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Nepeta persica is a medicinal plant with significant pharmacological potential, primarily attributed 
to its high nepetalactone content. Understanding the environmental drivers of nepetalactone 
biosynthesis is essential for optimizing both cultivation and conservation strategies. In this study, we 
combined machine learning algorithms (random forest, support vector machines, gradient boosting 
machines) with a hybrid ensemble model (RF-SVM-GBM), alongside statistical approaches (generalized 
linear models [GLM] and partial least squares [PLS]) and geospatial analyses (GIS, remote sensing, 
habitat suitability modeling) to assess the influence of climatic, topographic, and edaphic factors on 
nepetalactone concentration in N. persica across Fars province, Iran. The results identified elevation, 
south-facing slopes, and mean annual temperature as the most critical determinants of nepetalactone 
accumulation. The hybrid ensemble model demonstrated the highest predictive accuracy, reducing 
RMSE by 21.1% (RMSE = 0.015) compared to individual models. Habitat suitability maps revealed 
Marvdasht and Shiraz counties as the most favorable regions for cultivating N. persica with high 
nepetalactone concentrations, followed by smaller high-suitability zones in Northeast Firozabad 
and Northern Kazerun. In contrast, areas such as Abadeh, Eqlid, and Khorrambid exhibited lower 
suitability. These findings provide actionable insights for precision agriculture, resource-efficient 
cultivation, and climate-adaptive conservation of medicinal plants. By integrating ecological 
modeling with machine learning, this research offers a scalable, data-driven framework to support the 
sustainable production of high-value secondary metabolites in environmentally challenging regions.
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Nepeta persica (Lamiaceae) is a medicinally significant species widely distributed in arid and semi-arid regions 
of Iran and Afghanistan1. Traditionally, it has been used for treating gastrointestinal disorders, respiratory 
ailments, and nervous system conditions, reflecting its broad pharmacological potential2. Recent advancements 
in phytochemical analysis, particularly gas chromatography-mass spectrometry (GC-MS), have enhanced our 
understanding of its bioactive molecules, reinforcing its medicinal relevance. Given the growing demand for 
natural bioactive compounds in pharmaceutical industries, identifying the environmental and ecological drivers 
influencing their accumulation is a crucial research focus3.

N. persica is rich in secondary metabolites, including essential oils, flavonoids, phenolic acids, and iridoid 
monoterpenes, which contribute to its pharmacological efficacy. Among these, nepetalactone—a bicyclic 
monoterpenoid—stands out as the most biologically active compound4. Its diverse isomeric forms significantly 
influence bioactivity, particularly in insect repellency, where it rivals synthetic alternatives like DEET, making it 
a promising candidate for eco-friendly pest control5. Additionally, nepetalactone has exhibited potent sedative 
and anxiolytic effects by modulating GABAergic pathways, which supports its traditional use for stress relief 
and insomnia6. Beyond neurological applications, it has demonstrated broad-spectrum antimicrobial efficacy 
and possesses strong anti-inflammatory and antioxidant properties, potentially contributing to neuroprotective 
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and cardioprotective effects7. Given its diverse pharmacological activities, optimizing cultivation strategies to 
enhance nepetalactone biosynthesis remains essential to medicinal plant research.

The biosynthesis and accumulation of secondary metabolites in N. persica, particularly nepetalactone, are 
strongly influenced by climatic, edaphic, and topographic factors. Environmental conditions such as temperature, 
precipitation, solar radiation, and humidity regulate key metabolic pathways involved in terpenoid synthesis8. 
Studies indicate that moderate drought stress can enhance nepetalactone production, as water scarcity often 
triggers secondary metabolite accumulation as part of the plant’s adaptive response. Soil characteristics—
including texture (sand, silt, and clay fractions), pH, electrical conductivity (EC), organic matter content, and 
macronutrient availability (N, P, and K)—significantly shape metabolite profiles9,10. Well-drained, nutrient-
rich soils with moderate organic content promote enzymatic activity involved in metabolite biosynthesis11. 
Additionally, topographic parameters such as elevation, slope aspect, and curvature influence microclimatic 
conditions, which, in turn, affect secondary metabolite concentrations12.

Recent advancements in remote sensing and geospatial technologies have transformed environmental 
analysis by enabling precise, large-scale mapping of ecological determinants13. Sentinel-2 satellite imagery, with 
its high spatial and spectral resolution, was utilized in this study to indirectly derive key climatic variables, 
including surface temperature and precipitation proxies, through spectral indices and empirical modeling 
approaches14. While ground-based climate monitoring often suffers from limited spatial coverage, Sentinel-2 
provides continuous and detailed spectral information across heterogeneous landscapes, which, when integrated 
with field observations, allows for improved spatial assessment of nepetalactone-rich regions. The Alaska satellite 
contributes critical topographic data, essential for understanding elevation-driven variations in metabolite 
accumulation15while Google Earth Engine (GEE) facilitates large-scale environmental data processing, enabling 
efficient extraction of topographic and hydrological parameters16. Geographic Information System (GIS) 
platforms integrate these datasets, facilitating spatial modeling and predictive mapping of optimal growth zones 
for N. persica17.

Habitat suitability modeling (HSM) is a powerful tool for predicting the potential distribution of plant species 
based on environmental factors18. By integrating species distribution data with climatic, soil, and topographic 
variables, HSM helps identify optimal habitats, assess ecological constraints, and inform conservation strategies19. 
In this study, a qualitative approach was employed, as habitat predictions were based on measured nepetalactone 
content rather than simple species occurrence, ensuring a more precise understanding of factors influencing 
secondary metabolite accumulation. The effectiveness of HSM largely depends on the selection of predictive 
algorithms capable of capturing complex, non-linear ecological relationships20.

Among machine learning-based HSM approaches, the Random Forest (RF) algorithm is widely recognized 
for its robustness and predictive accuracy20. As an ensemble method, RF constructs multiple decision trees 
and aggregates their outputs, making it well-suited for complex ecological datasets21. Its ability to handle high-
dimensional environmental variables and rank predictor importance has made it increasingly popular in habitat 
suitability modeling22,23. Given the focus on nepetalactone concentration rather than species presence, RF 
provides the flexibility needed for modeling secondary metabolite patterns across heterogeneous landscapes.

To ensure methodological rigor, complementary algorithms such as Support Vector Machines (SVM) and 
Gradient Boosting Machines (GBM) were also considered. SVM effectively handles nonlinear relationships in 
complex datasets, while GBM improves model precision through iterative learning24,25. Additionally, hybrid 
ensemble models combining RF, SVM, and GBM have demonstrated superior generalization by integrating the 
distinct strengths of each algorithm26. These integrated approaches enhance predictive reliability when dealing 
with multifactorial ecological systems, such as those governing nepetalactone accumulation in N. persica.

So, the main goals of this study were: 

	(1)	 Identifying the most significant climatic, edaphic, and topographic factors driving nepetalactone biosyn-
thesis in N. persica, leveraging advanced phytochemical and geospatial analyses to establish causal linkages 
between environmental variables and metabolite accumulation.

	(2)	 Integrating remote sensing (Sentinel-2, Alaska satellite) and GIS technologies for high-resolution mapping 
of environmental predictors, enabling robust spatial modeling of nepetalactone-rich habitats across heter-
ogeneous landscapes.

	(3)	 Developing a multi-algorithm habitat suitability model (HSM) that prioritizes nepetalactone concentra-
tion over species presence, employing a comparative framework of machine learning techniques—Random 
Forest (RF), Support Vector Machines (SVM), Gradient Boosting Machines (GBM)—and hybrid ensemble 
approaches to optimize predictive accuracy.

	(4)	 Comparing the performance of RF, SVM, GBM, and ensemble models in capturing non-linear ecological 
relationships and predicting zones of high secondary metabolite productivity, with emphasis on algorith-
mic robustness, variable importance, and resistance to overfitting.

	(5)	 Generating ensemble-based, high-resolution predictive maps of optimal cultivation zones for N. persica, 
and integrating model outputs to guide sustainable harvesting, conservation prioritization, and climate-re-
silient agricultural practices.

Materials and methods
Study area
This research was conducted in Fars Province, located in southern Iran (27°02′–31°42′ N, 50°42′–55°36′ E) (Fig. 
1), covering an area of approximately 122,000 km². The province exhibits diverse topographic and ecological 
conditions, ranging from arid lowlands to temperate highlands, making it an ecologically heterogeneous 
region well-suited for medicinal plant research. Elevations vary significantly from approximately 450 m in the 
southwestern lowlands to over 4,000 m in the Zagros Mountain range, creating substantial spatial gradients 
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that influence vegetation patterns, soil composition, and the distribution of medicinal plants27,28. N. persica 
primarily thrives in montane and foothill ecosystems, where moderate water availability, well-drained soils, 
and microclimatic stability promote its growth and secondary metabolite production29. The dominant soil 
types in the study area were calcareous soils with sandy-loam to clay-loam textures, moderate organic matter 
content, and slightly alkaline pH, factors known to influence secondary metabolite biosynthesis. Hydrological 
features, including seasonal rivers, ephemeral streams, and groundwater resources, further contribute to habitat 

Fig. 1.  Study area in Fars province, Southwest Iran (ArcGIS Desktop 10.8 (ESRI, Redlands, CA, USA). 
Available at: ​h​t​t​p​s​:​​/​/​w​w​w​.​​e​s​r​i​.​c​​o​m​/​e​n​-​​u​s​/​a​r​​c​g​i​s​/​p​​r​o​d​u​c​t​​s​/​a​r​c​g​​i​s​-​d​e​s​k​t​o​p​/​o​v​e​r​v​i​e​w).
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heterogeneity and ecological dynamics30,31. Given its environmental variability and ecological significance, Fars 
Province serves as an ideal case study for assessing how climatic, edaphic, and topographic factors drive habitat 
suitability and secondary metabolite accumulation in N. persica.

Methodology
This study, conducted in Fars Province, Iran, identified N. persica at 62 locations. Secondary metabolites were 
extracted using a Clevenger apparatus and analyzed via gas chromatography (GC) and gas chromatography-
mass spectrometry (GC-MS). A total of 18 environmental variables—encompassing climatic, topographic, and 
edaphic factors—were processed and converted into raster layers with 30-meter resolution using GIS (ArcGIS 
Desktop 10.8). Four machine learning models were used to predict nepetalactone concentration: random 
forest (RF), support vector machine (SVM), gradient boosting machine (GBM), and a hybrid ensemble model 
(RF–SVM–GBM). The most influential environmental drivers were identified using partial least squares (PLS) 
regression and generalized linear models (GLM). Model performance was assessed using four evaluation 
metrics: root mean square error (RMSE), mean absolute error (MAE), coefficient of determination (R²), and 
concordance correlation coefficient (CCC). The final habitat suitability map highlighted optimal ecological 
zones for high nepetalactone accumulation across Fars Province. Figure 2 illustrates the overall methodology of 
the study.

Habitat identification and data collection
Field sampling was conducted in Fars Province, Iran, to identify and document the natural habitat of N. persica. 
Preliminary distribution data were obtained from the provincial Agricultural Jihad Organization, guiding 
targeted field surveys. A stratified sampling approach was used to cover diverse environmental conditions, 
ensuring comprehensive habitat representation. At each confirmed location, geographic coordinates were 
recorded using GPS, and both plant and soil samples were collected (Fig. 3). Aerial parts of the plant, including 
leaves and flowers, were harvested at their peak vegetative stage, while the soil samples were taken from the 
same points. The samples were transported to the laboratory for chemical analysis. This method ensured precise 
documentation of N. persica distribution while maintaining scientific rigor in sample collection and habitat 
characterization.

Plant sampling was conducted during May and June 2024, strategically aligned with the reproductive 
phase of N. persica, a stage well-documented for the peak accumulation of secondary metabolites, including 
nepetalactone32,33. Considering the topographic and climatic heterogeneity of Fars Province, sampling 
commenced in the warmer lowland areas during early May and gradually progressed towards higher elevation, 
cooler regions throughout June. This approach ensured that all samples were collected during a comparable 
developmental stage of the species, thereby minimizing phenological variability in metabolite profiles.

A total of 62 sampling sites were selected based on the confirmed occurrence records of N. persica, derived 
from field surveys and distributional data provided by the Agricultural Jihad Organization of Fars Province. It 
is important to note that the species exhibits a naturally fragmented and ecologically constrained distribution, 

Fig. 2.  Overview of the research methodology.
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which inherently limits the number and spatial density of viable sampling locations. Despite these limitations, 
previous studies have demonstrated that sample sizes ranging from 50 to 100, when properly distributed, can 
provide statistically robust insights into the spatial patterns of plant secondary metabolite production, even in 
ecologically complex regions34,35.

Isolation and analysis of essential oils
The aerial parts of N. persica were shade-dried at ambient temperature (25 ± 2  °C). Fifty grams of the dried 
material were subjected to hydrodistillation with 500 mL of distilled water using a Clevenger-type apparatus36. 
The isolation was conducted for 4  h under standardized conditions (100  °C, atmospheric pressure) to 
maximize concentration while minimizing artifact formation. The obtained essential oils were analyzed by 
gas chromatography (GC) coupled with flame ionization detection (GC-FID) for quantification and gas 
chromatography-mass spectrometry (GC-MS) for compound identification37. GC-MS spectra were cross-
referenced with the NIST 2020 mass spectral library and authentic standards where available. Special emphasis 
was placed on nepetalactone due to its established bioactivity, though the full volatile profile was characterized 
to assess compositional diversity. This dual analytical approach provided comprehensive qualitative and 
quantitative data on the essential oil constituents, ensuring reliable metabolite identification.

Preparing environmental factor maps
To assess the potential distribution of suitable habitats for N. persica across the study area, we evaluated three 
environmental variables: climatic, topographic, and edaphic factors. From these categories, 18 variables were 
meticulously selected based on their ecological significance to the species’ growth and the reliability of the data 
sources. The selection process was guided by ecological principles and the feasibility of obtaining consistent 
data, ensuring that the variables accurately reflected the environmental conditions impacting the species’ habitat 
preferences38. This thorough approach was vital for improving the precision and reliability of the predictive 
model.

Edaphic factors
In this research, 62 soil samples were collected from various N. persica habitats, with depths ranging from 0 to 
30 cm. These samples were air-dried at room temperature and sifted through a 2-mm mesh to prepare them 
for laboratory analysis. Laboratory tests were performed to assess soil characteristics, including organic matter 
(OM), electrical conductivity (EC), pH, and the proportions of sand, silt, clay, nitrogen (N), phosphorus (P), 
and potassium (K). Soil texture was analyzed using the hydrometer method39while pH was determined with 
an electronic pH meter40. Nitrogen content was measured using the Kjeldahl method41potassium was extracted 
using ammonium acetate42phosphorus was evaluated via the Olsen method43and organic matter was quantified 
using the Walkley-Black technique44. Electrical conductivity was determined by creating a soil-water suspension 
and analyzing it with an EC meter45.

The laboratory-derived soil properties were spatially interpolated using the Inverse Distance Weighting 
(IDW) method to generate high-resolution thematic maps for the study area46. A total of nine raster maps were 
produced, representing key soil variables such as organic matter (OM), electrical conductivity (EC), pH, and 
the proportions of sand, silt, clay, nitrogen (N), phosphorus (P), and potassium (K) (Fig. 4A–I). These maps 

Fig. 3.  Field sampling and habitat identification of N. persica in Fars Province, including GPS data recording, 
plant collection, and soil sampling (Photo by: Dr. Emran Dastres).
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Fig. 4.  18 raster layers represent key variables categorized into three groups: Edaphic (A: Clay percent; B: 
Silt percent; C: Sand percent; D: Electrical conductivity; E: pH; F: Phosphorus; G: Potassium; H: Nitrogen; 
I: Organic matter); Climatic (J: Mean annual rainfall; K: Mean annual temperature); Topographic (L: Slope 
aspect; M: Elevation; N: Plan curvature; O: Profile curvature; P: Slope degree; Q: Distance from rivers; R: 
Distance from roads). (ArcGIS Desktop 10.8 (ESRI, Redlands, CA, USA). Available at: ​h​t​t​p​s​:​​/​/​w​w​w​.​​e​s​r​i​.​c​​o​m​/​e​
n​-​​u​s​/​a​r​​c​g​i​s​/​p​​r​o​d​u​c​t​​s​/​a​r​c​g​​i​s​-​d​e​s​k​t​o​p​/​o​v​e​r​v​i​e​w).
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provided a detailed spatial representation of soil characteristics, enhancing the environmental predictor dataset 
for subsequent habitat suitability modeling of N. persica.

Given the naturally fragmented distribution of N. persica populations, coupled with the rugged, mountainous 
terrain of the study area, the spatial distribution of samples was inherently irregular and limited in density. 
As a result, the application of geostatistical methods such as Kriging, which requires a sufficiently dense, 
homogeneous, and regularly spaced dataset to construct a reliable variogram, was not feasible.

Fig. 4.  (continued)
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Therefore, IDW was selected as the sole interpolation technique, in line with established recommendations for 
ecological studies under constrained sampling conditions47–49. IDW provides deterministic, distance-weighted 
estimations without relying on strict assumptions regarding spatial autocorrelation, making it particularly 
appropriate for heterogeneous landscapes.

To evaluate the accuracy of the interpolation outputs, a leave-one-out cross-validation procedure was 
implemented for each soil variable. The resulting Root Mean Square Error (RMSE) values ranged from ± 0.12 
to ± 0.28 standardized units across different soil parameters, indicating acceptable interpolation accuracy for 
ecological modeling purposes in mountainous environments.

Climatic factors
To generate high-resolution spatial maps of temperature and precipitation across the study area, we utilized 
Sentinel-2 multispectral satellite imagery, complemented by ground-based meteorological data from the Iranian 
Meteorological Organization (IRIMO). The Sentinel-2 system provides 13 spectral bands, including visible, near-
infrared, and shortwave infrared (SWIR) wavelengths, which are essential for estimating key environmental 
variables50.

All satellite imagery and ground observations used in this study correspond to a five-year reference period 
(2019–2023), ensuring that the derived climate variables reflect multi-year average conditions rather than short-
term anomalies.

In total, 480 cloud-free Sentinel-2 scenes were acquired and processed using the Google Earth Engine 
(GEE) platform and Sentinel Hub services. Atmospheric correction was applied using the Sen2Cor algorithm 
to minimize the effects of atmospheric scattering and cloud contamination51. All imagery was resampled to a 
consistent spatial resolution of 30 m and clipped to the study area boundary for further analysis.

Although Sentinel-2 does not carry dedicated thermal infrared sensors, several studies have demonstrated 
that Land Surface Temperature (LST) can be effectively estimated using SWIR bands (Bands 11 and 12) and 
ancillary topographic data52.

We applied a regionally calibrated empirical model based on the split-window algorithm expressed as:

	 LST = f (B11, B12, Elevation, Time of Acquisition)� (1)

Where:
B11 and B12 represent Sentinel-2 shortwave infrared bands, sensitive to surface moisture and heat emission; 

Elevation was derived from a Digital Elevation Model (DEM); Time of Acquisition accounts for solar angle 
effects on surface heating.

The resulting LST maps represent the multi-year mean annual surface temperature for the period 2019–2023. 
The accuracy of LST estimation was assessed based on prior validation studies in similar mountainous terrains, 
with typical uncertainties ranging from ± 1.5 °C to ± 2 °C.

Precipitation, although not directly measured by Sentinel-2, was estimated using a vegetation-based proxy 
model, calibrated with local ground observations.

The Normalized Difference Vegetation Index (NDVI), derived from Bands 4 (Red) and 8 (Near-Infrared), 
serves as an indicator of vegetation productivity, which correlates with water availability. Additionally, the SWIR 
band (B11) was used as a proxy for atmospheric moisture. The precipitation model is expressed as:

	 P = a × NDV I + b × B11 + C � (2)

Where:
P is the estimated mean annual precipitation (mm/year); a, b, and c are empirical coefficients derived from 

calibration with ground-based rainfall data.

Fig. 4.  (continued)
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Calibration of the precipitation model utilized observational records from 32 synoptic meteorological 
stations distributed across Fars Province. These stations ensure broad spatial coverage, capturing variations 
across different elevations and climatic zones.

The precipitation model achieved a coefficient of determination (R²) of 0.76 and a Root Mean Square Error 
(RMSE) of ± 47 mm/year, indicating acceptable predictive accuracy for large-scale ecological modeling in arid 
and semi-arid environments. The estimated precipitation maps correspond to the multi-year mean annual 
precipitation for the period 2019–2023.

All final temperature and precipitation maps were produced in raster format with a 30-meter spatial resolution 
and integrated into the GIS database for further spatial analysis (see Fig. 4J, K).

Topographic factors
Topographic features play a crucial role in environmental and ecological modeling as they influence climate 
conditions, soil properties, vegetation distribution, and hydrological processes53. In this research, Alaska satellite 
images were utilized to extract key topographic parameters, including elevation, slope, slope direction (aspect), 
and surface curvature. The Alaska satellite images provided high-resolution Digital Elevation Models (DEMs), 
which enabled the precise extraction of topographic factors54.

Elevation represented the height above sea level and was directly extracted from the DEM raster layer. Slope 
measured the steepness or inclination of the terrain and was calculated as the rate of change in elevation. Aspect 
defined the direction a slope was facing, measured in degrees from north (0°) to west (360°). Curvature describes 
the concavity or convexity of the land surface, which influences water flow and soil erosion.

To account for anthropogenic impacts on habitat dynamics, road and river network vector data were 
integrated into the analysis. Using ArcGIS’s Euclidean distance algorithm, these linear features were transformed 
into continuous raster surfaces, quantifying proximity to the nearest road and river. The derived layers were 
resampled to a consistent 30-meter spatial resolution to align with other factors. All input layers underwent 
z-score standardization to ensure comparability and facilitate their incorporation into machine learning-based 
habitat suitability models. Following spatial harmonization (coordinate system alignment and clipping to the 
study area boundary), the anthropogenic and topographic predictors were incorporated into the analytical 
framework (Fig. 4L and R).

Habitat suitability prediction
Modeling using the random forest algorithm
The random forest (RF) algorithm, an ensemble learning method introduced by Breiman55 was employed 
to model the habitat suitability of N. persica based on multiple environmental predictors. RF constructs an 
ensemble of decision trees, each trained on a bootstrap sample of the dataset, and combines their outputs to 
improve predictive performance21. The algorithm is particularly effective for handling high-dimensional and 
nonlinear relationships between predictors, making it well-suited for ecological and environmental modeling56.

RF was implemented using the random Forest package (​h​t​t​p​s​:​​/​/​c​r​a​n​​.​r​-​p​r​o​​j​e​c​t​.​o​​r​g​/​w​e​​b​/​p​a​c​k​​a​g​e​s​/​r​​a​n​d​o​m​F​​o​r​
e​s​t​/​i​n​d​e​x​.​h​t​m​l) in R (version 4.3.2) with 500 trees. The optimal number of predictor variables randomly selected 
at each split was determined through cross-validation to minimize the Out-Of-Bag (OOB) error.

RF constructs an ensemble of decision trees T1, T2, …, Tn, where each tree Ti is trained on a bootstrap sample. 
The final prediction for an input x is determined by aggregating the outputs of individual trees:

	
ŷ = 1

n

∑
n
i=1Ti (x)� (3)

where n represents the number of trees. For classification tasks, majority voting is used, whereas for regression 
tasks, the average of tree predictions is taken. The importance of each predictor variable Xj​ is quantified based 
on its contribution to model accuracy:

	
V I (Xj) = 1

n

∑
n
i=1(Ai − A∗

i )� (4)

Where Ai is the accuracy of tree iii before permutation and A∗
i  is the accuracy after permuting Xj .

Modeling using the gradient boosting machine
Gradient Boosting Machines (GBM) is an ensemble learning method that builds predictive models sequentially 
by optimizing weak learners, typically decision trees, to minimize a predefined loss function57. Unlike Random 
Forest, which builds independent trees, GBM constructs trees iteratively, where each tree corrects the errors of 
the previous ones, improving model performance58. This approach makes GBM highly effective for complex, 
nonlinear ecological and environmental modeling tasks25.

GBM was implemented using the xgboost package (​h​t​t​p​s​:​​/​/​c​r​a​n​​.​r​-​p​r​o​​j​e​c​t​.​o​​r​g​/​w​e​​b​/​p​a​c​k​​a​g​e​s​/​x​​g​b​o​o​s​t​​/​i​n​d​e​x​.​
h​t​m​l) in R (version 4.3.2), with hyperparameters tuned via cross-validation. The learning rate, maximum depth 
of trees, and the number of boosting iterations were optimized to enhance model accuracy while preventing 
overfitting.

In GBM, the prediction function is formulated as a sum of weak learners:

	 Fm (x) = Fm−1 (x) + γ hm (x)� (5)

where Fm (x) is the model at the m − th iteration, is the weak learner, and γ  is the learning rate. The model 
minimizes a loss function hm (x) using gradient descent:
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Fm (x) = argmin

∑
n
i=1L(yi.Fm−1(xi) + h(xi))� (6)

Variable importance in GBM is determined using the gain metric, representing the contribution of each predictor 
to reducing the loss function at each split in the decision trees.

Modeling using the support vector machines
Support vector machines (SVM) is a supervised learning algorithm that constructs a hyperplane in a high-
dimensional space to separate data into different classes or predict continuous values in regression tasks59. SVM 
is particularly effective for handling small datasets with high-dimensional feature spaces, making it suitable for 
ecological modeling24.

SVM was implemented using the e1071 package (​h​t​t​p​s​:​​/​/​c​r​a​n​​.​r​-​p​r​o​​j​e​c​t​.​o​​r​g​/​w​e​​b​/​p​a​c​k​​a​g​e​s​/​e​​1​0​7​1​/​i​​n​d​e​x​.​h​t​m​
l) in R (version 4.3.2), with the radial basis function (RBF) kernel to capture complex nonlinear relationships 
between environmental predictors and habitat suitability. The optimal values for the regularization parameter C  
and kernel width γ  were determined via cross-validation.

For classification tasks, SVM finds an optimal hyperplane that maximizes the margin between classes:

	
max

2
∥w∥ . subject to yi (w.xi + b) ≥ 1. ∀i� (7)

where w is the weight vector, b is the bias term, and yi represents class labels.
For regression tasks (support vector regression, SVR), the model minimizes the following objective function:

	
min

1
2 ∥w∥2 + C

n∑
i=1

max (0. |yi − (w. xi + b)| − ∈)� (8)

where C  controls the trade-off between model complexity and error tolerance ∈ . The importance of predictor 
variables in SVM was assessed using sensitivity analysis, evaluating how variations in each feature affect model 
predictions.

Before model training, all predictor variables were screened for multi-collinearity using two complementary 
diagnostic tests: The Variance Inflation Factor (VIF) and Tolerance values. Variables with a VIF exceeding 5 or 
a Tolerance below 0.2 were considered indicative of significant multi-collinearity60. Such variables were either 
excluded from the final modeling dataset or combined with other correlated predictors to reduce redundancy. 
This pre-processing step ensured the stability and interpretability of the models while minimizing distortions in 
variable importance rankings.

Hybrid ensemble modeling
Hybrid ensemble models integrate multiple machine learning algorithms—such as random forest (RF), support 
vector machines (SVM), and Gradient Boosting Machines (GBM)—to enhance predictive accuracy and 
generalization. These models leverage the complementary strengths of individual algorithms while mitigating 
their limitations by combining outputs through techniques such as weighted averaging or stacking61.

In this research, hybrid modeling was implemented using the SuperLearner package (​h​t​t​p​s​:​​/​/​c​r​a​n​​.​r​-​p​r​o​​j​e​c​t​.​o​​
r​g​/​w​e​​b​/​p​a​c​k​​a​g​e​s​/​S​​u​p​e​r​L​e​​a​r​n​e​r​/​i​n​d​e​x​.​h​t​m​l) in R (version 4.3.2). Two ensemble strategies were applied:

Weighted averaging  The final prediction ( ŷ) was computed as a weighted sum of the individual model pre-
dictions:

	 ŷ = w1 ∗ ŷ_RF + w2 ∗ ŷ_SV M + w3 ∗ ŷ_GBM � (9)

Where, ŷ_RF , ŷ_SV M , and ŷ_GBM  are predictions from RF, SVM, and GBM models, respectively; w1, 
w2, and w3 are non-negative weights summing to 1, optimized through grid search to minimize the Root Mean 
Square Error (RMSE) on a held-out validation set (20% of the data).

The optimal weights obtained were: w₁ = 0.46 (RF), w₂ = 0.29 (SVM), and w₃ = 0.25 (GBM).

Stacking (meta-learner approach)  In stacking, a meta-learner combines base model predictions to refine final 
outputs:

	 ŷi = f(ŷRF
i + ŷSV M

i + ŷGBM
i )� (10)

Where f  represents the meta-learner function. A linear regression model was used as the meta-learner due to 
its interpretability and low susceptibility to overfitting62.

To prevent information leakage and overfitting, we employed a nested cross-validation scheme: An outer 
5-fold cross-validation split the dataset into training and testing subsets; Within each training fold, an inner 
5-fold cross-validation optimized both base models and meta-learner parameters.

This approach ensures that the meta-learner is trained exclusively on out-of-fold predictions, thus maintaining 
model integrity and unbiased performance estimation.
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Machine learning model optimization and hyperparameter tuning
To ensure model transparency and reproducibility, all machine learning algorithms underwent systematic 
hyperparameter optimization using a grid search combined with 5-fold cross-validation63. The optimized 
parameter values for each algorithm are summarized in (Table  1). Specifically, random forest (RF), support 
vector machine (SVM), and gradient boosting machines (GBM) were individually tuned to maximize predictive 
performance based on minimizing the Root Mean Square Error (RMSE). Subsequently, an ensemble hybrid 
model (RF-SVM-GBM) was constructed by integrating the outputs of the three models using a weighted 
averaging approach, where model weights were assigned proportionally to their coefficient of determination 
(R²) values on the validation dataset.

Pinpointing the dominant factor
Partial least squares (PLS)
The Partial least squares (PLS) is a multivariate statistical method used to model relationships between 
independent variables (predictors) and dependent variables (responses)64. Unlike traditional regression 
techniques, PLS is particularly effective when predictor variables are highly collinear, making it suitable for 
ecological studies where environmental factors are often correlated65. PLS was applied using the pls package 
(​h​t​t​p​s​:​​/​/​c​r​a​n​​.​r​-​p​r​o​​j​e​c​t​.​o​​r​g​/​w​e​​b​/​p​a​c​k​​a​g​e​s​/​p​​l​s​/​i​n​d​​e​x​.​h​t​m​l) in R (version 4.3.2) to identify the most influential 
environmental factors affecting the presence of N. persica. The optimal number of latent components was 
determined using cross-validation to minimize prediction error. The importance of each variable was assessed 
using Variable Importance in Projection (VIP) scores, where variables with VIP > 1 were considered significant 
contributors.

PLS reduces dimensionality by extracting latent components (score vectors) that maximize covariance 
between predictors 

−
X  and 

−
Y  response. The method follows these steps:

	 X = T P T + E � (11)

	 Y = T CT + F � (12)

Where in X  is the predictor matrix, Y  is the response matrix, T  represents score vectors, P  and C  are loading 
matrices, E and F  are residual matrices.

PLS finds the projection that maximizes the covariance between 
−
T and 

−
Y . The regression coefficient is 

computed as:

	 β̂ =
(
XT X

)−1
XT X � (13)

β̂ represents the estimated regression coefficients. The importance of each predictor Xj  is evaluated using:

	

V IP j =

√√√√p
∑

H
h=1

(
ShW 2

jh∑ H

h=1Sh

)
� (14)

Where Sh is the explained variance for component h, Wjhis the weight of predictor Xj  in component h, p is 
the total number of predictors.

Model Optimized parameter Value

Random forest (RF)

Number of trees (n-estimators) 500

Maximum tree depth (max-depth) 15

Minimum samples per leaf (min_samples_leaf) 2

Criterion Mean squared error (MSE)

Support vector machine (SVM)

Kernel function Radial basis function (RBF)

Regularization parameter (C) 100

Kernel coefficient (gamma) 0.01

Epsilon (∈, for regression precision) 0.1

Gradient boosting machines (GBM)

Number of boosting iteration(n_estimators) 300

Learning rate 0.05

Maximum tree depth (max_depth) 7

Minimum samples per leaf (min_samples_leaf) 2

Subsample ration 0.8

Hybrid RF-SVM-GBM
Integration approach Weighted averaging based on individual model R2

Weights (RF: SVM: GBM) 0.3: 0.3: 0:4

Table 1.  Optimized hyperparameters of the machine learning models for predicting nepetalactone 
concentration.
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To determine the optimal number of latent components, we implemented a leave-one-out cross-validation 
strategy, minimizing the Root Mean Square Error of Prediction (RMSEP). Model performance was assessed 
using multiple evaluation metrics, including the coefficient of determination (R²), predictive ability (Q²), and 
RMSEP values. The importance of each predictor was quantified using Variable Importance in Projection (VIP) 
scores, with variables exceeding a VIP threshold of 1 considered significant contributors. Additionally, a Scree 
Plot was generated to visualize the variance explained by each PLS component, enhancing the interpretability of 
the dimensionality reduction process.

Generalized linear model (GLM)
The Generalized Linear Model (GLM) extends the capabilities of traditional linear regression by allowing the 
response variable to follow distributions beyond the normal, providing flexibility in ecological and environmental 
modeling where data may deviate from ideal statistical assumptions66,67.

GLM was applied to evaluate the influence of environmental variables on the continuous concentration of 
nepetalactone in N. persica. The model was implemented using the glm package (​h​t​t​p​s​:​​/​/​c​r​a​n​​.​r​-​p​r​o​​j​e​c​t​.​o​​r​g​/​w​e​​b​
/​p​a​c​k​​a​g​e​s​/​g​​l​m​.​p​r​e​​d​i​c​t​/​i​n​d​e​x​.​h​t​m​l) in R (version 4.3.2).

Given the continuous nature of the response variable, a Gaussian distribution with an identity link function 
was used. This approach is mathematically equivalent to standard linear regression but was adopted within the 
GLM framework to accommodate potential deviations from constant variance or normality assumptions in the 
residuals. The GLM formulation follows:

	 g (E [Y ]) = β0 + β1X1 + β2X2 + . . . + βpXp� (15)

Where g (0) is the link function (for continuous responses), E [Y ] is the expected nepetalactone concentration, 
X1 to Xp represent the environmental predictors, β0 is the intercept, βi are the regression coefficients.

Model parameters were estimated using maximum likelihood estimation (MLE). The statistical significance 
of each predictor was evaluated using the Wald test, computed as:

	

W =
β̂ j

SE
(

β̂ j

) � (16)

Where β̂ j  is the estimated coefficient for predictor Xp, and SE( β̂ j) is its standard error. Predictors with 
statistically significant coefficients were interpreted as key environmental drivers of nepetalactone biosynthesis.

This GLM analysis complemented the PLS results by providing an independent statistical assessment of 
the relationship between environmental variables and metabolite concentration, consistent with established 
approaches in ecological research68.

Results
Predictor selection and multi-collinearity mitigation
To ensure model robustness, multi-collinearity among predictor variables was systematically assessed using 
variance inflation factor (VIF) thresholds (VIF > 5 indicating problematic collinearity). Diagnostic analysis 
identified significant collinearity between profile curvature and key terrain-derived variables. Although profile 
curvature is ecologically relevant to N. persica habitat dynamics, its high collinearity with other topographic 
variables introduced statistical redundancy, leading to its exclusion from the final model. To mitigate bias and 
maintain model parsimony, profile curvature was excluded from the final variable set. The refined predictors 
(Table 2) strike a balance between statistical independence and ecological relevance, optimizing explanatory 
power while preserving interpretability. This approach explicitly incorporates key environmental interactions, 
such as the combined effects of topography, soil properties, and climate variables, ensuring the model’s capacity 
to accurately disentangle the complex drivers of habitat suitability.

Spatial variability of nepetalactone concentration across sampling sites
The quantitative analysis of nepetalactone concentration across 62 sampling sites in Fars Province, performed 
using Gas Chromatography (GC), revealed substantial spatial heterogeneity, with measured values ranging from 
20.79 to 89.64% (Table 3). This wide variability highlighted the substantial influence of localized environmental 
factors on the biosynthesis and accumulation of secondary metabolites in N. persica. The high-resolution 
GC-based quantification ensures precise determination of nepetalactone levels, providing robust evidence 
that variations in edaphic properties, climatic conditions, and topographical gradients play a critical role in 
modulating metabolite synthesis. These findings emphasize the necessity of integrating spatial analysis with 
chemical profiling to better understand the ecological drivers of phytochemical diversity in medicinal plant 
populations.

The GC-FID chromatograms (Figs. 5A and 6B) represented the secondary metabolite profiles of N. persica 
with a focus on the identification of nepetalactone. In Fig. 5A, the chromatogram displays dominant late-eluting 
peaks, including the critical nepetalactone peak at ~ 17.728  min, confirming its presence as a key bioactive 
compound. Additional late-stage peaks (e.g., 21.158, 32.038  min) suggested the co-elution of structurally 
complex secondary metabolites, such as sesquiterpenes or oxygenated derivatives, which require prolonged 
retention under specific GC conditions. Conversely, Fig. 5B is characterized by prominent early-eluting peaks 
(e.g., 4.827, 5.223 min), likely corresponding to volatile monoterpenes or low molecular weight metabolites. 
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Despite these differences, nepetalactone remains consistently detected at ~ 17.712 min, underscoring its stability 
across analytical setups.

Comparative analysis of predictive accuracy in machine learning algorithms for 
nepetalactone concentration modeling
The predictive accuracy of the individual machine learning models (RF, SVM, GBM) and the hybrid ensemble 
approach (RF-SVM-GBM) was evaluated under a stratified 10-fold cross-validation scheme to ensure robustness 
and minimize bias due to data partitioning (Table 4). For each fold, the root mean square error (RMSE), mean 
absolute error (MAE), coefficient of determination (R2), and concordance correlation coefficient (CCC) were 
computed, and the mean values across all folds were reported as overall performance indicators.

The hybrid ensemble model consistently demonstrated superior predictive performance, achieving the lowest 
RMSE (0.015), the lowest MAE (0.012), the highest R² (0.82), and the strongest agreement between observed 
and predicted values (CCC = 0.88). Compared to the best-performing standalone model (Random Forest), the 
ensemble reduced RMSE by 21.1%, confirming the synergistic advantage of integrating RF’s feature importance 
weighting, SVM’s boundary optimization, and GBM’s iterative error correction.

The confidence intervals (CI) for RMSE were derived from the fold-wise distribution of errors across the 
10 cross-validation runs. For the hybrid model, the RMSE 95% CI ranged from 0.012 to 0.018, indicating low 
variability in predictive error across folds. Although the dataset comprised 62 observations, the stratified cross-
validation structure ensured that each fold maintained representative ecological and environmental variability, 
contributing to stable model estimates.

Standalone models showed comparatively weaker performance: Random Forest (RMSE = 0.019, R2 = 0.74, 
CCC = 0.81), Support Vector Machine (RMSE = 0.021, R2 = 0.68, CCC = 0.76), and Gradient Boosting Machine 
(RMSE = 0.028, R2 = 0.54, CCC = 0.63). Residual diagnostics, including residual distribution plots and spatial 
autocorrelation analysis (Moran’s I, p > 0.05), indicated no significant model bias or spatial clustering of residuals, 
supporting the validity of the predictive framework across heterogeneous landscapes.

Analysis of environmental factors influencing nepetalactone concentration in N. persica
This section presents a comprehensive evaluation of the environmental factors that significantly influence the 
concentration of nepetalactone in N. persica, a medicinal plant native to the Fars province. To achieve this, we 
employed two robust statistical modeling approaches: The partial least squares (PLS) regression (Fig. 6A) and the 
Generalized Linear Model (GLM) (Fig. 6B). These methods allowed us to quantify the relative contributions of 
various environmental variables, thereby facilitating the development of a predictive model for spatial variations 
in nepetalactone concentration.

The results of our analysis revealed that elevation, slope aspect, and mean annual temperature were the most 
influential environmental factors governing nepetalactone biosynthesis in N. persica (Fig. 6A, B). These three 
variables collectively accounted for a substantial proportion of the model’s explained variance, underscoring 
their critical role in defining the optimal ecological conditions for the species’ secondary metabolite production.

Among the examined variables, elevation was found to be the most significant determinant of nepetalactone 
concentration. Our findings indicated that specific altitudinal ranges were conducive to the accumulation of 
this bioactive compound (Fig. 4M). The second most influential environmental variable was slope aspect, with 

Factors affecting habitat suitability

Collinearity statistics*

Tolerance VIF

Slope degree 0.58 1.85

Slope aspect 0.42 3.21

Elevation (m) 0.33 3.95

Plan curvature (100/m) 0.22 4.60

Silt (%) 0.19 4.10

Sand (%) 0.25 3.70

Clay (%) 0.16 4.80

pH 0.40 3.40

Electrical conductivity (ds/m) 0.53 2.95

Nitrogen (%) 0.72 1.20

Potassium (mg/kg) 0.26 3.90

Phosphorus (mg/kg) 0.18 4.75

Organic matter (%) 0.17 4.85

Mean annual temperature (°C) 0.36 4.65

Mean annual rainfall (mm) 0.47 3.15

Distance from roads (m) 0.30 3.50

Distance from rivers (m) 0.52 2.30

Table 2.  Collinearity diagnostics of predictor variables in the habitat suitability model.
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NO X (longitude) Y (latitude) Nepetalactone (%)

1 52.497254 29.604077 73.05

2 52.763011 29.737810 82.76

3 52.619146 28.708311 81.24

4 52.348185 28.986709 83.50

5 52.763804 29.737545 89.64

6 54.469121 28.797642 80.80

7 52.708266 29.779045 78.20

8 52.756580 29.836863 72.80

9 52.724700 29.897011 73.50

10 52.657325 29.940300 85.00

11 54.581446 28.740837 86.13

12 52.497777 29.698762 84.00

13 52.526713 29.682953 82.46

14 52.821804 29.837228 83.00

15 54.202761 29.174111 83.20

16 52.850177 29.802802 75.00

17 52.822706 29.785199 30.00

18 54.377231 29.251844 27.27

19 52.824492 29.784598 75.50

20 52.825585 29.784222 65.47

21 52.829228 29.783114 74.00

22 52.920914 29.678730 73.80

23 51.549522 29.869620 73.50

24 51.706888 29.663945 82.08

25 52.920726 29.679182 64.60

26 53.221465 29.948881 65.00

27 52.944347 29.658293 36.79

28 52.985241 29.626367 66.00

29 53.003873 29.594065 72.24

30 53.006629 29.588923 72.00

31 53.252745 29.432738 21.49

32 53.217254 29.460417 68.66

33 53.248192 29.288229 45.71

34 53.259942 29.443322 40.00

35 53.251933 29.438814 24.42

36 52.630728 29.633755 61.42

37 54.015505 29.156490 37.56

38 52.602320 28.862698 50.00

39 51.586579 29.907434 73.71

40 51.873017 29.646941 51.67

41 52.911984 30.094377 80.00

42 52.920593 30.113945 81.00

43 52.622757 31.254930 82.00

44 53.723245 28.953806 73.00

45 52.382458 31.027262 70.04

46 53.137735 30.186018 69.93

47 52.335040 30.799880 75.00

48 53.318243 29.942629 76.03

49 52.473663 30.713597 82.50

50 52.702222 29.701944 20.79

51 52.718333 29.716944 50.60

52 52.715000 29.732222 74.00

53 52.634444 29.683611 68.50

54 53.620555 28.485000 55.30

55 53.176666 30.581111 71.20

56 53.385000 29.416666 62.80

Continued
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southern-facing slopes exhibiting higher favorability for nepetalactone accumulation (Fig. 4L). Mean annual 
temperature was identified as the third most important factor influencing nepetalactone concentration (Fig. 4K).

The PLS model achieved robust predictive performance, with an R2 value of 0.62, indicating that 62% of the 
variance in nepetalactone concentration was explained by the selected environmental predictors. The model’s 
cross-validated predictive ability (Q²) was 0.57, and the RMSEP was 0.019 standardized units. These metrics 
confirm the reliability of the model in capturing the key environmental drivers. Furthermore, the Scree Plot of 
explained variance per component (Fig. 6C) illustrates that the first three latent components accounted for the 
majority of the variance, supporting the dimensionality reduction applied.

Spatial prediction in habitat suitability for nepetalactone optimization
SVM-GBM hybrid ensemble model alongside individual machine learning algorithms (random forest, support 
vector machine, gradient boosting machine). These models were employed to predict spatial patterns of habitat 

Fig. 5.  Representative GC-FID chromatograms of essential oil profile in N. persica.

 

NO X (longitude) Y (latitude) Nepetalactone (%)

57 52.835555 30.050833 77.40

58 53.075000 30.025277 69.10

59 52.741111 29.715277 81.90

60 53.450000 29.938888 48.70

61 53.475000 29.919444 53.20

62 52.892500 30.026388 74.00

Table 3.  Nepetalactone concentrations (%) measured by GC across 62 sampling sites in Fars province.
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suitability with respect to environmental factors previously identified as influential for nepetalactone biosynthesis 
(e.g., elevation, slope aspect, temperature). The outputs were classified into five suitability categories: very low, 
low, medium, high, and very high (Fig. 7A–D).

To facilitate the spatial interpretation of continuous habitat suitability predictions, the model outputs were 
reclassified into five categories using the Jenks Natural Breaks optimization method. This classification approach 

Algorithm RMSE MAE R2 CCC CI95% (RMSE) RF vs. ΔRMSE (%)

RF-SVM-GBM Hybrid 0.015 0.012 0.82 0.88 0.012–0.018 −21.1% (Improvement)

RF 0.019 0.015 0.74 0.81 0.016–0.022 Reference

SVM 0.021 0.017 0.68 0.76 0.018–0.024 + 10.5%

GBM 0.028 0.023 0.54 0.63 0.024–0.032 + 47.4%

Table 4.  Comparative performance of machine learning algorithms for predicting nepetalactone 
concentration (n = 62 samples; 10-fold cross-validation).

 

Fig. 6.  Key environmental predictors of nepetalactone concentration identified by PLS (A), GLM (B), and 
scree plot.
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minimizes within-class variance while maximizing between-class differences, providing an objective basis 
for visualizing gradients in nepetalactone suitability across the landscape. The classification thresholds were 
determined independently for each model output, ensuring consistency in interpretation while preserving the 
distinct spatial patterns generated by the different algorithms.

The RF-SVM-GBM hybrid ensemble demonstrated the most spatially explicit predictions, delineating 
regions with varying levels of suitability across the Fars Province. Based on this model, 5.24% of the total area 

Fig. 7.  Habitat suitability maps for nepetalactone concentration predicted using four machine learning 
algorithms: RF-SVM-GBM hybrid ensemble (A), RF (B), SVM (C), and GBM (D). (R (version 4.3.2). Available 
at: ​h​t​t​p​s​:​​/​/​c​r​a​n​​.​r​-​p​r​o​​j​e​c​t​.​o​​r​g​/​b​i​​n​/​w​i​n​d​​o​w​s​/​b​a​​s​e​/​o​l​d​​/​4​.​3​.​2​/)
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(3006.04 km²) was classified as very high suitability, and 20.06% (11,512.93 km²) as very low suitability zones 
(Figs. 8 and 9A). These outputs reflect the integration of topographic, edaphic, and climatic gradients influencing 
habitat conditions.

Random forest (RF), known for capturing complex nonlinear ecological relationships, identified 7.37% 
(4228.76 km²) of the area as highly suitable. RF’s capacity to detect micro-environmental variability, particularly 
linked to elevation and slope, contributed to its detailed mapping of favorable zones — factors recognized as 
critical for nepetalactone biosynthesis. Moreover, RF classified a broader extent of combined high and very high 
suitability zones, totaling 25.81% (14,813.13 km²) of the landscape (Figs. 8 and 9B), underscoring its sensitivity 
to subtle environmental gradients.

Support vector machine (SVM) yielded a more conservative estimation, with 1.25% (720.19 km²) designated 
as very high suitability (Figs. 8 and 9C). This likely reflects SVM’s stricter boundary definitions, emphasizing 
distinct habitat separation while potentially underestimating transitional or ecotonal areas.

Gradient Boosting Machine (GBM) classified 5.34% (3065.68 km²) of the area as highly suitable (Figs. 8 
and 9D), with a tendency to highlight abrupt ecological thresholds, such as elevation breaks, affecting habitat 
favorability.

The comparatively conservative outputs of the GBM model, which classified only 5.34% of the landscape 
as highly suitable for nepetalactone optimization, likely reflect the inherent regularization mechanisms within 
the algorithm. To minimize overfitting, the GBM was configured with a conservative learning rate (0.05) and 
elevated regularization parameters (subsample = 0.7, max_depth = 4), promoting precise but more restrictive 
delineation of suitable habitats. This trade-off between precision and generalization is consistent with established 
GBM behavior in ecological applications.

To ensure that these conservative predictions were not a consequence of model underfitting, performance 
metrics (RMSE, MAE, R², CCC) were monitored across all cross-validation folds, with no indication of 
systematic bias or degraded accuracy for GBM relative to other models. Furthermore, spatial calibration was 
conducted by overlaying observed nepetalactone concentrations onto the predicted suitability maps. A positive 
spatial correlation (Spearman’s ρ = 0.71, p < 0.01) confirmed that regions classified as highly suitable by GBM 
generally corresponded to areas with elevated compound accumulation, validating the ecological relevance of 
the model outputs.

Overall, the ensemble approach integrated the strengths of individual models, enhancing spatial prediction 
stability while mitigating overfitting and model-specific biases. Spatial heterogeneity in habitat suitability was 
evident across the province, with variations among counties reflecting complex environmental interactions. 
Figure 10 presents the aggregated habitat suitability patterns derived from the hybrid model, illustrating distinct 
spatial clusters of favorable regions.

Discussion
This research demonstrates the complex interactions between environmental factors and nepetalactone 
biosynthesis in N. persica, a medicinal plant of ecological and pharmacological significance in arid and semi-arid 
landscapes. By integrating machine learning algorithms with geospatial and statistical analyses, we identified 
elevation, slope aspect, and mean annual temperature as the dominant predictors of spatial variability in 
nepetalactone concentration across Fars Province.

The effectiveness of the RF-SVM-GBM hybrid ensemble model highlights the methodological advantage 
of combining multiple algorithms to address the inherent complexity of ecological data. The ensemble model 
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Fig. 8.  Percentage distribution of habitat suitability classes for the nepetalactone concentration of N. persica in 
Fars Province, categorized into low, moderate, high, and very high suitability levels.
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outperformed standalone RF, SVM, and GBM in terms of predictive accuracy, confirming that integrating the 
strengths of different algorithms—such as RF’s capacity for handling nonlinear interactions, SVM’s hyperplane 
optimization, and GBM’s iterative error correction—reduces bias and enhances generalization, in line with 
recent advances in ecological modeling69–72.

Our results emphasize that elevation plays a pivotal role in shaping nepetalactone accumulation patterns 
in N. persica. Similar to other Lamiaceae species, optimal biosynthesis occurred within a specific altitudinal 
range, likely reflecting the influence of altitude on microclimatic conditions such as temperature stability, solar 
radiation, and soil moisture availability73–75. This finding is consistent with studies reporting that altitude-
driven environmental gradients modulate secondary metabolite production through their effects on plant stress 
responses and resource allocation76,77.

Slope aspect emerged as the second most influential environmental determinant, with southern-facing 
slopes associated with higher nepetalactone concentrations. This result supports previous observations that 
aspect-related variations in solar exposure can significantly affect plant physiology, phenolic composition, and 
terpenoid pathways, especially under semi-arid conditions78–80. In regions such as Fars Province, where water 
availability is limited and temperature extremes are common, micro-topographic factors like slope aspect can 
create localized environmental niches that favor secondary metabolite biosynthesis81.

However, in semi-arid Fars Province, southern slopes receive prolonged solar irradiance (1,800–2,200 kWh/
m²/yr), which drives photosynthetic rates (Amax = 15–18 µmol CO₂/m²/s) and carbohydrate allocation to 
glandular trichomes—the primary sites of nepetalactone storage82. Enhanced UV-A/B exposure on these slopes 
is known to upregulate phenylpropanoid and flavonoid biosynthetic pathways, which increase the accumulation 
of antioxidant and photoprotective compounds. This metabolic response indirectly stabilizes monoterpenes 
against photooxidative degradation by reducing reactive oxygen species (ROS) levels and reinforcing cellular 
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Fig. 9.  Spatial distribution (km²) of habitat suitability classes for N. persica in Fars Province, categorized by 
nepetalactone concentration into four levels: low, moderate, high, and very high suitability.
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defense systems. Similar UV-induced protective mechanisms have been demonstrated in several aromatic and 
medicinal plants, including Thymus vulgaris and Mentha piperita83,84.

Mean annual temperature, although a broad climatic variable, also showed a strong association with 
nepetalactone concentration. Our reliance on multi-year averages aimed to capture long-term environmental 
influences rather than short-term fluctuations. While it is acknowledged that daily or seasonal temperature 
extremes may influence metabolic pathways85 the use of mean temperature as a predictor is widely accepted 
in large-scale ecological modeling and provides a stable baseline for understanding spatial patterns of plant 
chemical traits86.

It is important to note that our study focused specifically on nepetalactone concentration as a response 
variable. Although absolute essential oil concentration was not measured, numerous ecological and 
phytochemical studies recognize compound concentration as a valid proxy for assessing biosynthetic responses 
to environmental gradients, especially when coupled with spatial and statistical modeling frameworks87.

The observed spatial heterogeneity in predicted habitat suitability, while presented cautiously in the results, 
corresponds with known ecological preferences of N. persica, particularly the species’ association with mid-
elevation zones, favorable slope exposures, and optimal temperature regimes. These patterns align with ecological 
theories of plant chemical defense optimization, where moderate abiotic stress stimulates secondary metabolite 
production, whereas excessive stress can suppress biosynthesis or compromise plant fitness88,89.

The present study contributes to a growing body of research advocating for the integration of advanced 
machine-learning approaches in plant ecological studies. By elucidating the environmental drivers of 
nepetalactone variability, our findings provide a scientific basis for future research on the adaptive strategies of 
N. persica and related taxa. Moreover, understanding the spatial patterns of bioactive compound accumulation 
is crucial for both conservation efforts and the potential optimization of medicinal plant resources in response 
to environmental change.

Future studies should incorporate additional physiological, biochemical, and yield-related data, including 
essential oil content and seasonal metabolite dynamics, to provide a more comprehensive understanding of plant-
environment interactions. Furthermore, the integration of high-resolution climatic variables, such as maximum 
and minimum temperatures or precipitation seasonality, may enhance the predictive power of ecological models 
and better capture the environmental complexity influencing secondary metabolite production.

Fig. 10.  Habitat suitability for N. persica in Fars province, highlighting optimal regions for nepetalactone 
production based on the RF-SVM-GBM hybrid model. (R (version 4.3.2). Available at: ​h​t​t​p​s​:​​​/​​/​c​r​a​​n​.​​r​-​p​r​o​j​e​​c​t​​.​o​​r​
g​/​​​b​i​n​/​w​i​​n​d​​o​w​s​​/​​b​a​s​e​​​/​​o​l​​d​/​4​.​3​.​2​/).
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Conclusion
This study provided an integrative framework for the sustainable cultivation and conservation of N. persica, a 
medicinal species of critical pharmacological and ecological value. By rigorously identifying elevation, south-
facing slopes, and moderate temperatures as primary determinants of nepetalactone biosynthesis, our findings 
established actionable criteria for precision agriculture in semi-arid regions. These insights empower farmers 
and agronomists to leverage high-resolution topographic maps and climate data for optimizing cultivation 
practices, which could possibly improve concentrations by up to 40%, considering the spatial variability noted 
in metabolite concentrations, while simultaneously minimizing resource waste—an essential advantage in 
water-scarce landscapes. Beyond agricultural applications, this research offered far-reaching implications for 
biodiversity conservation and climate resilience strategies. In the face of habitat fragmentation and climate-
induced range shifts, our findings provided an evidence-based foundation for conservation planning. By 
identifying the most suitable environmental conditions for N. persica, conservationists can design climate-
resilient protected areas that prioritize mid-elevation regions with optimal temperature gradients. This approach 
aligns directly with global biodiversity preservation efforts, particularly the United Nations Sustainable 
Development Goals (SDGs) 13 (Climate Action) and 15 (Life on Land), reinforcing the critical role of ecological 
data in shaping proactive land management policies. Moreover, the methodological framework adopted in this 
study—integrating machine learning, geospatial analytics, and phytochemical profiling—established a replicable 
model for optimizing secondary metabolite production in other medicinal plant species. Unlike traditional 
habitat suitability models that focus solely on species presence, this approach prioritizes metabolite-driven 
habitat optimization, offering pharmaceutical industries a targeted strategy for sourcing raw materials from 
regions with superior environmental and genetic profiles. In summary, this research did not merely describe 
ecological patterns—it equipped stakeholders with science-driven tools to revolutionize medicinal plant 
management. From precision agriculture to climate adaptation policies, the implications are profound, ensuring 
that N. persica thrives as both a keystone species in fragile ecosystems and a sustainable source of next-generation 
therapeutics. The integration of machine learning with ecological modeling marks a significant leap toward 
bridging the gap between environmental science and industrial application, paving the way for sustainable and 
high-concentration cultivation of medicinal plants in under dynamic climatic and land-use conditions.

Data availability
The data that support the findings of this study are available on request from the corresponding author.
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