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The increasing global population and rapid technological advancements are driving a surge in 
energy demand. Meanwhile, fossil fuel dependence as a primary energy source is contributing to 
environmental issues, including greenhouse gas emissions and climate change. These challenges 
underscore the urgent necessity of transitioning to sustainable energy solutions. Renewable energy 
systems (RES) are critical alternatives that can facilitate sustainable development goals. Nevertheless, 
the selection of the most suitable RES for specific geography, particularly within Industry 4.0, poses 
substantial decision-making complexities due to the intricate criteria involved. This paper introduces 
a robust method for evaluating RES. The proposed approach integrates f, g, h-fractional fuzzy sets 
(f, g, h-FrFS) into multi-criteria decision-making (MCDM), enhancing the decision-making process. The 
f, g, h-FrFS framework effectively captures decision-makers’ preferences by considering membership 
degrees (MB), non-membership degrees (NMB), and indeterminacy degrees (ID). Initially, the 
importance of evaluation criteria is determined through the improved Criteria Importance through 
Inter-Criteria Correlation (CRITIC) method. Following this, the WASPAS model is used to provide an 
accurate ranking of the RES. Geothermal energy is recognized as the most reliable RES option. To 
test the robustness of the proposed approach, a sensitivity analysis is conducted, demonstrating 
the stability of the model under varying conditions. The effectiveness of this framework is further 
validated through a comparative study analysis. Ultimately, this technique offers significant value for 
policymakers, energy managers, and organizations involved in renewable energy systems. In Industry 
4.0, energy planning and development is complicated, so this tool can assist them in navigating the 
complexities.
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Energy is a fundamental element of human existence and a key driver of national economic development. 
The global population is growing exponentially, and energy production is considered a major challenge due 
to industrial development. A growing population along with technological advancements, increase energy 
demand. Energy can be sourced from fossil fuels such as coal, natural gas, and oil. In addition, it can be sourced 
from renewable resources, such as wind, solar, hydro, and thermal energy. However, fossil fuels have significantly 
contributed to greenhouse gas emissions, exacerbating global warming and climate change1,2. As a result of 
climate uncertainty, we have seen a variety of extreme weather events around the world in recent years, including 
flooding, storms, and droughts. Environmental damage is caused by elevated carbon emissions from fossil fuels 
for energy production3. The intensification of climate uncertainty makes traditional energy sources unreliable.

Sustainability and the transition toward resilient societies are currently leading the international agenda4. 
Integrated social, economic, and environmental aspects of sustainable development are at the heart of the 
2030 Agenda for Sustainable Development. To achieve sustainable energy growth, emissions must be reduced, 
renewable energy sources must be replaced with fossil fuels, and energy efficiency must be improved5. The use 
of renewable energy resources such as wind, geothermal power, solar, biomass, and hydroelectricity can also be 
considered a viable substitute for fossil fuels6,7. Renewable energy technologies are rapidly evolving worldwide, 
and several forecasts expect that their development will have a substantial influence in the near future8. The 
reason for this is that these energy sources are more cost-effective than traditional energy sources when it 
comes to electricity generation. However, determining the right renewable resource for a given location and 
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requirement can be difficult, since each source may offer a unique set of advantages. It is imperative to employ 
multi-criteria decision-making (MCDM) techniques in real-life scenarios since they are generally challenging.

In practical scenarios, acquiring accurate data is often challenging due to factors such as incomplete or 
contradictory information, privacy limitations, and the complexities of combining data from various datasets. 
Nevertheless, these challenges can be addressed by utilizing numerous fuzzy number extensions. Spherical 
fuzzy sets (SFS) face limitation to the square sum of negative (NMB), positive (MB), neutral (ID) and degree is 
limited to 19. In this way, fuzzy information is restricted from being included. To compensate for this limitation, 
t-spherical fuzzy sets (t-SFS) are used, in which the sum of the t-th powers of neutral, positive, and negative 
degree values cannot exceed 110. In cases where full satisfaction is held by a decision-maker about a possible 
course of action, a value of 1 may be assigned as an evaluation score for that possible option. Gulistan et al. 
introduced f, g, h-fractional fuzzy numbers (f, g, h-FrFNs) and utilized aggregation operators to select a stable 
currency in the crypto market11. In this context, MB indicates the extent to which a particular alternative 
completely meets a specific criterion, NMB denotes the degree to which a particular alternative is deemed not to 
fulfill a criterion, and ID captures the level of ambiguity or unclarity concerning the degree of satisfaction of an 
alternative. Traditional CRITIC and WASPAS models are limited in their ability to compute the maximum value 
(equal to 1). The application of f, g, h-FrFNs has not been extended in MCDM techniques. This study bridges the 
identified research gap by extending the CRITIC and WASPAS models for f, g, h-FrFNs. This study introduces 
the CRITIC model to compute criteria weights and WASPAS model to rank alternatives using f, g, h-FrFNs in 
the MCDM dilemma.

Research gaps and motivations
To address ambiguities in decision-making, the existing fuzzy sets and their various modifications, such as SFS9 
and t-SFS10 have been utilized. However, these methods often fail to fully capture the MB and NMB, which limits 
the accuracy and reliability of the decision-making process. For instance, consider a set with the description 
D = (d, ⟨1.0, 0.75, 0.45⟩, d ∈ D), which demonstrates that these methods are inadequate for handling such 
information. This limitation arises because datasets can only be accommodated by SFSs if the square sum of ID 
(z), MB (p), and NMB (j) is less than or equal to 1 (p2 + z2 + j2 ≤ 1). Furthermore, t-SFSs can only take into 
account datasets if the sum of the t-th powers of z, p, and  is less than or equal to 1 (zt + pt + jt ≤ 1). Since 
there are shortcomings to conventional fuzzy set frameworks, such as SFS and t-SFS, Gulistan et al. introduced 
the p, q, r-fractional fuzzy set methodology11. In addition to providing enhanced flexibility and versatility, this 
structure allows for the representation and manipulation of information that is not adequately accommodated 
by traditional fuzzy sets.

The RES case study investigated by Toqee et al.59 considers only the MB and NMB degrees and fails to address 
the maximum MB value. It fails to account indeterminacy degree in decision making process, which is crucial 
for modeling the inherent uncertainty in decision-making processes. Additionally, when a decision-maker is 
fully confident to evaluate one alternative with respect to specific criteria he will assign membership degree 1 for 
that alternative, and model presented by Toqeet et al. is unable to handle this situation. So we need to develop a 
model that will incorporate indeterminacy degree and also able to handle maximum membership value 1. Our 
study resolves this limitation by incorporating the indeterminacy degree and achieving a maximum membership 
value 1 through the use of fractional fuzzy numbers. By doing so, our model offers a more comprehensive and 
accurate framework for sustainable energy planning, enabling better decision-making under uncertainty.

WASPAS and CRITIC models developed on existing fuzzy sets are unable to handle expert judgments at their 
maximum value point22,27. Therefore, we need to introduce a robust CRITIC method to determine criterion 
weights and the WASPAS method to rank alternatives and handle expert maximum judgments in decision-
making. This model aims to offer a more robust, flexible, and accurate solution to assessing RES within the scope 
of Industry 4.0, eliminating existing gaps and making it a valuable addition to sustainable energy decision-
making. The study highlights that current methods for assessing sustainable RES are insufficient. Despite 
considerable research into various assessment methods, there is a clear lack of integration of advanced fuzzy set 
principles, particularly fractional fuzzy sets. Fractional fuzzy sets could help address inherent uncertainty and 
ambiguity in sustainability evaluations. To enhance the accuracy and depth of sustainability assessments, this 
study proposes a hybrid approach combining CRITIC and WASPAS methods. This innovative methodology fills 
a significant gap in the literature by offering a more robust methodology to assess RES long-term viability. It can 
contribute to green energy technologies and sustainable development initiatives. This study is motivated by the 
pressing demand for more reliable and efficient methodologies in decision-making when evaluating RES within 
the realm of Industry 4.0.

Contributions
Real-world challenges are attracting the attention and time of more and more DMs, and they are developing 
realistic responses to them. When situations become more complex, it becomes progressively trickier for DMs 
in the adaptive decision-making paradigm to determine the best response. The real-life problems encountered 
by DMs require practical and sustainable solutions. To evaluate RES in a sustainable way, this study is imperative, 
which eliminates many challenges. Significant contributions of this research fills the aforementioned gaps in the 
literature:

•	 To optimize RES, an MCDM problem is presented and solved in a f, g, h-FrFNs environment.
•	 An MCDM numerical application for the determination of sustainable RES in industry 4.0 is used to demon-

strate the validity of the developed methodreal.
•	 CRITIC method is extended in this paper to incorporate f, g, h-FrFNs into criteria weight calculations for 

MCDM scenarios.
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•	 To improve the MCDM in f, g, h-FrFNs, we have developed a more advanced f, g, h-FrFN based WASPAS 
technique.

The main objective of this study is to evaluate renewable energy systems (RES) for sustainable development 
in industry. Employing innovative models such as CRITIC to compute criteria weights and WASPAS for RES 
selection, it provides a robust MCDM model within f,  g,  h-FrFNs context. The integration of both models 
improves the robustness of decision-making. A critically important contribution to the research on RES is 
this scholarly work, which highlights the powerful capability for innovative decision-making frameworks to 
overcome industry challenges that are complex and multifaceted. To summarize, the purpose of this study is 
to develop data-driven technique to help businesses, policymakers, and individuals in identifying RES that are 
most efficient for their industry. As an overview of the study, an introduction is provided in Sect. 1, followed 
by a detailed literature review in Sect. 2. In Sect. 3, preliminary definitions are discussed. The proposed work is 
described in Sect. 4. RE systems are defined in Sect. 5. A real-life decision-making problem is examined in Sect. 
6. Section 7 presents performance evaluation metrics. An overview of the detailed discussion is presented in 
Sect. 8. This study is concluded with some limiting factors and future potentials in section 9.

Literature review
Effectively addressing contemporary challenges requires informed decisions. The issue of data uncertainty 
poses significant challenges across scientific domains, including engineering, industrial production, agriculture, 
and economics. This dilemma has been addressed by several researchers13–15. Modeling ambiguous data is not 
possible using traditional mathematical frameworks. Zadeh developed the fuzzy set concept (FS) in 1965 to 
represent ambiguous, vague, and uncertain elements16. FS is not capable of handling non-membership degrees 
(NMB). Among the limitations of fuzzy sets, Atanassov proposed an intuitionistic fuzzy set (IFS) in 198617. In 
MCDM, IFS is widely acknowledged as one of the best tools for describing and managing ambiguity. However, 
this modification is generally limited because it does not address indeterminacy degrees (ID). Therefore, 
Gundogdu9 came up with the concept of a SFS. The decision expert in SFS has more flexibility when making 
decisions compared to IFS. Based on the approach discussed by Mahmood et al.10, t−SFS are more generalized 
types of fuzzy system. Garg18 investigates the connection between t−SFS, and the operators that aggregate them, 
as well as developing the operational laws of t−SFS.

The previous analysis indicates that all the researches investigated apply varying powers to control 
membership tiers. As an example, for membership in SF structures, decision-makers employ a power of two, 
while for membership in t-SF structures, they employ a power of t. Decision-makers utilize unique powers to 
manage the influence of membership levels in alignment with approaches designed to address different levels 
of uncertainty and ambiguity. Although, in particular real-life situations, if the decision-maker is satisfied 
about a certain alternative, he or she may give it a score of 1 when rating the strategy. If a set representation is 
defined as D = (d, 1, 0.45, 0.65) where d ∈ D, existing models may not facilitate such evaluation. As a future 
advancement of existing studies, Gulistan et al. proposed a p, q, r-fractional fuzzy sets in 202411. In addition 
to offering improved functionality and versatility, this novel structure allows information to be visualized and 
handled that is not sufficiently supported by conventional fuzzy sets.

Literature review of the evolution of CRITIC and WASPAS models
This literature review investigates key developments in decision-making approaches, emphasizing the integration 
of MCDM techniques with methodologies based on CRITIC and WASPAS. To obtain an accurate and robust 
ranking of different options, weights are essential in MCDM. Every MCDM problem has distinct values for the 
criteria. Consequently, weights are calculated to quantify how important each criterion and how much it weighs. 
The intercriteria correlation technique (CRITIC), proposed by Diakoulaki et al. (1995)19, is one of several 
methodologies available for calculating objective and subjective weights in MCDM processes. This approach 
determines weights by leveraging criteria correlation coefficients.

Serken et al.37 employed an integrated CRITIC WASPAS fuzzy model to analyze the performance indicators 
of the digital transformation process in renewable energy projects. Rostamzadeh et al.38 used an integrated fuzzy 
TOPSIS CRITIC approach for sustainable supply chain risk management. Pathak et al.39 evaluated the major 
elements affecting the adoption of blockchain technology. A fuzzy modification of the CRITIC and SWARA 
methods for quantifying objective and subjective weights of criteria was presented by Ghorabaee et al.40. Ke 
et al.41 introduced an innovative integrated weighting algorithm that incorporates the CRITIC and BMW 
models, utilizing an IFS for the selection of urban comprehensive energy infrastructure plans. Tronnebati et al.42 
conducted an analysis and ranking of the obstacles to the adoption of food supply chains that are more resilient. 
Multiple criteria complex decision-making problems can be tackled using the CRITIC model, a robust MCDM 
approach. Table 1 presents research studies developed using the CRITIC algorithm.

The Sum additive weighting model (SAW) and weighted product model (WPM) are combined to develop the 
Weighted aggregated sum product assessment (WASPAS) method, which gives an accurate solution to MCDM 
problems. The utility degree is calculated by WASPAS to rank alternatives based on their importance. Zavadskas 
et al.43 introduced the WASPAS model for optimization of weighted aggregated function. Tronnebati et al.42 
evaluated the e-trade platforms within the automotive spare parts industry, examining various critical aspects to 
identify the optimal platforms. Serken et al.37 employed an integrated CRITIC WASPAS fuzzy model to analyze 
the performance indicators of the digital transformation process in renewable energy projects. Rudnik et al.44 
proposed an approach for the selection of improved projects. Singh45 employed and integrated WASPAS model 
to optimized the performance of solar water heating system. Table 2 explores the research developed based on 
the WASPAS method.
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Literature review on sustainable RES
Renewable energy sources integration into both national and global energy systems involves several 
challenges, such as variability in resources, technological practicality, economic feasibility, and environmental 
consequences46,47. MCDM approaches address these issues by:

•	 Methodically assess various possible conflict factors.
•	 Improving decision-making efficiency for policymakers, financiers, and other key stakeholders.
•	 Offering flexible frameworks that can be adapted to numerous energy models and regional settings.
•	 Enabling a systematic evaluation of various renewable energy options, including solar, biomass, hydro, and 

wind. By evaluating a range of criteria at once, MCDM supports decision-makers in formulating more com-
prehensive, efficient energy policies that promote resiliency and sustainability.

The current review examines significant research that has enhanced our understanding of renewable energy 
technologies sustainability. It highlights key studies that contribute to improving our ability to assess and 
manage RES with sustainability as a core consideration. However, relatively few studies focus on renewable 
energy sources, sustainable development, and adoption. Mohammad Reza et al.48 studied the importance of 
renewable energy resources for Iran’s electricity sector, utilizing the Simultaneous Evaluation of Criteria and 
Alternatives method to assess seven alternatives based upon twelve criteria. Abdel-Basset et al.49 introduced 
a hybrid MCDM approach using neutrosophic sets to determine the most appropriate sustainable renewable 
energy system. They evaluated four renewable energy sources based on five primary criteria and eighteen sub-
criteria. Torul Yürek et al.50 applied MCDM using Pythagorean fuzzy sets to assess hybrid renewable energy 
sources through a sustainability index and rank renewable energy technologies in Turkey. Büyükozkan et al.51 
proposed an integrated model for selecting renewable energy in alignment with the Sustainable Development 
Goals of United Nations, using a hesitant fuzzy linguistic set. They evaluated four alternatives based on four 
primary criteria and twenty sub-criteria. Further studies are outlined in Table 3.

Preliminaries
Some basic concepts of f, g, h-fractional fuzzy sets11 are described in this section. Providing critical support and 
utility for the integrated model introduced, these fundamental concepts are crucial resources. Fractional fuzzy 
sets provide a generalized form of IFS, PFS, SFS, and t-SFS.

Author Year Focus

Keshavarz Ghorabaee et al.20 2017 Third party logistic provider

Stanujkic and Karabasevic29 2018 Digital evolution of online platforms

Aydogdu and Gul30 2020 Selection of best 3D printer

Yucenur and Ipekci31 2021 Selection of energy plant location for marine

Ayyildiz et al.32 2021 Best location for refugees

Ghoushchi et al.33 2021 Select landfill cite for medical waste

Senapati and Chen35 2022 Air condition installation to prevent microbiological transmission

Menekse and Akdag26 2023 Strategies for managing medical waste in healthcare facilities

Akram et al.28 2024 Finding the most effective gate monitoring system

Dhumras and Bajaj36 2024 Management of green supply chains in the energy industry

Table 2.  Studies on WASPAS method.

 

Author Year Focus

Diakoulaki et al.19 1995 Introduced CRITIC method

Keshavarz Ghorabaee et al.20 2017 Third party logistic provider

Rostamzadeh et al.21 2018 Sustainable supply chain management

Tus and Aytac22 2019 Tracking employees performance

Wu et al.23 2021 Selecting suitable locations to produce hydrogen

Asante et al.24 2022 Strategies for addressing obstacles to the adoption of renewable energy

Akram et al.25 2023 Strategies for managing industrial waste

Menekse and Akdag26 2023 Strategies for managing medical waste in healthcare facilities

Akram et al.27 2024 Public transportation using electric ferries

Akram et al.28 2024 Finding the most effective gate monitoring system

Table 1.  Studies on CRITIC method.

 

Scientific Reports |        (2025) 15:31503 4| https://doi.org/10.1038/s41598-025-16874-w

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


f, g, h-Fractional fuzzy set
For a fixed collection of elements in a set R, a f, g, h-Fractional fuzzy set (f, g, h-FrFS) S̃ on a component r ∈ R 
is represented as11:

	 S̃ = {r, (p
S̃

(r), z
S̃

(r), j
S̃

(r)) | r ∈ R}� (1)

In this context, p
S̃

(r) ∈ [0, 1] indicates belonging degree, z
S̃

(r) ∈ [0, 1] indicates impartial belonging 
degree, while j

S̃
(r) ∈ [0, 1] indicates non-belonging degree of an element r ∈ R fulfilling the condition 

1
f

(p
S̃

(r)) + 1
h

(z
S̃

(r)) + 1
g

(j
S̃

(r)) ≤ 1, here g and f are positive integers with condition f, g ≥ 1, and 

h = LCM(g, f).
The triplet (p, z, j) satisfying the condition 1

f
(p) + 1

h
(z) + 1

g
(j) ≤ 1 is called f, g, h-FrFN, where g, f ≥ 2 

and h = LCM(g, f).
Each time f, g, h-FrFNs S̃, the score function associated with S̃ can be formulated as:

	
Sc(S̃) =

1 + 1
f

(p) + 1
h

(z) − 1
g

(j)
3 , 0 ≤ Sc(S̃) ≤ 1� (2)

Accordingly, f, g, h-FrFN has the following accuracy function S̃:

	
Ac(S̃) =

1 + 1
f

(p) + 1
h

(z) + 1
g

(j)
3 0 ≤ Ac(S̃) ≤ 1� (3)

As a basic definition of arithmetic operations, let us consider the following: Õ = (pÕ, zÕ, jÕ) and 
Ṽ = (pṼ , zṼ , jṼ ) then:

•	 Addition Operation 

	
Õ ⊕ Ṽ =

(
1
f
pÕ + 1

f
pṼ − 1

f
(pÕ)(pṼ ), 1

h
(zÕ)(zṼ ), 1

g
(jÕ)(jṼ )

)
� (4)

•	 Multiplication Operation 

	
Õ ⊗ Ṽ =

(
1
f

(pÕ)(pṼ ), 1
h
zÕ + 1

h
zṼ − 1

h
(zÕ)(zṼ ), 1

g
jÕ + 1

g
jṼ − 1

g
(jÕ)(jṼ )

)
� (5)

•	 A scalar number λ > 0 multiplication 

	
λ · Õ =

(
1
f

(pÕ)λ,
1
h

(zÕ)λ, 1 −
(

1 − 1
g
jÕ

)λ
)

� (6)

•	 Scalar power λ > 0

Author Year Focus Criteria Alternatives

Li et al.52 2020 Sustainable development through the promotion and utilization of renewable energy 12 5

Mostafaeipour et al.53 2020 To carefully examine possible sites for geothermal projects 9 21

Ghenai et al.54 2020 Evaluation of sustainability indicators of RES 14 4

Yucenur and Ipekci31 2021 Selection of energy plant location for marine

Abdel-Basset et al.49 2021 Evaluation of sustainable renewable energy systems 18 4

Al-barakati et al.34 2022 Evaluation of renewable energy resources

Goswami et al.55 2022 Selecting a RE power plant 6 5

Esangbedo and Tang56 2023 Assessment of the industrial decarbonisation plan 14

Alkan57 2024 Evaluation of sustainable development and utilization-oriented RESs 18 5

Alyamani et al.58 2024 Strategies for the transition to renewable energy 12 5

Our study 2025 Optimizing RES for sustainable development in industry 9 5

Table 3.  MCDM methods on sustainable RES.
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Õλ =

(
1 −

(
1 − 1

f
pÕ

)λ

, 1 −
(

1 − 1
h
zÕ

)λ

,
1
g

(jÕ)λ

)
� (7)

f, g, h-fractional fuzzy weighted averaging operator
Suppose {R̃1, R̃2, . . . , R̃n} represents a collection of f,  g,  h-FrFN. Assume ξy = (ξ1, ξ2, . . . , ξn) denote 
the corresponding weight vector for the f, g, h-FrFNs, where each weight satisfies ξy ∈ [0, 1], and 

∑
ξy = 1 

for all y = 1, 2, . . . , n. In terms of f,  g,  h-fractional fuzzy weighted averaging (f,  g,  h-FrFWA) operator12 is 
f, g, h − F rF W A : △n → △ and the function is written as follows:

	
f, g, h − F rF W A =

(
1 −

n∏
y=1

(
1 − 1

f
py

)ξy

, 1 −
n∏

y=1

(
1 − 1

h
zy

)ξy

,

n∏
y=1

1
g

(jy)ξy

)
� (8)

f, g, h-fractional fuzzy weighted geometric operator
Suppose {R̃1, R̃2, . . . , R̃n} represents a collection of f,  g,  h-FrFN. Assume ξy = (ξ1, ξ2, . . . , ξn) denote 
the corresponding weight vector for the f, g, h-FrFNs, where each weight satisfies ξy ∈ [0, 1], and 

∑
ξy = 1 

for all y = 1, 2, . . . , n. In terms of f,  g,  h-fractional fuzzy weighted geometric (f,  g,  h-FrFWG) operator12 is 
f, g, h − F rF W G : △n → △ and the function is written as follows:

	
f, g, h − F rF W G =

(
n∏

y=1

1
f

(py)ξy ,

n∏
y=1

1
h

(zy)ξy , 1 −
n∏

y=1

(
1 − 1

g
jy

)ξy
)

� (9)

Proposed work
This section presents two key contributions to fuzzy MCDM:

•	 A novel CRITIC method for criteria weight determination within f, g, h-fractional fuzzy settings.
•	 A robust WASPAS approach to alternative evaluation.

Our primary objective is to develop a combined f, g, h-FrF CRITIC-WASPAS framework that:

•	 Using dynamic computing, calculated criterion significance through the CRITIC method.
•	 Incorporates dual aggregation within WASPAS for robust alternative assessment.
•	 Enhances evaluation accuracy in complex decision environments.

Figure 1 demonstrates the comprehensive workflow of our developed methodology, which combines the 
strengths of both approaches.

f, g, h-Fractional fuzzy CRITIC
In this study, we develop the f, g, h-FrF CRITIC methodology to assess criteria weights for sustainable renewable 
energy system selection. This approach integrates real-time situational factors, expert judgment, and fractional 
fuzzy uncertainty handling, making it highly effective for dynamic criteria prioritization, managing ambiguous 
expert assessments, and maintaining mathematical precision in complex evaluations. The procedural steps of the 
f, g, h-FrF CRITIC methodology are outlined as below:

Step 1: Experts are evaluated and their authority is evaluated. According to Table 4, experts are classified 
according to their qualifications and experience. Expert weights are calculated according to the formula found 
in Eq. 10. With Ey = (py, zy, jy) representing the associated FrFN, expert weights are computed based on their 
experience and knowledge.

	
ψt =

1 + 1
f

(p) + 1
h

(z) − 1
g

(j)∑ (
1 + 1

f
(p) + 1

h
(z) − 1

g
(j)

) � (10)

Step 2: To evaluate alternatives, decision makers provide assessments based on the significance of predefined 
criteria. These evaluations are expressed using linguistic variables, which are then converted into FrFNs for 
quantitative analysis. The corresponding linguistic scale for FrFN conversion is provided in Table 5. The 
assessments from multiple experts are systematically organized into y decision matrices, structured as (Eq. 11) 
and it facilitates structured analysis and comparison of alternatives.

	

Z̃ (y) =




Z
(y)
11 Z

(y)
12 . . . Z

(y)
1n

Z
(y)
21 Z

(y)
22 . . . Z

(y)
2n

...
...

. . .
...

Z
(y)
m1 Z

(y)
m2 . . . Z

(y)
mn




m×n

� (11)
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In each matrix, the evaluation outcome is depicted, where Z(y)
kl  denotes the evaluation result presented by the 

y-th decision expert (y = 1, 2, . . . , s) for the k-th alternative (k = 1, 2, . . . , m) concerning to the -th factor 
(l = 1, 2, . . . , n) within the f, g, h-FrF methodological approach.

Step 3: A combined f, g, h-FrF decision matrix is formed by combining independent expert evaluations. 
Experts with a greater weight exert a stronger influence on the aggregated outcome. The evaluation of each 
criteria incorporates all experts’ inputs using Eq. 12, with the resulting matrix structured as Eq. 13.

Fig. 1.  Flowchart of f, g, h-FrF-CRITIC-WASPAS method.
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1 −

s∏
y=1
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f
py

)ξy

, 1 −
s∏
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(
1 − 1

h
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)ξy

,
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1
g

(jy)ξy

)
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The aggregated value of criterion l is zl.
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Step 4: The decision score matrix can be calculated according to Eq. 14.

	
Score(Z agg) =
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f
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h
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(j)
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� (14)

Step 5: In many attribute sets, there are two groups, called benefit element and cost element, which are 
referred to as BE and CE, accordingly. The decision attributes are not required to be normalized if they are all BE 
or CE. When there are BE and CE evaluations in MCDM, CE ratings are converted to BE ratings. To transform 
the data into a f, g, h-FrF decision matrix, use Eq. 15.
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where Z−
l = minZkl and Z+

l = max Zkl.
Step 6: Determine the correlation coefficient by applying Eq. 16, which reflects the extent of association 

between the two criteria. A value of “1” indicates a perfect positive relationship, whereas “-1” represents a perfect 
negative relationship. Calculation of correlation coefficients among all criteria is as below:
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where Nl =
∑m

k=1
Nkl

m  and No =
∑m

k=1
Nko

m

Step 7: Standard deviation can be determine using Eq. 17.

Linguistic variable Description Values11

Absolute High Important (AHI) The importance of an event is absolutely high. (1, 0.1, 0.45)

High Important (GI) The importance of the matter is high. (0.95, 0.2, 0.55)

More Important (YOI) Criteria classified as ’more important’ require careful evaluation, even if they are deemed less critical than categorized as 
’absolute high’. (0.85, 0.35, 0.65)

Equal Important (QI) Each criterion under consideration should be assigned equal weight in the decision-making process. (0.75, 0.5, 0.75)

Slightly Low Important (YWI) While not as influential as criteria classified as ’Very High Important’, criteria classified as ’Slightly Low Important’ are quite 
important. (0.65, 0.35, 0.85)

Low Important (WI) The importance of the object is low. (0.55, 0.2, 0.95)

Absolute Low Importance (AWI) The criteria or factors under consideration are unlikely to have a significant impact on the decision-making process and 
have little significance. (0.45, 0.1, 1)

Table 5.  Criteria evaluation and alternative assessments using linguistic variables.

 

Linguistic variable f, g, h-FrFS scale

YK: Fully skilled (1, 0.1, 0.45)

GK: Highly skilled (0.95, 0.2, 0.55)

RK: More skilled (0.8, 0.35, 0.6)

SK: Skilled (0.7, 0.5, 0.65)

AK: fairly skilled (0.65, 0.35, 0.75)

Table 4.  Expert evaluation scales for linguistic variables.
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Step 8: Compute the information index using Eq. 18.

	
Ωl = lג

n∑
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Step 9: Determine the weights by employing Eq. 19

	
Wl = Ωl∑n

l=1 Ωl
� (19)

f, g, h-fractional fuzzy WASPAS
An enhanced version of the WASPAS method incorporating f, g, h-FrFS is introduced below:

Step 10: Collect insights from a panel of individuals responsible for making decisions regarding the potential 
for sustainable renewable energy systems. This depends on how significant the criteria are. Information collected 
with the help of Table 5 and the evaluation results provided by the decision-makers can be orderedly organized 
into y decision matrices as Eq. 20:
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A matrix grid like the one above represents a set of evaluation results, where Z(y)
gl  denotes the evaluation outcome 

assigned by the y-th decision expert (y = 1, 2, . . . , s) for the g-th alternative (g = 1, 2, . . . , m) concerning to 
the -th criteria (l = 1, 2, . . . , n) within the f, g, h-FrF settings.

Step 11: A combined decision matrix for f, g, h-FrF is constructed by combining independent expert 
evaluations. Assessment of each criteria by consolidating the evaluations of all experts through Eq. 21, with the 
resulting combined matrix expressed as Eq. 22.
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A criterion’s cumulative result is expressed by zl for the criteria l.
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Step 12: The SAW algorithm is employed to E agg  by integrating the criterion weights to compute the ŜAW  
f, g, h-FrF scores of all systems using Eq. 23.

	
ŜAW =

n∑
l=1

Wl(pl, zl, jl)� (23)

Step 13: The weighted measurements for each characteristic are aggregated through an addition operation 
as specified in Eq. 24.
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Step 14: The WPM algorithm is implemented to E agg  by integrating the criterion weights to compute the 
Ŵ P M  f, g, h-FrF scores for all systems, as shown in Eq. 25.

	
Ŵ P M =

n∏
l=1

(pl, zl, jl)Wl � (25)
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Step 15: The product algorithm is applied to compute the product of the respective assessments for each 
factor, as represented by Eq. 26.
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Step 16: The threshold number Γ is applied to the f, g, h-fractional fuzzy values of WPM and SAW in order 
to incorporate their fractional fuzzy values. As a result of applying Eq. 27, we are able to determine the result of 
each alternative.

	 B̂ = ΓSAW + + (1 − Γ)W P M×� (27)

Step 17: The optimal option should be determined by sorting the options in descending sequence.

Renewable energy systems optimization: a case study
According to the developed model, the objective of the present section is to identify the most suitable renewable 
energy system based on the utilization of the presented framework. A sustainable ecosystem can be achieved 
by optimizing the efficiency of RESs. A problem analysis is developed, followed by a discussion of criteria and 
solutions and a graphical illustration is outlined in Fig. 2. The developed algorithm is then adopted in order to 
determine an approach to the problem. The final step involves conducting a sensitivity analysis and performing 
comparative evaluations.

Problem background for RES
Rapid growth in technology, industrialization, and the population across the globe is driving a significant 
increase in energy consumption. Therefore, the issue has become increasingly critical. Current non-renewable 
energy sources, which rely on technologies that contribute heavily to carbon emissions, are not able to meet this 
escalating demand sustainably. In line with the United Nations’ sustainable development goals (SDGs), more 
and more countries are shifting towards renewable energy solutions. Many countries are pursuing renewable 
energy solutions to achieve sustainable development goals (SDGs). To reach its sustainability targets, Turkey is 
actively exploring renewable energy sources that are cost-effective, efficient, socially beneficial, and ecologically 
sustainable. Turkey has significant potential for renewable energy. When evaluating renewable energy sources, 
several factors need to be considered, including their effectiveness, economic value, carbon footprint, investment 
costs, environmental impact, and social legitimacy60,62–64. It is essential that renewable energy solutions have 
a minimal negative influence on the economy and the community, while maximizing their technological and 
social benefits. Given the complexity of these factors, some of which may be conflicting, MCDM methods have 
become crucial in evaluating renewable energy options that align with sustainable development. To address 
these challenges, a hybrid model, combining fractional fuzzy numbers with CRITIC and WASPAS methods, has 
been developed. This model accounts for the inherent uncertainty and imprecision involved in renewable energy 
evaluation, ensuring sustainable development principles are integrated into the decision-making process. The 
model simplifies the complex task of renewable energy selection by considering the contributions of multiple 
decision-makers with expertise in sustainable development and renewable energy.

A comprehensive catalog of potential sources of renewable energy for Turkey is being prepared by three 
managers from different departments. They conducted thorough research and professional discussions to arrive 
at the following options: wind60, solar61, biomass62, geothermal energy63, and hydropower65. Although this list is 
not exhaustive, it serves as a starting point for evaluating available options. To facilitate a well-rounded analysis, 
a wide range of criteria are employed, encompassing environmental, social, political, economic, and technical 
considerations. Figure 1 presents an MCDM framework designed to optimize renewable energy sources 
selection. This framework supports the evaluation and decision-making methodology in determining the most 
appropriate energy sources, while Fig. 2 showcases the proposed model for optimizing renewable energy systems 
(RES).

Description of renewable energy systems
The modern era has made energy an essential component of nation development and sustainable growth. The 
world’s major energy sources are fossil fuels, oil, and gas which are reliable but unsustainable. A significant 
amount of carbon emissions from fossil fuel burning may cause significant environmental damage. The 
Sustainable Development Goals have been detailed by the United Nations. Renewable energy is becoming 
increasingly important for achieving these goals. The following case study is taken from research conducted by 
Jameel et al.59. This project was carried out in Turkey, demonstrating how renewable energy systems are selected 
in the country. Turkey is seeking socially appropriate, technologically efficient, economical, and climatically 
acceptable renewable energy systems to achieve its sustainable development goals. Sustainable RESs require 
careful evaluation of potential sources, including wind, biomass, solar, geothermal energy, and hydraulics. These 
alternatives are briefly discussed below.

Wind energy (F1 )
With the use of wind turbines, we can capture the kinetic power of circulating air and turn it into electricity 
that is useful for everyday use. Wind energy is recognized for its eco-friendly advantages. It is true that the 
upfront financial commitment to wind farms may be higher than in alternative sources of electricity; however, 
they provide significant financial benefits to both developed economies as well as emerging countries. A 
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government initiative to promote renewable energy has led to a boost in financing in wind power projects. At 
the end of February 2022, wind power installations accounted for about 10.7% of the installed energy potential 
of Turkey. The Turkish government forecasts that wind energy will contribute 17.8% to the country’s renewable 
energy production by 2020. The adoption of renewable energy technologies has exhibited a consistent upward 
trajectory in the nation’s combined installed capability since 2005. Turkey had successfully installed a total of 
10,607 megawatts (MW) of wind energy capacity at the conclusion of 202160. There have been 356 wind energy 
installations in Turkey, according to the most recent available data.

Solar energy (F2 )
It is important to understand that there are multiple parameters that can influence the efficiency of photovoltaic 
cells and solar thermal technology, which convert sunshine into heat or electric power. The surrounding weather 
factors, humidity, climate, longitude and altitude statistics are just some of these factors. Approximately 13.4% 
of Turkey’s overall installed energy production will come from solar energy by 2020. As a result of a trend that 
began in 2005, this trend has been steadily increasing since then. It has been estimated that solar power house 
installations alone increased by 7.5 gigawatts between 2013 and September 202161. Turkish solar power houses 
generated 7816 megawatts (MW) by 2021, exceeding their own target.

Fig. 2.  Graphical illustration of case study.
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Biomass energy (F3 )
Organic substances are used in the production of biomass energy in various different types. Manure from animals, 
industrial sludge, agricultural residues, household solid waste, and sludge from wastewater management are a 
few types of natural resources. It is important to note that this particular energy system can not only generate, 
energy, but also allow waste recycling through a variety of different conversion mechanisms simultaneously. 
Biomass energy is associated with both beneficial and detrimental environmental effects. Consequently, this will 
reduce greenhouse gas discharges, reduce fossil fuel utilization, and fuel resource security will improve. Sulfur 
oxides and nitrogen oxides are a few types of pollutants that adversely affect the environment. Biomass energy 
has certain negative effects, but it remains an important ingredient of sustainable energy systems owing to its 
capabilities of generating energy and dealing with waste62,64,66.

Geothermal energy (F4 )
A clean energy source such as geothermal energy has the advantage of obtaining natural heat energy stored in the 
Earth’s crust. This makes it one of the most popular renewable energy source worldwide. It can generate power 
continually, all the time, and can deliver reliable power production, which is why geothermal energy is gaining 
attention globally. Unlike solar and wind energy, which are affected by weather conditions, this source of energy 
is not affected by weather conditions. A total of 1.3 gigawatts (GW) have been added to geothermal energy’s 
power output in Turkey between 2013 and September 2021. Approximately three percent of all renewable energy 
sources came from geothermal sources in September 2021, according to the Department of Energy. In the recent 
few years, Turkey has gained recognition as one of the world’s most prominent geothermal energy producers, 
having 63 units in operation as of May 202263. This is shown by the most recent statistics, according to data 
gathered as of May 2022.

Hydraulic energy (F5 )
In Turkey, hydraulic power is an important and valuable renewable energy resource. It is generated by the 
transformation of potential power into kinetic power. Consequently, the renewable energy production capacity 
of the country grows tremendously. In general, hydraulic power systems provide the benefit of storing energy 
for use on a regular or seasonal cycle, as opposed to other kinds of power systems that are dependent on the 
electrical loads. During heavy demand intervals and the rapid expansion of the economy, this allows the use 
of energy when necessary. It is true that hydraulic energy systems emit minimal greenhouse gases, but their 
development still demands an extensive capital commitment. Moreover, they can influence agro-ecological 
irrigation practices or submerge entire lands that are inhabited by people, thus influencing the environment, 
land use, and settlement patterns. A major contributor to the 9.2 gigawatts (GW) growth in renewable energy 
projects from 2013 to September 2021 was hydraulic energy systems64–66.

Description of factors associated to RESs
In this part, we will elaborate factors that will help to select the best RE system.

Technical

•	 Efficiency (W1): The efficiency of a system can be calculated by its ability to utilize easily available energy 
options to satisfy the continually growing need for energy when exchange ratios and operational factors are 
taken into account. To meet the demands of simultaneously optimizing energy utilization and providing sus-
tainable energy for individual work64, high efficiency is necessary.

•	 Lifetime (W2): Sustainability parameters likewise resource scarcity, economic feasibility, and environmental 
effects make up the projected lifetime of energy technologies. Their maximum capacity will be reached after a 
certain period of time. By analyzing this measurement, we can predict that the system will persist to be pro-
ductive and enable society and the environment to be protected while accommodating future energy needs63.

•	 Technology Maturity (W3): When assessing the progress of technology maturity, it is necessary to determine 
the level of readiness and accessibility of technology for real-life application. The purpose of this is to deter-
mine potential effects and the applicability of technology in solving energy problems65.

Sociopolitic

•	 Acceptance (W4): The level of public acceptance of green initiatives plays an essential role in determining 
community appreciation for sustainable energy projects and public opinion about existing energy systems 
related to these initiatives63.

•	 National policy (W5): An integrated approach and effectiveness in accomplishing energy reliability and en-
vironmental requirements are ensured through a national energy policy that assesses the extent to which 
appropriate sources of energy are part of a national energy planning66.

Economic

•	 Operational cost (W6): It is essential to determining the economic feasibility and sustainability of a renew-
able energy system to analyze the financial obligations of operation and maintenance associated with it67.

•	 Economic value (W7): Several financial parameters can be used to determine a renewable energy source’s 
economic worth, including discounted net economic value, payback duration, and expected rate of profit60.
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Environment

•	 Emissions (W8): There are several components that contribute to the perception of pollutant emissions. The 
emission reduction values can determine an energy source’s capacity to reduce emissions of greenhouse gases 
and other harmful gases, like nitrogen oxides, carbon dioxide, sulfur oxides and methane64,65.

•	 Ecosystem (W9): An Ecosystem Sustainability assessment measures how an energy system influences a visual 
appearance, biological diversity, and ecological value64,65,67.

Selection of renewable energy system
As part of this research, we analyze the relative significance of the factors using the f, g, h-FrF CRITIC algorithm 
for selecting a sustainable renewable energy system. This methodology demonstrated significant efficacy in 
prioritizing factors by considering real-time situations and incorporating expert insights.

f, g, h-Fractional fuzzy CRITIC
As outlined in the f, g, h-FrF CRITIC framework, we take the following steps:

Step 1: An assessment of professionals is conducted and their competence is assessed. Professionals are classified 
accordingly on educational background and expertise by consulting Table 4. Experts are classified as: one is more 
skilled, one is fully skilled, two are highly skilled, and they are listed in Table 6. The weight of each professional is 
computed in accordance with Eq. 10 and corresponding values are P1 = 0.2464,P2 = 0.2560,P3 = 0.2512, 
and P4 = 0.2464.

Step 2: To evaluate alternatives, decision makers provide assessments based on the significance of predefined 
criteria. These evaluations are expressed using linguistic variables, which are then converted into FrFNs for 
quantitative analysis. The corresponding linguistic scale for FrFN conversion is provided in Table 5. Table 7 
shows the independent opinions of the experts on alternatives.

Expert Alt Factors

W1 W2 W3 W4 W5 W6 W7 W8 W9

P1

F1 AHI GI AWI WI QI GI YOI WI QI

F2 AHI YOI YWI AWI QI AWI YWI YOI YWI

F3 YWI YOI WI QI GI WI AWI YWI WI

F4 AWI YOI QI GI AHI WI AHI YOI YWI

F5 GI AWI YOI QI YWI AHI AWI GI QI

P2

F1 YWI AHI QI WI GI AWI QI YOI WI

F2 QI AWI YOI AHI WI AWI GI YWI YWI

F3 YOI GI QI AHI YOI WI AWI YWI AWI

F4 WI QI YWI AWI YWI GI AHI AHI YOI

F5 AWI GI YOI QI AHI YWI QI WI YOI

P3

F1 AWI YOI GI AWI YWI QI WI AHI GI

F2 YWI QI AWI YOI WI AHI QI YOI YWI

F3 GI WI AWI AHI YWI QI YWI GI WI

F4 AHI YOI QI WI AWI YWI GI YOI QI

F5 WI AWI YWI GI YOI QI AHI YWI AWI

P4

F1 YOI QI GI AWI YWI AHI WI QI YOI

F2 AWI QI AHI WI GI YOI YWI AWI QI

F3 AWI YWI QI GI WI YOI AHI YWI GI

F4 AHI WI YOI AWI QI YWI YWI GI YOI

F5 GI YWI AWI YOI QI AHI WI QI YWI

Table 7.  Decision matrix.

 

Profession Experience Responsibility

Policy advisor 10 years Sociopolitical Assessment

Energy analyst 15 years Technical Evaluation

Ecologist 12 years Environmental Impact Assessment

Financial consultant 8 years Economic Analysis

Table 6.  Information about decision-makers.
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Step 3: A combined f, g, h-FrF decision matrix is formed by combining independent expert evaluations. 
Experts with a greater weight exert a stronger influence on the aggregated outcome. The evaluation of each 
criteria incorporates all experts’ inputs using Eq. 12 and final outcome s are outlined in Table 8.

Step 4: Calculate decision score matrix using Eq. 14 and values are given in Table 9.
Step 5: In our case W6, W8, and W9 are cost criteria, we convert them into benefit criteria utilizing Eq. 15.
Step 6: Determine the correlation coefficient by applying Eq. 16 which reflects the extent to which one 

criterion is associated with the other. The correlation coefficients between all the criteria are calculated and 
shown in Fig. 3.

Step 7: Equation 17 is utilized to determine standard deviation.
{0.3629, 0.3197, 0.3437, 0.3828, 0.3436, 0.3731, 0.3557, 0.3502, 0.3474}
Step 8: Equation 18 is utilized to determine the information index.
{2.7328, 2.6452, 3.2980, 3.4076, 3.5824, 2.7852, 3.2726, 2.8531, 2.8600}
Step 9: Compute the final weights by employing Eq. 19.
{0.0996, 0.0964, 0.1202, 0.1242, 0.1306, 0.1015, 0.1193, 0.1040, 0.1042}

f, g, h-fractional fuzzy WASPAS
As outlined in the f, g, h-FrF CRITIC framework, we take the following steps:

Step 10: Collect insights from a panel of individuals responsible for making decisions regarding the potential 
for sustainable renewable energy systems. This depends on how significant the criteria are. Information collected 
with the help of Table 5 and the evaluation results provided by the decision-makers can be orderedly organized 
into y decision matrices as Eq. 20.

Step 11: A combined decision matrix for f, g, h-FrF is constructed by combining independent expert 
evaluations. Assessment of each criteria by consolidating the evaluations of all experts through Eq. 21, with the 
resulting combined matrix expressed in Table 8.

Step 12: The SAW algorithm is employed to Table 8 by integrating the criterion weights to compute the 
ŜAW  f, g, h-FrF scores of all systems using Eq. 23. Table 10 yielded the final output of ŜAW  operator.

Step 13: The weighted measurements for each characteristic of RES are aggregated through an addition 
operation as specified in Eq. 24.

Step 14: The WPM algorithm is employed to E agg  by integrating the criterion weights to compute the 
Ŵ P M  f, g,h-FrF scores of all systems using Eq. 25 Table 11 yielded the final output of Ŵ P M  operator.

Step 15: The product algorithm is applied to compute the product of the respective assessments for each 
factor, as represented by Eq. 26.

Step 16: The threshold number Γ = 0.5 is applied to the f, g, h-fractional fuzzy values of WPM and SAW 
in order to incorporate their fractional fuzzy values. As a result of applying Eq. 27, we are able to determine the 
result of each alternative and final outputs are outlined in Table 12.

Step 17: The optimal option should be determined by sorting the options in descending sequence and the 
geothermal energy system is the optimal option. The ranking of RE systems is shown in Fig. 4.

W1 W2 W3 W4 W5 W6 W7 W8 W9

F1 0.3561 0.3831 0.3634 0.3065 0.3644 0.3647 0.3488 0.3683 0.3655

F2 0.3558 0.3579 0.3565 0.3503 0.3504 0.3449 0.3645 0.3523 0.3533

F3 0.3546 0.3587 0.3427 0.3855 0.3588 0.3485 0.3361 0.3453 0.3309

F4 0.3531 0.3642 0.3692 0.3261 0.3553 0.3505 0.3709 0.3841 0.3706

F5 0.3485 0.3341 0.3525 0.3792 0.3747 0.3774 0.3493 0.3572 0.3510

Table 9.  Score matrix.

 

F1 F2 F3 F4 F5

W1 (0.3761, 0.1150, 0.3543) (0.3641, 0.1369, 0.3663) (0.3707, 0.1269, 0.3702) (0.3874, 0.0631, 0.3317) (0.3710, 0.0875, 0.3677)

W2 (0.4462, 0.1464, 0.2941) (0.3530, 0.1843, 0.3897) (0.3806, 0.1378, 0.3659) (0.3781, 0.1774, 0.3702) (0.3220, 0.0951, 0.4122)

W3 (0.3957, 0.1295, 0.3450) (0.3771, 0.1150, 0.3534) (0.3157, 0.1675, 0.4273) (0.3755, 0.2132, 0.3738) (0.3557, 0.1458, 0.3866)

W4 (0.2505, 0.0755, 0.4873) (0.3678, 0.0952, 0.3612) (0.4654, 0.1156, 0.2681) (0.3076, 0.0752, 0.4260) (0.4139, 0.1962, 0.3349)

W5 (0.3790, 0.1760, 0.3686) (0.3545, 0.1395, 0.3917) (0.3802, 0.1389, 0.3663) (0.3632, 0.1355, 0.3670) (0.4109, 0.1645, 0.3273)

W6 (0.4012, 0.1166, 0.3297) (0.3550, 0.0825, 0.3679) (0.3403, 0.1585, 0.4077) (0.3558, 0.1381, 0.3907) (0.4289, 0.1365, 0.3010)

W7 (0.3408, 0.1593, 0.4072) (0.3792, 0.1764, 0.3684) (0.3281, 0.0831, 0.3943) (0.4195, 0.1144, 0.3088) (0.3537, 0.1176, 0.3753)

W8 (0.4000, 0.1470, 0.3370) (0.3552, 0.1458, 0.3871) (0.3435, 0.1258, 0.3972) (0.4698, 0.1068, 0.2722) (0.3659, 0.1581, 0.3809)

W9 (0.3912, 0.1578, 0.3558) (0.3377, 0.1941, 0.4121) (0.3189, 0.0875, 0.4206) (0.3892, 0.1945, 0.3599) (0.3419, 0.1651, 0.4008)

Table 8.  Aggregated decision matrix.
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Performance evaluation metrics
Incomplete reliability compromises the efficacy of collective information. It is imperative to use a set of 
measurement metrics within the algorithmic methodology of f,  g,  h-FrF CRITIC-WASPAS to determine its 
consistency, accuracy, and robustness. To accomplish this task, this section utilizes some measurement metrics.

Comparative analysis
Table 13 illustrates the comparative evaluation of multiple decision-making approaches that are implemented in 
the fuzzy environment. As a result of these techniques, picture fuzzy WASPAS (PcF WASPAS)68, IF WASPAS69, 
Fuzzy WASPAS70, and the suggested f, g, h-FrF CRITIC-WASPAS have been incorporated into the analysis. The 
optimal system, though, is constantly validated as F4 in all techniques and is systematically determined to be the 
best. A ranking of RESs is presented in Fig. 5 for all techniques, and the proposed model values have a narrow 
interval, so you can refer to Fig. 4 for details. When confronting multifaceted decision environments within 

F1 F2 F3 F4 F5

W1 (0.0205, 0.0059, 0.4509) (0.0198, 0.0070, 0.4524) (0.0202, 0.0065, 0.4529) (0.0212, 0.0032, 0.4480) (0.0202, 0.0044, 0.4526)

W2 (0.0240, 0.0073, 0.4444) (0.0185, 0.0093, 0.4566) (0.0201, 0.0069, 0.4538) (0.0200, 0.0089, 0.4543) (0.0168, 0.0047, 0.4591)

W3 (0.0262, 0.0080, 0.4400) (0.0248, 0.0071, 0.4412) (0.0204, 0.0105, 0.4514) (0.0247, 0.0135, 0.4442) (0.0233, 0.0091, 0.4460)

W4 (0.0165, 0.0048, 0.4573) (0.0249, 0.0060, 0.4406) (0.0324, 0.0074, 0.4246) (0.0205, 0.0047, 0.4497) (0.0284, 0.0127, 0.4365)

W5 (0.0271, 0.0120, 0.4389) (0.0252, 0.0094, 0.4424) (0.0272, 0.0094, 0.4385) (0.0258, 0.0091, 0.4386) (0.0296, 0.0111, 0.4321)

W6 (0.0225, 0.0061, 0.4468) (0.0196, 0.0043, 0.4517) (0.0188, 0.0083, 0.4565) (0.0197, 0.0072, 0.4545) (0.0242, 0.0072, 0.4426)

W7 (0.0220, 0.0099, 0.4492) (0.0248, 0.0110, 0.4438) (0.0211, 0.0050, 0.4475) (0.0277, 0.0070, 0.4346) (0.0230, 0.0072, 0.4448)

W8 (0.0229, 0.0079, 0.4465) (0.0201, 0.0078, 0.4530) (0.0194, 0.0067, 0.4542) (0.0275, 0.0057, 0.4367) (0.0208, 0.0085, 0.4522)

W9 (0.0224, 0.0085, 0.4490) (0.0191, 0.0106, 0.4559) (0.0179, 0.0046, 0.4569) (0.0223, 0.0106, 0.4495) (0.0193, 0.0089, 0.4546)

Table 10.  SAW matrix.

 

Fig. 3.  Correlation coefficient.
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the fuzzy framework, F4 consistently makes the optimal choice, which validates its durability and robustness. 
In addition, it confirms the versatility and effectiveness of F4 under a variety of decision-making scenarios. 
Referring to Table 13, we examine how the rankings of the developed method correlate with those obtained 
using other approaches suggested in previous research. An optimal solution is identified using a f, g, h-FrF-based 
model. In this comparison, the rankings from other methods tend to be consistent and support the selection of 
the most suitable alternative. However, discrepancies in the rankings are observed, which might be attributed 
to a lack of complete data or inherent variability when considering the various criteria weights. Our analysis 
indicated that F4 is consistently identified as the most suitable alternative according to the proposed MCDM 

Fig. 4.  RE systems ranking.

 

RES WASPAS Rank SAW Rank WPM Rank

F1 0.6559 2 0.3370 2 0.3313 2

F2 0.6552 4 0.3367 4 0.3311 4

F3 0.6548 5 0.3365 5 0.3304 5

F4 0.6564 1 0.3373 1 0.3316 1

F5 0.6554 3 0.3368 3 0.3312 3

Table 12.  Final scores and ranking.

 

F1 F2 F3 F4 F5

W1 (0.4536, 0.0059, 0.0192) (0.4521, 0.0070, 0.0199) (0.4529, 0.0065, 0.0202) (0.4549, 0.0032, 0.0179) (0.4530, 0.0044, 0.0200)

W2 (0.4626, 0.0073, 0.0152) (0.4523, 0.0093, 0.0207) (0.4555, 0.0069, 0.0193) (0.4552, 0.0089, 0.0195) (0.4483, 0.0047, 0.0220)

W3 (0.4473, 0.0080, 0.0225) (0.4447, 0.0071, 0.0231) (0.4353, 0.0105, 0.0285) (0.4445, 0.0135, 0.0246) (0.4416, 0.0091, 0.0255)

W4 (0.4210, 0.0048, 0.0341) (0.4416, 0.0060, 0.0244) (0.4547, 0.0074, 0.0177) (0.4319, 0.0047, 0.0293) (0.4481, 0.0127, 0.0225)

W5 (0.5000, 0.0120, 0.0263) (0.5000, 0.0094, 0.0281) (0.5000, 0.0094, 0.0261) (0.5000, 0.0091, 0.0261) (0.5000, 0.0111, 0.0231)

W6 (0.4557, 0.0061, 0.0181) (0.4501, 0.0043, 0.0204) (0.4482, 0.0083, 0.0229) (0.4502, 0.0072, 0.0218) (0.4588, 0.0072, 0.0164)

W7 (0.4397, 0.0099, 0.0268) (0.4454, 0.0110, 0.0240) (0.4377, 0.0050, 0.0259) (0.4508, 0.0070, 0.0198) (0.4417, 0.0072, 0.0245)

W8 (0.4546, 0.0079, 0.0190) (0.4490, 0.0078, 0.0221) (0.4474, 0.0067, 0.0228) (0.4622, 0.0057, 0.0151) (0.4504, 0.0085, 0.0217)

W9 (0.4534, 0.0085, 0.0202) (0.4465, 0.0106, 0.0238) (0.4439, 0.0046, 0.0243) (0.4532, 0.0106, 0.0205) (0.4471, 0.0089, 0.0230)

Table 11.  WPM matrix.
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framework. This conclusion aligns with the results from other methods. This further confirms the efficiency and 
accuracy of the proposed decision-making methodology.

In this research, our objective is to investigate the complex problem of identifying the best energy alternatives 
for sustainable development. Our framework is designed to optimize renewable energy utilization to accomplish 
this goal. This research provides an all-encompassing method for investigating various renewable energy 
solutions, considering a wide array of parameters that cover technological, social, economic, political, and 
ecological factors. The alternatives explored include wind, biomass, hydroelectric, solar, and geothermal energy, 
representing the diverse renewable energy possibilities attainable to Turkey. By conducting a detailed evaluation 
of each option in terms of its technical viability, economic feasibility, social acceptance, and environmental 
impact, we can gain a clear understanding of how each alternative might contribute to the country’s power 
sector. The decision-making procedure involved in adopting renewable energy is inherently complex, as it 
involves multiple criteria such as system efficiency, public support, lifespan, alignment with national policies, 
technological maturity, operational and maintenance costs, economic benefits, pollutant emissions, and 
environmental effects. This research develops an appropriate evaluation system for renewable energy sources by 
combining the CRITIC and WASPAS models in an integrated f, g, h-fractional fuzzy approach.

One of the primary advantages of the proposed model involves in its capabilities to accommodate inherent 
complexity and ambiguity in decision-making mechanisms. Conventional fuzzy sets are limited in their ability 
to adequately manage complex, real-world data, especially when the power sum of NMB, ID, and MB exceeds 
their constraints. The (f, g, h-FrF) framework, on the other hand, provides enhanced flexibility, allowing for 
data representation that traditional fuzzy sets cannot accommodate. Unlike conventional MCDM methods, the 
f, g, h-FrF CRITIC-WASPAS approach is effective at managing the nuanced complexities of modern industrial 
systems, especially those encountered in Industry 4.0 contexts. Geothermal energy (F4) ranking as the most 
viable option across all approaches in our comparative analysis further illustrates the superiority of our model. 
By integrating an advanced fuzzy logic system, the model can better handle geothermal energy sustainability. 
This makes it a more reliable tool for long-term energy assessments.

Moreover, to substantiate the accuracy and consistency of the formulated methodology, the Spearman 
correlation test and the sensitivity analysis were employed. The results show that our methodology consistently 

Fig. 5.  Comparative analysis.

 

Method F1 F2 F3 F4 F5 Best RES

PcF WASPAS 0.5101 0.4940 0.4936 0.5317 0.5261 F4

IF WASPAS 0.4669 0.4353 0.4425 0.4762 0.4551 F4

F WASPAS 1.0311 1.0092 1.0181 1.0366 1.0261 F4

Proposed 0.6559 0.6552 0.6548 0.6564 0.6554 F4

Table 13.  Comparative analysis.
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outperforms these alternative approaches in terms of decision-making accuracy and robustness, especially in the 
domain of environmentally friendly energy solutions in Industry 4.0.

Spearman rank correlation
The Spearman rank correlation coefficient serves as a nonparametric measure for evaluating numerical 
associations among two factors71. By employing a monotonic function, it determines the strength and direction 
of the relationship between the variables. Spearman coefficients72 can be calculated using the following formula:

	
Sρ = 1 −

6
∑n

t=1 d2
t

(n2 − 1)n
� (28)

According to dt = (Mt − Et), when comparing the ranks of the t-th data set in the two parameters, there is a 
difference among their ranks represented by “d”. Where Mt denotes the rank of the t-th measurement of the first 
data set. Et denotes the rank of the t-th measurement of the second data set, and n signifies the total number of 
measurements (data set).

Applying the Spearman rank correlation to Table 13, we evaluate the similarities among the rank results 
produced using the developed algorithm and the chosen comparative methods. The obtained Spearman 
correlation coefficients of the developed algorithm against the compared methods are 0.9, 0.9, 0.9, indicating a 
very strong positive monotonic relationship between each method. As coefficients are close to 1 (such as 0.9), 
suggesting a high level of ranking similarity. The complete set of Spearman correlation values among all methods 
is illustrated in Fig. 6, presenting a graphical illustration of the strength of correlation between the compared 
techniques.

Sensitivity analysis
To investigate how FrF-based CRITIC-WASPAS is implemented and how it influences rankings, adjust Γ to 
perform a sensitivity analysis. Through this approach, the proposed methodology demonstrates its stability and 
effectiveness by alleviating the uncertainty commonly encountered in data extraction and assessment.

Our calculations use a fixed value of Γ = 0.5 to calculate the utility function for each alternative. Utility values 
determine the ranking order of RESs based on their performance. A WASPAS method simplifies an equation 
containing Γ = 0 to a WPM equation, and another equation containing Γ = 1 to a SAW equation. If Γ is between 
0 and 1 (such as 0.1, 0.2, 0.3,...,0.9), the method essentially combines both models. All δ values result in relatively 
uniform rankings and F4 consistently ranks as the most effective RE system. The stability of rankings observed 
in the sensitivity analysis suggests that the proposed model is indeed more resilient to variations in individual 
judgment. This is a common source of bias in decision-making processes. In real-world applications, experts may 
have different perceptions, experiences, or preferences that can affect the ranking of alternatives. Our model’s 
ability to maintain consistent rankings, even when expert input is altered, indicates that it can mitigate individual 
bias. This characteristic is particularly valuable in decision-making contexts with diverse expert viewpoints, such 

Fig. 6.  Spearman rank correlation.
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as in Industry 4.0 assessments of renewable energy sources (RES). The sensitivity analysis also demonstrates that 
the model is less sensitive to small fluctuations in the input data, which indicates a high degree of robustness to 
uncertainty. Therefore, the model’s stability enhances its reliability and trustworthiness in real-world scenarios 
where bias may be a concern. An overview of the results of this sensitivity analysis, as well as a ranking of 
alternatives, can be found in Table 14. Figure 7 provides a visualization of the relationship between δ and the 
ranking of alternatives.

Discussion
A major challenge when optimizing RES for Turkey is identifying an appropriate energy option among several 
achievable solutions. With the growing global focus on greenhouse gas minimization and environmental 
protection, the Turkish government faces the task of meeting its power demands while aligning towards the SDGs 
as committed to51. This challenge is becoming increasingly difficult to tackle. One significant factor contributing 

Fig. 7.  Sensitivity analysis.

 

RES Γ1 = 0.1 Γ2 = 0.2 Γ3 = 0.3 Γ4 = 0.4 Γ5 = 0.5 Γ6 = 0.6 Γ7 = 0.7 Γ8 = 0.8

F1 0.6418 0.6574 0.6604 0.6592 0.6559 0.6504 0.6422 0.6300

F2 0.6415 0.6571 0.6600 0.6587 0.6552 0.6496 0.6413 0.6290

F3 0.6412 0.6567 0.6596 0.6583 0.6548 0.6492 0.6409 0.6287

F4 0.6420 0.6577 0.6608 0.6596 0.6564 0.6510 0.6428 0.6306

F5 0.6416 0.6572 0.6601 0.6588 0.6554 0.6498 0.6415 0.6293

Best RES F4 F4 F4 F4 F4 F4 F4 F4

Table 14.  Values for different Fn and d values.
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to this challenge is Turkey’s membership in the United Nations, which adds complexity to the decision-making 
process. In addition, balancing high technical performance alongside financial feasibility, public acceptance, 
and ecological impacts complicates the task even further. The need to consider all of these factors introduces 
uncertainty and complicates the decision-making process.

To address these complexities, an integrated decision-making framework, known as the f, g, h-FrF CRITIC-
WASPAS framework, was implemented. This model uses the CRITIC approach to assess the interrelationship 
between criteria and evaluates possible solutions based on the WASPAS approach. The CRITIC approach plays a 
crucial role in objectively weighing each criterion according to its strength relative to their correlation coefficient 
and standard deviation. By doing this, the decision-making methodology effectively reflects the significance 
of each criterion. In addition to the CRITIC method, the WASPAS approach prioritizes the possible solutions 
by combining weighted criteria and dual aggregation of SAW and WPM models. This process ensures that the 
ranking is both objective and comprehensive, considering both technical and non-technical aspects of each 
alternative. To refine these weights further, the CRITIC method also integrates expert judgment. This allows 
for the inclusion of personal preferences and insights hidden in the raw data. This approach fine-tunes the 
decision-making process, aligning it with real-world priorities. The outcomes are summarized by Alkan57, 
Jameel et al.59, and Bilgili et al.73 are consisted with the results obtained. By utilizing both CRITIC and WASPAS, 
this methodology provides a balanced, effective, and reliable framework to determine the optimally suitable 
renewable energy alternatives for Turkey.

Final outcomes of the developed model indicate that geothermal energy is the optimal renewable energy 
source in Turkey relative to the available renewable energy sources (RES). This conclusion is the result of the 
methodology’s capability to incorporate a broad collection of factors, including technical performance, social 
acceptability, cost-effectiveness, and environmental impact. Geothermal energy offers numerous advantages, 
such as minimal environmental impact, widespread societal recognition, and low operational and service costs. 
These are just some of the many positive aspects that geothermal energy provides. Furthermore, we performed 
a sensitivity analysis which provided additional evidence of the efficiency and robustness of the developed 
methodology. The analysis demonstrated that geothermal energy performed well across various scenarios 
with changes in critical criteria. The results highlighted geothermal energy’s high operational success rate, 
demonstrating the methodology’s resilience to fluctuations in raw data statistics. This robustness strengthens 
the reliability of the methodology, enhancing its value as a decision-making tool under dynamic, ever-changing 
situations. To further examine the f, g, h-FrF CRITIC-WASPAS methodology in relation to comparable 
existing fuzzy MCDM methodologies, both comparative and sensitivity analyses were employed. Compared to 
conventional evaluation methodologies , the CRITIC-WASPAS methodology integrates both expert opinion and 
objective data to provide a comprehensive assessment framework. This approach enables a more comprehensive 
analysis, yielding more accurate results and fostering a more effective decision-making process.

Managerial implications
Energy managers and policymakers in Turkey seeking to optimize RES can gain useful information with the 
findings of this research. There are several key implications to note, including:

•	 The proposed f, g, h-FrF CRITIC-WASPAS methodology integrates multiple decision-making methods, of-
fering a robust tool to evaluate and select the most suitable RES options. Through the CRITIC method, critical 
criteria like technical performance, environmental impact, and social acceptability are weighted objectively. 
This ensures decision-makers have a comprehensive view of all factors influencing RES selection.

•	 Geothermal energy emerged as the most favorable RES option for Turkey, primarily due to its minimal en-
vironmental impact, cost-effectiveness, and societal acceptance. Managers and policymakers can prioritize 
geothermal energy for future investments in sustainable energy infrastructures. Given its advantages, it can 
play a key role in achieving Turkey’s SDGs while meeting its energy needs.

•	 As a result of this study’s sensitivity analysis, it highlights that the methodology that has been developed is 
robust. This adaptability ensures that decision-makers can rely on the model in dynamic and uncertain en-
vironments, where input parameters such as cost and environmental criteria may fluctuate over time. This 
feature is critical for planning long-term sustainable solutions.

•	 National policy guidelines and international commitments, such as those to the United Nations SDGs, should 
guide RES adoption in Turkey. The energy sector, in collaboration with policymakers, should ensure that 
selected energy alternatives not only meet immediate energy demands but also align with Turkey’s broader 
sustainability and environmental objectives.

•	 Geothermal energy’s performance across various scenarios underlines its suitability as a long-term solution. 
Sectors looking for a sustainable, cost-effective energy source should consider geothermal energy as an opti-
mal option, given its strong operational success rate even under varying input conditions.

•	 Comparative analysis has demonstrated improvements in decision-making accuracy and reliability. The 
framework’s ability to incorporate both objective data and expert opinions makes it an invaluable tool for 
evaluating RES alternatives. This provides clearer insights into the most effective energy options for Turkey’s 
energy sector.

Conclusion
A systematic methodology for optimizing Turkey’s Renewable Energy Sources (RES) has been proposed, 
considering a broad spectrum of technological, financial, social, and ecological parameters. With regard to the 
integrated f, g, h-FrF-CRITIC-WASPAS methodology presented in this study, the CRITIC method identifies 
technology maturity, economic benefits, and national policy as the most influential criteria for assessing the 
relative importance of RES, while the WASPAS method recommends geothermal energy as the optimal RES. 
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For Turkey to fulfill its energy requirements and make a contribution to worldwide environmental change 
mitigation actions, adopting renewable energy technologies that align with the nation’s SDGs is crucial. The 
investigation underscores the significant role of the parameter Γ in decision-making, emphasizing F4 as the 
most suitable solution owing to stable and reliable performance in a broad range of circumstances. As a result of 
this enlightenment, decision-makers are able to make better judgements when dealing with various scenarios. 
To ensure the long-term efficiency and scalability of renewable energy solutions, it is essential to monitor their 
progress and invest in increasing their efficiency and durability. In summary, the findings of this research offer 
critical support for various stakeholders working together to achieve a secure and sustainable energy supply 
system for Turkey and the global community. In Industry 4.0, energy planning and development is complicated, 
so this tool can help manage the complexities.

It is important to note a certain limitations in the developed RES evaluation methodology, which integrates 
the f, g, h-FrF-CRITIC-WASPAS approach. The primary limitation of this research is the participation of only 
one decision expert in each dimension, which increases the risk of misjudging certain criteria or alternatives. 
Additionally, the arithmetic operations of fractional fuzzy numbers are more complex than fuzzy or crisp 
numbers, which poses challenges in calculations. Moreover, the model’s application is currently limited to RES 
evaluation, which may not sufficiently validate the results.

The inclusion of a wide group of experts from each domain has the potential to enhance the evaluation process 
and improve its accuracy. Developing computational techniques to automate processes and computations can 
reduce the time and effort of experts. Additionally, the proposed methodology can be utilized for addressing 
multifaceted emerging problems in various areas such as medical waste treatment74, agricultural reforms75, and 
disaster management76.

Data availability
The data used in this study is included in the article. Further inquiries are directed to the corresponding author.
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