph partitioning algorithms exhibit intrinsic limitations when applied to social 
network graphs, particularly due to their disregard for attribute heterogeneity among vertices and edges. This 
limitation impedes flexible partitioning based on diverse vertex types or partition load. To address this problem, 
this paper proposes a large-scale social network graph partitioning algorithm called GP-DQN based on DDQN. 
This method simultaneously ensures load balancing across partitions and minimizes the number of cut edges. 
The specific works are as follows:

1) Design a partition scoring function to quantify the load and the number of cut edges of partitions. The 
difference in partition scores before and after a vertex assignment is treated as the reward for that partitioning 
action.

2) Design a DDQN model that can convolve graph features and perform graph partitioning. Firstly, input 
the graph feature matrix into a graph convolutional network for processing to obtain a convolutional matrix that 
integrates vertex attributes, relational structures, and partition load status. This is followed by a linear layer that 
predicts the partitioning action likely to yield the highest reward.

3) Based on the above two points, the GP-DQN algorithm is proposed, which can ensure partition load 
balance and minimize the number of cut edges. Experiments demonstrate that the proposed GP-DQN algorithm 
exhibits excellent partitioning performance on publicly available graph datasets.

Related work
Applications such as community detection10 influence analysis11 and link prediction12 which are derived from 
the community structure of social network graphs, all rely on graph partitioning. As a fundamental component 
of distributed graph processing, graph partitioning assigns large-scale graph data to multiple processors within a 
computing cluster. Its primary objective is to balance the computational load according to the processing capacity 
of each processor, while minimizing inter-processor communication to improve overall system performance. To 
this end, distributed system frameworks such as Spark, Pregel, and Giraph13 have been developed successively, 
providing rich APIs that simplify distributed programming and enable efficient processing of large-scale graphs. 
Distributed graph computing systems running on homogeneous clusters must ensure load balance across 
subgraphs and minimize inter-subgraph communication overhead14 to achieve high computational efficiency. 
Extensive research efforts have been devoted to achieving high-performance graph partitioning by scholars 
worldwide.

In the field of vertex partitioning, the Giraph framework uses a hash function to compute the hash value 
of each user vertex in the social network and assigns vertices with the same hash value to the same partition 
for graph partitioning. Kernighan et al.15 defined a swap gain function to calculate the cut-edge gain of vertex 
swaps between partitions, iteratively swapping vertex pairs with the maximum cut-edge gain to generate new 
partitions. Karypis et al.16 designed a multilevel graph partitioning algorithm that iteratively merges tightly 
connected vertices in the original graph to form a coarsened graph, then refines the merged vertices using the 
method in paper15 to obtain partitions. Wang et al.17 proposed a label propagation-based graph partitioning 
algorithm, updating each vertex’s label to the most common label among its neighbors; when label updates 
converge, partitions are determined by vertex labels. Cui et al.18 combined a genetic algorithm (GA) to treat 
vertex migration strategies as chromosomes, optimizing partitioning through simulated chromosome crossover 
and mutation until the optimal strategy is obtained at convergence. Li et al.19 developed a dynamic balance 
algorithm for graph partitioning: first calculating the reduction in cut edges when each vertex migrates to different 
partitions, transferring the vertex with the maximum reduction to the corresponding partition, adjusting load-
imbalanced subgraphs using balance strategies, and employing global memory and perturbation strategies 
to avoid local optima. Luo et al.20 proposed a GN community detection-based graph partitioning algorithm, 
dividing the graph using non-overlapping community detection after obtaining communities via GN. Graphs 
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with continuously changing data and topological structures are called dynamic graphs. Li et al.21 designed a 
label propagation-based dynamic graph partitioning algorithm for dynamic graphs, using label propagation to 
identify associated vertex groups of changing vertices, updating affected partitions in real-time via a dynamic 
processor, and further optimizing partitioning quality with a local optimizer. Nazi et al.22 combined graph neural 
networks (GNNs)23 to propose a general graph partitioning framework, using graph convolutional networks 
(GCNs)24 to aggregate vertex feature vectors and connection structures, predicting partitioning strategies via 
neural networks, and defining a differentiable loss function to compute partitioning loss and improve quality 
through backpropagation. Gatti et al.25 integrated the deep reinforcement learning A2C algorithm26 with GNNs 
to solve the combinatorial optimization problem of graph partitioning: after aggregating vertex features via 
GCNs, an actor model executes partitioning, while a critic model provides action rewards using normalized cut 
criteria27 to enhance the actor’s partitioning quality.

In the field of edge partitioning, Zhang et al.28 proposed a heuristic graph partitioning algorithm focusing 
on neighbor locality, generating high-locality partitions via neighbor expansion after computing each vertex’s 
neighbor set. Xie et al.29 developed a greedy partitioning algorithm that assigns streaming edges to the endpoint 
with lower degree, improving partition locality and addressing vertex degree skew effectively. Petroni et al.30 
proposed a history-based heuristic algorithm, leveraging past partitioning information to compare edge scores 
across partitions and enhance partitioning quality. Zhao et al.31 extended paper30 with a heuristic algorithm for 
social network attributes, maximizing the impact of partitioned edges on memory usage scores of social network 
attributes and vertex replication scores to improve partitioning quality for attributed social network graphs.

Graph clustering is an unsupervised learning task focusing on graph structures and vertex attributes, aiming 
to partition vertices into clusters with strongly connected internal structures and highly similar vertex attributes. 
For instance, Yang et al.32 proposed an attribute graph clustering algorithm via approximate generative Bayesian 
learning, constructing a graph skeleton to retain key information, predicting edge clusters from skeleton edge 
relationships and vertex attribute distributions, and indirectly deriving vertex clusters. Yang et al.33 proposed a 
graph clustering model combining fuzzy clustering and GCN, predicting vertex-cluster memberships via GCN 
and multilayer perceptron, optimizing model parameters via a loss function considering intra-cluster structure 
and attribute similarity, finally labeling vertex clusters by maximum membership. Graph clustering and graph 
partitioning share highly congruent objectives; thus, some scholars have proposed graph partitioning methods 
that integrate graph clustering. Mayer et al.34 proposed a graph partitioning algorithm based on graph clustering, 
partitioning vertex clusters by vertex degree, then mapping them to the least loaded partitions in descending 
order of cluster size, finally partitioning remaining edges via a scoring function considering partition load and 
cluster size. Ding et al.35 proposed a Stackelberg Game-based graph partitioning algorithm, first obtaining head 
and tail clusters via edge endpoint degrees and information clustering, conducting Stackelberg Game with head 
clusters as leaders and tail clusters as followers, optimizing cluster-to-partition allocation via a cost function, 
finally mapping edges to specific partitions.

While the above studies propose methods for load balancing and reducing cross-partition edges from 
different angles, they have limitations in processing large-scale social networks. Studies15,16,27 store the entire 
graph in memory for partitioning, which risks memory overflow when processing large-scale social networks. 
Heuristic strategies in paper17–20,28 require storing multiple intermediate partitioning results to identify the 
optimal strategy, leading to high memory usage and excessive computational overhead from frequent result 
comparisons. Real-time streaming partitioning in paper29–31 achieve fast partitioning but yield low-quality 
results due to their reliance on local graph structures. Studies22,25 use GCNs to extract graph structure features 
and linear networks to predict vertex partitions, but vectorizing vertex and partition features is challenging, 
making it difficult for GCNs to converge on large-scale social network graphs. Studies32,33 focus exclusively on 
graph structure and attribute information, while overlooking load imbalance caused by cluster size disparities 
post cluster-to-partition mapping. Studies34,35optimizes cluster-to-partition mapping via scoring functions. Its 
streaming nature reduces memory overhead per traversal and improves partitioning efficiency, yet acquiring 
high-quality clustering results requires more time. Moreover, such methods neglect attribute heterogeneity of 
vertices in social networks, potentially leading to excessive load in small-scale clusters. Clustering-based graph 
partitioning algorithms are more suitable for social networks with clear community structures and homogeneous 
attributes. In contrast, reinforcement learning-based methods incorporate edge-cut costs and partition loads 
into reward functions, integrate vertex attributes and partition loads when designing vertex features, and enable 
flexible partitioning adjustments based on vertex attributes, making them more suitable for social networks 
with complex attributes. Algorithms in paper15–20,22,25,27–30 target non-attributed graphs, while real-world social 
network graphs have complex vertex and edge attributes; thus, these algorithms cannot adjust partitioning 
strategies flexibly based on attribute differences, resulting in high cross-partition cut edges and unbalanced 
loads. Although paper31 considers attribute differences, its streaming partitioning fails to capture the full graph 
structure, leading to poor quality. To address the limitation that existing graph partitioning methods cannot 
flexibly adapt strategies based on attribute differences in social network graphs, this paper uses GraphSAGE36 
to convolve vertex attributes, topological structures, and partition load info to represent local vertex-neighbor 
connections, attribute distributions, and load states. The resulting convolutional matrix is then processed by a 
DDQN37 to get a vertex transfer prediction matrix, from which the optimal graph partition with minimal cut-
edges and balanced loads is found.

Modeling of social network graph partitioning
A social network is a complex structure of individuals and their interrelationships, where entities represent users 
with distinct identities, and relationships may take the form of friendships, collaborations, communications, 
information sharing, or other types of interaction.
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Basic concepts
Definition 1  (Social Network Attributed Graph): A social network can be represented as an attributed graph G, 
a 4-tuple G = (V, E, NT, ST ) where the vertex set V = {v1, v2, . . . , vn} represents the collection of social 
network entities with n denoting the number of vertices; the edge set E = {e1, e2, . . . , em} consists of direct-
ed edges in the attributed graph with m being the number of directed edges, each edge ei = (si, ci, eti, edi) 
where si is the source vertex ID, ci is the target vertex ID, eti = sty ∈ ST  denotes the type of edge ei, and 
edi represents the data volume carried by the edge; NT = {nt1, nt2, . . . , ntz} is the set of vertex types with 
z indicating the number of vertex types; ST = {st1, st2, . . . , sty} is the set of edge types with y denoting the 
number of edge types; and each vertex vi = (i, vti, vdi) where i is the vertex ID, vti = ntz ∈ NT  represents 
the type of vertex vi, and vdi denotes the data volume carried by the vertex.

Definition 2  (Social Network Graph Partitioning) Social network graph partitioning divides the vertices of a 
graph into multiple mutually exclusive subgraphs. When graph G is partitioned into k subgraphs (also called 
partitions), denoted as P = {P1, P2, . . . , Pk}, it satisfies V =

∪ k

i=1Pi (the union of all partitions equals the 
vertex set V) and Pi ∩ Pj = ∅ for any i ̸= j(partitions are pairwise disjoint), where Pi represents the i-th 
partition of G.

If a partition Pi contains a vertex v that has a cut edge with a vertex in another partition, then vertex v is called a 
boundary vertex of partition Pi. If the two vertices of an edge are assigned to different partitions, then the edge 
is called a cut edge.

Definition 3  (The number of cut edges): The number of cut edges(NCE) can be expressed as the sum of the 
number of cut edges between different partitions, that is,

	
NCE (P ) = 1

2
∑

k
i=1

∑
k
j=1EC (Pi, Pj) , i ̸= j� (1)

Where EC (Pi, Pj) represents the number of cut edges between partition Pi and partition Pj .
If graph G is partitioned into k partitions, the load of partition Pi, denoted as ldi, is defined as the sum of 

the data volume carried by all vertices in Pi, i.e., ldi =
∑ |Pi|

j=1 |vdj |.

Definition 4  (load balance degree): The load balance degree (LBD) of graph partitioning can be expressed as the 
difference between the actual partition load and the ideal balanced load, that is,

	
LBD (P ) = max

Ph∈ P

∣∣∣∣ldh −
∑

k
i=1ldi

k

∣∣∣∣� (2)

Formulaic description of the objective of social network graph partitioning
When vertices in different partitions frequently exchange information—such as during community detection 
algorithms—limited network bandwidth can degrade data transmission rates, thereby hindering the overall 
computation process. This phenomenon is termed communication cost, which exhibits a direct positive 
correlation with the total number of cut edges. To mitigate communication cost, minimizing the count of 
vertices connected by inter-partition cut edges is essential—specifically, reducing the number of such cross-
partition edges. In distributed graph computing, the completion time of computations is governed by the slowest 
partition’s processing duration. Therefore, when performing graph computations on homogeneous clusters, 
ensuring load balance across partitions is critical: the graph load allocated to each partition must be as uniform 
as possible to avoid performance bottlenecks arising from uneven workload distribution. Thus, the objective of 
social network graph partitioning can be defined as follows:

	 min [NEC (P )]

	
s.t. ldh ≤ (1 + γ )

∑
k
i=1ldi

k
, Ph ∈ P

	

∪
k
i=1Pi = V, Pi

∩
Pj = ∅, i ̸= j� (3)

In this context, k denotes the number of partitions, and γ ∈ [0,1] is the load balance coefficient used to 
control the upper bound of partition loads. When γ = 0, it means the load of each partition is identical. When 
γ = 1, the upper bound of each partition load is no greater than twice the average partition load; in this case, 
the algorithm can minimize the number of cut edges under the premise that partition loads do not exceed the 
upper bound. A higher γ  makes it more likely for the algorithm to reduce the number of cut edges, but an 
excessively high γ  can cause severe load imbalance, thereby degrading the performance of graph computation.

A social network graph partition algorithm based on DDQN
This paper introduces GP-DQN, a DDQN-based algorithm for social network graph partitioning, designed 
to minimize cut edges and ensure balanced partition loads. GP-DQN formulates social network graph 
partitioning as a vertex-centric combinatorial optimization problem in a discrete action space, where each 
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action corresponds to selecting a partition for a given vertex. The algorithm employs GraphSAGE to encode 
vertex attributes, neighborhood topology, and partition load status, enabling systematic exploitation of both 
attribute and structural information during partitioning. This approach ensures dual optimization objectives: 
minimizing inter-partition cut edges and balancing partition load. The GP-DQN workflow is depicted in Fig. 1.

GraphSAGE and the design of graph vertex feature vectors
GraphSAGE is a graph convolutional network (GCN) employing a hierarchical neighbor sampling strategy. In 
the sampling stage, it selects a predefined number of neighbors for each vertex to form a sampled neighborhood 
subset. During convolution, GraphSAGE utilizes an aggregation function to encode vertex attributes, 
neighborhood connectivity, partition assignment, and partition load profiles within each subset. The output of 
this aggregation is termed the vertex convolutional feature. In the attribute update stage, vertex attributes in the 
sampled subset are propagated to incorporate the convolutional features derived from the aggregation step. This 
sampling-aggregation-update pipeline is repeated across network layers until the predefined depth is reached. 
The aggregation function of GraphSAGE is as follows:

	 hk (v) = σ {Wk • concat [hk−1 (v) , aggk (v)]}� (4)

Where hk (v) is the feature embedding of the k-th layer v, Wk  is the weight matrix, and σ  is the activation 
function, aggk (v) is the mean of the neighborhood features of v. GraphSAGE’s local sampling strategy and multi-
layer aggregation method enable higher efficiency in capturing local structures and hierarchical relationships of 
social networks, making it suitable for fast convolution of vertex features in large-scale social network graphs.

Social network graphs are characterized by complex vertex attributes, heavy-tailed degree distributions, high 
clustering coefficients, and pronounced community structures. Given this attribute complexity, balancing only 
the vertex count across partitions during iterative graph partitioning induces excessive load discrepancies. This 
imbalance thereby increases inter-partition cut edges, diverting substantial computational resources to inter-
partition communication overhead and partition synchronization delays.

This paper encodes vertex-related information—comprising vertex attributes, neighborhood connectivity, 
partition assignments, and partition load profiles—as input features for GraphSAGE to perform hierarchical 
convolution on social network graphs. The encoded features explicitly model vertex attributes, topological 
adjacency, and partition-specific load states, enabling the algorithm to dynamically capture inter-vertex 
relational dependencies. This approach enhances the model’s capacity for feature extraction and generalization 
in graph partitioning scenarios. The specific implementation process is as follows:

Firstly, obtaining the K-hop subgraph Gsub of the boundary vertex set, then construct an attribute feature 
vector F (v, P ) for each vertex v in the subgraph Gsub, which specifically includes the following feature 
information:

1)The data volume of v, denoted as Data (v) = vdv

/
max
uϵV

vdu
. This feature value is a normalized 

calculation of the data volume carried by verte v, representing the measured value of the vertex data volume 
feature dimension in F (v, P ).

2)The type of v, denoted as T ype (v) = OneHot (vtv). This feature value is the one-hot encoding of vertex 
v’s type, representing the encoded value of the vertex type feature dimension in F (v, P ).

3)The partition location of v, denoted as partition (v) = OneHot (i) such that vϵPi. This feature value is 
the one-hot encoding of the partition number where vertex v is located, representing the encoded value of the 
partition location feature dimension in F (v, P ).

4)The load status of partition P, denoted as Load (P ). This feature value is a list with a length equal to 
the number of partitions, where the j-th element is the ratio of the load of partition j to the total load, i.e., 
ldj

/∑
k
i=1ldi

, representing the current load status of partitions in F (v, P ).

Immediately afterwards, combine and flatten the above-mentioned information to obtain the feature vector 
F (v, P ) of vertex v. Then, combine the feature vectors of each vertex vi in Gsub into a feature matrix:

Fig. 1.  Execution Process of GP-DQN Algorithm.
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M =




F (v1, P )
F (v2, P )

. . .
F (vn′ , P )


� (5)

Then, represent the vertex connection relationships of Gsub as a matrix EG with 2 rows and the number of 
columns equal to the number of edges in Gsub. In the first row, store the starting points, and in the second 
row, store the ending points. Two values in the same column represent the two endpoints of an edge. Taking 
the matrix EG and feature matrix M as inputs to the GraphSAGE layer in DDQN, after several layers of graph 
convolution, the resulting graph convolution output is a high-dimensional feature matrix that aggregates vertex 
attribute information, partition load status, and the connection structure of Gsub. Through this matrix, the local 
structural information of each vertex in Gsub can be captured, enhancing both the representation of partition 
loads and the feature representations of individual vertices. This provides the fully connected layer with rich 
information about the vertices, edges, and partitions of Gsub, thereby improving the prediction accuracy of the 
Q-value matrix.

DDQN and the design of graph partitioning actions
DDQN is an advanced deep reinforcement learning (DRL) algorithm tailored to address the graph partitioning 
problem. Its primary network, Q-Net, functions to select the action a with the maximum Q-value in the current 
state s—where actions represent vertex-partition assignment decisions—and the action a′  with the maximum 
Q-value in the subsequent state s′ . The target network, Qtarget-Net, evaluates the Q-value of executing a′  
in s′  post-partitioning. Through iterative parameter updates between Q-Net and Qtarget-Net, DDQN learns 
to select actions that maximize cumulative rewards, ultimately converging on an optimal graph partitioning 
strategy. DDQN exhibits high adaptability in partitioning large-scale social network graphs, for the following 
reasons: First, DDQN decouples action selection from action evaluation during training, which reduces the 
likelihood of overestimating Q-values for partitioning actions—a common issue in the original DQN—thus 
improving both partitioning quality and training efficiency. Second, since social network graph partitioning is 
inherently a vertex-level combinatorial optimization problem, DDQN’s discrete action space allows it to directly 
predict Q-values for specific vertex-partition pairs, thereby tightly linking partitioning objectives with action 
choices. Finally, by learning and leveraging the complex attributes, topological structures, cut costs, and load 
distributions of large-scale social networks, DDQN optimizes long-term cumulative rewards and continually 
refines its graph partitioning strategy.

Formally, a state encapsulates all environment-relevant information at a given time step; an action denotes 
the agent’s partition assignment decision in that state; and a reward represents the scalar feedback received upon 
executing that action. In this context, the objective of DRL is to maximize the cumulative reward—defined as 
the expected return over state-action pairs under fixed network parameters—through policy optimization. In 
GP-DQN, the state comprises the vertex feature matrix and graph topology, while the action corresponds to 
transferring vertices between partitions.

After GraphSAGE convolves vertex features and topology, the resulting feature matrix is passed through 
Q-Net’s linear layer to predict the Q-value matrix. Next, the maximum Q-value ( Qmax) and its corresponding 
target vertex-partition assignment are identified, followed by reassigning the target vertex to the chosen partition. 
After reassignment, a reward—calculated from load balance and the number of cut edges—is obtained. The 
target Q-value is then computed by combining this reward with the Qtarget-Net’s evaluation of the action. 
Finally, the loss is calculated as the difference between the target Q-value ( Qtarget) and Qmax. This loss guides 
updates to the parameters of both Q-Net and Qtarget-Net, enabling Q-Net to consistently select actions that 
maximize cumulative rewards, thereby determining the optimal partitioning policy.

Although deeper neural networks generally enhance generalization, feature learning, and representation 
capabilities, excessive depth can cause issues such as over-smoothing, overfitting, and exponential increases in 
computational cost and latency. To balance representational power and avoid overfitting, this paper adopts a 
pragmatic DDQN architecture: a three-layer graph convolutional network (GCN) to learn vertex features and 
topology, followed by two fully connected layers that map GCN features to the action space.

ReLU activation functions are applied between each layer in the DDQN network to introduce non-linearity. 
Q-Net and Qtarget-Net share the same network architecture, detailed in Fig. 2.

In the i-th partitioning step, the vertex feature information and relationship structure of Gsub are used 
by Q-Net to predict a Q-value matrix (Q-table) of size n′  ×  k (where n′  is the number of vertices in Gsub 
and k is the number of partitions), representing the expected Q-value when a vertex is transferred to a specific 
partition. The horizontal axis of the Q-table denotes the target partition index, and the vertical axis denotes the 
target vertex index, mapping the problem of selecting target vertices and partitions in graph partitioning to the 
discrete action space of DDQN. The Q-value matrix QM i is defined as:

Fig. 2.  The structures of the Q network and the target Q network.
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QM i =




Q11 Q12 . . . Q1k

Q21 Q22 . . . Q2k

. . . . . . . . . . . .
Qn′ 1 Qn′ 2 . . . Qn′ k


� (6)

Where Qxy  represents the expected Q-value when the x-th vertex in Gsub is transferred to partition y. Next, 
the maximum value Qmax in QM i and its corresponding target vertex index and target partition index are 
identified. Finally, in partition Pi−1, transferring the target vertex to the target partition yields the partition 
result Pi and the reward Rewardi for this partitioning action. If the expected Q-value of transferring the target 
vertex to its current partition is Qmax, no transfer is performed, and the reward Rewardi for this action is set 
to 0.

Design of graph partitioning action reward
This paper employs a partition scoring function that computes a weighted sum of the normalized partition 
load balance and the number of cut edges. A higher score indicates either a larger number of cut edges or 
greater imbalance in partition loads, both of which degrade graph computation performance due to increased 
inter-partition communication and synchronization overhead. If a partition fails to meet the load balance 
requirement, the current partitioning is considered a failure, and the score is set to the maximum value of 1. The 
partition scoring function Score (P ) is defined as follows:

	

Score (P ) =





1, if ldh > (1 + γ )
∑

k
i=1ldi

k
, Ph ∈ P

µ •
∑

k
i=1

∑
k
j=1EC(Pi,Pj)

2|E| +

(1 − µ )
max

Ph∈ P

∣∣∣∣ldh−

∑
k
i=1ldi

k

∣∣∣∣∑
k
i=1ldi

, otherwise

� (7)

Where γ  is the load balance coefficient, and µ ∈ [0,1] is the reward balance coefficient. When µ = 0, 
the system only considers partition load balance without cut edges; when µ = 1, it only considers cut edges 
without load balance. After a partitioning action is completed, the reward for the action is the difference in scores 
between the two partition sets before and after partitioning. A positive reward indicates that the partitioning 
action helps achieve partitions with the minimum number of cut edges and balanced loads. Reward for the 
partitioning action:

	 Rewardi = Score (Pi−1) − Score (Pi) , i > 0� (8)

Where Rewardi represents the reward value obtained from the i-th partitioning. When i = 1, Score (P0) 
represents the score of the partition P0 after the initial partitioning.

Design of DDQN parameter update mechanism
In DDQN, the Q-Net is responsible for selecting the graph partitioning action a in the current state s and the 
graph partitioning action a′  in the next state s′ . The Qtarget-Net is responsible for evaluating the Q-value of 
executing a′  in s′ . After DDQN completes the i-th graph partitioning and obtains the K-hop subgraph G′

sub 
of the new boundary vertex set, the Qtarget-Net is used to evaluate G′

sub and obtain QM ′
i . The Q-Net predicts 

G′
sub to get the target vertex x′  and the target partition y′  corresponding to the maximum Q-value, and 

QM ′
i [x′ , y′ ] is taken as the evaluated Q-value of G′

sub. The target Q-value Qtarget of this action is calculated 
according to the reward value of the i-th partitioning action and the evaluated Q-value of G′

sub:

	 Qtarget = Rewardi + α • QM ′
i

[
x′ , y′ ]

� (9)

Where α  is used to balance the emphasis on immediate rewards and future rewards. When α  is small, the 
model tends to immediate rewards; when α  is large, the model tends to future rewards. When measuring the 
difference between Qtarget and Qmax, to improve the model’s sensitivity to abnormal expected Q-values, this 
paper uses the mean-squared error loss function to calculate the loss value between Qtarget and Qmax. Finally, 
the parameters of the Q-Net model are updated through the gradient descent algorithm. Initially, the Q-Net and 
the Qtarget-Net have the same structure and the same initial parameters. After several updates of the Q-Net 
model parameters, the parameters of the Q-Net model are assigned to the Qtarget-Net model.

Finally, this paper proposes the GP-DQN algorithm (as detailed in Algorithm 1) to address the large-scale 
social network graph partitioning problem, minimizing the number of cut edges while ensuring load balance. 
The algorithm takes as input the social network graph, model scoring parameters, the number of subgraph hop, 
Qtarget-Net update intervals, and load balance coefficient. The output is the partition set.
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Algorithm 1.  GP-DQN.
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Results and discussion
To evaluate the performance of GP-DQN in partitioning social network graphs, four sets of experiments were 
conducted for validation.

Experimental environment and dataset
This paper uses five social network graph datasets and one web network graph dataset from Stanford University 
to evaluate the performance of the proposed GP-DQN algorithm compared with DRL-Metis, Metis, and Hash 
in partitioning different graphs. The six datasets are shown in Table 1.

As shown in Table  1, the Facebook and GitHub datasets have higher average degrees; the Amazon and 
NotreDame datasets contain more vertices and edges; while the LastFM and Twitch datasets have fewer vertices 
and edges but higher average degrees than Amazon and NotreDame. Hash, Metis, and DRL-Metis are selected 
as comparison algorithms for the following reasons: (1) Hash, the simplest partitioning algorithm, is commonly 
used as the default in many distributed systems; (2) Metis, a widely used algorithm, achieves high performance 
through its distinctive hierarchical mechanism; (3) DRL-Metis, like GP-DQN, is a reinforcement learning-based 
partitioning algorithm, differing in its use of A2C whereas GP-DQN employs DDQN.

The experimental setup consists of two identically configured servers connected via optical fiber. Each server 
is equipped with an Intel(R) Core(TM) i7-9500 H CPU running at 2.60 GHz, 16 GB of RAM, a 1 TB mechanical 
hard drive, and runs the CentOS 7 operating system.

Comparative experiments of load balance degree and number of cut edges
This experiment evaluates the differences in load balance degree and number of cut edges among GP-DQN, 
Metis, and Hash on three datasets: Facebook, Amazon, and NotreDame, using a single server. The load balance 
coefficient is set to 0.03, meaning that if the load of any partition deviates by more than 3% from the average 
partition load, it is considered unbalanced. The partition reward balance coefficient µ is set to 0.5. The load 
balance degrees and numbers of cut edges for the three algorithms across different datasets are presented in 
Fig. 3a, b.

As shown in Fig. 3a, b, Hash exhibits the lowest load balance degree and the highest number of cut edges. 
Running graph computations on Hash partitions can cause severe communication delays due to the excessively 
high number of cut edges, leading to significant overall computation time spent waiting for inter-partition 
communication. Metis achieves the highest load balance degree, which can result in resource underutilization 
when processing partitions with relatively low loads. GP-DQN achieves the fewest cut edges, with a load balance 
degree between that of Hash and Metis. This balance results in moderate communication delays when processing 

Fig. 3.  (a) The number of cut edges of the three algorithms on different datasets. (b) The load balance degree 
of the three algorithms on different datasets.

 

Dataset Number of Vertices Number of Edges Average Degree of Vertices Type

FaceBook 22,470 171,002 15.22 Social network

Amazon 334,863 925,872 5.53 Web network

NotreDame 325,729 1,090,108 6.69 Social network

LastFM 7,624 27,806 7.29 Social network

Twitch 7,126 35,324 9.91 Social network

GitHub 37,700 289,003 15.33 Social network

Table 1.  Social network graph datasets.
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partitions across two servers while ensuring efficient utilization of server resources, thereby attaining the fastest 
overall computation time.

These differences in partitioning outcomes arise because Hash employs a vertex-uniform partitioning strategy, 
which results in the smallest load balance degree but neglects the influence of graph topology on partition 
quality, thereby producing a large number of cut edges across partitions. Both Metis and GP-DQN consider cut 
edges and load balance; however, Metis balances partitions primarily by vertex count without accounting for 
vertex attribute differences, leading to small vertex count disparities but significant actual load imbalances. In 
GP-DQN, GraphSAGE encodes graph topology and vertex attribute differences to extract features representing 
vertex attributes, neighborhood structures, and partition loads. DDQN integrates load balance and cut edge 
considerations into its model and autonomously optimizes partitioning actions, enabling dynamic adjustment 
of partition loads based on vertex data differences, thereby further reducing load imbalance and cut edges. 
Moreover, as the Amazon graph dataset is a Web graph characterized by weak community structure in both 
attributes and topology, GP-DQN cannot fully exploit attribute differences and neighborhood information to 
flexibly adjust partitions, resulting in relatively higher load imbalance in the partitioning of the Amazon dataset.

Comparative experiments on the time of running graph computations on different 
partitioning results
After GP-DQN, DRL-Metis, and Metis partition the Facebook dataset, each algorithm produces two partitions 
that are assigned to two servers respectively. The PageRank and Single-Source Shortest Path (SSSP) algorithms 
are executed on these partitions, and their running times are compared. The running times of PageRank 
and SSSP increase as the partition communication delay—the time required for a message to travel between 
partitions along topological edges—increases. We compare the running times of PageRank and SSSP on 
partitions generated by the three algorithms under four partition communication delays: 0.00001 s, 0.0001 s, 
0.001 s, and 0.01 s. In the experiment, PageRank is run for 100 iterations, and each vertex in the graph serves 
as the source for SSSP once. The load balance coefficient is set to 0.03. The reward balance coefficient µ is set to 
0.2, 0.4, 0.6, and 0.8 corresponding to partition communication delays of 0.00001 s, 0.0001 s, 0.001 s, and 0.01 s, 
respectively. The running times of PageRank and SSSP on partitions generated by the three algorithms under 
different partition communication delays are shown in Fig. 4a, b.

As can be seen from Fig.  4a, b, the running times of both PageRank and SSSP are the shortest on the 
partitions obtained by GP-DQN. PageRank runs slowest on the partitions of DRL-Metis. Within the partition 
communication delay range of 0.00001s to 0.001s, SSSP runs slowest on DRL-Metis partitions, while at a 
delay of 0.01s, SSSP runs slowest on Metis partitions. Specifically, the execution time differences of PageRank 
and SSSP on the respective partitioning results of GP-DQN, Metis, and DRL-Metis under varying partition 
communication delays are as follows: at 0.00001s delay, PageRank runtime on GP-DQN is 13,500s faster than 
Metis and 1,161,200s faster than DRL-Metis, while SSSP runtime is 22.61s faster than Metis and 584.35s faster 
than DRL-Metis; at 0.0001s delay, PageRank on GP-DQN outperforms Metis by 73,500s and DRL-Metis by 
1,226,300s, with SSSP runtime 123.59s faster than Metis and 613.44s faster than DRL-Metis; at 0.001s delay, GP-
DQN’s PageRank runtime is 113,600s faster than Metis and 1,247,200s faster than DRL-Metis, and SSSP runtime 
is 168.65s faster than Metis and 415.83s faster than DRL-Metis; at 0.01s delay, PageRank on GP-DQN is 214,500s 
faster than Metis and 915,900s faster than DRL-Metis, while SSSP runtime is 343.92582s faster than Metis and 
101.24982s faster than DRL-Metis.

These results arise because PageRank requires frequent iterations to update each vertex’s PageRank value. 
Thus, the slowdown in iteration speed due to partition overload has a greater impact on PageRank’s overall 
computation time than the increased communication delay caused by a high number of cut edges. Consequently, 
load balance influences PageRank’s computation speed more significantly than the number of cut edges. The 
DRL-Metis algorithm’s reward function prioritizes minimizing cut edges and in-partition degrees, which often 

Fig. 4.  (a) Running Time of PageRank. (b) Running Time of SSSP.
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results in unbalanced partition loads and consequently the slowest PageRank performance. The SSSP algorithm 
requires more frequent cross-partition neighbor information access and depends more heavily on minimizing 
cut edges compared to PageRank. At higher partition communication delays, DRL-Metis partitions have the 
fewest cut edges, resulting in SSSP running times that are only exceeded by those of GP-DQN. Metis balances 
vertex counts and cut edges during partitioning. For communication delays between 0.00001  s and 0.001  s, 
PageRank and SSSP running times on Metis partitions are significantly lower than those on DRL-Metis but 
slightly higher than on GP-DQN. However, Metis does not account for vertex data volume or communication 
delays, limiting its ability to adjust partition loads flexibly based on load and delay constraints. Consequently, 
it exhibits the slowest SSSP performance at a 0.01 s communication delay. GP-DQN adapts to varying partition 
communication delays by tuning the reward balance coefficient, achieving the fastest execution times for both 
PageRank and SSSP across all tested delay scenarios.

Comparative experiments on partitioning time of different graph datasets
In this experiment, GP-DQN and DRL-Metis partition four graph datasets—Facebook, LastFM, Twitch, and 
GitHub—on a single server, and their partitioning times are compared. The load balance coefficient is set at 0.03, 
and the reward balance coefficient µ is fixed at 0.5. Figure 5 illustrates the partitioning times of GP-DQN and 
DRL-Metis across the four datasets.

As can be seen from Fig. 5, GP-DQN partitions graphs faster than DRL-Metis on all four datasets. Specifically, 
GP-DQN reduces partitioning time compared to DRL-Metis by 20.00 s for Facebook, 9.10 s for LastFM, 7.65 s 
for Twitch, and 48.14 s for GitHub. This is because DRL-Metis employs policy gradients to generate continuous 
action probabilities from states, selects the highest-probability action, and calculates rewards to update network 
parameters. However, graph partitioning is a discrete action problem involving vertex-to-partition assignments, 
and DRL-Metis—better suited for continuous action spaces—performs poorly in such discrete scenarios. In 
contrast, GP-DQN’s discrete action selection aligns naturally with the combinatorial optimization nature of 
graph partitioning, leading to significantly faster partitioning times.

Adaptability analysis of GP-DQN to load balance and communication delay with different 
reward balance coefficients
In this experiment, GP-DQN partitions the Facebook dataset on a single server using varying reward balance 
coefficients. The algorithm’s adaptability to varying partition communication delays and load balance coefficients 
is evaluated by examining the load balance degree and the number of cut edges in the resulting partitions. 
Figure 6 presents the load balance degrees and numbers of cut edges for GP-DQN partitions obtained with 
different reward balance coefficients.

Figure 6 shows that at µ = 0.3, GP-DQN produces the highest number of cut edges and the lowest load 
balance degree, making it more suitable for scenarios with low load balance coefficients and low partition 
communication delays. At µ = 0.7, the algorithm attains the lowest number of cut edges and the highest load 
balance degree, making it better suited for environments with high load balance coefficients and high partition 
communication delays. At µ = 0.5, GP-DQN achieves a balanced trade-off between cut edges and load balance, 
making it appropriate for scenarios with low load balance coefficients but high partition communication delays. 
All five reward balance coefficients tested in this experiment correspond to scenarios characterized by high load 
balance requirements and low partition communication delays.

Summary
This paper proposes GP-DQN, a DDQN-based algorithm to address the large-scale social network graph 
partitioning problem. It employs GraphSAGE to encode vertex attribute features and neighborhood structures, 
then feeds the resulting representations into DDQN for forward propagation to identify partitioning actions that 

Fig. 5.  Partitioning time of GP-DQN and DRL-Metis on different datasets.

 

Scientific Reports |        (2025) 15:34339 11| https://doi.org/10.1038/s41598-025-16768-x

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


minimize cut edges and balance partition loads. However, GP-DQN has several limitations: first, it is designed 
for static social network graphs and performs poorly on dynamic graphs; second, it targets homogeneous 
cluster environments and lacks adaptability to heterogeneous clusters. Future work will focus on two directions: 
first, developing a more time-efficient graph partitioning algorithm for dynamic graphs that meets real-time 
computation demands while maintaining partitioning quality; second, designing a graph partitioning algorithm 
capable of accommodating cluster heterogeneity by dynamically adjusting partitions according to variations 
in cluster communication and performance. Experimental results demonstrate that GP-DQN produces load-
balanced graph partitions with fewer cut edges, resulting in faster graph computation within each partition.

Data availability
No new data were generated in this study. The analyses utilized publicly available datasets from the Stanford 
Network Analysis Project (https://snap.stanford.edu/).
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