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Temporal metabolomic
fingerprinting identifies adenine
as a novel biomarker for early
detection of Escherichia coli
infection in broiler chickens

Asha Ranaraja’, Iresha Subhasinghe?, Shaik Noor Ahmad**“, Babajan Banaganapalli2,
Shelly Popowich?, Snijesh V. Parambath?, Lisanework E. Ayalew*, Rupasri Mandal®,
David S. Wishart®, Suresh Tikoo® & Susantha Gomis**

Avian pathogenic Escherichia coli causes septicemia in broiler chickens leading to high mortality and
economic losses. Current diagnostic methods, such as serology and culture, cannot detect infections
during early asymptomatic stages. Hence, this study focused on identifying novel serum metabolic
biomarkers and pathways as an early detection prediction tool. Ross broiler chicks were challenged
with E. coli at 3 or 5 d of age, and blood samples collected at 8 and 24 h following infection. Serum
samples were analyzed for metabolite alterations using targeted The Metabolomics Innovation
Centre (TMIC) mega metabolomics assay. Data was processed through comprehensive statistical
analyses, including univariate, multivariate, and meta-analysis approaches. At 8 h post-infection,

top metabolites like adenine, N-acetyl-alanine, N-acetyl-soleucine, N-acetyl-valine, and orotic acid
related to nucleotide and amino acid metabolisms were downregulated (p=<0.05). At 24 h, a distinct
metabolic shift emerged with hippuric acid increasing, while adenine showed further depletion,
accompanied by decreases in N1-acetylspermidine, N-acetylputrescine, and a modest increase in
picolinic acid related to nucleotide, polyamine and immune response pathways (p=<0.05). Correlation
metabolite networks show that at 8 h post-infection, broiler chicken showed enhanced metabolic
coordination, while at 24 h, disruptions in polyamine, nucleoside, and fatty acid pathways reflected
systemic rewiring. The progressive depletion of adenine at both 8 and 24 h post-infection supports it as
a novel metabolite signature for E. coli infection.
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The commercial broiler chicken industry is searching for novel measures to combat infections to ensure animal
welfare and food safety'. High mortality associated with bacterial infections during the first week of a broilers
life has devastating impacts on production?. Of these bacterial infections, Escherichia coli septicemia is a major
cause of first-week mortality in the broiler chicken industry worldwide®. It has been reported that bacterial
infections, primarily E. coli, accounted for ~50% of flock mortalities during the first week>*. In addition to
high mortality during the flock cycle, these bacterial infections result in a lack of flock uniformity, chronic
infections, and estimated 36-43% of broiler carcasses condemned at processing with lesions consistent with E.
coli septicemia®®. The high incidence of infectious diseases in neonatal broilers is largely due to immune system
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immaturity, marked by reduced cytokine production (IL-1f, IL-4, IL-10, IFN-y), low IL-2 expression in the
spleen, and decreased IL-4, IFN-v, and Lysozyme C expression in the ileum between days 6 and 13687

To prevent losses due to bacterial infections, antibiotics have been used prophylactically in some poultry
sectors; however, increasing regulations now restrict this practice due to concerns over antimicrobial resistance
and residues in poultry products®'?. Therefore, the use of antibiotics for preventive purposes has been increasingly
restricted in many countries. In response to growing concerns about antimicrobial resistance (AMR) and
public health, numerous regulatory bodies like the European Union and Food and Drug Administration have
implemented stringent policies to limit or ban the use of antibiotics for growth promotion and prophylaxis in
livestock!!.

Alternatives to antibiotics and methodologies for detecting early pathogenic infections are critical in
controlling imminent disease outbreaks and reducing antimicrobial use (AMU) to prevent the development
of antimicrobial resistance (AMR). There are growing concerns about AMU in poultry production, leading to
the emergence of superbugs (bacteria resistant to multiple antibiotics) adversely affecting human, animal, and
environmental health'?'%. One of the strategic priorities of the broiler chicken industry is enhancing consumer
trust in chicken meat by managing pathogens and AMU. The early detection of pathogenic infections is critical
in controlling pathogens and thus preventing imminent disease outbreaks and AMU.

The broiler chicken industry mostly relies on serological blood testing to measure antibodies against
pathogens to detect pathogenic infection. However, serological tests detect diseases only 10-14 days after
pathogenic exposure. Besides, polymerase chain reaction (PCR) (pathogen’s DNA detection) and bacterial
culture-based diagnosis methods are primarily contingent on the types of tissue and pathogen’s predilection
site. The broiler chicken industry lacks the ability to detect pathogens within 1-2 days of post-infection. In
this context, metabolomics, the study of small metabolites, is an emerging approach that can identify the early
metabolite alterations associated with bacterial infections. In human medicine, the utility of metabolomics for
diagnosis of acute diseases is progressing; detection of metabolites in human bio fluids are attractive biomarkers
for the diagnosis of early Lyme disease (ELD), a vector-borne infectious disease. Urine represents an easily
obtained clinical sample that can be applied for diagnosis of ELD'. In contrast, the utility of disease diagnosis
utilizing metabolomics in animal industry is in its infancy. Thus, metabolomics approach in diseases diagnosis
in the poultry industry will aid in disease prevention and improving the disease management practices.

We hypothesis that metabolic biomarkers are a potential early diagnostic tool associated with E. coli
septicemia before the onset of clinical signs within 8-24 h (h) post-infection. Hence, the objective of this study
was to explore the metabolomics landscape of neonatal broiler chickens following E. coli septicemia to identify
potential biomarkers in serum associated with acute E. coli septicemia. Thus, metabolomics as a tool for disease
diagnosis in the field will improve disease management and appropriate timely interventions to reduce losses
and to minimize spread of infectious diseases in the poultry industry.

RESULTS

Clinical outcome at 8 h Post-E. Coli infection

All the birds were clinically healthy at 8 h following the E. coli challenge. Of the 30 birds challenged with E.
coli, 15 (50%) yielded bacterial growth from air sac swabs on MacConkey agar, and 10 (33.3%) yielded growth
from blood cultures (Fig. 1a). Few birds that were positive for growth on McConkey agar for air sac swabs were
found negative for the blood culture and vice versa. However, 66.7% of the birds were positive for either of these
tests. Further, the E. coli counts in the blood culture ranged from 1x 10? colony forming units (CFU)/mL to
3x10? CFU/mL. This finding suggests that the bacteria likely disseminated systemically in the challenged birds
as early as 8 h post-infection, evidenced by their presence in either blood or air sac samples. No clinical signs
or mortality were observed in the group inoculated with saline. Bacterial growth on culture plates were scored
as follows: 0=no bacterial growth, few=1-5 colonies, 1=bacterial growth in the first quadrant, 2 =bacterial
growth in the first and second quadrants, 3 =bacterial growth in the first, second, and third quadrant, and
4 =Dbacterial growth in all four quadrants. Among the 30 infected birds tested for bacterial load in air sacs, the
majority exhibited “few” bacterial growths in McConkey agar (46.7%), with 1 bird (3.3%) scoring 1. No E. coli
growth was observed on MacConkey agar from the rest of the birds (50%). These results indicate that there is
variability in the colonization of E. coli in the infected birds.

Clinical outcome at 24 h Post-E. Coli infection

At 24 h post-infection, one bird from the challenged group died (3.3% mortality) while the rest of the birds
appeared healthy without any clinical signs. On necropsy, the dead bird had polyserositis (combination of
airsacculitis, pericarditis and perihepatitis) (Fig. 1b).

8 h metabolite response to E. coli

This metabolomics data underwent preprocessing to ensure consistency and data quality. In brief, the data
was standardized by removal of constant features, imputation of low limit of detection (LOD) values with half
minimum positive value, median scaling by log (base 10) transformation and mean centering (Fig. 2a) (Table
S1A). Of the total 598 metabolites, univariate analysis has identified 335 (56.02%) differentially expressed
metabolites in E. coli infected birds compared to control birds (p=<0.05). These 335 metabolites belong to
several classes including triacylglycerols (40%), phosphatidylcholines (17.01%), acylcarnitines (5.67%),
amino acids and derivatives (5.37%), ceramides (4.78%), cholesterol esters (4.18%), diacylglycerols (3.58%),
lysophosphatidylcholines (3.37%), and sphingomyelins (1.19%) and others (15.52%) (Fig. 2b). Of these 335
differentially expressed metabolites, 134 (40%) were down regulated [log2 fold change (Log2FC)] range was
—-1.37 to —0.88; p=<0.05) and 201 were up regulated (Log2FC range is 0.30 to 4.56; p=<0.05) as presented
in the volcano plot (Fig. 2c) (Table S1B). The metabolite concentrations and expression patterns of the top 20
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Fig. 1. Clinical outcome following E. coli infection. a: This graph illustrates the percentage of birds with
different bacterial score ranging from in MacConkey agar after 8 h post-E. coli infection. There was no
bacterial growth on MacConkey agar from the control birds. The majority of E. coli infected birds had “few”

E. coli growth (46.7%) while a small percentage showed a score of 1 (3.3%). b: On necropsy, 24 h post- E.

coli challenge, the dead bird had fibrin on the heart (pericarditis) and liver (perihepatitis). There is extensive
inflammation and fibrinous exudate around the thoracic cavity, and the yellowish discoloration is an indication
of fibrin deposition that is causing pericarditis or perihepatitis (white arrows). The surrounding tissues look
hyperemic, and the organs are enlarged, indicative of systemic involvement.

differentially expressed metabolites in E. coli and control chicken are shown in the form of box plots (Fig. 2d)
and heatmaps (Fig. 2e).

The principal component analysis (PCA) plot separated the E. coli infected group (in blue) and control group
(in red) (Fig. 2f). Principal component (PC)1 was responsible for 48.69% and PC2 for 9.48%. Both components
show the variance in the metabolite profile between the two groups. Although there is some overlap between
PC1 and PC2, distinct clustering of metabolic differences due to E. coli infection is observed. This implies that E.
coli infection has a noticeable impact on the serum metabolite composition in broilers.

In a partial least squares discriminant analysis (PLS-DA) model, a variable importance in projection (VIP)
score plot demonstrates the highest discriminatory power of metabolites in distinguishing E. coli infected
and control groups based on their expression values (Fig. 3a) (Table S1C). We found that 242/594 (40.74%)
of metabolites had>1 VIP score. The top VIP scoring over expressed metabolites includes triglyceride (TG)
(16:1_36:2) with a score of 2.27, TG (16:1_34:2) with a score of 2.21, and TG (18:1_34:2) with a score of 2.13.
Conversely, among the lowest VIP scoring metabolites showing reduced expression within the E. coli-infected
group were methylhistidine (VIP score —1.8167), TG (18:1_34:1) (VIP score —1.81), and TG (18:2_32:1) (VIP
score —1.80). The result of the orthogonal partial lease squares-discriminant analysis (OPLS-DA) also further
supported the similar trend of metabolite discrimination, as shown in Fig. 3b (Table S1D). Among the 593
metabolites analyzed, 243 (40.97%) of metabolites had a VIP score greater than 1. In particular, the OPLS-DA
VIP scores of the top three overexpressed metabolites identified in the PLS-DA model showed consistency:
TG (16:1_36:2), with a VIP score of 2.28; TG (16:1_34:2), with a VIP score of 2.21; and TG (18:1_34:2), with a
VIP score of 2.14. The concordance in the findings of PLS-DA and OPLS-DA underlines the importance of TG
metabolism as a robust biomarker of changed metabolic responses to E. coli infection and further emphasizes
that lipid metabolism plays an important role in the host’s defense against infection.

Metabolic shifts identified by SAM and EBAM at 8 h

By the SAM analysis, 326 (54.51%) of the 598 queried metabolites were statistically significant. Among these,
193 (59.50%) were up-regulated, while 132 (40.49%) were down-regulated according to the d-value scores of
the up- and downregulated metabolites in the range from 1.02 to 2.76 and from —3.49 to —1.02, respectively,
with a p=<0.05 (Fig. 3¢c) (Table SIE). The highest upregulated metabolite, CE (14:0) (d=2.77 and p=<0.05),
has a role in cholesterol-ester metabolism, and may likely modulate immune response to infection with E. coli.
Methylhistidine, another upregulated metabolite, had a d-value of 2.56 and a p=<0.05, indicating an increase
in muscle protein turnover and metabolic response related to stress. Meanwhile, butyric acid and isobutyric
acid were also increased, with a d-value of 2.27 (p=<0.05), indicating an increased generation of short-chain
fatty acids in the adaptive process to infection-induced stress. On the other hand, TG (16:1_36:2) exhibited
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Fig. 2. Metabolomics analysis of the E. coli (8 h) infected group vs. the control group. (a) Boxplot of
normalized metabolite expression for control (blue) and E. coli-infected (red) samples. (b) Circular plot of
metabolite class distribution. (c) Volcano plot displaying differentially expressed metabolites. (d) Boxplots
comparing normalized expression of selected metabolites in both groups. (e) Heatmap of the top 20
differentially expressed metabolites between groups. (f) PCA plot showing separation between control and
infected groups.

downregulation, with a d-value of —3.49 (p=<0.05), indicating a reduction in the levels of TG due to infection
and also pointing toward disturbances in lipid metabolism. The additional downregulated metabolite is TG
(18:1_34:2) (d-=-3.18 and p=<0.05) reflects changes in triglyceride metabolism. Furthermore, TG (20:1_34:2),
is also decreased (d=-3.05, and p=<0.05), underlines further disturbances in energy storage and mobilization
following exposure to E. coli.

Subsequently, EBAM analysis showed that of 598 metabolites, 268 metabolites (44.82%) were statistically
significant (Fig. 3d) (Table SIF). Among these, 113 metabolites were upregulated, whose z-values ranged
between —8.84 and —2.81 (p=<0.05), while 155 were downregulated, with z-values ranging between 2.47 and
6.37 (p=<0.05). Among all the upregulated metabolites, TG (16:1_36:2) was elevated the most, indicating
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Fig. 3. Comprehensive chemometric and statistical profiling of metabolomic alterations post E. coli challenge
(8 h) in broiler chickens. (a) PLS-DA VIP scores for key discriminant metabolites distinguishing between the
E. coli-infected and control groups. (b) OPLS-DA VIP scores confirmed PLS-DA findings with enhanced class
separation. (c) SAM plot showing significant metabolites with differential abundance (delta=0.8). (d) EBAM
plot representing significant metabolites with posterior probabilities. (e) Venn diagram showing overlaps
between univariate, chemometric, and advanced significance analyses, with 245 metabolites consistently
identified by all methods.

disturbance of lipid metabolism, while among the downregulated metabolites, the lowest level observed was for
CE (14:0), suggesting marked disturbances of cholesterol esters metabolism after E. coli infection.

The Venn diagram (Fig. 3e) shows 245 overlapping metabolites across the student’s t-test, PLS-DA, OPLS-DA,
SAM, and EBAM tests. The intersection thus represents key metabolite biomarkers involved broilers response
to E. coli infection (Table S1G).

24 h metabolite response to E. coli

The raw serum metabolomics data of both infected and control group chickens was preprocessed in order
to improve their over quality and structure. This process excluded variables that had more than 80% missing
values, imputed values below the analytical limit of detection (1/2 LOD), omitted constant variables and
normalized data through median, transformed data using the Box-Cox transformation, log (base 10) and mean-
centered based data scaling (Table >S2A). These steps were necessary for reproducibility and harmonization of
metabolomics results (Fig. 4a). Using an univariate analysis, 230 (38.46%) of 598 metabolites were identified to
be statistically significant in the E. coli-infected group compared to the control group (p =< 0.05) (Table S2B). Of
these 230 metabolites, 28.70% are triacylglycerols, while 11.7% are phosphatidylcholines, 9.1% are amino acids
and derivatives and 7.4% are cholesterol esters. Other important classes are lysophosphatidylcholines, 6.09%;
acylcarnitines, 4.78%; ceramides, 4.35%; diacylglycerols, 4.35%; sphingomyelins, 3.04%; and other remaining
metabolites, 20.43% (Fig. 4b). Among all the detected metabolites, 96 metabolites (41.73%) were significantly
up-regulated and their log base 2-fold change LogFC ranged between 0.22 and 2.86 and a p-value of <0.05; 134
metabolites (58.26%) were significantly down regulated with LogFC ranging from —3.58 to —0.01 and a p-value
of <0.05, as shown in the volcano plot (Fig. 4c). The box plots (Fig. 4d) and heatmaps (Fig. 4e) represent the
metabolite concentrations and expression patterns of the top 20 metabolites in the E. coli infected and control
groups.

The PCA plot (Fig. 4f) shows the distribution of the E. coli-infected and control groups in a two-dimensional
space defined by the two PC (PC1 and PC2). PC1 describes 41.7% while PC2 describes 12.17% of the total
variance in data. The clustering pattern of the samples reveals some overlap between infected and control
groups, which indicates shared metabolic profiles, while highlighting distinct groupings that suggest differential
metabolic signatures in the E. coli-infected group compared to the control group.
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Fig. 4. Metabolomics analysis of the E. coli (24 h) infected group vs. control group. (a) Volcano plot showing
differentially expressed metabolites. (b) Circular plot showing metabolite class distribution. (c) Hierarchical
clustering of samples based on metabolite profiles. (d) Box plots comparing metabolite levels between control
and infected groups. (e) Heatmap of the top 20 differentially expressed metabolites between groups. (f) PCA
plot showing separation between control and infected groups.

The VIP score plot indicates the metabolites with the highest discriminant power for the PLS-DA model in
distinguishing between E. coli infected and the control group (Fig. 5a) (Table S2C). Out of the 599 metabolites
analyzed, 206 (34.39%) metabolites possessed VIP score of more than 1. The top overexpressed metabolites
included argininic acid (VIP score: 2.75), which improves the immune response through nitric oxide production,
alpha-ketoglutarate (VIP score: 2.58), which supports energy production, and pyruvic acid (VIP score: 2.29) that
meets increased energy demands during the infection, and TG (TG 20:5, TG 20:1) (VIP scores: 2.2, 1.90), which
modulate lipid metabolism and energy storage. On the other hand, metabolites that were downregulated in the E.
coli-infected group, such as C10:2 (VIP score: 2.96) and LysoPC a C20:3 (VIP score: 2.8), reflect the shift in lipid
metabolism pathways due to physiological stress during infection. Further cross-validation with the established
model using OPLS-DA affirms these observations of PLS-DA with further enhanced class discrimination and the
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Fig. 5. Comprehensive chemometric and statistical profiling of metabolomic alterations post- E. coli challenge
(24 h) in broiler chickens. (a) PLS-DA VIP scores for key discriminant metabolites in distinguishing between
the E. coli-infected vs. control groups. (b) The OPLS-DA VIP scores further confirmed the findings of the
PLS-DA, with adequate class discrimination. (c) SAM plot showing metabolites rated as significant by their
differential abundance. (d) EBAM plot showing the significant metabolites and their posterior probabilities
under E. coli infection. (e) Venn diagram: overlaps from metabolites identified by univariate, chemometric, and
advanced significance analysis showing the consistency of findings.

isolation of the variation that is orthogonal to the VIP scores (Table S2D). Out of 599 metabolites, 207 (34.61%)
metabolites had a VIP score of more than 1. The top metabolites identified by OPLS-DA include arginine acid,
alpha-ketoglutarate, pyruvic acid, TG (TG 20:TG 16:0-18: 1, TG 18: 0-18: 1, TG 20: 1, C10: 2, and LysoPC a
C20:3 (Fig. 5b). These OPLS-DA validate the key metabolites identified by PLS-DA method and reinforce the
metabolic changes required for compensating the physiological and immune demands of infection in chicken.

Metabolic shifts identified by SAM and EBAM at 24 h

By SAM analysis, 234/598 (39.13%) metabolites were determined to be statistically significant (p=<0.05) (Table
S2E). Of which, 96 (41.02%) metabolites were upregulated and 138 (58.97%) were downregulated according
to the d-value scores with the range of 9.5 to 2.12 and —11.80 to —1.9 respectively in 598 queried metabolites
[false discovery rate (FDR) <0.05] (Fig. 5¢). Among these upregulated metabolites, argininic acid displayed the
highest increase (d.value =9.57, p = <0.05), indicating major alterations in arginine metabolism that are probably
related to the physiological stress response due to E. coli infection. Furthermore, alpha-ketoglutaric acid showed
a very significant increase with a d.value of 8.0145 and a p=<0.05, indicating an increased production of
energy through the tricarboxylic acid (TCA) cycle. Pyruvic acid also exhibited significantly enhanced glycolytic
activity, likely reflecting its role in rapid energy provision, with a d.value of 6.48 and a p=<0.05. TG (20:5_34:0)
showed increased TG mobilization so as to meet the increased energy requirement associated with infection
(d.value=6.04 p=<0.05).

On the contrary, out of the top three most downregulated metabolites, C10:2 had a z-value of —11.807 with
a p=<0.05, hence, highly diminished fatty acid metabolism could implicate disturbed lipid mobilization due
to E. coli infection. Among these, the most significantly downregulated metabolites included LysoPC a C20:3
(z.value = -9.66, p=<0.05) and LysoPC a C14:0 (z.value = —8.91, p=<0.05), demonstrating disturbances in
lysophosphatidylcholine metabolism and thus may indicate defective membrane remodeling and decreased
phospholipid availability under the infection.

Subsequent to the SAM analysis, EBAM also provided strong evidence for the alteration in the levels of
metabolites in the E. coli infected group (Fig. 5d) (Table S2F). A total of 210 (35.11%) out 598 metabolites
were determined to be statistically significant. These results indicated the overall increased energy metabolism
and stress response in the infected birds as evidenced by the up regulation of argininic acid (z-value=9.576,
p=<0.05), alpha-ketoglutaric acid (z-value=8.01). In contrast, metabolites such as LysoPC a C20:3 (z-value
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—-9.66, p=<0.05) and LysoPC a C14:0 (z-value = —8.91, p=<0.05) were downregulated implying that the
membrane lipid metabolic process and phospholipid synthesis ability are inhibited during infection stress. These
changes demonstrate the metabolic shift that occurs during infection.

The Venn diagram shows 212 metabolites that were commonly identified by univariate analyses, such as
t-test and chemometric analyses such as PLS-DA and OPLS-DA, and advanced significances using SAM and
EBAM, thereby giving strength to these results (Fig. 5e) (Table S2G). This overlap indicates a high degree of
similarities in metabolite analysis via different methods. This further consolidates the reliability of those key
metabolic alterations in response to E. coli infection.

8 h vs. 24 h: metabolite and pathway differences

The pathway analysis of 245 metabolites at 8 h post-E.coli infection and 212 metabolites from 24 h post-
infection data reveals distinct and overlapping metabolic changes (Fig. 6). In 8 h post-E. coli infection showed
that butanoic acid and succinate metabolites were enriched in butanoate metabolism, which is associated
with short-chain fatty acid metabolism. Furthermore, tyrosine metabolism was also enriched, involving
L-noradrenaline and 4-hydroxyphenylacetate metabolites (p = <0.03) (Table S3A). The list of unique metabolites
specific to 24 h infection data consisted of 148 metabolites and showed several significantly enriched pathways.
Alanine, aspartate, and glutamate metabolism had the highest significance: p=<4.89E-05, impact=0.38;
metabolites include L-aspartate, L-alanine, L-glutamine, citrate, pyruvate, and 2-oxoglutarate. The following
was beta-alanine metabolism: p=<0.0001; key metabolites take part in beta-alanine, L-aspartate, L-histidine,
spermidine, and spermine. Other significantly enriched pathways were those of purine metabolism, with
p=0.0001, involving metabolites like L-glutamine, adenosine, deoxyadenosine, deoxyinosine, hypoxanthine,
guanine, urate, and guanosine; this represents large changes in nucleotide metabolism. Arginine biosynthesis
(p=<0.0002) was enriched with metabolites such as L-aspartate, L-ornithine, ammonia, L-glutamine, and
2-oxoglutarate, suggesting involvement in amino acid synthesis. Additional pathways, such as glutathione
metabolism (p=<0.004) with L-ornithine, putrescine, spermidine, and spermine, and pyrimidine metabolism
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(p=<0.002) featuring L-glutamine, cytidine, deoxycytidine, thymidine, and beta-alanine, were also enriched,
pointing toward changes in antioxidant defense and nucleotide metabolism. Histidine, phenylalanine, TCA
cycle, glyoxylate and dicarboxylate metabolisms were also detected, highlighting shifts in energy metabolism
and amino acid biosynthesis specific to batch 2 (p=<0.05) (Table S3B). The enrichment analysis of the 64
common metabolites between 8 h and 24 h, identified purine metabolism as a significantly enriched pathway
(p=0.04), involving metabolites like deoxyguanosine and adenine (Table S3C).

Logistic regression (LR) highlights early biomarkers of E. coli challenge

LR analysis can predict the infection status by weighing metabolite effect sizes, where odds ratios>1 imply
increased disease risk and <1 indicate the protective effects, thereby facilitating in disease biomarker
identification. The filtering of 393 metabolites between the two batches (8 h and 24 h post-E. coli infection)
based on the pathway enrichment status identified a total of 91 metabolites, including 24 metabolites from 8 h,
51 metabolites from 24 h to 16 common metabolites (both batches). The LR analysis of these 91 metabolites
identified 48 significantly enriched metabolites (p = <0.05). Of these, batch 1 (8 h) had 9 metabolites (5 unique,
4 common), and batch 2 (24 h) had 39 metabolites (30 unique, 9 common) showing the different temporal
metabolic signatures of infection progression (Table S3D and S3E) (Fig. 7a-d).

At 8 h post-E. coli challenge, LR results showed significant alterations in metabolites involving amino
acid, fatty acid, and nucleotide metabolisms. Butyric acid/isobutyric acid (log estimate: 8.59, p=<0.04)
was significantly upregulated, suggesting early infection stage leads to the changes in short chain fatty acid
metabolism and gut microbiome composition. Log estimate means for each 1 pM increase in butyric acid/
isobutyric acid, the log odds of infection increase by 8.59 units. Methylhistidine (log estimate: 5.20, p=<0.005)
also showed positive association and may represent muscle protein catabolism as a response to infection. In
contrast, N-acetyl-isoleucine (log estimate: —12.52, p=<0.0004) and N-acetyl-alanine (log estimate: —12.18,
Pp=<6.65E-05) had strong negative associations indicating early dysregulation of amino acid metabolism (Table
S3D). The marked depletion of orotic acid (log estimate: —10.53, p=<0.0002) implies the altered nucleotide
biosynthesis. However, based on the consensus scores (CS) calculated by combining effect size and statistical
significance, the top metabolites were N-acetyl-alanine (CS=50.86), N-acetyl-valine (CS=50.34), N-acetyl-
isoleucine (CS=41.86), and orotic acid (CS =38.66). Additionally, we identified the depletion of deoxyguanosine
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Fig. 7. Forest plots of serum metabolite changes in broilers post-E. coli infection at 8 and 24 h. Panel A and
B shows unique and common metabolites in 8-h data, whereas panels C and D show unique and common
metabolites in 24 h data. Red and blue dots are for negative and positive log odds estimates, respectively, with
error bars showing confidence intervals.
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Fig. 8. Violin plots showing expression levels of the metabolic biomarker panel in broiler chickens at 8 and
24 h post-E. coli infection. N-acetyl-alanine, N-acetyl-valine, N-acetyl-isoleucine, adenine, and orotic acid
were downregulated at 8-h post-infection. N-acetylputrescine, hippuric acid, N1-acetylspermidine, and
picolinic acid were upregulated, while adenine remained downregulated at 24 h post-E. coli infection.

(CS=33.25) and glycine (CS=7.51). Their expression values are presented in the form of violin plots in Fig. 8.
These findings suggest early dysregulation of nucleotide biosynthesis and amino acid metabolism as part of the
host’s strategy to limit bacterial growth and manage oxidative stress during early E. coli infection.

At 24 h post E. coli challenge, the metabolites involving amino acid and energy metabolism were significantly
altered. Hippuric acid (p=<0.001, log estimate: 19.59, CS=53.78) was the top-ranked metabolite, indicating
increased metabolism of aromatic amino acids and potential alterations in gut microbiota. N1-acetylspermidine
(p=<0.0005, log estimate: 15.38, CS=49.82) and picolinic acid (p=<0.0002, log estimate: 13.31, CS=48.38)
were also ranked high, reflecting disruptions in polyamine metabolism and nicotinamide pathway activity,
respectively. Furthermore, CE (22:2) (p=<0.002, log estimate: 16.95, CS=45.42) revealed profound changes
in lipid metabolism, attesting to the metabolic adjustment of the host to infection. Additionally, downregulated
metabolites like phenylethylamine, adenosine, deoxyadenosine, spermidine, and spermine indicated major
changes in nucleotide, amino acid and stress response pathways (p = <0.05). These findings indicate coordinated
metabolic reprogramming during late stages of E. coli infection reflecting the host’s adaptation to counteract
bacterial growth and manage inflammation.

A comparison of the common metabolites at 8 and 24 h post-infection revealed sustained dysregulation
in nucleotide metabolism, with a significant downregulation of deoxyguanosine (8 h: log estimate: —10.68,
Pp=<0.0007; 24 h: log estimate: —10.47, p=<0.0005) and adenine (8 h: log estimate: —12.96, p=<0.0008; 24 h:
log estimate: —14.84, p=<1.40E-05). Glycine showed a significant shift from a negative association at 8 h (log
estimate: —3.57, p=<0.007) to a positive association at 24 h (2.63, p=<0.03), suggesting temporal shifts in
amino acid metabolism. At 24 h, some common metabolites such as N-acetylputrescine (log estimate: 18.12,
Pp=<9.49E-05), homocitrulline (log estimate: 11.70, p=<0.0001), and argininic acid (log estimate: 11.61,
p=<0.01) were altered. Their expression values are presented in the form of violin plots in Fig. 8. These changes
indicated progressive changes in the urea cycle and polyamine metabolism with the infection time course. While
prominent at 24 h, these metabolites were not significantly altered at 8 h as per LR findings.

Differential correlation patterns in metabolites at 8 h and 24 h
Correlation analysis uses coefficient of determination (R®) scores, where higher values indicate stronger
correlations between metabolite pairs. A AR score derived from correlation difference control and infected
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groups represents the change in correlation strength, with positive values indicating stronger correlations in
the E. coli-challenged group and negative values indicating weaker correlations. The correlation analysis of
serum metabolites, between the control and E. coli-challenged broilers at 8 h, showed a consistent metabolite
pair trend, but relationship strengths were generally stronger in the E. coli-challenged group (Figure S1) (Table
S3F). The distinct change was observed between methylhistidine and adenine, increasing from R* = 0.72 of
the control cohort to R* = 0.90 of the E. coli challenged group (AR? =+0.18; p=<0.05). Further changes were
observed as significant for deoxyguanosine and butyric acid. Isobutyric acid (R*> = 0.77 to 0.91, AR*>=+0.13;
p=<0.05). Indeed, nearly all metabolite pairs showed increased correlations in the infected cohort, except a
slight decrease in the correlation of deoxyguanosine and adenine (AR>=—0.01; p=<0.05). This data suggests
that E. coli infection induces a more tightly regulated metabolic network, probably indicating coordinated host
response to the bacterial challenge.

The correlation analysis at 24 h post-E. coli infection showed altered metabolite pair relationships as
compared to the control group. These correlation changes primarily highlight the metabolic reprogramming
of nucleoside, polyamine, and fatty acid pathways in E. coli challenged broilers (Figure S1) (Table S3G). N1-
acetylspermidine/spermidine pair showed a AR*> = 1.64 value with a strong shift of positive correlation in
control birds (R* = 0.969) to negative correlation in E. coli-challenged broilers (R* = —0.67; p=<0.05). This shift
demonstrates the severe dysregulation of polyamine biosynthesis in E. coli challenged broilers. Additionally, N1-
acetylspermidine showed significant losses of correlations with different nucleosides, such as deoxyinosine (AR?
= 1.581; p=<0.05), adenosine (AR* = 1.57; p=<0.05), cytidine (AR* = 1.52; p=<0.05), and adenine (AR* = 1.43;
p=<0.05) with all shifts from positive correlations in the control group to negative correlations in the E. coli
infected group. All these changes pointed to the coordinated and systemic disruption of nucleoside-polyamine
metabolic interactions as part of the host response to E. coli challenge.

Apart from nucleosides, N1-acetylspermidine showed a significant correlation shift with valeric acid/isovaleric
acid (AR? = 1.38; p=<0.05), implicating disruptions in polyamine and fatty acid metabolism. Conversely, the
betaine/LysoPC.a.C18.1 pair presented an opposite shift from a negative correlation in the control group (R* =
—0.46) to a positive correlation in the E. coli-challenged group (R* = 0.57, AR* = —1.03; p=<0.05). This indicates
a reorganization of phospholipid and one-carbon metabolism pathway in infected broilers.

These correlation results confirm that E. coli challenge induces a systemic metabolic network rewiring,
specifically affecting polyamine biosynthesis, nucleoside metabolism, and phospholipid pathways. The key
observation of consistent correlation losses centered around N1-acetylspermidine underscores it as a key hub in
the metabolic response to E. coli infection in broilers.

Network mapping of key metabolites in E. coli response

We have built R*>-weighted correlation metabolite networks to identify the clusters of functionally coregulated
metabolites in E. coli-challenged chickens at 8 and 24 h. At 8 h, the control group showed a coordinated
metabolic correlation network comprising 8 metabolites with 12 interactions, compared to the challenged group,
whereas the E. coli-infected group displayed a slightly reduced network of 7 metabolites with 11 interactions.
Key metabolites like methylhistidine, deoxyguanosine, and butyric acid-isobutyric acid displayed increased
centrality in the control group. However, orotic acid and N-acetyl-valine connectivity that was present in the
control group was lost in the infected group, pointing out the metabolic network disruptions associated with
early infection (Figure S2).

At 24 h, there was significant fragmentation in the metabolic network of E. coli-challenged broilers with 34
metabolites and 211 connections versus 38 metabolites and 652 connections in control broilers. Key metabolites
such as N1-acetylspermidine, deoxyinosine, and adenosine flipped from strongly positive to negative correlations
(Figure S2). Although N1-acetylspermidine remained highly connected, its interacting partners completely
changed, and metabolites like oxalic acid and 3-hydroxybutyric acid lost all connectivity, indicating inactive
pathways. Despite these changes, metabolites such as adenine and glycine remained highly connected, reflecting
more subtle regulatory changes. The metabolite correlation networks revealed distinct changes in metabolic
interactions between control and E. coli-infected broilers at 8- and 24-h post-infection.

DISCUSSION
The early diagnosis and prediction of pathogenic infections caused by lethal bacterial infections such as E. coli is
crucial in broiler chicken production, providing substantial benefits during the first week of their life. One of the
core priorities of the broiler chicken industry is enhancing disease diagnosis capabilities to improve mitigation
plans to control economically important diseases at the earliest convenience to improve profitability and food
safety. E. coli septicemia is the most common pathogen associated with broiler chicken first-week mortality.
Blood culture is currently the gold standard, but this technique requires more than 2 days for results. The specific
biomarkers associated with early detection of pathogens are lacking. The present study aimed to fill this gap by
exploring the metabolomics approach to identify pathogens such as E. coli within 24 h of exposure. This method
will assist detection of infectious diseases before the onset of clinical signs, hence improving food security and
animal welfare. Furthermore, as previously reported, mortality in this E. coli septicemia animal model, peaked
at 2-3 days post- E. coli challenge, hence we wanted study metabolic changes at the early onset of septicemia'.
The objectives of this study were to explore the metabolomics landscape of neonatal broiler chickens following
E. coli septicemia and to identify potential biomarkers in the serum associated with E. coli septicemia. Our
study employed targeted metabolomics technology to analyze peripheral blood metabolites in broiler chicks
with sepsis at 8 and 24 h post-E. coli challenge.

Our results clearly demonstrated that as early as 8 h post-infection, metabolites such as adenine followed
by N-acetyl-alanine, N-acetyl-isoleucine, N-acetyl-valine, and orotic acid linked to nucleotide and amino acid
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metabolism were downregulated. At 24 h, a distinct metabolic shift emerged with increasing hippuric acid while
adenine further depleted and accompanied by decreases in N1-acetylspermidine, N-acetylputrescine, and a
modest increase in picolinic acid in peripheral blood.

Adenine, C,H.N, with molecular weight of 135.13 g/mol, is a purine nucleotide base, one of the four aromatic
bases found in DNA and RNA!7. Adenine operates at a molecular level, primarily through its role in the structure
of nucleotides by carrying genetic information. Also, it is a component of adenosine and plays many important
roles in different functions such as metabolic energy [adenosine triphosphate (ATP)], secondary messenger
[cyclic adenosine monophosphate (cAMP)] and vasodilation (adenosine as a neurotransmitter)'®. Adenine
nucleotides play an important role in the transfer of energy for metabolic processes. Degradation of adenine can
be a major source of purine bases formed during certain kinds of metabolic stress'®. Adenine has been identified
as a biomarker for diabetic kidney disease in humans and mice®. Also, it is required for the suppression of an
immunological response. Adenosine levels in the extracellular space quickly increase in response to systemic
inflammation or tissue damage. Plasma adenosine concentrations were observed to rise tenfold in septic shock
patients??2. This explains the downfold of adenine as it acts as a building block of adenosine.

A previous study reported a marked decreased in adenine levels in septicemic mice at 16-24 h post-
infection?’. Significantly, lower levels of adenine in collected blood (8 h: —=59.5%, 24 h: —83.2%) can be primarily
due to a significant drop in the production of ATP, the primary energy molecule that contains adenine as a key
component. Our results align with findings in septic mice and humans, where systemic inflammation drives
adenine consumption for nucleotide salvage pathways or ATP breakdown?*. The adenine depletion is likely due
to mitochondrial dysfunction impairing ATP synthesis®® and accelerated ATP catabolism in damaged tissues
and immune cells, which release adenine and hypoxanthine for metabolic conversion, effectively draining
circulating adenine reserves?. Normally, low adenine levels in the body are maintained by salvage pathways,
which recycle it into nucleotides. The observed adenine depletion suggests that a pathological shift occurs
where either it is used for clonal expansion of immune cells (lymphocytes) or the host’s salvage mechanisms
are overwhelmed by metabolic stress. This phenomenon is consistent with reports in layer chickens infected
with Salmonella Enteritidis, where serum like phosphocreatine, a critical energy reservoir for ATP regeneration,
remained depleted for four days post-infection, indicating sustained disruption of nucleotide metabolism?’. A
modified adenine (N6-methyladenine) was identified as a useful metabolite for diagnosing up to 90% of urinary
tract infections species in humans?®.

E. coliis generally not an adenine auxotroph. Wild-type E. coli can synthesize adenine from simpler molecules
and does not require an external supply of adenine for growth?. However, mutant strains of E. coli can be
created that are auxotrophic for adenine, meaning they require an external source of adenine to survive. The
adenine depletion observed in our study is likely due to massive host responses associated with proinflammatory
responses and high energy demand linked with immune functions to eliminate E. coli. Some E.coli can obtain
exogenous adenine (purine auxotrophy) as shown by coculture of E. coli with nucleotides in which E.coli showed
rapid growth in media supplemented with adenine and derivatives like adenosine.

Our metabolic pathway analysis revealed a decrease of N-acetyl-alanine (-50.2%), N-acetyl-isoleucine
(-51.9%), N-acetyl-valine (—41.8%) in blood at 8 h post-E. coli infection. The metabolic spectrum of amino
acids and amino acid metabolism changes dramatically during sepsis. As the disease progressed further with
poor prognosis, the levels of the different amino acids gradually increased, decreased, or fluctuated over time>!.
In addition, the catabolic rates of patients with sepsis are significantly higher than their anabolic rates, the lower
levels of alanine, isoleucine, and valine, have been shown to promote protein catabolism and reduce muscle
protein synthesis®2.

We observed elevated hippuric acid (+218.7%) in blood. It has been reported in human and mice studies, that
elevated levels of uric acid in patients with sepsis are associated with an increased risk of acute kidney injury™.
In addition, our analysis showed increased butyric acid/isobutyric acid (log estimate: 8.59, p = <0.04) indicating
early infection stage leads to changes in short-chain fatty acid metabolism and gut microbiome composition by
increasing intestinal permeability, allowing bacterial toxins into the bloodstream and thus setting off systemic
inflammation. Previously we reported upregulated butyric acid in the jejunum following Clostridium perfringens
infected birds compared to non-infected healthy broilers®.

The projection of these metabolites on metabolic pathways suggested that the energy production pathways
have changed. It is tempting to speculate that such changes in energy pathways may influence cellular and
molecular recruitment. Our findings highlighted that the dynamics of metabolic pathways alter soon after
pathogen exposure, even before the initiation of clinical signs. Clinical outcome was observed at 24 h post-
infection where one bird from the challenged group died (3.3% mortality) while the rest of the birds in the group
did not show any clinical signs. On necropsy, the dead bird had polyserositis (a combination of airsacculitis,
pericarditis and perihepatitis). This emphasizes the importance of identifying a biomarker at the earliest possible
time to initiate control strategies to reduce economic losses and improve animal welfare.

Our metabolomics data at 8 h and 24 h post-E. coli challenge indicated broilers experienced a biphasic host-
response involving initial metabolic suppression then immune hyperactivation®-3’. There is also substantial
evidence that avian pathogenic E. coli (APEC) infection in chickens may lead to a cytokine surge like increased
release of primary pro-inflammatory cytokines such as IL-1p, IL-6, and tumor necrosis factor (TNF)-a, which
are hallmark mediators of sepsis37. At 8-12 h post-APEC infection, broilers demonstrated acute inflammation,
such as edema, hyperemia, and heterophil infiltration in affected organs®. This immune hyperactivation
manifests as an overwhelming inflammatory state that, while aimed at controlling the bacteria, can contribute
to tissue damage and clinical symptoms of sepsis including fever, inflammation, and organ dysfunction. After
this immune activity peak, it is plausible that chickens, like other animals, experience a downward shift in
immune activity, leading to an immunosuppressive phase that is relevant to survivors of the acute stage. These
survivors could be at potential risk of secondary bacterial infections. Our metabolite network showed shifting
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from coordinated regulation at 8 h to full disruption by 24 h, aligning with the cytokine storm, where metabolic
instability, which could worsen clinical symptoms.

Biomarker-based diagnostic platforms utilize measurable indicators in biological samples to detect,
diagnose, or monitor diseases. These platforms range from traditional laboratory tests to advanced technologies
like microfluidics, wearable sensors, and AI-powered image analysis. Of these different platforms, colorimetric
platforms for biomarker detection offer a versatile, affordable and accessible approach to disease diagnosis in
the food-animal industry, particularly in resource-limited settings®. They utilize color changes to indicate the
presence and concentration of specific biomarkers, enabling rapid, cost-effective, and portable diagnostics.
Colorimetric platforms can detect biomarkers even at low concentrations, allowing for early disease diagnosis,
which is crucial for effective treatment and improved disease management in the poultry industry. Colorimetric
platforms would be advantageous under field conditions in the poultry industry using a blood sample as a rapid
diagnostic material.

Based on our metabolomics data, it is clear that the progressive depletion of adenine as early as 8 h post E.
coli infection, supports adenine as a potential metabolite biomarker of diagnosing E. coli septicemia in broiler
chickens. However, to enhance diagnostic accuracy, it is advisable to implement a broader metabolite panel
that captures unique metabolic signatures at both 8 h and 24 h post-infection. At the 8 h mark, increased
concentrations of butyric acid/isobutyric acid and methylhistidine, alongside decreased levels of N-acetyl-
isoleucine, N-acetyl-alanine, and orotic acid, may indicate early infection stages. By 24 h, upregulation of hippuric
acid, N1-acetylspermidine, picolinic acid, and cholesteryl ester (22:2) suggests advanced-stage infection. The
reproducibility of our results across two independent experiments underscores their reliability. It is important
to validate this biomarker for its specificity and sensitivity in field conditions and assess its correlation with
age and disease severity in broiler chickens under different management systems. Developing a rapid, reliable
detection method for clinical use would be beneficial to the poultry industry. Implementing and validating a
diagnostic panel that monitors these metabolites at the specified time points could enhance early detection and
management of E. coli infections in poultry thereby improving flock health and productivity.

Materials and methods

Housing and maintenance of broiler chickens

All experimental procedures were performed in accordance with ARRIVE (Animal Research: Reporting of In
Vivo Experiments) guidelines. The study was approved by the University of Saskatchewan Animal Research
Ethics Board (protocol number 20070008). All methods were performed in accordance with the guidelines and
regulations of the Canadian Council on Animal Care. Euthanasia was performed by cervical dislocation by well-
trained personnel who are regularly monitored to ensure proficiency following the American Veterinary Medical
Association guidelines for the euthanasia of animals. Mixed sex (male and female) Ross 308 broiler chicks were
obtained from an in-house naive broiler breeder flock at the Animal Care Unit (ACU), Western College of
Veterinary Medicine, University of Saskatchewan. Broiler chicks were randomly allocated into experimental
groups in the animal isolation room at the ACU at the day of hatch. The housing and maintenance of broilers
were done according to the recommendations by Aviagen Inc. In the ACU, the air exchange was controlled
using HEPA filters for air exhaust, and the non-recirculated air is supplied at 15-20 air changes per h. The air
pressure differentials and strict sanitation were maintained in this isolation facility. Broilers were raised at 32 °C
for the first 7 days of life. Lighting (30-40 Ix) was provided continuously until 2 days post-hatch, thereafter lux
and duration were decreased until 10-20 Ix and 7 h of darkness were achieved. E. coli infected birds and saline
inoculated birds were kept in two separate rooms. Birds were fed ad libitum with a commercially available 20%
raised without antibiotics broiler starter (Masterfeeds, Humbbolt, SK. Canada). Water was provided ad libitum.

Culturing of E. coli and challenge

The challenge strain used was a field isolate of E. coli from a turkey showing septicemia. The E. coli isolate belonged
to serotype O,, non-hemolytic, aerobactin producing, serum resistant, and has a K1 capsule'®. The identity of the
E. coli isolate was confirmed by matrix assisted laser desorption ionization-time of fight (MALDI-TOF) mass
spectrometry in each experiment. First, the challenge bacteria were cultured on 5% Columbia sheep agar and
incubated at 37 °C for 24 h. Then one colony was transferred to 100 mL of Luria broth (Difco LB broth, Miller,
Becton Dickson and Company, USA) and incubated at 37 °C at 150 rpm for 18 h. After incubation, stationary
phase E. coli was serially diluted in phosphate-buffered saline (PBS) to the desired challenge concentration
of 1x10° CFU/mL. Two experiments were conducted to assess changes in the metabolomic profile of broiler
chickens at different time points following challenge with APEC.

Although E. coli septicemia in broiler chicks commonly occurs within the first week of life with high
mortality, onset of E. coli infection could occur any day during the first week of life. We hypothesized that
metabolic changes were similar in neonatal broiler chicks following challenge with E. coli irrespective of the day
of exposure to E. coli hence, we challenge birds with E. coli at 3 and 5 days of age in two separate experiments.

Escherichia coli challenge and sample collection at 8 h

A total of 60 broiler chicks (0 days of age) were randomly assigned into two groups (n=30 birds/group). The
number of birds per group was determined through statistical power analysis with power of 80% and significant
level of 0.05 considering previous studies!®*°. On day 5 post-hatch, one group of birds was subcutaneously
inoculated with 1x 10> CFU/mL of E. coli in a volume of 250 uL per bird in the neck. The control group was
inoculated with sterile saline (250 pL/bird) by the subcutaneous route in the neck. Following E. coli challenge,
the broilers were monitored for clinical signs. Post 8 h following E. coli challenge, blood samples were collected
from jugular vein from each bird with minimum handling and before euthanasia to minimize stress. Broilers
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from both the unchallenged control group and the E. coli-challenged group were examined for gross lesions on
necropsy.

Escherichia coli challenge and sample collection at 24 h

The second experiment followed the same protocol as experiment 1, with a modified challenge day and sampling
point. Total of 60 broiler chicks were randomly assigned to two groups of n=230/group at the day of hatch. One
group was challenged with E. coli at 3 days of age, while the control group was inoculated with sterile saline (250
uL/bird) by subcutaneous route at neck. Blood samples were taken at 24 h post-infection.

Separation of serum and Preparation of samples for metabolomic analysis

Immediately after blood collection from the control and E. coli-challenged groups, the samples were centrifuged
at 1000 g for 10 min to separate the serum. Then, the serum was aliquoted into 1.5 mL microcentrifuge tubes,
flash-frozen, and stored at —80 °C until further metabolomic analysis. All the samples were submitted for analysis
using liquid chromatography-mass spectrometry (LCMS) to the Metabolomic Innovation Center (TMIC), in
Alberta, Canada.

TMIC mega metabolomics assay

TMIC Mega Metabolomics assay that uses a dual approach combining direct infusion (DI) mass spectrometry
and reverse-phase liquid chromatography-tandem mass spectrometry (LC-MS/MS) (Applied Biosystems/MDS
Analytical Technologies) instruments are used in this study. This assay could analyze up to 900 endogenous
metabolites including amino acids, sugars, organic acids, nucleobases, vitamins, and different lipids, including
sphingomyelins and triglycerides!”. In this assay, isotope-labeled internal standards (ISTDs) at 1-10 uM
concentration, along with chemical derivatization reagents like phenylisothiocyanate (PITC) for amino acids
and 3-nitrophenylhydrazine (3-NPH) for organic acids, were added for boosting ionization and separation
during mass spectrometry. Then, stock solutions of each analyte were prepared at a concentration range of 0.01-
1 mM. All the above stock solutions were diluted to prepare the calibration standards (Call-Cal7) and quality
control standards at low, medium, and high-0.05, 0.5, and 5 uM, respectively.

For the PITC derivatization step, all the samples were dried under nitrogen followed by 5% PITC treatment
and then extracted by an injection of methanol: 5 mM ammonium acetate. For LC-MS/MS analysis, 50 uL
from each extract was pipetted in a 96-well plate and mixed with 450 puL of LC/MS water. Chromatographic
separation was performed on a reverse-phase C18 column (Waters Acquity UPLC BEH C18, 2.1 x 100 mm,
1.7 um) using a binary solvent system consisting of water with 0.1% formic acid (solvent A) and acetonitrile
with 0.1% formic acid (solvent B). The gradient started at 5% B, increased linearly to 95% B over 10 min, was
held for 2 min, and then returned to initial conditions. Detection was performed using electrospray ionization
(ESI) in both positive and negative modes, depending on metabolite class. Organic acids were derivatized with
250 mM of 3-NPH dissolved in 50% aqueous methanol, mixed for 2 h, and further diluted with water and
butylated hydroxytoluene. For DI-MS/MS analysis, the remaining 10 uL of the extract was added with 490 pL
of direct flow injection buffer for lipids, acylcarnitines and glucose/hexose identification. To ensure accuracy
and precision, three quality control (QC) samples at low, medium, and high concentrations were checked in
triplicate for reproducibility. Data normalization was done with internal standards, and for each metabolite LOD
and limit of quantification (LOQ) were determined. Blank samples were used to check sample contamination
and possible carryover effects. Analytical accuracy was validated by evaluating recoveries of spiked ISTDs in
QC samples, including isotope-labeled amino acids, with recovery rates consistently between 85 and 115%,
confirming reliable quantification across metabolite classes.

Metabolomics data analysis

Metabolite concentration data (in uMs) from both experiment 1 and 2 were preprocessed to ensure reliability and
comparability. Missing values below LOD were treated via imputation by replacing them with half the minimum
detected concentration for each metabolite. Logarithmic transformation (log2) was applied to stabilize variance
and normalize data distribution.

Initially, for the univariate analysis, student t-test was performed with limma package in R, for identifying
metabolites that were differentially expressed between E. coli-challenged and the control group. For multiple
comparisons, p-value adjustment was done with the FDR method, with the significance threshold set at
FDR<0.05.

In the multivariate analysis, we used both unsupervised and supervised methods. PCA analysis was performed
using the ‘ggfortify’ in R package to visualize the overall structure of metabolomic data, unsupervised metabolic
trends across experimental groups, and identification of outliers across experimental groups. Also, PLS-DA and
OPLS-DA scores (VIP>1) were applied to further investigate metabolic differences among the experimental
groups. Unlike PCA, which focuses on overall variance, PLS-DA is a supervised method that reaches a maximum
covariance between metabolite levels and groupings such as E. coli-challenged versus control, indicating which
metabolites vary the most between groups.

Thereafter, for further validation of significant metabolites, meta-analysis approaches have been conducted
through SAM and EBAM. Although both univariate and multivariate analyses identified some key metabolites,
d-score, a modified t-statistic used in SAM was applied to correct for multiple testing to reduce false positives
by permutation testing (p=<0.05). EBAM improved further with the addition of Bayesian techniques yielding
robust estimates of the posterior probability of metabolites being truly significant, along with z-scores and p-
values (p=<0.05). These approaches ascertain that the metabolic changes identified were not through random
variation but rather a true biological effect of the E. coli infection in both experiments.
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To further consolidate findings, a Venn diagram was constructed to compare metabolite data from univariate,
chemometric, and meta-analysis approaches. This identified robust metabolite consistently detected by multiple
methods. The shared and unique metabolites were compared by using another Venn diagram.

Then, the core metabolite sets across both experimental groups were subjected to pathway enrichment
analysis (Human Metabolome Database and Kyoto Encyclopedia of Genes and Genomes) using MetaboAnalyst
with Gallus gallus as a reference organism. Significantly enriched pathways were identified by comparing query
metabolites versus totally known metabolites in that pathway (p=<0.05). The metabolites identified in this
stage were subsequently used in logistic regression analysis. Here, we calculated the p-value and effect size for
metabolites across both datasets to assess their importance in distinguishing both the experimental groups. A
CS was derived using the formula, CS (effect size x -log10(P)), to combine the magnitude of the metabolite effect
change with its statistical reliability. Metabolites with high CS score were identified to be metabolite biomarkers
for E. coli infection.

Construction of correlation maps and network analysis of significant metabolites from LR findings were
conducted to analyze the strength of associations between metabolites and also the hub metabolites involved in
E. coli infection. For correlation analysis, where R? value ranges from 0 to 1, where a value closer to 1 indicates
that a large proportion of the variance is explained by the model, suggesting a good fit.

The statistical analysis and visualization was primarily done with R software tools, including lemma'8ggplot2,
ggpubr, Enhanced Volcano, and pheatmap. Pathway analysis and network visualization was done using XCMS
tool, MetaboAnalyst, and Cytoscape tools. A p-value of less than 0.05 (FDR <0.05) was considered statistically
significant for most statistical tests.

Data availability

All metabolomics data supporting the findings of this study are provided within the manuscript and its supple-
mentary information files, including raw and processed excel tables labeled Table S1-S3. In addition, the original
raw data have been deposited in Zenodo and are publicly available at https://zenodo.org/records/16138868.
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