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This research examines the scattering of elastic waves and the phenomenon of dynamic stress 
concentration in piezoelectric smart building materials and structures containing holes of arbitrary 
shapes. It is grounded in the principles of elastic dynamics theory. The analysis leverages Liu’s complex 
variable function and conformal mapping methods to scrutinize the dynamic stress distribution in 
proximity to a solitary elliptical hole and a pair of circular holes. The study delves into the influence 
of various factors, including the incident wave number, elliptical eccentricity, and hole spacing, 
on the dynamic stress concentration factor. The findings reveal that, although the dynamic stress 
concentration factor exhibits predictable patterns as the wave number fluctuates, it remains highly 
susceptible to changes in these parameters, demonstrating symmetrical yet irregular variations. This 
research is crucial for addressing the challenges posed by holes and defects in piezoelectric materials 
during engineering design and service.
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Since the 1970s and 1980s, with the emergence of smart materials research, people began to consider using the 
properties of piezoelectric materials1 to provide self-sensing or self-regulation for buildings, such as piezoelectric 
ceramics (e.g. PZT, lead zirconate titanate) and piezoelectric composites have gradually been introduced 
into structural health monitoring2. Compared with traditional building materials cement; sand3–12; concrete, 
piezoelectric smart building materials 13–21 can reduce carbon emissions both in the manufacturing and use 
process, use natural energy, such as vibration, wind power for power generation, it can also monitor the state of 
the building in real time, improve safety and service life, in terms of economic benefits of lower costs, and extend 
the service life of building materials.

However, piezoelectric materials inevitably have holes in them during the manufacturing process, and 
sometimes holes are created in the material to meet certain process requirements. These structural defects 
or man-made holes can cause geometrical discontinuities in the flat structure, and stress concentration near 
the defects or holes, Whereas the concept of stress concentration near defects or holes was first introduced by 
Peterson 22, can greatly reduce the load-bearing capacity of piezoelectric material structures as well as reduce the 
service life of the structures. Therefore, the study of piezoelectric material structures as well as reduce the service 
life of the structures. Therefore, the study of static and dynamic stress concentration in piezoelectric materials 
with defects or holes is of great value for engineering applications.

During the study, Yang23 et al derived linear equations to ascertain the undetermined parameters by 
employing the method of surface tension analysis, producing approximate values for the parameters with a 
limited series expansion. Wu24 et al. developed a bio-inspired bistable piezoelectric structure for low-frequency 
energy harvesting. The design improves energy conversion efficiency and reduces stress concentration, verified 
through modeling, simulations, and experiments, highlighting its potential for vibration-based energy systems. 
Wang25 et al. investigated the interaction of SH waves with non-circular hole piezoelectric materials using the 
complex function approach and found that the shape of non-circular holes has a significant effect on stress 
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concentration, and that a deviation from the circular shape increases the dynamic stress concentration factor. 
Li26 et al. combined the elastic wave theory with the complex function of variations to analyse the wave 
scattering and interference effects in double-hole piezoelectric materials and found that the hole spacing affects 
the wave field distribution, and the double holes trigger higher dynamic stress concentration and change the 
electro-elastic coupling behaviour. Qi27 and colleagues conducted a dynamic analysis of piezoelectric materials 
containing an elliptical hole subjected to shear horizontal waves. Using analytical and numerical methods, they 
derived solutions for stress and electric displacement fields around the hole. Their study revealed the influence 
of wave frequency, hole geometry, and material properties on the dynamic response, providing insights into 
the design of piezoelectric devices under dynamic loading conditions. An28 and co-authors investigated the 
dynamic performance of piezoelectric bi-materials with an interfacial crack near an eccentric elliptical hole 
under anti-plane shear loading. By applying complex function theory and numerical techniques, they obtained 
solutions describing the stress intensity factors and electric displacement fields. Their findings demonstrated 
how the relative positions of the crack and hole, as well as material properties, affect the mechanical and 
electrical behavior of the bi-material system, offering guidance for the reliability analysis of piezoelectric 
composites. Wang29 et al. analysed the influence of the detail structure on the electromechanical response of 
the energy harvesting device by establishing a finite element model and found suitable structural parameters 
to avoid edge stress concentration. Qi30 employed complex variable methods and Fourier series expansion to 
analyze the dynamic stress distribution in an infinite piezoelectric material strip containing a circular cavity. 
By applying boundary conditions specific to piezoelectric materials, they derived analytical solutions for the 
coupled mechanical and electrical fields around the cavity. Numerical simulations were used to validate the 
theoretical models and visualize the effects of different parameters. Their results showed that the dynamic stress 
distribution is significantly influenced by the cavity’s presence, with pronounced stress concentrations under 
specific frequency conditions. Li31 investigated the interaction between a screw dislocation and an elliptical 
hole with two asymmetrical cracks in a one-dimensional hexagonal quasicrystal with piezoelectric effects. They 
utilized the complex potential function method and conformal mapping techniques to derive analytical solutions 
for the stress and electric fields in this complex system. Their findings demonstrated the intricate coupling 
between mechanical and electrical fields, influenced by the geometry of the hole, cracks, and the dislocation 
position. Zhou32 et al. analyzed the static/dynamic response of imperfectly bonded orthotropic piezoelectric 
laminates in cylindrical bending using a semi-analytical SS-DQM approach with a spring-layer interface 
model. They quantified the effects of interfacial imperfections, boundary conditions, and lay-up schemes on 
electromechanical behavior, validating the method’s accuracy for complex laminates. Zhou33 et al. utilized the 
reverberation-ray matrix method (MRRM) to analyze laminated piezoelectric cylindrical shells. Their work 
established a rigorous framework based on Donnell shell theory and first-order differential equations. Crucially, 
MRRM inherently ensured numerical stability (even with repeated eigenvalues), enabling robust high-frequency 
vibration modeling and transient wave propagation analysis under impact loading. Zhou34 et al derived dual and 
coupling relations by employing the reverberation-ray matrix method, establishing a mathematically rigorous 
framework through first-order differential equation analysis and addressing repeated eigenvalue cases to ensure 
numerical stability in high-frequency vibration modeling of piezoelectric laminates.

This paper delves into the study of elastic wave scattering and dynamic stress concentration in piezoelectric 
materials and structures containing arbitrary holes, utilizing Liu’s complex function approach and conformal 
mapping method. It presents analytical solutions to the pertinent problems. This paper presents numerical 
results of dynamic stress distribution around perforations for a single elliptic and two circular perforations.

Results
This paper examines the elastic scattering and stress concentration in piezoelectric intelligent building materials 
and structures based on elastic mechanics theory, utilizing the complex variable function of Liu and the 
conformal mapping method. The findings are as follows

	(1)	 When m is constant, the dynamic stress concentration coefficient’s image exhibits irregular but symmetrical 
changes. The extreme value of this coefficient varies with the continuous increase of the wave number ka.

	(2)	 The maximum dynamic stress concentration coefficient also varies with ka in a specific pattern under 
different parameters λ, provided that m remains constant. The coefficient reaches its maximum value at 
ka = 0.2 < 0.5. Generally, as ka increases, the dynamic stress concentration coefficient tends to decrease 
and fluctuate.

	(3)	 Relative to m = 1/9, the variation of the dynamic stress concentration factor is more drastic and irregular at 
m = 1/6. Not only that, the dynamic stress concentration factor is larger and the dynamic stress concentra-
tion is more pronounced.

:

Basic theory of piezoelectric smart building materials

	1.	 Piezoelectric effect

 
The piezoelectric effect was first discovered by brothers Pierre and Jacques Curie in 1880. They discovered that 

certain crystalline materials polarise when subjected to a mechanical force, producing a voltage, a phenomenon 
known as the positive piezoelectric effect. Conversely, when an electric field is applied to these materials, they 
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elongate or shorten depending on the polarity of the field, a phenomenon known as the inverse piezoelectric 
effect. Together, these two effects constitute electro-mechanical coupling.

	2.	 Basic characterisation of the piezoelectric effect

The piezoelectric effect consists of the positive and the inverse piezoelectric effect, which together constitute 
the fundamental properties of piezoelectric materials. The positive piezoelectric effect describes the fact that 
when a crystalline material with an asymmetric centre is subjected to a mechanical stress, it produces an 
electrodeposition within the material and generates an equal number of bound charges of opposite sign on its 
two opposite surfaces. The generation of this charge is proportional to the magnitude of the external force and 
the material returns to an uncharged state when the external force is removed. The positive piezoelectric effect 
has a wide range of applications in sensor technology, e.g. for detecting changes in pressure, acceleration and 
force and converting these mechanical quantities into electrical signals.

The inverse piezoelectric effect, on the other hand, refers to the fact that when an electric field is applied in the 
direction of polarisation of a dielectric, the dielectric undergoes deformation and the amount of deformation is 
proportional to the strength of the external electric field. When the electric field is removed, the deformation of 
the dielectric disappears. The inverse piezoelectric effect has important applications in ultrasound engineering 
and micromotion, such as the manufacture of ultrasound transducers that convert electrical energy into 
mechanical vibration for use in areas such as medical imaging, cleaning and welding.

	3.	 Stress concentration and acoustic propagation properties in dynamic environments

It has already been described that stress concentrations under static loading can lead directly to structural damage, 
but stress concentrations are important for the design of highly sensitive sensors35,36. By introducing a specific 
structural design into a piezoelectric material, it is possible to concentrate stress in certain areas, thus improving 
the sensor’s ability to respond to small changes. For example, by locally gouging or changing the geometry of 
the material, higher stress levels can be generated near the patch site, which in turn increases the sensitivity 
of the sensor. This design approach can be used to detect subtle cracks or fatigue damage in structures, which 
are often accompanied by abnormal concentrations of localised stress. In addition to this, the propagation of 
acoustic37 waves should not be neglected. The propagation of acoustic waves in piezoelectric materials generates 
an electric field due to the piezoelectric effect, which manifests itself as acoustic-electrical signal coupling. This 
coupling effect is the basis for the application of piezoelectric materials in ultrasonic engineering and acoustic 
transducers. The frequency and wavelength of the incident acoustic wave determine the coupling efficiency, due 
to the fact that acoustic waves of different frequencies and wavelengths have different propagation properties 
in the material, which affects the interaction between the acoustic wave and the electric field. In turn, the 
propagation behaviour of acoustic waves is influenced by the elastic constants, dielectric constants and boundary 
conditions of the piezoelectric material. The elastic constant determines how well the material responds to stress, 
while the dielectric constant affects the generation and propagation of the electric field. Boundary conditions, 
such as the geometry of the material and the external environment, also have an effect on the propagation path 
and coupling efficiency of acoustic waves. For example, the propagation characteristics of surface acoustic waves 
(SAWs) are affected by the thickness of the piezoelectric film layer, with different thicknesses leading to different 
phase velocities and dispersion characteristics.

Wave equation and its solution
In piezoelectric materials, the fundamental equation governing the steady-state anti-plane dynamics problem is

	

∂τxz

∂x
+ ∂τyz

∂y
= ρ

∂2w

∂t2

∂Dx

∂x
+ ∂Dy

∂y
= 0

� (1)

where, τxz  and τyz  are the elements of shear stress.Dx and Dy  are the components of electric displacement.ρ is 
the density of the mass. The fundamental relationship governing the behavior of piezoelectric materials can be 
expressed as:

	

τxz = c44
∂w

∂x
+ e15

∂ϕ

∂x
, τyz = c44

∂w

∂y
+ e15

∂ϕ

∂y

Dx = e15
∂w

∂x
− κ11

∂ϕ

∂x
, Dy = e15

∂w

∂y
− κ11

∂ϕ

∂y

� (2)

where,c44 r epresents the elastic modulus of the piezoelectric material.;e15 is the piezoelectric coefficient of 
the piezoelectric materials.κ11 is the permittivity of the piezoelectric material.;ϕ is the electric potential in a 
medium.

Without loss of generality, the steady-state solution of the problem is studied

	 w = w̃e−iωt� (3a)

	 ϕ = ϕ̃e−iωt� (3b)
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where,ω is the circular frequency of the vibration;  is an imaginary unit.
The time factor and the symbols ~ on the generalized displacement function are omitted. Substituting the 

constitutive relation (2) into the governing equation (1), an equation of the following form can be obtained

	 c44∇2w + e15∇2ϕ + ρω2w = 0� (4)

	 e15∇2w − κ11∇2ϕ = 0� (5)

It should be pointed out that the governing Eq. (1) of displacement and potential need to be decoupled here, and 
a new function φ(x, y) is introduced.

	
φ = ϕ − e15

κ11
w� (6)

Then an equation of the following form can be obtained:

	

∇2w + k2w = 0
∇2φ = 0

� (7)

where: k is the wave number,c∗ = c44 + e2
15

κ11
 and k2 = ρω2

c∗ .
The potential can be determined by the following formula:

	
ϕ = e15

κ11
w + φ� (8)

Complex variables ζ = x + iy, ζ = x − iy are introduced into the generalized internal forces of piezoelectric 
materials, which are obtained by substitution and finishing.

There are the following transformation relationships

	

∂

∂x
= ∂

∂ζ
+ ∂

∂ζ

∂

∂y
= i

(
∂

∂ζ
− ∂

∂ζ

)� (9a)

	
∇2 = ∂2

∂x2 + ∂2

∂y2 = 4 ∂2

∂ζ∂ζ
� (9b)

In a rectangular coordinate system, the governing equation (1) can be written in the following form

	

4 ∂2w

∂ζ∂ζ
+ k2w = 0

4 ∂2φ

∂ζ∂ζ
= 0

� (10)

The constitutive relation (2) is

	

τxz = c44

(
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∂ζ
+ ∂w

∂ζ

)
+ e15

(
∂ϕ

∂ζ
+ ∂ϕ

∂ζ

)

τyz = ic44
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∂ζ

)
+ ie15

(
∂ϕ

∂ζ
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∂ζ

)

Dx = e15

(
∂w

∂ζ
+ ∂w

∂ζ

)
− κ11

(
∂ϕ

∂ζ
+ ∂ϕ

∂ζ

)

Dy = ie15

(
∂w

∂ζ
− ∂w

∂ζ

)
− iκ11

(
∂ϕ

∂ζ
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)

	

τxz + iτyz = 2c44
∂w

∂ζ
+ 2e15

∂ϕ

∂ζ

Dx + iDy = 2e15
∂w

∂ζ
− 2κ11

∂ϕ

∂ζ

The outer domain (inner domain) of the non-circular open boundary L on the z plane can be mapped to the 
outer domain (inner domain) of the unit circle (inner domain) of the boundary S on the η plane by conformal 
mapping technique for addressing the issues of curved wave scattering and dynamic stress concentration in a 
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plate containing arbitrary holes. Figure 1 visualises this transformation process,The mapping function can take 
the following form

	 ζ = Ω(η) = cη + ψ(η).

where, ψ(η) is a holomorphic function.

	
τρz = c44

(
∂w

∂ζ
eiλ + ∂w

∂ζ
e−iλ

)
+ e15

(
∂ϕ

∂ζ
eiλ + ∂ϕ

∂ζ
e−iλ

)
� (11a)

	
τθz = c44i

(
∂w

∂ζ
eiλ − ∂w

∂ζ
e−iλ

)
+ e15i

(
∂ϕ

∂ζ
eiλ − ∂ϕ

∂ζ
e−iλ

)
� (11b)

	
Dρ = e15

(
∂w

∂ζ
eiλ + ∂w

∂ζ
e−iλ

)
− κ11

(
∂ϕ

∂ζ
eiλ + ∂ϕ

∂ζ
e−iλ

)
� (11c)

	
Dθ = e15i

(
∂w

∂ζ
eiλ − ∂w

∂ζ
e−iλ

)
− κ11i

(
∂ϕ

∂ζ
eiλ − ∂ϕ

∂ζ
e−iλ

)
� (11d)

Formula,e
iλ = η

ρ
Ω′(η)

|Ω′(η)| .

Incidence and total electroelastic wave field of electric sound wave

	

w(i) = w0

∞∑
n=−∞

inJn (k |Ω (η)|)
{

Ω(η)
|Ω(η)|

}n

ϕ(i) = e15

κ11
w(i)




� (12)

Considering an infinite piezoelectric material with arbitrary holes, where a steady SH electro-acoustic wave is 
incident along the x-axis, the corresponding outgoing plane displacement field can be described as w(i) and in-
plane potential field ϕ(i) can be formulated as the scattering wave field generated by the hole as a scatterer can 
be expressed as

	

w(s) =
∞∑

n=−∞

AnH(1)
n (k |Ω (η)|)

{
Ω(η)

|Ω(η)|

}n

ϕ(s) = e15

κ11
w(s) +

∞∑
n=0

Bnk−n
(
Ω(η)

)−n




� (13)

Then, the combined field within the piezoelectric material containing circular holes can be expressed as

	

w(t) = w(i) + w(s)

ϕ(t) = ϕ(i) + ϕ(s)

}
� (14)

Namely

	
w(t) =

∞∑
n=−∞

[
w0inJn (kr) + AnH(1)

n (k |Ω (η)|)
] {

Ω(η)
|Ω(η)|

}n

� (15)

Fig. 1.  Schematic diagram of arbitrary shape hole protection angle transformation.
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ϕ(t) = e15

κ11

∞∑
n=−∞

[
w0inJn (kr) + AnH(1)

n (k |Ω (η)|)
]

×
{

Ω(η)
|Ω(η)|

}n

+
∞∑

n=0

Bnk−n
(
Ω(η)

)−n

� (16)

Within a circular hole, there is no elastic displacement field present; however, only the electric potential field 
exists ϕc, And since the charge density within the hole is zero, the solution must satisfy the Laplace equation. 
∇2φc = 0. Given that the electric potential within a circular hole cannot be infinite but must be finite, its 
expression can be formulated as follows:

	
ϕc =

∞∑
n=0

Cnkn (Ω(η))n� (17)

The corresponding stress can then be expressed as:
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Dρ = e15
∂w

∂r
− κ11

∂ϕ
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= κ11
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n=0

Bnnk−n η

ρ

Ω′ (η)
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Dc
ρ = −κ0ϕc = −κ0
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n=0

Cnnkn η

ρ

Ω′ (η)
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� (19)

where, λ = e2
15

c44κ11
 represents the dimensionless piezoelectric constant, while κ0 denotes the dielectric constant 

in vacuum.

Boundary conditions and mode coefficients are considered in the context of arbitrary-shaped 
holes
A piezoelectric medium containing a single, arbitrary-shaped hole is investigated.. On the η plane, Assuming the 
open hole represents a free boundary condition, three boundary conditions can be specified

	

τρz |ρ=a = 0
Dρ |ρ=a = Dc

r |ρ=a

ϕ |ρ=a = ϕc


� (20)

Equation  (15) and Eq.  (16) are substituted into Eq.  (20) of the open boundary condition, and based on the 
orthogonality of the function system, the mode coefficient to be found can be obtained An, Bn, Cn.
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An = −w0εnin
k (1 + λ) Pn − 2λ κ0
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η
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� (21)

Among them εn =
{

1, n = 0
2, n ̸= 0

	

Pn = η

ρ
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ρ
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}2

Dynamic stress concentration coefficient
The dynamic stress concentration is characterized by the opening hole, where the dynamic stress concentration 
coefficient is defined as the ratio of the annular dynamic stress surrounding the hole to the amplitude of the 
incident wave’s annular stress in the direction of incidence.
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Validation of results
In this section, the obtained results will be compared with the research results of elliptical holes in elastic media. 
Table 1 provides a detailed comparison of the dynamic stress concentration factors (DSCF) under different wave 
numbers, hole shapes, and surface effects. The comparison results indicate that the relative error in the dynamic 
stress concentration factors of the two is less than 5% at different wavenumbers, confirming the accuracy of 
calculation method.

Numerical examples
Given a steady-state wave w(i) incident along the x-axis, the mapping function for a circular hole with radius a 
can be

	 Ω = aη� (23)

For a piezoelectric material containing an elliptical hole with long and short semi-axes a and b, the mapping 
function is

ka In this article(DSCF) Reference38 Error(%)

0.5 1.23 1.20 2.5

1.0 1.50 1.47 2.04

2.0 1.87 1.80 3.89

Table 1.  Dynamic Stress Concentration Factor (DSCF) at Different Wavenumbers.
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ζ = Ω(η) = r0

(
η + m

η

)
� (24)

where,r0 = (a + b)/2, m = (a − b) / (a + b).
Based on the formula of elastic wave scattering and dynamic stress concentration in piezoelectric materials 

with a single arbitrary hole, the corresponding calculation program is formulated with the elliptic hole as an 
example. The Poisson ratio is ν = 0.3 and the dimensionless wave number is ka = 0.1 ∼ 5.0 with n = 15.

Figure 2 describes the distribution of dynamic stress concentration coefficients of different wave numbers 
and parameters λ along the edge of the elliptical hole (a/b = 5/4), respectively. Figure 3 shows the curve of the 
dynamic stress concentration coefficient of the elliptic hole (a/b = 5/4) with the dimensionless wave number 
ka obtained by analysis and calculation.

Figure 4 describes the distribution of dynamic stress concentration coefficients of different wave numbers 
and parameters λ along the edge of the elliptical hole (a/b = 7/5),  respectively. Figure 5 shows the curve of 
dynamic stress concentration coefficient with dimensionless wavenumber ka for the elliptical hole (a/b = 7/5) 
obtained by analysis and calculation.

Fig.3.  Changes of maximum dynamic stress concentration coefficient with wave number ka under different 
parameters λ (m = 1/9).

 

Fig. 2.  Distribution of dynamic stress concentration coefficients of different wave numbers and parameters λ 
along the edge of the elliptical hole: (a) ka = 0.1, m = 1/9; (b) ka = 1.0, m = 1/9; (c) ka = 2.0, m = 1/9; (d) ka = 5.0, 
m = 1/9.
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