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In the evolving field of healthcare, centralized cloud-based medical image retrieval faces challenges 
related to security, availability, and adversarial threats. Existing deep learning-based solutions 
improve retrieval but remain vulnerable to adversarial attacks and quantum threats, necessitating 
a shift to more secure distributed cloud solutions. This article proposes SFMedIR, a secure and fault 
tolerant medical image retrieval framework that contains an adversarial attack-resistant federated 
learning for hashcode generation, utilizing a ConvNeXt-based model to improve accuracy and 
generalizability. The framework integrates quantum-chaos-based encryption for security, dynamic 
threshold-based shadow storage for fault tolerance, and a distributed cloud architecture to mitigate 
single points of failure. Unlike conventional methods, this approach significantly improves security and 
availability in cloud-based medical image retrieval systems, providing a resilient and efficient solution 
for healthcare applications. The framework is validated on Brain MRI and Kidney CT datasets, achieving 
a 60-70% improvement in retrieval accuracy for adversarial queries and an overall 90% retrieval 
accuracy, outperforming existing models by 5-10%. The results demonstrate superior performance in 
terms of both security and retrieval efficiency, making this framework a valuable contribution to the 
future of secure medical image management.
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The digital transformation of healthcare has ushered in an era of unprecedented connectivity and efficiency, 
largely driven by the adoption of cloud-based systems. These platforms not only facilitate seamless storage and 
sharing of Electronic Health Records (EHRs) but also address scalability challenges posed by the rapid growth of 
medical data1. Among the various types of healthcare data, medical images such as CT scans, MRIs, and X-rays 
play a critical role in diagnosis, treatment planning, and monitoring2. The demand for efficient and secure cloud-
based storage and retrieval of these images is amplified by their exponential growth, with estimates suggesting 
that medical image data could exceed 630 petabytes by 20303. Cloud platforms like Google Cloud, Microsoft 
Azure, and AWS enable the storage and retrieval of such vast datasets, fostering collaboration and real-time 
access across healthcare institutions4. However, the reliance on third-party cloud systems raises critical security 
concerns, including data breaches, unauthorized access, and potential tampering, necessitating robust solutions 
to ensure data confidentiality, integrity, and availability5–7.

Storing medical images securely in the cloud typically involves encryption techniques, which provide a 
foundational layer of protection. While traditional encryption schemes8–10 address confidentiality, they often 
fall short of ensuring data integrity and resistance against emerging threats. Furthermore, as we move toward 
the quantum era, the limitations of classical encryption methods become more pronounced. Quantum-capable 
adversaries pose a significant risk to these traditional approaches11. Current encryption methods are not 
designed to prevent intelligent tampering with encrypted data, which could lead to compromised diagnostic 
accuracy. Moreover, secure storage alone is insufficient; the ability to retrieve medical images accurately and 
efficiently from encrypted datasets without exposing sensitive information is equally critical12.

Content-Based Medical Image Retrieval (CBMIR) is pivotal for querying relevant medical images from 
databases using visual content, facilitating accurate diagnoses and effective treatments13. One approach to 
improving CBMIR efficiency is the use of similarity-preserving hashcodes, which enable rapid indexing and 
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retrieval. Models like Deep Pairwise Hashing (DPH)14 and Improved Deep Hash Network (IDHN)15 generate 
these hashcodes efficiently, but their unencrypted nature exposes them to adversarial attacks, particularly 
pattern-based intrusions16. Moreover, CBMIR faces significant challenges, including slow search times, difficulty 
achieving precise retrieval results, and susceptibility to malicious manipulations. These issues can distort 
retrieval outcomes, compromise reliability, and erode trust in the system. Ensuring accuracy and security in 
CBMIR is vital to unlocking its full potential for modern healthcare applications. Encrypting hashcodes can 
mitigate this vulnerability, yet it often comes at the cost of retrieval performance, creating a trade-off between 
security and efficiency17. Another challenge arises in the centralized training of hashcode generation models, 
where aggregating vast medical image datasets from distributed healthcare providers poses privacy and logistical 
concerns. Federated Learning (FL) offers a viable solution, allowing institutions to collaboratively train models 
without centralizing sensitive data. FL not only ensures data privacy but also enhances the robustness of hashcode 
generation, making it suitable for secure, distributed CBMIR systems18.

Despite the advances in hashcode generation and federated learning, ensuring fault tolerant storage and 
retrieval of medical images remains a concern. Distributed cloud architectures employing master-slave models 
offer a path toward resilient systems, but traditional secret-sharing schemes used for fault tolerance are prone 
to pattern or access-based attacks19–21. Malicious actors can exploit shared data to infer sensitive information, 
compromising the system’s robustness. Introducing randomness and dynamic thresholding mechanisms 
into secret-sharing schemes can mitigate these vulnerabilities, paving the way for a secure and fault tolerant 
framework. The overview of the cloud-based storage and retrieval framework in the distributed healthcare 
environment is shown in Fig. 1.

Existing solutions primarily address individual challenges such as image security, fault tolerance, or retrieval 
accuracy, but a unified system that effectively integrates all these aspects is lacking, as discussed above. To address 
these multifaceted challenges, SFMedIR, a Secure and Fault tolerant cloud-based framework for Medical Image 
Retrieval in a distributed environment, is proposed. The contributions of this work are as follows:

•	 A novel cloud-based framework, SFMedIR, for secure and fault tolerant medical image retrieval in a distrib-
uted environment is proposed.

•	 Quantum-chaos-based image encryption is employed to ensure robust security for medical images against 
advanced threats.

•	 To ensure secure and accurate retrieval, Federated Learning is utilized to generate context-aware, similari-
ty-preserving hashcodes that are resistant to adversarial attacks.

•	 A dynamic threshold-based shadow generation scheme is proposed to enhance security and fault tolerance 
during the retrieval process. A formal security analysis is conducted to validate the framework.

•	 SFMedIR is evaluated using Mean Average Precision (mAP), latency, throughput, fault-recovery time for re-
trieval performance, and formal analysis for security and retrieval efficiency. Experiments on Brain MRI and 
Kidney CT datasets show a 60-70% retrieval accuracy improvement under adversarial conditions.

The structure of the paper is as follows: Section "Related work" reviews related works, highlighting existing 
approaches and their limitations. Section "System architecture" elaborates on the proposed SFMedIR framework, 
explaining its design and components. Section "Formal analysis and verification" focuses on the formal analysis 
of the framework from a security and retrieval accuracy perspective, while Section "Experimental results 
and performance analysis" discusses the experimental evaluation and performance results. Finally, Section 
Conclusion and future work concludes the study with key findings.

Related work
In this section, the authors detail an overview of existing secure image retrieval systems and discuss their 
issues. Secure and privacy-preserving image retrieval ensures efficient searches in encrypted databases without 
compromising performance22,23. Approaches in this domain are broadly classified into two categories. The first 
involves generating secure indexes from image features, encrypting the images, and storing them in the cloud. 

Fig. 1.  System model of secure medical image storage and retrieval framework.
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The second leverages the cloud for feature extraction and secure index generation, often using deep hashing to 
create similarity-preserving hashcodes24,25. Xu et al.26 introduced a cloud-based system combining Hamming 
embedding and Min-hash for enhanced accuracy. Du et al.27 employed deep hashing with Secure k-NN and 
DNA-based chaotic encryption, later enhancing accuracy using a 4D hyperchaotic map28. Janani et al.29 designed 
a multiparty-based similarity matching, while Zhu et al.30 introduced Privacy-preserving Mahalanobis Distance 
Comparison (PMDC) for enhanced privacy.

Similarity-preserving hashcodes are vulnerable to both targeted and non-targeted adversarial attacks, 
posing significant risks in the healthcare domain due to the critical nature of medical data. Ma et al.31 analyzed 
the impact of adversarial attacks on deep learning-based medical image analysis systems, emphasizing the 
severe implications such attacks could have on diagnostic accuracy. To address such vulnerabilities, Yuan et 
al.32 proposed semantic-aware hashcode generation for image retrieval. Their approach fabricates adversarial 
examples by maximizing the Hamming distance between the hashcodes of adversarial samples and primary 
features, demonstrating its efficacy in adversarial attack trials. However, these methods rely on centralized 
training for hashcode generation, which limits their scalability and privacy. Tabatabaei et al.33 advanced the 
field by introducing federated learning (FL)-based medical image retrieval system for global applications. 
FL-based training enhances privacy by ensuring that data remains decentralized during training, making the 
model inherently more robust34. Despite this innovation, there remains no FL-based adversarial-attack-resistant 
hashcode generation model capable of addressing multiple challenges with a unified solution35.

Medical images are frequently stored in centralized cloud infrastructures, which are prone to single points of 
failure. In healthcare, where retrieval time is critical, such centralized systems can be a bottleneck. Distributed 
cloud solutions offer an alternative. Ajitesh et al.36 proposed a model utilizing trusted edge computing for secure 
processing and distributed cloud storage for remote sensing images. Their approach involves sharing and storing 
images in slave servers across the cloud. However, plain image storage increases exposure to threats, necessitating 
the use of encryption and fragmentation. Zhou et al.37 introduced shadow generation techniques, employing 
a threshold-based system where images are divided into n shares, each stored on a separate server. During 
retrieval, only a subset of these shares is required to reconstruct the image. While effective, these techniques 
remain susceptible to access-based attacks3839.

The existing literature highlights the pressing need for a federated learning-based, context-aware hashcode 
generation model that ensures privacy and resilience against adversarial attacks. Additionally, to address access-
based vulnerabilities and enhance fault tolerance, there is a clear demand for a distributed and dynamically 
fragmented image storage system in the cloud. These insights have guided the development of the proposed 
system, “SFMedIR,” which is specifically designed to meet the stringent requirements of healthcare applications. 
Table 1 outlines the distinctions between our proposed system and existing retrieval methods.

System architecture
Problem formulation
The proposed system has Trusted Medical Image Owners (MO), Master and Slave Cloud Servers (MCS, 
SCS), and Medical Image Users (MU), as illustrated in Fig. 2. MO possess a collection of N medical images 
MI = {MI1, MI2, ..., MIN} which has to be offloaded to the cloud storage after encrypting the images. MCS 
takes care of s dynamic shadows generation and metadata storage. MU are able to retrieve most similar images 
by requesting to the cloud by sending the query image MIq . These cloud servers provide storage and retrieval 
services. As cloud servers are honest and curious, the challenge lies in the identification of k most similar images 
from encrypted images to a specified query image MIq  while preserving security and ensuring availability. The 
overall framework design is depicted in Fig. 2. Table 2 lists the notations used with a description.

System model and framework design
Secure and Fault tolerant Cloud-based Medical Image Storage and Retrieval Framework (SFMedIR) in a 
distributed environment is proposed to achieve the following goals.

•	 Attack resistance: The hashing model must be resilient to adversarial attacks, ensuring robustness as medical 
images play a critical role in digital healthcare.

•	 Image security: Medical images should be encrypted and shared in a manner that prevents attackers from 
extracting any meaningful information.

•	 Image availability: The framework should guarantee image availability even in the event of some server 
failures, ensuring reliable retrieval.

Reference Medical

Hashcode Generation Storage and Retrieval

Backbone Secure Training FL-based Distributed Encrypted Threshold Sharing Dynamic

Du et al.27 No ResNet ✕ ✕ ✕ ✔ ✕ ✕
Ozbay et al.25 Yes DenseNet ✕ ✕ ✕ ✕ ✕ ✕
Yuan et al.32 No CNN ✔ ✕ ✕ ✕ ✕ ✕
Tabatabaei et al.33 Yes CNN ✕ ✔ ✕ ✕ ✕ ✕
Ajitesh et al.36 No MobileNet ✕ ✕ ✔ ✔ ✔ ✕
SFMedIR (Ours) Yes ConvNeXt ✔ ✔ ✔ ✔ ✔ ✔

Table 1.  Comparison of secure medical image retrieval approaches.
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The proposed framework has different entities that work together to ensure secure and fault tolerant retrieval 
work. Figure 2 shows the proposed SFMedIR architecture. It has two major phases. Storing the medical image in 
a secure way is the first phase. Here, the MO processes the medical image MI and offloads them to the cloud. MO 
encrypt the MI using quantum chaos-based image encryption scheme QMedShield proposed by Amaithi Rajan 
et al.40 and produces EI. From the MI, adversarial attack-resistant hashcode AH is also being derived using the 
trained model. This hashcode acts as an index while storing and searching. EI and corresponding AH is sent to 
the MCS. Here, the EI is split into dynamic (r, s) shadows. Where s shadows are stored in slave servers, r shadows 
are required to reconstruct the original encrypted image. Each shadow Sh is stored in slave cloud servers. In the 
second phase, MU sends the query hashcode Hq , which is derived from the MIq  to the MCS. A similar image 
search is executed, and top-k image indices are selected. For each index in the result set, the original encrypted 
image has to be constructed with r shadows retrieved from the slave cloud servers. After reconstruction, MIU 
receives the top-k result images from the MCS, and it decrypts the result images.

Framework design
The framework of the proposed system is outlined in this subsection, with the functionalities of each entity 
and the corresponding algorithms explained. Key Control Entity KCE handles KeyGen algorithm. MO 
runs QChaosImgEnc, CxtHashGen algorithms. MCS executes DynamicShadowsGen during secure 
storage phase and SimImgSearch, ImgReconstruct during the retrieval phase. MU utilizes TrapdoorGen, 
QChaosImgDec algorithms. 

Notation Description

MI = {MIi}N
i=1 Medical Images

EI = {EIi}N
i=1 Encrypted Medical Images

K = {KQIE , KrEK } Keys in the system

KQIE Symmetric Key for Image Encryption and Decryption

SCSmax Maximum slave cloud servers

s Number of total shadows

r Number of shadows required to reconstruct the image

KrEK Threshold value r Encryption Key

Sh Shadow of an image

AH = {AHi}N
i=1 Adversarial Attack Resistant Hashcodes of N Medical Images each of length l

MIq Query Medical Image

Hq Hashcode of MIq

ER = {ERi}k
i=1 Top-k Resulted Encrypted Medical Images

OR = {ORi}k
i=1 Top-k Resulted Decrypted Medical Images

Table 2.  Notations used.

 

Fig. 2.  Proposed SFMedIR framework.
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	1.	 K ← KeyGen(1λ): This algorithm takes λ parameter as input and outputs the key set K = {KQIE , KrEK}
.

	2.	 EI ← QChaosImgEnc(MI, KQIE): The quantum chaos-based image encryption algorithm (QMedShield) 
takes medical images MI, and encryption key KQIE  as input, and outputs encrypted medical images EI.

	3.	 AH ← CxtHashGen(MI): The context-aware hashcode generation algorithm takes input as medical imag-
es M and return the adversarial-attack resistant hashcodes AH from the efficiently FL-based trained model.

	4.	 {Shi}s
i=1 ← DynamicShadowsGen(EIj): For each image EIj  in EI, this algorithm chooses dynamic 

(r,  s) where r < s < SCSmax and returns s shadows {Sh}s
i=1. The s shadows are sent to s slave cloud 

servers. For each EIj , the associated AHj  is securely stored in MCS along with metadata of shadows and 
encrypted r using KrEK .

	5.	 Hq ← TrapdoorGen(MIq): The trapdoor generation algorithm takes a query image MIq  and outputs a 
searchable trapdoor Hq , which will be sent to MCS for search.

	6.	 {AHi}k
i=1 ← SimImgSearch(Hq,AH): The similar image search algorithm, for a given query Hq  returns 

relevant top-k indices of images.
	7.	 ER ← ImgReconstruct({AHi}k

i=1): For each image index, MCS retrieves required r shadows out of s 
from the SCS for reconstructing EI. Return the ER to MU

	8.	 OR ← QChaosImgDec(ER, KQIE): The QMedShield algorithm takes top-k encrypted medical images 
ER, and decryption key KQIE  as inputs and outputs original medical images set OR.

This section summarizes the problem formulation, overall framework, and detailed design. The following 
subsections provide the internal details for each function.

Secure storage of medical images
The architecture of the proposed system is illustrated in Fig. 2. It operates in two primary phases: secure storage 
and fault tolerant retrieval of encrypted medical images within a distributed environment. This subsection 
provides a detailed explanation of the modules involved in each phase. During the secure storage phase, the 
MO encrypts medical images, generates adversarial attack-resistant context-aware hashcodes, and uploads the 
encrypted data to the cloud. The MCS then creates dynamic shadows of the encrypted images and distributes 
them across slave servers. This phase includes five key functions: KeyGen, QChaosImgEnc, CxtHashGen, 
and DynamicShadowsGen.

The KeyGen module generates the key set K by taking λ as input. It produces the symmetric image 
encryption key (KQIE) and the r encryption key (KrEK). These secret keys are securely transmitted by the 
KCE to the MU, MCS, and MO through a secure channel, enabling the MO and MCS to handle encryption 
processes while allowing the MU to perform decryption.

Quantum chaos-based image encryption model
Medical images must be stored securely to avoid information leakage and modification. In this image encryption 
(QChaosImgEnc) module, a quantum-chaos-based algorithm (QMedShield) is used. This algorithm is a 
hybrid, where the traditional images are encrypted with quantum-chaotic maps and some quantum operations 
involved without converting the image into quantum representation. This makes the image encryption model 
effective and quantum-secure in traditional computing environments with resource efficiency. The image owner 
encrypts the image before uploading it to the cloud. The flow of the encryption is shown in the following Fig. 3.

The model employs bit-plane scrambling, a 3D quantum logistic map, quantum operations during the 
diffusion phase, a hybrid chaotic map, and DNA encoding in the confusion phase to convert the plain medical 
image into a ciphered form. This encryption technique is robust against various potential attacks. The encrypted 
medical images are subsequently outsourced to the cloud for secure storage. The process of context-aware 
hashcode generation is further elaborated in the following submodules.

Context-aware adversarial training
This section explains the FL-based Context-aware Adversarial Training (FCAT) in detail. The produced model 
is robust and attack-resistant. In deep hashing-based retrieval, the objective of a non-targeted attack is to 
generate an adversarial input x∗ from a benign query x with label lb, aiming to mislead the hashing model H  
into retrieving irrelevant results for x. In contrast, a targeted attack manipulates x∗ to deceive the model into 
returning results associated with a specific target label lbt. Furthermore, the perturbation ∆x = x∗ − x must 
remain minimal to ensure that the changes are imperceptible to human observation. Adversarial training in deep 
hashing, analogous to its use in classification, employs both benign inputs {(xi, li)}N

i=1 and their adversarial 
variants {(x∗

i , li)}N
i=1 to refine the parameters θ of the hashing model H . This optimization ensures that the 

model retrieves semantically relevant content corresponding to the original label lbi, whether the input is a 

Fig. 3.  QMedShield encryption flow.
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clean query xi or its adversarially perturbed counterpart x∗
i . So, this training makes the hashing model produce 

adversarial attack-resistant hashcodes which are context-aware.
In the context of secure medical image retrieval, adversarial training alone is insufficient to address all 

critical challenges. To enhance the model’s robustness through access to diverse and extensive datasets, ensure 
decentralized learning, and uphold privacy (particularly vital in healthcare scenarios), federated learning (FL) is 
integrated into the framework. FL enables multiple healthcare centres to collaboratively train the model without 
sharing sensitive data, maintaining privacy while leveraging adversarial training to further improve security. 
This combination of FL and adversarial training ensures a resilient, privacy-preserving, and decentralized system 
tailored for secure and effective medical image retrieval. The proposed FL design is shown in Fig. 4.

Fig. 4.  FL-based training design.
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Algorithm 1.  FL-based semantic-aware adversarial training algorithm.

The hashing model employed the ConvNeXt model as a backbone for hashcode generation. ConvNeXt 
models extract more efficient features than other ConvNets. The layered architecture of this hashcode generation 
network is shown in Fig. 5. Each level employs distinct convolution strides to effectively extract deep features. 
The ConvNeXt block incorporates GELU activation in place of ReLU, Layer Normalization (LN) instead of 
Batch Normalization (BN), and utilizes an Inverted Bottleneck architecture. Drawing inspiration from vision 
transformers, this module is designed to capture both local and global features. Finally, the fully connected layer 
brings the features extracted for image MIi and gets the feature vector F Vi = {f1, f2, ...fl}. The features are 
converted into hashcode AHi = {h1, h2, ...hl} of length l. This model uses the adversarial learning concept 
to generate similarity-preserving attack-resistant discriminant hashcodes. In this work, targeted attacks are 
concentrated as they have significant side effects in healthcare. For efficient hashcode generation, context-aware 

Fig. 5.  ConvNeXt-based deep hashing model with adversarial learning.
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codes (Mca) are generated for each class and utilised for adversarial loss calculation32. The objective is that, for 
the given benign sample xt and target label lbt, we have to acquire Mca of lbt and then the objective function 
is defined as in Eq. (1).

	
arg maxx∗ (1

l
tanh(αfθ(x∗))� (1)

As the hash code of the adversarial example x∗ converges toward the primary code of the target label, the 
adversarial example increasingly aligns with the target label in semantic meaning while maintaining visual 
imperceptibility. Consequently, feeding x∗ into a deep hashing-based retrieval system enables the retrieval of 
semantically relevant content associated with the target label. The adversarial samples are generated using the 
PGD technique41.

	
x∗

P ← Sϵ

(
x∗

(P −1) + η · sign
(

∇x∗
P −1

Ladl

))
, x∗

0 = x� (2)

In Eq. (2), P is generally 100 iterations by default. η is step size, Sϵ projects x∗ into ϵ−ball of x. The adversarial 
loss Ladl is calculated as shown in Eq. (3),

	
Ladl(x∗, Mca; θ) = 1

l
Mca(tanh(fθ(x∗))� (3)

To facilitate the back-propagation algorithm during training, the sign function is substituted with the tanh 
function to produce approximate continuous hash codes. This replacement results in quantization errors, which 
are mitigated by adding a quantization loss to lessen the difference between the approximate hash codes and the 
binary codes of the adversarial examples.

	 Lquant(x∗; θ) = ∥tanh(fθ(x∗)) − sign(fθ(x∗))∥2
2� (4)

In Eq. (4), ||.||2 is the L2 norm. x∗ represents the adversarial example, θ denotes the model parameters, fθ(x∗) is 
the feature representation generated by the model, and the loss minimizes the difference between the continuous 
approximation tanh(fθ(x∗)) and the binary representation sign(fθ(x∗)). In addition to these two losses, we 
also include the bit balance loss (Lbit) to compute the hashcode efficiently. This indicates that each hashcode has 
a 50% likelihood of falling between 0 and 1. To create more unique hashcodes, one can utilize the target function 
outlined in Eq. (5) for generating d-bit hashcodes. In this context, hi refers to the output of the hash layer from 
the ith node.

	
Lbit = 1

l

l∑
i=1

hi� (5)

Added to this, the loss generated from the original ConvNeXt model Lori is added, which is the difference 
between the hashcode generated from FACT and the original one. Finally, the cumulative loss function for the 
discriminant hashcode generation is

	 Ltotal_loss = λLadl + ϕLquant + χLbit + Lori� (6)

All losses are combined with the aim of reducing the total loss. The hyper-parameters λ, ϕ, and χ serve as 
trade-offs to regulate these losses. By transmitting this error through each hash generation network, effective 
hashcodes are produced.

Centralized training faces challenges regarding privacy and model robustness. In cloud-based systems, 
both aspects are crucial. To address these concerns, we propose a model that employs FL-based context-aware 
adversarial training. Initially, a global model is set up, which is then refined with local training sessions after 
every Tlocal epochs. The architecture of the FL model is illustrated in Fig. 4, and the process is explained in 
Algorithm 1. The trained model is shared with all health care centres, which are defined as CxtHashGen, which 
takes a medical image and returns a context-aware hashcode. Both the encrypted image and this hashcode are 
sent to MCS for storage.
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Dynamic shadows generation

Algorithm 2.  DynamicShadowsGen(EI) .

Once the hashcode and corresponding encrypted image are sent to the master cloud server. The EI is split into 
dynamic (r,  s) shadows. The method proposed by Bai et al.42. Usually, in the threshold-based secret sharing 
scheme, all images are split into s shadows where without r shadows, the image cannot be reconstructed. But 
from the attacker’s perspective, if all images are split in the same shadows, he will try to guess that r shadows. To 
overcome this issue, the split can be done dynamically with respect to the SCSmax. So that the attacker cannot 
find the shadow count. In this module, the encrypted image EI is split into dynamic (r, s) shadows. Algorithm 2 
details the flow.

This algorithm returns the s shadows {Shi}s
i=1. These shadows are sent to the s slave cloud servers. r 

is encrypted using KrEK . In the MCS, AH, s slave locations, encrypted r are stored as metadata. From this 
information, the attacker cannot retrieve any relevant information about the secret image.

Secure image retrieval
In the secure image retrieval phase, the trusted medical image user MU generates the search trapdoor and 
forwards it to the cloud for similar image retrieval. MU have access to the FCAT model (Section Context-
aware adversarial training). The query medical image MIq  is sent to that model and gets the hashcode Hq . 
This hashcode is sent to the MCS. A similar image search is done with the received hashcode over the indexes 
stored in the cloud. Hamming distance is used to find the distance between the query image and the medical 
images in the database. Top-k results are chosen {AHi}k

i=1. These indexes only have the metadata and not the 
corresponding encrypted images. For each index, the corresponding r shadows have to be retrieved, and EI has 
to be reconstructed.

This image retrieval ensures security and fault tolerance. If some slave servers are unavailable, the encrypted 
image can still be reconstructed with r shadows. The master is also replicated, so availability is always ensured for 
image retrieval. From a security standpoint, the images are encrypted and dynamically shared within the servers, 
which improves their randomness. The upcoming subsections define the encrypted image reconstruction and 
image decryption.

Encrypted image reconstruction
The encrypted image EI is reconstructed from the r out of s shadows generated. Once the top-k results are 
retrieved, for each index, the metadata is checked. The metadata has s shared locations, but r is encrypted. r is 
decrypted using KrKE . r shares are fetched from the slave servers. The encrypted image EI is constructed as 
described in Algorithm 3

Scientific Reports |        (2025) 15:32965 9| https://doi.org/10.1038/s41598-025-16903-8

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Algorithm 3.  ImgReconstruct().

Quantum chaos-based image decryption
The Master Cloud exclusively returns the retrieved encrypted images, denoted as ER, to the Medical Unit (MU). 
Users possess the decryption key, represented as KQIE , to decrypt these retrieved images. The decryption 
process operates as the inverse of the encryption procedure, as illustrated in Fig. 3. Consequently, the potential 
for information leakage pertaining to medical image data is effectively mitigated, rendering it resistant to 
quantum attacks. The comprehensive end-to-end retrieval process is depicted in Fig. 6.

Security and privacy model
In the proposed system, there is an assumption that SCS which are “honest and curious” and malicious users. The 
system has to ensure that the ciphertext does not leak any critical information to them. The following security 
definitions are defined to achieve security.

Fig. 6.  End-to-End flow diagram.
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Definition 1  (Data Privacy in Federated Learning): Federated Learning (FL) satisfies data privacy if, under any 
adversarial strategy, the probability of extracting individual clients’ raw data from the shared updates is negli-
gible.

Definition 2  (Shadow Parameter Confidentiality): No polynomial-time adversary can determine the recon-
struction threshold r and total number of shares s with non-negligible probability when these parameters are 
chosen dynamically and randomly.

Definition 3  (Reconstruction Resistance): Let P = {(r, s) : 1 ≤ r < s ≤ SCSmax} represent the set of possi-
ble shadow configurations. If an adversary lacks knowledge of the distribution P , their probability of correctly 
guessing r and selecting r valid shares out of s is negligible.

The theorems and proofs provided in the subsequent section substantiate all these claims. The security analysis 
section of this article establishes the validity of these claims through rigorous theoretical arguments and formal 
theorems. Furthermore, the proposed method is evaluated against existing cloud-based solutions from a security 
perspective. The following table 3 presents a comparative analysis, highlighting how the SFMedIR framework 
outperforms others in terms of security.

Formal analysis and verification
This section is dedicated to analyzing the security of the proposed image hashcode generation model and 
dynamic shadows generation model. Additionally, formal verification of retrieval efficiency under adversarial 
condition is also provided.

Data privacy analysis
Theorem 1  In Federated Learning, where only model updates such as gradients are exchanged, the adversary’s abil-
ity to reconstruct clients’ raw data is limited to an approximation with negligible accuracy, provided that the model 
training gradients exhibit sufficient complexity and aggregation.

Proof  Let Dc represent the dataset of client c. Let gc denote the local gradient update of client c, computed as:

	 gc = ∇L(Dc, θ),� (7)

where L is the local loss function, and θ is the current global model. The central server aggregates the updates:

	
G = 1

K

K∑
c=1

gc,� (8)

where K  is the number of clients. The adversary A can observe the aggregated gradients G and attempt to infer 
Dc from gc or G.

Case 1: No Access to Individual Gradients If the adversary only observes the aggregated gradient G, 
recovering Dc is equivalent to solving the following underdetermined system shown in Eq.  (8). This system 
has infinitely many solutions unless K = 1 (only one client). Thus, without additional information, A cannot 
uniquely determine gc or Dc.

Case 2: Access to Individual Gradients If the adversary can access gc, the reconstruction of Dc depends on 
the invertibility of ∇L. For most machine learning loss functions, the gradient is a highly non-linear function 
of Dc, making inversion computationally intractable and dependent on the model parameters θ, which abstract 
raw data into a compressed representation.

For a well-optimized model, gradients gc are locally optimal, satisfying: gc ≈ 0 (converged case). In such 
cases, gradients provide no additional information about Dc, further reducing leakage potential. � □

Shadow security analysis
Theorem 2  If a single shadow Shi is compromised, the probability of reconstructing or inferring the secret image 
EI  is negligible, provided that the shadow generation uses randomized r-out-of-s parameters and r is greater than 
1.

Feature Traditional Cloud Storage Blockchain-Based Solutions SFMedIR

Confidentiality Symmetric/Asymmetric encryption Zero-Knowledge Proofs Quantum-Chaos-Based 
Encryption

Integrity Crypto Hash Blockchain ledger Federated Learning + 
Dynamic Shadows

Availability Centralized storage (Single point of failure) Distributed storage (Consensus overhead) Distributed Cloud with Faul 
Tolerant dynamic (r, s) Sharing

Adversarial Attack Resistance NA Limited defense mechanisms Adversarial Attack Resistant 
Hashcode Generation

Table 3.  Comparative analysis of security features..
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Proof  Let the secret image EI  be split into s shadows using the shadow generation scheme with a threshold r. 
Each shadow Shi consists of vi = (A · zi) mod p, the projection of A. Both A and Rd are generated using 
independent randomness.

A malicious server holding Shj  only has access to the single shadow Shj = [vj ] and the parameters p, but 
not (r, s). The value vj = (A · zj) mod p is derived from a random matrix A and a random vector zj . Since 
A is of rank r and r > 1, vj  is indistinguishable from a random vector over Zp. Without access to at least r 
linearly independent vectors {v1, . . . , vr}, the adversary cannot recover A or reconstruct any part of Sproj. The 
adversary’s advantage in reconstructing EI  or distinguishing EI0 and EI1 from a single shadow is bounded by:

	
ADV(A) ≤ 1

pr � (9)

For large p and r > 1, this is negligible.
A single shadow Shj  held by a malicious server provides negligible information about the secret image EI . 

The shadow generation mechanism ensures that reconstructing EI  requires at least r shadows, maintaining the 
security of the scheme against single-server compromise. � □

Reconstruction resistance analysis
Theorem 3  Let a secret image be split into (r, s) shadows using a secret sharing scheme with randomized param-
eters (r, s) for each image. If the attacker does not know the distribution P , their probability of correctly predicting 
the reconstruction threshold r and selecting r valid shares out of s is negligible.

Proof  The (r, s) parameters are chosen randomly from a set P = {(r, s) : 1 ≤ r < s ≤ SCSmax}, where r is 
the threshold and s is the total number of shares. This randomization introduces entropy into the system:

	
H(r, s) = −

∑
(r,s)∈P

P r(r, s) log P r(r, s),� (10)

where P r(r, s) represents the probability distribution over the parameters (r, s).
If an attacker does not know the distribution P , their probability of correctly guessing r and selecting r valid 

shares from s is:

	
P rsuccess = 1

|P| ·
(

s
r

)−1
.� (11)

The set P  grows as the range of possible values for (r, s) increases. For large SCSmax, the size of P  becomes 
significantly large, adding uncertainty to the choice of (r, s).

The binomial coefficient 
(

s
r

)
, which represents the number of ways to choose r shares from s, grows 

exponentially with s. Thus, as s increases, the likelihood of randomly selecting the correct r shares diminishes 
rapidly.

Combining these factors, the probability of success for the attacker is bounded by:

	

P rsuccess ≤ 1(
SCSmax

rmin

)
· |P|

.� (12)

For sufficiently large SCSmax and |P|, this probability approaches zero.
Therefore, the entropy introduced by randomizing (r, s) makes it infeasible for the attacker to guess both the 

threshold r and the r correct shares out of s, ensuring the security of the secret sharing scheme. � □

Fault tolerance analysis
Theorem 4  Given s total storage nodes and a minimum threshold r required for retrieval, the probability of failure 
due to random node unavailability is given by

	
Pfailure =

r−1∑
i=0

(
s
i

)
pi(1 − p)s−i

where p is the probability of failure for a single node. This ensures that with a sufficiently large s, SFMedIR main-
tains high fault tolerance by minimizing Pfailure.

Proof  Each storage node independently fails with probability p, and the total number of available nodes follows 
a Binomial distribution with parameters (s, 1 − p). The system successfully retrieves data if at least r nodes 
remain available. The probability of failure occurs when fewer than r nodes are available, i.e., when the number 
of available nodes is in the range [0, r − 1]. Thus,
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Pfailure = P (X < r) =

r−1∑
i=0

P (X = i)

where X ∼ Binomial(s, 1 − p), and the probability mass function (PMF) of a binomially distributed random 
variable is

	
P (X = i) =

(
s
i

)
(1 − p)ips−i.

Substituting this into the summation, we obtain

	
Pfailure =

r−1∑
i=0

(
s
i

)
pi(1 − p)s−i.

Since binomial probabilities rapidly decrease for large s, choosing a sufficiently high s relative to r ensures that 
Pfailure approaches zero, maintaining high fault tolerance in SFMedIR. � □

Retrieval efficiency under adversarial attack
Theorem 5  Let Hq  be the hashcode generated for a query image q, and let Hd be the stored hashcode for a relevant 
image in the database. Retrieval is successful if the similarity between Hq  and Hd is within a predefined threshold 
τ , i.e.,

	 ∥Hq − Hd∥ ≤ τ.

We analyze the probability of successful retrieval under adversarial conditions where the query hashcode is per-
turbed by an attack vector δ.

Proof  The hashcodes generated by SFMedIR follow a probability distribution due to the randomness introduced 
by the hashing process and adversarial perturbations. The difference between a query hashcode Hq  and stored 
hashcodes Hd can be represented as a random variable ∆H , modeled by a probability density function (PDF) 
f(∆H). The probability of successful retrieval is given by:

	
Psuccess = P (∥Hq − Hd∥ ≤ τ) =

∫ τ

−τ

f(∆H)d∆H.

For SFMedIR, federated learning-based hashcode generation ensures that similar medical images map to closely 
clustered hashcodes, meaning f(∆H) has a high density around zero, increasing retrieval accuracy. When an 
adversary perturbs q with an attack vector δ, the new query hashcode is given by:

	 H ′
q = Hq + δ.

The perturbed hashcode changes the retrieval probability, which is now:

	
Padv-success = P (∥H ′

q − Hd∥ ≤ τ) =
∫ τ

−τ

f(∆H + δ)d∆H.

For the retrieval to remain robust, the probability of successful retrieval under adversarial perturbation should 
stay above a threshold α, i.e.,

	 P (∥H ′
q − Hd∥ ≤ τ) ≥ α.

Since adversarial perturbations introduce distortions, f(∆H + δ) shifts slightly, but SFMedIR’s adversarial-
resistant hashcode generation ensures that the probability remains high. By evaluating SFMedIR on adversarial 
attacks, we confirm that it maintains retrieval accuracy above 75% even under attack conditions, proving that 
adversarial perturbations do not significantly degrade retrieval performance. Thus, SFMedIR achieves high 
retrieval efficiency even under adversarial conditions. � □

Experimental results and performance analysis
This section presents an analysis of the proposed SFMedIR framework’s retrieval performance, supported by 
experimental results. It is organized as follows: a detailed explanation of the dataset and experimental setup, an 
evaluation of retrieval accuracy before and after adversarial training, and an assessment of the framework’s fault 
tolerance capabilities.

Experimental setup and datasets
The framework was implemented on a PC featuring an Intel Xeon processor, 64 GB of RAM, an NVIDIA Quadro 
P5000 GPU with 16 GB of memory, and a 64-bit Windows operating system. To set up a distributed cloud 
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environment, Docker and Docker Compose were employed, facilitating the formation of a network that includes 
master and slave clouds. For real-time performance assessment, the system was deployed on AWS EC2 cloud 
services, with Docker hosting the environment. This network of master and slave clouds, deployed with Docker, 
mimics the behavior of actual cloud servers. The development of the entire system involved the use of Python’s 
OpenCV libraries and Keras. To ensure a well-defined evaluation framework, the following assumptions were 
considered during the simulation phase: 

	1.	 Cloud servers are assumed to be honest-but-curious, meaning they follow protocols but may attempt to infer 
patterns from stored data.

	2.	 Communication between master and slave cloud nodes is considered secure and authenticated, preventing 
unauthorized interception.

	3.	 Adversarial attacks are simulated based on standard attack model (PGD perturbation).
	4.	 The system is evaluated under a stable network environment, assuming minimal packet loss and controlled 

latency variations.

To test and validate the proposed retrieval model, three distinct medical image datasets were selected. Information 
about the dataset is briefly detailed here and tabulated in Table 4.

•	 Alzheimer Brain MRI Dataset (A-MRI)43: The dataset includes two files, Training and Testing, with around 
5,000 images each. The images are classified according to the severity of Alzheimer’s disease into the following 
categories: Non-Demented, Very Mildly Demented, Mildly Demented, and Moderately Demented.

•	 Brain Tumor MRI Dataset (T-MRI) 44: The following three datasets have been integrated to formulate this 
comprehensive dataset: Figshare, SARTAJ, and Br35H. This collection comprises a total of 7,023 MRI images 
of the human brain, which are categorized into four distinct classes: pituitary, glioma, meningioma, and no 
tumor. The images classified under the ‘no tumor’ category were sourced from the Br35H dataset.

•	 Kidney CT Dataset (K-CT) 45: Images were collected from PACS (Picture Archiving and Communication 
System) records across various hospitals in Dhaka, Bangladesh. These records pertained to patients diagnosed 
with kidney tumors, cysts, normal conditions, or stones. Coronal and axial cuts were selected from both con-
trast and non-contrast studies, adhering to urogram and whole abdominal protocols. The resulting dataset 
comprises 12,446 unique data units.

The datasets are distributed across three nodes, as illustrated in Fig.  7, to facilitate federated learning. The 
process begins with the initialization of a global model. Each local node independently learns hashcodes from 
its respective dataset without sharing any data with other nodes, thereby preserving privacy. The global model 
subsequently aggregates these hashcodes to learn a comprehensive representation. Hashcode generation is 
detailed in Fig. 4. The ConvNeXt network is employed to optimize the overall learning process by propagating a 
cumulative loss. This loss is a combination of adversarial loss, quantization loss, bit balance loss, and the original 

Fig. 7.  FL setup.

 

Dataset

Categories Usage

Train Test Retrieval

A-MRI
NonDemented VeryMildDemented MildDemented ModerateDemented

3200 2240 896 64 5120 1280 1000

T-MRI
Glioma Meningioma No tumor Pituitary

1621 1645 2000 1756 5700 1322 1000

K-CT
Cyst Normal Stone Tumor

3709 5077 1377 2283 10000 2466 1000

Table 4.  Dataset statistics.
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loss, as defined in Eq. (6). The primary objective is to produce highly discriminative, context-aware hashcodes 
while minimizing these losses. The network is trained to generate hashcodes of varying lengths - 8, 16, 32, and 
64 bits - for each dataset individually. Figure 8 shows the progression of training loss over epochs. As training 
progresses, the total loss steadily decreases, indicating effective learning and optimization of hashcodes. This 
approach ensures the generation of robust and efficient hashcodes tailored to the specific characteristics of the 
datasets.

CT and MRI images were chosen for the retrieval task to highlight the model’s capability to handle diverse 
imaging modalities with high precision. These modalities are widely used in clinical diagnostics and encompass 
distinct structural and functional characteristics, making them ideal for evaluating the model’s adaptability and 
effectiveness. The use of both CT and MRI ensures that the system is not limited to a specific modality but is 
versatile enough to support various medical imaging needs, reflecting its potential for broad applicability in 
healthcare settings. The datasets were divided into training and testing sets in an 80:20 ratio, with retrieval 
accuracy assessed on a randomly sampled subset of 1,000 images during testing. This approach provides a 
robust evaluation of the system’s performance in real-world scenarios while demonstrating its reliability and 
scalability. In the proposed system, medical images are encrypted and outsourced to the cloud with context-
aware indexes. The encrypted images are divided into dynamic (r, s) shadows and stored on slave cloud servers. 
Upon receiving a query image, the master cloud employs a similarity search algorithm over the index table to 
retrieve the top-k medical images. These encrypted images are reconstructed from r shares and returned to the 
user for decryption. Figure 9 shows examples of top-k retrieval outcomes. Column 2 features the query images 
for every class, Column 1 presents the dataset including the query image, and Columns 3-7 showcase the images 
retrieved that are pertinent to the query.

To ensure seamless implementation and maintainability, SFMedIR is designed using a modular architecture, 
where each component: encryption, hashcode generation, storage, and retrieval, operates independently while 
maintaining secure communication through Docker-based containerization. The system is deployed in a 
distributed cloud environment using AWS EC2 instances, with master and slave nodes managed via Docker 
Compose to enable fault tolerance. The encryption module leverages quantum-chaos-based encryption to 
secure medical images before storage, while the federated learning-based hashcode generation ensures privacy-
preserving indexing. The retrieval process efficiently queries distributed nodes using a dynamic threshold-based 
shadow reconstruction mechanism, ensuring robustness against node failures.

By structuring SFMedIR in a scalable and containerized manner, the framework remains adaptable for real-
world cloud-based healthcare deployments such as hospital networks, diagnostic centers, and telemedicine 
platforms using cloud infrastructures like AWS or private healthcare clouds. It integrates with Picture Archiving 
and Communication Systems (PACS) for secure storage and retrieval without modifying existing workflows. 
Federated learning enables collaborative model training across multiple institutions while preserving data 
privacy. The fault tolerant retrieval mechanism ensures access to medical images even during node failures. 
Additionally, the framework supports containerized deployment via Docker and Kubernetes, enabling scalability 
across healthcare institutions.

Retrieval accuracy analysis
In order to evaluate the proposed SFMedIR, a secure and fault tolerant medical image retrieval system, two 
metrics have been selected: mean Average Precision and PR Curve (ROC) Analysis. The top-k retrieved images 
are utilized to estimate retrieval accuracy. The accuracy of image retrieval can be quantified using Precision 
(P@k), Recall (R@k), and Mean Average Precision (mAP@k) metrics. Precision is defined as the ratio of relevant 
retrieved images to the total number of images retrieved in relation to the query image.

	
P = | relevant images ∩ retrieved images |

| retrieved images | � (13)

Recall denotes the proportion of relevant retrieved images to the query image, considering the number of 
identical images in the entire dataset.

Fig. 8.  Hashcode learning: Training loss.
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Fig. 9.  Sample Retrieval Results: Column 2 displays the query image, while the subsequent columns present 
the top-5 retrieved results corresponding to that query.
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R = | relevant images ∩ retrieved images |

| total relevant images in the dataset | � (14)

Mean Average Precision (mAP) is the standard measure for assessing and comparing the accuracy of image 
retrieval. The calculation of mAP can be performed using the Eq. (15) below.

	
mAP = 1

N

N∑
k=1

(
1
qk

qk∑
n=1

Pn

)
� (15)

Here, N is a number of queries, qk  is a number of relevant images for query n and the Pn is precision at nth relevant 
image. The ConvNeXt network is employed for the generation of hashcodes, primarily utilizing adversarial loss 
for the learning process. The selection of the ConvNeXt model is due to its superior capability to extract both 
local and global features compared to other pre-trained deep learning models. Consequently, this results in 
the generation of more meaningful hashcodes than those produced by alternative models. The experiment was 
conducted using various deep hashing models as backbones, ultimately resulting in the selection of ConvNeXt 
as the optimal backbone model. AlexNet46, VGG 1647, DenseNet 12124, and DenseNet 20125 are used to compare 
the hashcode generation models. For all 3 datasets, hashcode generation is done with and without adversarial 
training and the retrieval results for normal queries are compared under different conditions. This has been 
shown in the above 3 tables.

Randomly selected 1000 samples from each medical dataset are used for the analysis of retrieval accuracy. The 
experimental results of the proposed model, including mAP values across three datasets with varying hashcode 
lengths and different values of k, are documented in Tables  5, 6, 7. Figure 10 illustrates how the retrieval accuracy 
varies in different underlying conditions before the adversarial training. Figures  10(a-c) show the importance 
of hashcode length on image retrieval accuracy using mAP@100 for all 3 datasets. The analysis reveals that the 
16-bit hashcode provides the highest retrieval accuracy. Hashcodes with fewer bits fail to adequately capture 
class-specific features, while hashcodes with more bits become sparse and blend into different classes. Our model 
shows that 16-bit hashcodes deliver the best results. As seen in Fig. 10(a-c), the performance was also evaluated 
for different values of k. Lower values of k yield better performance, while a decrease in mAP with increasing k 
values suggests that the precision of the retrieval system declines as more images are retrieved (higher k values). 
This decrease in performance may be attributed to the spreading of relevant items, difficulties in distinguishing 
between relevant and irrelevant images, or the inherent complexity of the medical image data.

In order to emphasize the effectiveness of the method, Precision curves reflecting the performance at k 
retrieved images (P@k) and Precision-Recall (PR) curves are generated across three distinct datasets. Although 
the results may vary across different domain datasets, the P@k curves illustrate precision at predetermined 
quantities of retrieved images. Figure   10(d-f) present the P@k curve for all datasets, demonstrating that 
SFMedIR consistently achieves superior precision compared to alternative methods across all three datasets. 
The Precision-Recall (PR) curve serves as a critical metric for comparing the proposed methods against baseline 
approaches, offering a thorough overview of precision and recall across various retrieval scenarios. It provides 
significant insights into system performance across diverse sensitivity levels. A larger area beneath the PR curve 
generally signifies a more effective retrieval system that can maintain an equilibrium between precision and 
recall. As depicted in Fig.  10(g-i), our method consistently exceeds the performance of other methods across all 
PR curves. Thus far, we have addressed the comparison of retrieval performance for standard queries utilizing 
FL-based hashcode generation with ConvNeXt.

We need to evaluate the performance of the Federated Learning (FL)-based context-aware hashcode for the 
same set of normal queries. The corresponding metric values are displayed in the ’After’ rows. For all backbone 
models, the trend remains consistent; however, the ConvNeXt-based model shows an improved performance 
compared to the others. Following adversarial training, the performance on normal queries declines in 
comparison to the non-adversarial hashcode. This reduction occurs because the system shifts its focus towards 
enhancing robustness during the optimization process rather than maintaining precision. Adversarial training 
introduces small perturbations into the hashcode generation process, causing the generated codes to become 
less sensitive to minor variations in the data, but more resistant to adversarial attacks. This results in a trade-off 
where security and reliability are improved at the expense of a slight decrease in retrieval accuracy for standard 
queries. This behavior is consistently observed across all models and is illustrated in the three tables. The visual 
representation of these hashcode performance results can be found in Fig. 11(a-i).

The retrieval performance of different backbone networks across various datasets (A-MRI, T-MRI, and 
K-CT) is analyzed by evaluating the mAP before and after adversarial training. For AlexNet , the performance on 
the T-MRI dataset is strong, achieving mAPs between 87% to 92% for 8-bit to 64-bit hashcodes, and K-CT shows 
mAP values between 83% to 91% . However, after adversarial training, the performance decreases, especially 
on A-MRI, where mAP drops by as much as 19% for the 8-bit hashcode, and the performance on K-CT also 
reduces, with the mAP reaching 72% for 64-bit hashcodes. VGG 16, on the other hand, performs well on T-MRI, 
especially for 16 and 32-bit hashcodes, with mAPs ranging from 84% to 93%, while on A-MRI, the range is 68% to 
88%. After adversarial training, VGG 16 sees a slight decrease in performance but still maintains mAPs between 
81% to 89% for T-MRI (16-64 bits) and 64% to 75% for A-MRI. DenseNet 121 shows a good balance on T-MRI 
, achieving mAPs ranging from 82% to 92% and A-MRI with mAPs between 73% to 81% across the bit sizes. 
However, after adversarial training, it experiences a slight drop, particularly on A-MRI, where the performance 
drops to 62% for 64-bit hashcodes. DenseNet 201 , which performs the best among DenseNet variants, achieves 
76% to 93% on T-MRI and 71% to 79% on A-MRI before adversarial training. After adversarial training, the 
model sees a slight reduction, especially on T-MRI, where the mAP drops to 84% for 64-bit hashcodes, and on 
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A-MRI, the mAP falls to 65%. Finally, ConvNeXt emerges as the top performer on T-MRI , achieving mAPs 
between 89% and 96% , and shows strong performance on A-MRI with mAPs ranging from 72% to 85% before 
adversarial training. After adversarial training, ConvNeXt experiences only a slight degradation, maintaining 
mAPs between 87% to 92% on T-MRI (32-64 bits) and 71% on A-MRI for 64-bit hashcodes.

In conclusion, ConvNeXt performs better both before and after adversarial training compared to all other 
backbone models. Its consistent high performance, particularly on T-MRI, makes it the top performer, outpacing 
other models in terms of retrieval accuracy across the datasets. While other models, like DenseNet and VGG 
16, show strong results, they experience more noticeable drops in performance after adversarial training, 
especially on A-MRI. Hence, ConvNeXt stands out as the most reliable backbone for medical image retrieval 
in both standard and adversarial conditions. This finding underscores the efficacy of our approach in retrieving 
a greater number of accurate images compared to alternative methods, particularly evident when dealing with 
a constrained retrieval quantity, thereby affirming its suitability for image retrieval tasks. The analysis indicates 

Backbone Network Adversarial Training Top k

Hashcode Length

8 bits 16 bits 32 bits 64 bits

AlexNet

Before

100 0.79 0.87 0.84 0.84

200 0.78 0.85 0.83 0.75

500 0.74 0.76 0.73 0.75

1000 0.70 0.70 0.66 0.65

After

100 0.69 0.80 0.78 0.66

200 0.66 0.75 0.73 0.58

500 0.66 0.70 0.66 0.56

1000 0.64 0.65 0.65 0.54

VGG 16

Before

100 0.77 0.88 0.86 0.77

200 0.77 0.84 0.75 0.74

500 0.77 0.78 0.75 0.74

1000 0.68 0.74 0.73 0.67

After

100 0.70 0.81 0.84 0.75

200 0.68 0.77 0.72 0.71

500 0.67 0.69 0.63 0.58

1000 0.64 0.67 0.59 0.58

DenseNet 121

Before

100 0.78 0.81 0.81 0.76

200 0.77 0.80 0.79 0.66

500 0.75 0.77 0.74 0.64

1000 0.69 0.71 0.67 0.62

After

100 0.78 0.84 0.79 0.71

200 0.74 0.83 0.78 0.65

500 0.73 0.80 0.70 0.63

1000 0.63 0.77 0.66 0.60

DensNet 201

Before

100 0.79 0.86 0.82 0.71

200 0.78 0.83 0.81 0.69

500 0.77 0.80 0.77 0.68

1000 0.77 0.80 0.76 0.67

After

100 0.79 0.86 0.80 0.69

200 0.78 0.84 0.79 0.67

500 0.76 0.81 0.78 0.65

1000 0.76 0.74 0.76 0.65

ConvNeXt

Before

100 0.81 0.91 0.87 0.85

200 0.80 0.89 0.85 0.73

500 0.78 0.88 0.83 0.72

1000 0.72 0.79 0.80 0.71

After

100 0.82 0.88 0.84 0.81

200 0.80 0.85 0.82 0.71

500 0.76 0.80 0.78 0.68

1000 0.71 0.72 0.69 0.65

Table 5.  Detailed Retrieval Results for Normal Queries: Retrieval mAPs are evaluated and compared against 
four baseline models under different conditions for the A-MRI dataset.
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that the parameters l=16 and k=100 are fixed for the purpose of comparing the SFMedIR framework with other 
backbone models.

Effect of adversarial training
In this subsection, we explore the impact of adversarial training on retrieval performance when exposed to 
adversarial queries. As adversarial attacks pose a significant challenge to the robustness of retrieval systems, 
understanding the effect of adversarial training is vital to evaluating the resilience of our proposed solution. 
To evaluate the effectiveness of adversarial training, we randomly selected 10 images from each dataset and 
conducted an analysis comparing the system’s response to targeted adversarial attacks, both before and after 
adversarial training. The hashcodes were generated using FL-based adversarial training across all backbone 
networks. Before adversarial training, the generated hashcodes were found to perform poorly when subjected to 
adversarial queries, struggling to maintain retrieval accuracy. However, after the adversarial training, the system 
demonstrated a remarkable improvement in performance on the same adversarial queries. Specifically, for all 

Backbone Network Adversarial Training Top k

Hashcode Length

8 bits 16 bits 32 bits 64 bits

AlexNet

Before

100 0.92 0.91 0.90 0.87

200 0.91 0.85 0.83 0.82

500 0.91 0.82 0.80 0.78

1000 0.90 0.80 0.76 0.71

After

100 0.83 0.87 0.87 0.81

200 0.82 0.86 0.84 0.83

500 0.81 0.83 0.80 0.80

1000 0.80 0.77 0.75 0.72

VGG 16

Before

100 0.91 0.93 0.95 0.93

200 0.90 0.90 0.84 0.83

500 0.85 0.82 0.84 0.73

1000 0.83 0.80 0.83 0.72

After

100 0.84 0.87 0.93 0.89

200 0.81 0.82 0.81 0.78

500 0.80 0.84 0.80 0.76

1000 0.81 0.81 0.80 0.74

DenseNet 121

Before

100 0.92 0.96 0.93 0.92

200 0.92 0.95 0.94 0.92

500 0.89 0.90 0.86 0.84

1000 0.82 0.88 0.85 0.84

After

100 0.92 0.91 0.88 0.87

200 0.80 0.84 0.83 0.77

500 0.80 0.83 0.82 0.75

1000 0.78 0.82 0.81 0.73

DensNet 201

Before

100 0.93 0.95 0.91 0.90

200 0.92 0.93 0.90 0.88

500 0.91 0.90 0.90 0.87

1000 0.91 0.85 0.90 0.86

After

100 0.93 0.91 0.89 0.88

200 0.92 0.90 0.88 0.86

500 0.80 0.84 0.87 0.84

1000 0.80 0.82 0.85 0.84

ConvNeXt

Before

100 0.94 0.98 0.96 0.94

200 0.93 0.95 0.94 0.93

500 0.90 0.93 0.92 0.92

1000 0.89 0.90 0.91 0.92

After

100 0.94 0.94 0.92 0.91

200 0.90 0.90 0.92 0.90

500 0.90 0.88 0.92 0.87

1000 0.80 0.85 0.81 0.77

Table 6.  Detailed Retrieval Results for Normal Queries: Retrieval mAPs are evaluated and compared against 
four baseline models under different conditions for the T-MRI dataset.
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three datasets, the effectiveness of the adversarial training can be seen in the comparison presented in Tables 8, 
9, and 10.

When comparing the 16-bit hashcode column for adversarial queries before and after adversarial training 
across the three datasets, ConvNeXt demonstrates a relatively stable performance. On the A-MRI dataset, 
ConvNeXt achieves 88% for normal queries without adversarial training and 83% after adversarial training, 
showing a moderate decline of about 5%. On T-MRI, its performance slightly decreases from 96% to 95% after 
adversarial training, reflecting its resilience. On the K-CT dataset, ConvNeXt shows a drop from 95% to 94% 
for adversarial queries, indicating a minimal reduction of approximately 1%. In contrast, other models such 
as AlexNet, VGG 16, and DenseNet exhibit more significant performance degradation. For instance, AlexNet 
shows a considerable drop from 89% to 80% on A-MRI, while VGG 16 and DenseNet 121 also experience 
notable performance reductions, especially after adversarial training. This analysis highlights that ConvNeXt 
is more robust to adversarial queries and retains better performance in the 16-bit hashcode column even after 
adversarial training compared to other models. This enhancement in retrieval accuracy due to context-aware 

Backbone Network Adversarial Training Top k

Hashcode Length

8 bits 16 bits 32 bits 64 bits

AlexNet

Before

100 0.91 0.95 0.92 0.91

200 0.90 0.95 0.90 0.89

500 0.89 0.92 0.88 0.85

1000 0.88 0.90 0.87 0.83

After

100 0.81 0.86 0.86 0.80

200 0.78 0.86 0.84 0.76

500 0.76 0.84 0.82 0.74

1000 0.73 0.82 0.80 0.72

VGG 16

Before

100 0.89 0.92 0.90 0.89

200 0.86 0.92 0.89 0.82

500 0.86 0.91 0.83 0.82

1000 0.80 0.90 0.82 0.81

After

100 0.82 0.86 0.92 0.92

200 0.80 0.85 0.80 0.79

500 0.79 0.84 0.83 0.80

1000 0.79 0.81 0.80 0.76

DenseNet 121

Before

100 0.90 0.90 0.89 0.86

200 0.89 0.90 0.87 0.84

500 0.89 0.89 0.85 0.82

1000 0.85 0.89 0.85 0.80

After

100 0.90 0.90 0.87 0.86

200 0.89 0.90 0.86 0.83

500 0.89 0.89 0.85 0.81

1000 0.88 0.88 0.84 0.81

DensNet 201

Before

100 0.91 0.94 0.90 0.89

200 0.90 0.93 0.89 0.87

500 0.89 0.93 0.89 0.86

1000 0.89 0.92 0.89 0.85

After

100 0.91 0.92 0.88 0.87

200 0.90 0.91 0.87 0.85

500 0.88 0.91 0.86 0.83

1000 0.88 0.90 0.84 0.83

ConvNeXt

Before

100 0.93 0.95 0.95 0.93

200 0.92 0.94 0.91 0.91

500 0.92 0.94 0.91 0.91

1000 0.92 0.93 0.90 0.90

After

100 0.92 0.94 0.92 0.91

200 0.92 0.94 0.91 0.89

500 0.91 0.93 0.91 0.86

1000 0.91 0.93 0.90 0.86

Table 7.  Detailed Retrieval Results for Normal Queries: Retrieval mAPs are evaluated and compared against 
four baseline models under different conditions for the K-CT dataset.
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hashcode generation for targeted adversarial queries is visually represented in Fig. 12, where a clear increase 
in mAP is observed following the application of adversarial training. This demonstrates the robustness of 
the system and its ability to defend against adversarial manipulations, ensuring both improved security and 
reliability for medical image retrieval tasks.

Retrieval performance analysis
Efficient and secure medical image retrieval is critical in cloud-based healthcare applications. SFMedIR is 
evaluated based on retrieval latency and throughput, comparing its performance with existing approaches, 
including Traditional CBIR which relied on color and texture fused features48 and deep hashing model with 
binary code similarities49. Retrieval latency refers to the time taken to fetch a relevant image from the database 
based on a query.

The efficiency of retrieval depends on the size of the query set and the underlying indexing mechanism. The 
retrieval time can be modeled as:

	 Tretrieval = Tsearch + Tmatching� (16)

where Tsearch is the time taken to locate relevant candidates in the database. Tmatching is the time required 
to compute the similarity between query features and stored features. SFMedIR utilizes federated learning-
based hashcode generation, which enables fast indexing and retrieval by reducing the complexity of similarity 
matching. The results in Table 11 show that SFMedIR achieves significantly lower retrieval latency compared 
to traditional CBIR and deep hashing approaches. These results demonstrate that SFMedIR reduces retrieval 
latency by up to 50% compared to CBIR and 35% compared to DH, making it more efficient for large-scale 
medical image retrieval.

Throughput measures the number of queries processed per second (QPS) under different system loads. It is 
calculated as:

	
QP S = Nqueries

Ttotal
� (17)

Fig. 10.  Before Adversarial Training for Normal Queries: (a)-(c) Hashcode Length Vs mAP, (d)-(f) Top-k Vs 
mAP, (g)-(i) PR Curves.

 

Scientific Reports |        (2025) 15:32965 21| https://doi.org/10.1038/s41598-025-16903-8

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


where Nqueries is the total number of queries processed. Ttotal is the total time taken to process them. Higher 
throughput indicates that the system can handle more concurrent retrieval requests, making it more scalable. 
SFMedIR leverages parallelized retrieval with distributed cloud storage, leading to higher throughput than 
baseline models. Table 12 presents the throughput comparison across different workload conditions. SFMedIR 
achieves a 15-20% improvement in throughput compared to DH, making it more suitable for handling high-
traffic retrieval scenarios in cloud-based medical image applications. The retrieval performance analysis shows 
that SFMedIR outperforms existing retrieval models in both latency and throughput. The use of federated 
learning-based indexing and hashcode-based retrieval ensures fast, scalable, and efficient medical image retrieval 
in distributed cloud environments.

Fault tolerant retrieval experiments
To demonstrate the system’s fault tolerant retrieval capabilities, an experiment was conducted to evaluate 
retrieval accuracy and success rates under various failure scenarios. The setup involved splitting medical images 
into s shadows with a reconstruction threshold r using the shadow generation scheme. Failures were simulated 
by randomly deleting or corrupting a percentage of shadows, and retrieval was performed using the remaining 
s′ shadows, provided s′ ≥ r. The reconstruction success rate was measured as the percentage of images 
successfully reconstructed under these conditions. Results showed that the system maintained a high success 
rate (≥ 95%) when s′ ≥ r, tolerating up to 40% missing shadows while still achieving reliable reconstruction. 
Beyond this limit, the retrieval process failed as s′ < r. Additional analysis emphasized the flexibility of the 
shadow configuration, where trade-offs between fault tolerance and storage efficiency could be adjusted based 
on application needs. Visual assessments of reconstructed images further validated the system’s robustness. 
Scalability testing with larger datasets indicated the framework’s practicality for real-world deployment. Overall, 
the experiment confirmed the system’s resilience and effectiveness in ensuring secure, fault tolerant medical 
image retrieval.

To demonstrate that the system achieves fault tolerant retrieval, an experiment is designed to evaluate 
retrieval accuracy and success rate under various failure scenarios. For the analysis, we kept 10 slave servers and 
conducted the experiment. Table 13 shows the fault tolerance of a shadow-based reconstruction system, showing 
that the reconstruction is successful as long as no more than 40% of shadows are missing. However, when 50% 
of shadows are missing, the reconstruction fails, resulting in a 0% success rate.

Fig. 11.  After Adversarial Training for Normal Queries: (a)-(c) Hashcode Length Vs mAP, (d)-(f) Top-k Vs 
mAP, (g)-(i) PR Curves.
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Fault recovery time is a critical metric for evaluating the resilience of medical image retrieval systems in 
distributed environments. The fault recovery time (Trecovery) in SFMedIR is determined by the retrieval of 
sufficient shadows and the reconstruction process:

	 Trecovery = Tshadow-retrieval + Tdecryption� (18)

Backbone Network Query Type Adversarial Training

Hashcode Length

8 bits 16 bits 32 bits 64 bits

AlexNet

Normal No 0.92 0.94 0.94 0.90

Adversary No 0.10 0.15 0.11 0.12

Normal Yes 0.82 0.87 0.87 0.81

Adversary Yes 0.81 0.83 0.76 0.73

VGG 16

Normal No 0.90 0.95 0.93 0.91

Adversary No 0.12 0.13 0.17 0.14

Normal Yes 0.83 0.87 0.93 0.93

Adversary Yes 0.81 0.85 0.82 0.76

DenseNet 121

Normal No 0.91 0.92 0.90 0.87

Adversary No 0.13 0.18 0.20 0.21

Normal Yes 0.90 0.90 0.88 0.83

Adversary Yes 0.87 0.85 0.84 0.78

DeneNet 201

Normal No 0.92 0.95 0.91 0.90

Adversary No 0.12 0.12 0.25 0.27

Normal Yes 0.92 0.93 0.89 0.88

Adversary Yes 0.89 0.91 0.86 0.79

ConvNeXt (Ours)

Normal No 0.94 0.96 0.93 0.92

Adversary No 0.12 0.12 0.12 0.18

Normal Yes 0.93 0.95 0.93 0.92

Adversary Yes 0.86 0.90 0.84 0.80

Table 9.  Effect of adversarial training on retrieval performance for normal and adversarial queries across 
different backbone networks and Hashcode lengths on the T-MRI dataset.

 

Backbone Network Query Type Adversarial Training

Hashcode Length

8 bits 16 bits 32 bits 64 bits

AlexNet

Normal No 0.79 0.89 0.87 0.75

Adversary No 0.03 0.08 0.02 0.07

Normal Yes 0.69 0.80 0.78 0.62

Adversary Yes 0.65 0.76 0.67 0.54

VGG 16

Normal No 0.77 0.86 0.86 0.74

Adversary No 0.01 0.06 0.08 0.05

Normal Yes 0.73 0.81 0.84 0.74

Adversary Yes 0.70 0.80 0.73 0.57

DenseNet 121

Normal No 0.78 0.84 0.81 0.68

Adversary No 0.12 0.11 0.11 0.02

Normal Yes 0.75 0.83 0.79 0.65

Adversary Yes 0.70 0.80 0.75 0.59

DeneNet 201

Normal No 0.79 0.88 0.82 0.71

Adversary No 0.01 0.05 0.16 0.08

Normal Yes 0.77 0.86 0.80 0.69

Adversary Yes 0.76 0.84 0.77 0.60

ConvNeXt (Ours)

Normal No 0.81 0.89 0.84 0.73

Adversary No 0.01 0.05 0.03 0.01

Normal Yes 0.80 0.88 0.84 0.73

Adversary Yes 0.73 0.83 0.75 0.61

Table 8.  Effect of adversarial training on retrieval performance for normal and adversarial queries across 
different backbone networks and Hashcode lengths on the A-MRI dataset.
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Method Light Load (10 Q/s) Medium Load (50 Q/s) High Load (100 Q/s)

Traditional CBIR48 9.2 45.3 89.8

Deep Hashing (DH)49 9.8 47.0 92.1

SFMedIR (Proposed) 11.5 53.2 105.6

Table 12.  Throughput comparison (Q/s).

 

Method Query Size 100 Query Size 500 Query Size 1000

Traditional CBIR48 120.54 280.12 450.76

Deep Hashing (DH)49 95.22 220.87 390.22

SFMedIR (Proposed) 60.58 140.09 250.66

Table 11.  Retrieval latency comparison (Time in ms).

 

Fig. 12.  Effect of adversarial training for targeted adversarial queries.

 

Backbone Network Query Type Adversarial Training

Hashcode Length

8 bits 16 bits 32 bits 64 bits

AlexNet

Normal No 0.91 0.95 0.93 0.91

Adversary No 0.09 0.14 0.10 0.11

Normal Yes 0.81 0.86 0.86 0.80

Adversary Yes 0.81 0.82 0.75 0.72

VGG 16

Normal No 0.89 0.92 0.92 0.90

Adversary No 0.11 0.12 0.16 0.13

Normal Yes 0.82 0.86 0.91 0.89

Adversary Yes 0.81 0.85 0.81 0.75

DenseNet 121

Normal No 0.90 0.92 0.89 0.86

Adversary No 0.12 0.17 0.19 0.20

Normal Yes 0.89 0.90 0.87 0.86

Adversary Yes 0.86 0.89 0.83 0.77

DeneNet 201

Normal No 0.91 0.94 0.90 0.89

Adversary No 0.11 0.11 0.24 0.26

Normal Yes 0.90 0.92 0.88 0.87

Adversary Yes 0.88 0.88 0.85 0.78

ConvNeXt (Ours)

Normal No 0.93 0.95 0.92 0.91

Adversary No 0.11 0.11 0.11 0.17

Normal Yes 0.92 0.94 0.92 0.91

Adversary Yes 0.85 0.89 0.83 0.79

Table 10.  Effect of adversarial training on retrieval performance for normal and adversarial queries across 
different backbone networks and Hashcode lengths on the K-CT dataset.
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where Tshadow-retrieval is the time taken to fetch the required r shadows from distributed nodes. Tdecryption 
is the time required to reconstruct the image from the retrieved shadows. Traditional CBIR systems store full 
medical images on a centralized server, making them highly vulnerable to single points of failure, resulting 
in complete data loss when the server becomes unavailable. Blockchain-based storage offers redundancy by 
replicating data across multiple nodes, but fault recovery involves significant delays due to consensus validation 
and data synchronization overhead. In contrast, SFMedIR adopts a shadow-based distributed storage mechanism, 
where encrypted image shadows are stored across multiple cloud nodes. During retrieval, only a subset of r out 
of s shadows is required to reconstruct the image, reducing both storage overhead and recovery time. Since 
SFMedIR does not rely on full data replication or blockchain consensus, it achieves faster recovery with minimal 
computational overhead.

The results in Table 14 clearly demonstrate the advantages of SFMedIR in handling failures. Traditional CBIR 
systems fail completely when a server goes down, offering no-fault recovery. Blockchain-based storage provides 
recovery through data replication, but it introduces high delays due to consensus mechanisms and block 
validation processes. SFMedIR, leveraging its threshold-based shadow storage, significantly reduces recovery 
time by reconstructing data using only a subset of available nodes. This allows SFMedIR to restore lost images 
up to 70% faster than blockchain-based solutions, making it a highly efficient choice for fault tolerant medical 
image retrieval in distributed cloud environments.

Simulation results
To evaluate the fault tolerance and robustness of SFMedIR in a distributed cloud environment, we conducted a 
simulation using two master nodes (both have the same copy of records to avoid a single point of failure) and 
five slave nodes. This simulation demonstrates how medical images are securely stored using dynamic threshold-
based shadow generation and how retrieval is successfully handled even in the presence of node failures.

When a medical image is uploaded into the system, it is first encrypted using quantum-chaos-based 
encryption , and adversarial attack-resistant hashcode is also generated and sent to the master node. To ensure 
fault tolerant storage, the encrypted image is split into multiple shadows using a (2,3) [it can be varied as it is 
dynamic] dynamic threshold scheme, meaning the image is divided into three encrypted shadows, but only 
two are required for successful reconstruction. These shadows are then distributed among three slave servers, 
while the remaining two slave servers do not store any part of the image. The master node keeps hashcodes and 
metadata about storage locations to facilitate efficient retrieval. This mechanism eliminates the need for full 
image replication while ensuring that even if some slave nodes fail, the image can still be reconstructed securely. 
This process is detailed in the Fig. 13.

When a retrieval request is made, the master node processes the query and retrieves k relevant medical images. 
It identifies the three slave servers storing the particular encrypted image’s shadows. It sends ping requests to 
check their availability. In this scenario, the first slave server responds and provides the first encrypted shadow, 
the second server is down and does not respond, and the third server provides the third encrypted shadow. Since 
the (2,3) threshold mechanism requires only two out of three shadows for reconstruction, the system proceeds 
with the available first and third shadows to reconstruct the encrypted image. The reconstructed encrypted 
image is then sent to the user, who decrypts it to access the original medical image. This process ensures fault 
tolerant retrieval even when storage nodes fail, maintaining reliable access to medical images in a distributed 
cloud environment. This fault tolerance is explained in the Fig. 14.

Discussion on limitations
Although SFMedIR offers a secure framework for medical image retrieval, there are limitations to consider. 
While quantum chaos-based encryption increases data security, it adds computational overhead, which could 
compromise real-time usefulness in smaller healthcare settings. Another challenge is the trade-off between 
retrieval accuracy and adversarial robustness, where adding stronger attack defenses could reduce retrieval 

Method Single Server Failure Multi-Server Failure

Traditional CBIR48 Data loss Data loss

Blockchain-based Storage50 8.5s (consensus delay) 15.2s (replication overhead)

SFMedIR (Proposed) 2.8s (shadow retrieval) 6.3s (threshold-based reconstruction)

Table 14.  Fault recovery time comparison (in Seconds).

 

Total Shadows (s) Reconstruction Threshold (r) Shadows Used (s′) Missing Shadows (%) Reconstruction Success Rate (%)

10 6 9 10 100

10 6 8 20 100

10 6 7 30 100

10 6 6 40 100

10 6 5 50 0

Table 13.  Performance of the system under varying failure scenarios.
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accuracy slightly. The third limitation is how the scalability of federated learning in diverse healthcare institutions 
is impacted by data heterogeneity, latency, and variance in computational resources across hospitals.

Conclusion and future work
Medical images stored on third-party cloud platforms are highly susceptible to attacks, posing significant risks of 
information leakage and compromising the integrity of sensitive healthcare data. This paper introduced SFMedIR, 
a secure and fault tolerant framework tailored to address these challenges in distributed cloud environments. 
The framework employs quantum-chaos-based encryption to safeguard image security, Federated Learning 
for robust, context-aware hashcode generation, and a dynamic threshold-based shadow generation scheme to 
ensure fault tolerant retrieval. Formal security analysis and experimental validations demonstrate the resilience 
of SFMedIR against adversarial threats while ensuring superior retrieval accuracy and efficiency compared to 
existing solutions.

SFMedIR has broader implications for secure medical data management. It can significantly enhance privacy-
preserving medical image retrieval in cloud-based healthcare systems, telemedicine platforms, and AI-driven 
diagnostics, ensuring compliance with regulations. Moreover, its integration with federated learning enables 
collaborative medical AI models without exposing raw patient data, making it suitable for cross-hospital image 

Fig. 14.  Retrieval simulation - fault tolerant.

 

Fig. 13.  Storage simulation - distributed.
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retrieval. By addressing these challenges, SFMedIR paves the way for next-generation secure and intelligent 
medical image retrieval systems, bridging the gap between security, efficiency, and large-scale deployment 
in cloud-based healthcare solutions. Future research could focus on lightweight quantum-safe encryption 
techniques, decentralized indexing mechanisms using blockchain, and real-time retrieval optimizations for 
emergency medical scenarios.

Data availability
 The datasets used in this study are publicly available, and their details are as follows:

1. Alzheimer Brain MRI Dataset (A-MRI) 43: The dataset includes two files, Training and Testing, with 
around 5,000 images each. The images are classified according to the severity of Alzheimer’s disease into the 
following categories: Non-Demented, Very Mildly Demented, Mildly Demented, and Moderately Demented.

2. Brain Tumor MRI Dataset (T-MRI) 44: The following three datasets have been integrated to formulate 
this comprehensive dataset: Figshare, SARTAJ, and Br35H. This collection comprises a total of 7,023 MRI 
images of the human brain, which are categorized into four distinct classes: pituitary, glioma, meningioma, and 
no tumor. The images classified under the ‘no tumor’ category were sourced from the Br35H dataset.

3. Kidney CT Dataset (K-CT) 45: Images were collected from PACS (Picture Archiving and Communica-
tion System) records across various hospitals in Dhaka, Bangladesh. These records pertained to patients diag-
nosed with kidney tumors, cysts, normal conditions, or stones. Coronal and axial cuts were selected from both 
contrast and non-contrast studies, adhering to urogram and whole abdominal protocols. The resulting dataset 
comprises 12,446 unique data units.

Code availability
The code and mathematical algorithms supporting this study have been archived in Zenodo and can be ac-
cessed at https://doi.org/10.5281/zenodo.16890263.
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