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Utilizing partial information
decomposition to evaluate the
complex interplay between
microRNA and RNA-binding
protein in regulating the shared
target mRNA

Tianwu Zhang?, Yanlin Chen!, Wenrong Wang? & Chu Pan3**

MicroRNAs (miRNAs) bind to the 3’ untranslated region of mRNA transcripts, exerting inhibitory
activity over gene expression. RNA-binding proteins (RBPs) involved in post-transcriptional regulation
also play a pivotal role in modulating mRNA, exhibiting similar binding and regulatory effects to mRNA
as miRNAs. This convergence raises the intriguing possibility of coordinated or competitive regulation
between miRNAs and RBPs when targeting the common mRNA. However, accurately quantifying

the complex regulatory relationship between miRNAs and RBPs remains a challenge. To address

this challenge, we here propose a novel multivariate information-based approach to quantitatively
capture the nonlinear regulatory relationships between miRNAs and RBPs in the context of shared
mRNA targets. Our method integrates the sequence information with gene expression data, unveiling
a comprehensive perspective on such an intricate regulatory network. Our findings reveal a prevalent
synergistic relationship between miRNAs and RBPs, surpassing instances of competitive relationship.
This innovative approach enhances our understanding of the complex interplay between miRNAs and
RBPs, shedding light on the cooperative mechanisms that drive post-transcriptional regulation.

Keywords microRNAs, RNA-binding proteins, Cooperative and competitive regulatory relationship, Partial
information decomposition

Abbreviations

miRNA  MicroRNA

RBP RNA-binding protein

mRNA Messenger RNA

PID Partial information decomposition
UTR Untranslated region

RPM Reads per million

FPKM Fragments per kilobase of transcript per million mapped reads
BRCA Breast invasive carcinoma

PRAD Prostate adenocarcinoma

LIHC Liver hepatocellular carcinoma

TCGA The cancer genome atlas
ucsC University of California, Santa Cruz

MicroRNA (miRNA), a short non-coding RNA molecule, plays a crucial role in orchestrating post-
transcriptional regulation of mRNA!2. MiRNAs align with the 3’ untranslated region (3’ UTR) of the target
mRNA by sequence complementarity principle®. Once interacted, miRNAs impede the translation of the target
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mRNA and subsequently reduce its protein synthesis. This selective regulatory mechanism is instrumental in
maintaining the equilibrium of intracellular gene expression. RNA-binding protein (RBP) is a type of protein
that engages in interactions with RNA molecules*~’. Specifically, these proteins exhibit the capability to bind to
the 3" UTR of mRNA transcripts®® and either enhance® or inhibit!? the expression of target genes. RBPs also
serve as key regulators of gene expression at the post-transcriptional level. Mounting evidence indicated that
miRNAs and RBPs, as key post-transcriptional regulators, play critical roles in cancer biology*!!. Dysregulation
of their interactions is closely associated with tumor cell proliferation, invasion, and metastasis'?1%. Therefore,
elucidating the mechanisms underlying miRNA-RBP-mRNA interactions is essential for advancing our
understanding of post-transcriptional regulation in cancer.

This convergence of miRNAs and RBPs in post-transcriptional regulation suggests a fascinating potential
for their interaction. Recent findings indicated that miRNAs and RBPs typically work together via binding to
sequences or structures on shared mRNA targets. Specifically, this interaction results in a dynamic interplay
of cooperation and competition between miRNAs and RBPs in mRNA binding'®, influencing key post-
transcriptional processes such as mRNA stability, localization and translation. For example, previous studies have
demonstrated that the regulatory effects of ELAVL1, a prominent mammalian RBP, on its target transcripts often
depend on its interaction with miRNAs that bind to the same mRNAs. As shown by Seo et al.!® and Goswami et
al.'7, ELAVLI can either cooperate with or compete against miRNAs. Cooperative interactions between ELAVL1
and miRNAs typically lead to reduced expression of shared target genes'®. In contrast, competitive interactions
generally result in increased gene expression when ELAVLI binding predominates, or decreased expression
when miRNA binding is dominant®.

Nonetheless, the task of accurately mapping out these complex regulatory connections between miRNAs
and RBPs poses a significant computational hurdle. Currently developed computational methods fall into two
main groups. Firstly, sequence-based methods depend on sequence complementarity and conservation such as
miRbiom?’ and doRiNA?! often leading to many false positives due to their lack of consideration for cellular
context. For instance, doRiNA integrated RBP and miRNA binding sites by including only RBP high-throughput
detection-derived RBP datasets and a set of predictions for miRNA. It utilizes the UCSC database genome viewer
annotated with binding sites, providing a variety of possibilities. Secondly, network-based approaches involve
the construction of regulatory networks that include miRNAs, RBPs and mRNAs to study their interactions. For
instance, a tool known as SimiRa?? was used to assess the Go term pathway enrichment in target sets involving
miRNA and RBP to predict the correlations between them. Although this approach can provide a snapshot
of potential interactions, it struggles to fully capture the dynamic nature of these interactions under different
biological conditions. The limitations of these current methods highlight the continuous need for ongoing
development and integration of computational approaches to more accurately model and understand these
intricate regulatory networks.

In this paper, we utilize the partial information decomposition (PID), a multivariate information measure,
to quantify the nonlinear contribution of both miRNA and RBP as they converge on a shared target mRNA.
Our method integrates sequence and expression data?*?* to deliver a comprehensive understanding of the
mechanisms governing these interactions, particularly in the context of multiple cancer types.

Methods

Data collection and preprocessing

For sequence data, we referred to the TargetScan database?® (http://www.targetscan.org/) to determine the
binding sites between miRNA and the 3" UTR of target mRNA. In total, we obtained 203,789 interactions
between 321 miRNAs and 11,646 mRNAs (see Supplementary Material 1).We chose to employ TargetScan
because it is regularly updated, actively maintained, and supported by prior studies, ensuring both accuracy and
relevance?®, For RBP binding sites, we utilized the dataset provided by Liu et al.?’, derived from the POSTAR2
database?® (http://lulab.life.tsinghua.edu.cn/postar/) resulting in 3,016,002 binding sites between 171 RBPs and
14,499 mRNAs (see Supplementary Material 2). Besides, we utilized the LiftOver tool (https://genome.ucsc.edu
/cgi-bin/hgLiftOver) to map the coordinates of miRNA and RBP binding sites from hg19 to hg38 to ensure the
comparability of sites.

For expression profile data, we downloaded RNA-seq datasets for three cancer types from the TCGA
data reposi-tory? (https://cancergenome.nih.gov/), including breast invasive carcinoma (BRCA), prostate
adenocarcinoma (PRAD)! and liver hepatocellular carcinoma (LIHC)!. Specifically, for miRNA expression
profiles, we selected reads per million (RPM) values corresponding to mature miRNAs. For mRNA expression
profiles, we extracted fragments per kilobase of transcript per million mapped reads (FPKM) values
corresponding to mRNA transcripts. Regarding RBP expression profiles, we used the corresponding mRNA
transcript expression profiles as substitutes, as TCGA does not provide protein expression data for RBPs. We
further filtered molecules (i.e., miRNA, mRNA and RBP) with missing values that do not exceed 50% of the
sample size and imputed these missing values with 0. Additionally, we applied a log2 transformation to the
expression profile data.

Classification of interaction between miRNA and RBP

As illustrated in Fig. 1A, we categorize the interaction patterns between miRNA and RBP into three distinct
types based on their binding sites on the target mRNA. The first category is adjacent that describes instances
where miRNA and RBP bind to contiguous but non-overlapping sites on the same target mRNA, suggesting a
spatial closeness that might influence the mRNAT fate through synergistic interactions. The second category is
overlapping that occurs when miRNA and RBP share common sequences on the mRNA, potentially leading
to direct competition for binding sites and thus affecting the mRNA’s stability or its translational efficiency via
antagonistic interactions. The third and most complex category is hybrid that encompasses scenarios where
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Fig. 1. Overview of sequence-level interactions between miRNA and RBP when targeting the common
mRNA. (A) A schematic diagram illustrates three types of miRNA-mRNA-RBP triplets at binding sites. (B)
The percentage of three interaction types. (C) Different numbers of binding sites were observed in cases of
adjacent, overlapping and hybrid.

miRNA and RBP binding sites exhibit characteristics of both adjacent and overlapping, indicating a highly
nuanced regulatory interaction that could significantly impact mRNA processing and function.

Using PID to evaluate the intricate relationship between miRNA and RBP

PID, a multivariate information measurement introduced by Williams and Beer in 20107, is used to decompose
the total information that a set of source variables provides about a target variable into multiple distinct
components. PID offers a granular perspective on how information flows from sources to the target, enabling
researchers to capture complex and nonlinear relationships among multiple variables.

In our case, relationships between miRNA and RBP are inherently complex, with multiple components
interacting in a non-linear way. PID allows for the dissection of these interactions, helping to determine how
miRNA and RBP individually and collectively contribute to a shared target mRNA. Let X, Y, and Z be the
two source variables miRNA and RBP, and the target variable mRNA, respectively. For each triplet of miRNA-
mRNA-RBP, PID decomposes the information provided by the source variable set (i.e., miRNA and RBP) about
a given target variable (i.e., mRNA) into four components: cooperative information, two unique information
components, and redundant information3*34. The formula is as follows:

PID(Z; X,Y) = synergy(Z; X,Y) + uniqueX (Z;Y) + uniqueY (Z; X) + redundancy(Z; X,Y)

where synergy(Z; X,Y) denotes the additional information about the mRNA that is provided jointly by the miRNA
and the RBP. unique,, (Z;Y) and unique,, (Z; X) represent the information uniquely contributed by the miRNA
and the RBP, respectively, regarding the mRNA. redundancy(Z; X,Y) refers to the overlapping information about
the mRNA that is provided by either the miRNA or the RBP. As both unique, (Z;Y) and unique, (Z; X) are
typically low compared to synergy and redundancy, we utilized the difference between synergy and redundancy
to quantitatively capture the nature of regulatory interaction between miRNA and RBP when targeting the same
mRNA. A positive score indicates that synergistic regulation predominates, indicating cooperation between
the miRNA and RBP. Conversely, a negative score indicates that redundant regulation dominates, suggesting a
competitive interaction.

Here this formula delineates the information roles of miRNA and RBP in their joint and separate influences
on mRNA, clarifying the synergy as the information arising from the collaboration of miRNA and RBP, and
redundancy as the overlap in their informational contribution to mRNA. The unique information points to
the exclusive contribution each source variable makes towards understanding mRNA. Therefore, the output of
PID offers a quantitative score to assess the contribution of miRNA and RBP towards explaining the behavior
of mRNA.

Results

Three interaction types between miRNA and RBP at the sequence level

In our study, we divided miRNA-mRNA-RBP triplets into three categories according to the specific binding
locations of miRNA and RBP on the target mRNA (see Supplementary Material 3). Our analysis unveiled an
interesting distribution of interaction types. The vast majority, numbering 4,993,023 miRNA-mRNA-RBP
triplets which were 90.56% of the total, exhibited adjacent binding sites. The smaller group, consisting of
505,659 miRNA-mRNA-RBP triplets (9.17%), showed hybrid interactions of both adjacent and overlapping
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characteristics. The smallest portion of 15,001 miRNA-mRNA-RBP triplets (0.27%) demonstrated overlapping
binding sites(Fig. 1B).

In the adjacent interaction category, we identified 956,979 interaction units, each involving a pair of binding
sites on the same target mRNA. Additionally, a larger subset comprising 4,036,044 interaction units was
identified, where two or more independent binding site pairs are involved, indicating that the same miRNA-RBP
pair affects multiple distinct regions of the 3 UTR of the same mRNA.In the overlapping interaction category,
13,839 interaction units were found to share a single overlapping binding site, while a smaller subset of 1162
interaction units contained two or more overlapping binding sites. This suggests that the same miRNA-RBP
pair can exert regulatory effects in multiple overlapping regions within the 3’ UTR of a single mRNA. The
hybrid interaction category combines the features of both adjacent and overlapping interactions. In this category,
we identified 18,021 interaction units, each containing one overlapping binding site and one adjacent binding
site, both mediated by the same miRNA-RBP pair on the same target mRNA. Furthermore, a smaller group
of 487,638 interaction units was identified, each containing two or more such binding site pairs(Fig. 1C). This
suggests that the same miRNA-RBP pair can participate in multiple adjacent and overlapping binding events
on the same mRNA. It is important to note that, unless otherwise specified, all “binding sites” mentioned above
refer to the sites of action of the same miRNA-RBP pair on the same target mRNA.

Diverse regulatory patterns between miRNA and RBP at the expression level

To deepen our understanding of the regulatory mechanisms governing miRNA-mRNA-RBP triplets, our study
further analyzed the expression dynamics of these entities. To this end, we systematically apply PID to each
miRNA-mRNA-RBP triplet. This analysis encompassed three different cancer types, allowing us to explore
the potential universality as well as specificity in regulatory interactions across different cancer contexts. As
illustrated in Fig. 2, we observed that in three cancer types, the overall median values of synergy and redundancy
are far exceed the corresponding median value of unique values. This observation indicated that the contribution
of miRNAs and RBPs co-regulating target mRNAs is greater than their individual regulation of target genes.
Therefore, we used “synergy-redundancy” score to evaluate the contribution of miRNA and RBP towards the
shared target mRNA. A positive “synergy-redundancy” score suggests synergy between miRNA and RBP, while
a negative score implies potential competition.

As shown in Fig. 2B, most miRNA-mRNA-RBP triplets showed positive “synergy-redundancy” scores across
three cancer types. In the BRCA dataset, we identified 3,586,295 miRNA-mRNA-RBP triplets with positive
scores, while 79 miRNA-mRNA-RBP triplets showed negative scores (see Supplementary Material 4). In the
LIHC dataset, 3,629,231 miRNA-mRNA-RBP triplets displayed positive scores, while 501 miRNA-mRNA-
RBP triplets showed negative scores (see Supplementary Material 5). The PRAD dataset contained 3,651,711
miRNA-mRNA-RBP triplets with positive scores and 94 miRNA-mRNA-RBP triplets with negative scores (see
Supplementary Material 6). Notably, 3,515,081 miRNA-mRNA-RBP triplets with positive scores were common
between BRCA and LIHC, 3,544,931 between BRCA and PRAD, and 3,543,221 miRNA-mRNA-RBP triplets
between LIHC and PRAD. There is no overlap in the miRNA-mRNA-RBP triplets with negative "synergy-
redundancy" scores between any two cancer types. Upon examining the binding patterns at the sequence level,
we found that, in the BRCA dataset, among the miRNA-mRNA-RBP triplets classified as the positive "synergy-
redundancy" case, there were 2,944,167 pairs of miRNAs and RBPs that have multiple adjacent binding sites on
their commonly targeted mRNAs. Similarly, there were 2,981,220 such miRNA-mRNA-RBP triplets in LIHC,
and 2,992,459 miRNA-mRNA-RBP triplets in PRAD.

Among miRNA-mRNA-RBP triplets with positive synergy-redundancy scores, we further filtered the
triplets in three cancer types using two criteria. First, the binding sites of miRNA and RBP on the target mRNA
must not overlap. Second, the Pearson correlation coefficient between miRNA and RBP must exceed 0.3, while
the coefficients between miRNA and mRNA, as well as RBP and mRNA, must be less than — 0.3. As shown in
Fig. 3A, most miRNA-mRNA-RBP triplets were cancer type-specific, with only a small number of overlaps
across the three cancer types. Notably, three miRNA-mRNA-RBP triplets were shared among all three cancer
types. We visualized the top 50 miRNA-mRNA-RBP triplets ranked by decreasing synergy-redundancy’ scores
using Cytoscape software (version 3.7.2, https://cytoscape.org) (Fig. 3B). Interestingly, ELAVLI emerged as one
of the most common RBPs in the miRNA-mRNA-RBP triplet network. Consequently, we further examined the
information variables and corresponding correlations for two miRNA-mRNA-RBP triplets shared across all
three cancer types.

As illustrated in Fig. 4A, the miRNA-mRNA-RBP triplet of hsa-miR-19a-3p-RHOB-ELAVLI presented
particularly high positive “synergy-redundancy” scores across all three cancer types. At the sequence level, we
found that hsa-miR-19a-3p and ELAVLI have 59 adjacent binding sites and 3 overlapping binding sites on their
shared target mRNA RHOB. Additionally, the Pearson correlation coefficient indicated a positive correlation
between hsa-miR-19a-3p and ELAVLI. In contrast, both hsa-miR-19a-3p and ELAVLI were negatively correlated
with the target mRNA RHOB. This suggested that hsa-miR-19a-3p and ELAVL1 may work cooperatively to
regulate RHOB. Similarly, as shown in Fig. 4B, the miRNA-mRNA-RBP triplet of hsa-miR-93-5p-CALD1-
NOP58 also exhibited positive "synergy-redundancy” scores across three cancer types. At the sequence level,
hsa-miR-93-5p and NOP58 have one adjacent binding site on their shared target mRNA CALD1. The hsa-miR-
93-5p and NOP58 exhibit a positive Pearson correlation coefficient and both show negative correlations with
their target mRNA CALDI.

These findings suggested that miRNAs and RBPs typically exhibit synergistic regulatory effects, collaboratively
inhibiting the expression of target mRNA. Consequently, the magnitude of the synergy-redundancy score serves
as a determinant for identifying the dominant force in the dynamic between synergy and redundancy.
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Fig. 2. Analysis of information dynamics in miRNA-mRNA-RBP triplets across three different cancer types.
(A) Box plots depict the distribution of information variables for BRCA, LIHC and PRAD (B) Density plots
display the distribution of “synergy-redundancy” scores in BRCA, LIHC and PRAD.

Discussion and conclusion

In this paper, we presented an innovative information-based computational approach designed to evaluate
complex interactions between miRNAs and RBPs when they concurrently target a shared mRNA. These
interactions are important for understanding how gene expression is regulated at post-transcriptional level. We
first checked the sequence data of miRNA and RBP binding to common target mRNA. We observed a wide array
of adjacencies and overlaps between miRNA and RBP, indicating potential synergistic or competitive interactions
between these two regulators. We then applied the PID algorithm to gene expression data corresponding to
miRNA-mRNA-RBP to assess regulatory patterns of each miRNA-mRNA-RBP triplet.

We found that miRNAs and RBPs typically demonstrate synergistic regulatory effects, working together to
inhibit the expression of target mRNA. This finding is in agreement with several prior functional studies*~%,
which similarly emphasize the biological significance of the miRNAs-RBPs synergistic regulatory mechanism
identified in our research. The reason could be attributed to two aspects. Firstly, even in cases where a pair of
miRNAs and RBPs bind to the same mRNA with a conflicting binding site, alternative non-overlapping sites on
the mRNA transcript provide additional binding options for two regulators. Analysis of binding sites showed
that 9.17% of miRNA-mRNA-RBP triplets possess both neighbor sites and overlapping sites on binding the
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same mRNA transcript. Secondly, while a small percentage of the miRNA-mRNA-RBP triplets show negative
"synergy-redundancy" scores in three cancer types, the low Pearson correlation coefficient between miRNA and
RBP, with an average value of 0.2, indicates a lack of substantial functional similarity, preventing the formation
of a competitive regulatory pattern. This divergence in functional similarity explains the limited redundancy
information shared by miRNAs and RBPs concerning the common target mRNA. These findings emphasize
the critical role of targeting miRNAs-RBPs regulatory nodes in the post-transcriptional regulation of mRNAs,
offering a new perspective on the mechanisms underlying gene expression imbalance in cancer initiation and
progression. In-depth analysis of cancer-related data revealed that the synergistic interaction between specific
miRNAs and RBPs results in the suppression of shared target gene expression during cancer development. This
suppression likely contributes to the malignant transformation of cells and the overexpression of abnormal
proteins, which in turn promotes hallmark cancer traits such as sustained cell proliferation and enhanced
invasiveness. This synergistic effect may act as a catalyst in cancer progression, accelerating tumor growth.
Therefore, targeting this regulatory network, particularly by knocking out key factors within miRNAs or RBPs to
disrupt their cooperative mechanism, could be effective in suppressing the malignant phenotype of cancer cells
and inhibiting tumor progression and metastasis. A thorough understanding of the intricate interactions among
miRNAs, RBPs, and mRNAs will not only provide insights into the molecular basis of the synergistic regulation
in cancer, but also lay a strong theoretical foundation for the development of combined blockade strategies.

In conclusion, we introduced a novel computational approach that is dedicated to investigating the intricate
interplay between miRNAs and RBPs when they jointly target the common mRNA. Our findings illustrated a
pervasive coordinated molecular mechanism in gene regulation where miRNAs and RBPs collaborate to regulate
mRNA expression, thereby shedding light on the multifaceted nature of RNA-level gene regulation. In this study,
a nonlinear computational model was employed to predict and preliminarily uncover the synergistic regulatory
patterns between miRNAs and RBPs. However, the predicted results may include false positives, which require
further experimental validation. This research lays the groundwork for experimental investigations into cancer-
specific mechanisms. Future targeted experimental validations across various malignant tumors can identify
key intervention targets, further elucidate their functional mechanisms, and provide novel directions for the
development of targeted therapeutic strategies. This research significantly contributes to our understanding of
the intricate regulatory networks governing gene expression, highlighting the collaborative efforts of miRNAs
and RBPs.

Scientific Reports|  (2025) 15:32977 | https://doi.org/10.1038/s41598-025-17031-z nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

BRCA

UniqueX

LIHC

UniqueX

PRAD

UniqueX

BRCA

UniqueX

LIHC

UniqueX

PRAD

UniqueX

Fig. 4. Information variables and correlation analysis for miRNA-mRNA-RBP triplets in three cancer types.

Synergy
15

1
of

UniqueY

Synergy
i
f
9

UniqueY

Synergy
15

UniqueY

Synergy
15

UniqueY

Synergy
15
12
o

UniqueY

Synergy
15
12

o

UniqueY

Redundancy

Redundancy

Redundancy

Redundancy

Redundancy

Redundancy

R=0.3977,p <2.2e-16

(hsa-miR-19a-3p-RHOB-ELAVL1)

R=-0.2142,p=9.91e-14

R=-0.4465,p <2.2e-16

10 10
8 8
@ @
[} [}
I I
3 3
61. 6
25 . 4 4 BETIN
0.0 25 5.0 75 25 30 35 40 45 50 0.0 25 5.0 75
hsa-miR-19a-3p ELAVL1 hsa-miR-19a-3p
R =0.2497, p = 2.397-07 1o R=03464,p=3.387e-13 10.R=702489,p =2,637e-07
4
8 8
) @ o
z [ 2
o 3. 4 3
6 6
2 . .
4 4
25 5.0 75 10.0 2 3 4 25 5.0 75 10.0
hsa-miR-19a-3p ELAVL1 hsa-miR-19a-3p
R =0.0426, p = 0.3205 R=-0.2324, p = 3.967e-08 R=-0.32,p=1.828e-14
4.5 . . -
9 -, 9
8 8
] @ @
o o
z 7 7
o 4 4
6 6
5 5
3.0 N -
2 4 6 3.0 3.5 4.0 4.5 2 4 6

NOP58
o @

IS

hsa-miR-19a-3p ELAVL1

(hsa-miR-93-5p-CALD1-NOP58)

R=0.4446,p<2.2e-16
7

R=-0.1345,p = 3.451e-06

hsa-miR-19a-3p

R=-0.1965, p = 9.522e-12

R=0.5188,p<22e-16

R -0.1173,p=0.01653

6
Q 4
3]
2
10 12 14 3 4 5 6 7 10 12 14
hsa-miR-93-5p NOP58 hsa-miR-93-5p

R=-0.1264, p = 0.009767

10

R=0.5747,p<2.2e-16

12 14 16 1 2 3

4
hsa-miR-93-5p NOP58

R=-0.5044, p <2.2e-16

5

10 12 4 16
hsa-miR-93-5p

R=-0.59,p<22e-16

8
96
<
)
4
.
10 12 14 3 4 10 12 14
hsa-miR-93-5p NOP58 hsa-miR-93-5p

(A) Radar plots and scatter plots represent the information variables and correlation coefficients for the

miRNA-mRNA-RBP triplet hsa-miR-19a-3p-RHOB-ELAVLI across BRAC, LIHC and PRAD. (B) Radar plots
and scatter plots represent the information variables and correlation coefficients for the miRNA-mRNA-RBP

triplet hsa-miR-93-5p-CALD1-NOP58.

Scientific Reports|  (2025) 15:32977

| https://doi.org/10.1038/s41598-025-17031-z

nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

Da

ta availability

The RNA-seq datasets for three cancer types are publicly available from the TCGA data repository at https://can
cergenome.nih.gov/. Additional datasets supporting the conclusions of this article are included within the article
and its supplementary information files.

Co
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The PID was implemented in our previously developed R package, Informeasure. The source code supporting

the

conclusions of this study is available at the GitHub repository https://github.com/s174910/miRNA_RBP_In

teraction_Analysis.
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