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In recent years, electric vehicles (EVs) have become increasingly popular, driven by advancements 
in battery technology, growing environmental awareness, and the demand for sustainable 
transportation. Compared to internal combustion engines, EVs not only produce fewer emissions but 
also offer greater energy efficiency, leading to reduced operating costs. Despite these advantages, 
concerns about battery failures have been a significant safety issue for EVs. This paper introduces 
an Intelligent Fault Detection (IFD) system—a proactive approach that utilises advanced intelligent 
techniques for detecting faults in EVs batteries. This paper involves developing and implementing 
an ML-based fault detection mechanism to monitor and safeguard the batteries from various faults, 
including thermal protection, under-voltage, and over-voltage. This research involves real-time data 
sourced from sensors embedded within the battery, which ensures the continuous collection of battery 
data during the vehicle’s operation. The pre-processed data is analysed using a K-means clustering 
algorithm to classify essential groups, helping to define a valid range for temperature and voltage. 
Further, the ensemble approach has been used to classify safe and unsafe areas for battery operations. 
The proposed model has 0.94 accuracy for identifying faults, which contributes to the long-term 
sustainability and economic viability of electric mobility.
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The use of electric vehicles has been rapidly increasing due to their environmental benefits and advancements in 
battery technology. However, one of the significant challenges faced by EVs is to optimise battery performance 
and their operational life extension1. As the demand for EVs is increasing in our daily lives, the protection issues 
are also increasing. So, there is a need for a fault detection system that can detect these faults intelligently and 
proactively to anticipate issues before they escalate. Such fault detection systems improve not only the safety and 
dependability of EVs, but also promote the overall sustainability2. A Battery Management System (BMS) is a 
method used to control and regulate power during the battery’s charging and discharging phases. It safeguards 
the cells by observing battery capacity, computing subsidiary data, and helping to balance the battery properly3. 
The BMS identifies voltage, temperature, or current abnormalities, prompting the alarm system to protect the 
battery pack. These abnormalities are caused by the faults that occur in the battery. Different types of faults can 
occur during battery operation, including overcharging, over-discharging, and thermal issues4. Overcharging is 
a fault that can occur in a battery when it is charged beyond its recommended voltage limit.

This can happen for various reasons, such as charging the battery beyond the manufacturer’s specified 
voltage, faulty charging equipment, and extended charging time. In extreme cases, this may increase the 
temperature of the battery and the battery can catch fire or explode. Hence, it is essential to monitor the 
charging process carefully and to use reliable chargers to avoid overcharging5. A fault in the battery can also 
occur due to over discharging, which happens when the battery is discharged beyond its recommended voltage 
or capacity limits. This can be caused by prolonged usage without recharging, improper storage, or a faulty 
battery management system. Over discharging can lead to reduced capacity and performance. It is essential to 
monitor and prevent over-discharging to ensure the longevity and safety of the battery. Moreover, thermal fault 
in a battery occurs when there is an abnormal increase in temperature, leading to potential damage or failure6. 
Several reasons contribute to thermal faults in batteries, such as overcharging, over-discharging, external heat 
sources, manufacturing defects, and mechanical damage. Monitoring and controlling the temperature during 
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battery operation is essential to prevent thermal faults. Proper cooling systems, temperature sensors, and battery 
management systems are crucial in maintaining safe operating conditions and preventing thermal incidents.

There are various types of electrical faults that can occur in lithium-ion batteries, as referred to in Table 1, 
and they differ in how easily they can be detected. Faults such as overcharging and over-discharging are generally 
easy to identify, as they produce clear and measurable changes in the battery’s behaviour. In contrast, faults like 
short circuits, voltage imbalances, and (under-over) temperature due to excessive heat or cold are more difficult 
to detect. These types of faults often develop gradually or arise under specific conditions, making real-time 
identification challenging. This underscores the importance of the IFD system to detect such hidden faults early, 
ensuring the safety, performance, and longevity of the battery.

An IFD system for EV batteries is designed to monitor and analyse battery behaviour in real time to detect 
potential issues before they lead to serious failures. By using advanced machine learning algorithms and data 
collected from onboard sensors—such as voltage, current, and temperature the system can identify unusual 
patterns that indicate early signs of battery faults. These intelligent models learn from both historical and live 
data, allowing them to differentiate between normal battery fluctuations and actual problems, such as cell 
imbalance, thermal anomalies, or capacity degradation. This proactive approach not only improves safety and 
extends battery life but also supports predictive maintenance by alerting users or service systems before a fault 
becomes critical. As EV adoption grows, such smart battery monitoring systems are becoming essential for 
ensuring reliable performance, reducing downtime, and building trust in electric mobility.

Literature survey
Various researchers are working on fault detection of batteries, like Abada et al.7, who discussed the hardware 
safety approach of batteries, mainly focused on the modelling and testing of batteries under different conditions. 
The modelling of the battery provided a thermal runaway for a pack to integrate the ageing of the battery effect, 
which helps to assess the battery functionality and desired safety aspects of the battery.

Similarly, Jiang et al.8 provided a hardware system for future safe direction for charging systems by comparing 
onboard connected batteries, cell energy density and efficiency with the long life cycles. Meissner et al.9 presented 
battery monitoring and energy management, which predicted the future power of batteries by generating a data 
set for complete charging periodically with well-defined SOC and the data generation on the battery with different 
test benches. Chen et al.10 employed the RC equivalent circuit model hardware setup and a swarm optimisation 
technique to ascertain battery parameters. Additionally, a two-layer model was utilised based on an external 
short circuit and a fault diagnosis approach to estimate defects in a battery. Similarly, Wang et al.11 put forth 
a modified Shannon entropy based on cell voltage data. A security management technique was also provided, 
which used Z-score normalisation. Zhu et al.12 proposed an ML approach for determining the temperature of a 
battery at a specific time to mitigate the risk of thermal runaway, along with the decomposition of temperature 
with reversible and irreversible heat with battery operation components. However, the voltage parameter was 
missing in this research. Chen et al.13 proposed a method for voltage problem identification in lithium-ion 
batteries utilising the Local Outlier Factor algorithm. The LOF was utilised to measure the degree of deviation of 
parameters from their neighbouring values. Consequently, faults were identified and evaluated using an outlier 
filter based on the Grubbs criterion14,15. Additionally, Zhao et al.16 carried out a study combining simulation 
and experimental analysis of external and internal short circuits. A modified electrochemical-thermal coupling 
model was used to predict temperature variations; however, it did not indicate active fault status.

Feng et al.17 investigated fault identification in large-format lithium batteries, specifically focusing on internal 
short-circuit faults. This paper aimed to utilise voltage and temperature responses to develop an algorithm 
capable of identifying the occurrence of faults and determining their particular position within the battery. 
Moreover, studies have been conducted on the modelling and analysis of battery short circuits; for example, 
Adnan et al.18 introduced a methodology that utilises a support vector machine (SVM) to include the diagnosis 
and prognostics of battery health. Similarly, Zhang et al.19 introduced a novel approach to the diagnosis of 
capacity problems online and in real time in parallel connected lithium ionhium ionhium ion battery groups. 
For a better approach, there is a need for more accurate diagnostic methods.

Category Fault type Easy to detect Hard to detect

Electrical

Short circuit ✓ ✗
Internal short ✗ ✓
Capacity fade ✗ ✓
Self-discharge ✗ ✓
Under voltage ✗ ✓
Over voltage ✗ ✓

Thermal

Over-temperature ✓ ✗
Thermal runaway ✗ ✓
Under-temperature ✓ ✗

Mechanical
Sensor fault ✓ ✗
Physical damage ✗ ✓

Table 1.  Classification of battery faults.
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Further, the outlier analysis is a technique employed in fault diagnostics20–22. However, the majority of 
traditional statistical analyses conducted on electric vehicles are unable to identify the specific defective battery 
cells effectively. In addition, the currently employed approaches are incapable of identifying the emergence 
of faults because the voltages remain within the acceptable range. To overcome this, Hu et al.23 introduced a 
technique for estimating battery capacity using a combination of particle swarm optimisation and k-nearest 
neighbour regression. Yang et al.24 utilised an extreme learning machine (ELM) based thermal model to represent 
the thermal response of batteries during external short circuits. However, the aforementioned models possess 
limited applicability since they are solely suitable for diagnosing specific defects within specific operational 
circumstances. Fault detection was performed by comparing parameter values against predefined criteria. 
While these methods are easy to implement, they require multiple thresholds, posing challenges in accurately 
determining their values25. Furthermore, AI techniques, such as LS-SVM and LSTM neural networks, have been 
utilised for diagnosing issues in LIBs26. However, it is important to acknowledge that these methods rely on a 
large volume of historical data, which can be challenging to access and acquire.

Yuksek et al. emphasise the need for accurate SOH estimation to support efficient battery management. While 
traditional methods require large datasets and heavy processing, they propose a simple curve-fitting approach 
that delivers high accuracy with minimal data. Remarkably, using just 1% of the Oxford battery dataset, their 
model outperformed other methods based on RMSE, showing strong results with low cost and complexity27.

Lale shows that lithium-based batteries, while powerful, are sensitive to heat and charging speed. To tackle 
this, they propose an adaptive BMS that adjusts charging rates based on temperature. This smart approach boosts 
efficiency, extends battery life, and in simulations, improved energy output by 11.49% compared to standard 
methods, proving the value of temperature-aware charging28.

Yamacli highlights that battery safety and ageing are key challenges, especially in electric vehicles. Unlike 
most methods that focus on single cells, this study looks at series-connected batteries in real-world setups. 
Using deep learning with hybrid classification, and data from Oxford and CALCE, the model achieved 98.33% 
accuracy with low error, proving it’s both accurate and practical for real-time SOH monitoring29.

Shang et al. point out that as we move toward carbon neutrality, keeping lithium-ion batteries safe and reliable 
is crucial. They review three main ways to detect battery faults: data-driven, model-based, and threshold-based, 
each with its pros and cons. Their work offers a clear summary of fault types and the latest techniques, helping 
guide future research in better battery fault detection30.

The literature has discovered that few authors have used machine learning approaches for over-temperature, 
under-temperature, over-voltage and under-voltage protection. Consequently, there is a need for an intelligent 
fault detection (IFD) system that continuously oversees the battery’s status and establishes protective zones 
to prevent potential issues. This system alerts the user upon detecting hazardous conditions, enabling timely 
intervention to safeguard the battery from significant faults. This method aims to shield battery cells from 
potential harm and optimise safe operational ranges for batteries.

Contribution
The major contributions of this research are as follows:

•	 This approach uses real-world test data from LiFePO4 batteries to analyse fault patterns and inconsistencies 
within the battery pack under various operating conditions.

•	 For better optimisation, the study utilises two test benches for data generation, facilitating the identification 
of aberrant battery conditions.

•	 An IFD has been proposed to detect the faults in EVs proactively to improve reliability.
•	 By factoring in temperature and voltage, this model significantly reduces inaccuracies and enhances perfor-

mance, resulting in shorter computational times while improving the accuracy of the estimation.

Novelty
The need for a fault detection approach of lithium-ion batteries defines the limits of voltage and temperature 
within which the battery can function safely. Recent research focuses on developing a novel approach that adjusts 
in real time based on battery health, usage patterns, and environmental conditions. By integrating machine 
learning, dynamic frameworks improve safety, extend battery life, and enable higher performance. This shift 
from static to data-driven for the fault detection approach represents a key innovation for applications such as 
electric vehicles and energy storage systems.

Organisation
“Proposed model intelligent fault detection system (IFD)” section discusses the proposed model with data 
generation and data preprocessing. The fault detection model is represented in “Intelligent fault detection 
model” section for safe operating areas. “Results and discussion” section discusses the results and discussion, 
and “Proposed model intelligent fault detection system (IFD)” section concludes the research findings.

Proposed model intelligent fault detection system (IFD)
The main goal of this research study is to propose a fault detection model as depicted in Fig. 1. The study 
comprises three main phases. Initially, data acquisition takes place where real-time data is gathered from two 
test benches to form a dataset. In the second phase, the data are preprocessed to remove null values, and the 
K-means clustering algorithm is commonly used to categorise temperature and voltage ranges. Following this, 
the pre-processed data is applied in a machine learning technique, which is an ensemble model that identifies 
both secure and vulnerable battery regions. The proposed system uses an ensemble machine learning model 
to estimate the safe operating area. The third phase provides a comprehensive analysis of the functionality and 
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unique attributes of each model operating on real-time data. This model decision is critical to safeguarding 
the battery against potential harm caused by extreme temperature or voltage levels. Monitoring the battery’s 
performance is essential to protect it from potential damage and extend its lifespan.

Data acquisition
The dynamic recording of input parameters, such as voltage and temperature, is conducted on test benches to 
collect real-time data during the charging and discharging operations. The study used a LiFePO4 battery pack 
with a nominal capacity of 100 Ah and a voltage rating of 51.2 V for data generation. The battery’s characteristics 
and BMS specifications are delineated in Table 2. The battery holds a smart BMS, with an instrument cluster and 
computer-controlled software, called Intellicar Telematics.

Test bench
There are two types of test benches used to generate data for better accuracy in fault detection. Test bench 1 
operates under a constant charging and discharging load, while test bench 2 utilises Ekart to collect data. Fig. 

S.no. Battery parameter Value

1 Manufacturer Likraft

2 Nominal capacity 100 Ah

3 Nominal voltage 51.8 V

4 Recommend charging current 25 A

5 Cycle life 2000 Times

6 Operating temperature 5–65◦C

BMS specification

1 Max discharge current 100 A

2 Max charge current 50 A

3 Voltage 48–60 V

4 Communication WIFI, Bluetooth

5 Software Intellicar

Table 2.  Characteristics of a LiFePO4 battery pack.

 

Fig. 1.  Proposed IFD model.
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2 represents the test bench as a load. The datasets produced by these test benches are labelled as DS1, FD and 
DS2, respectively.

•	 In Test Bench 1, a controlled setup is designed to simulate real-world battery charging and discharging con-
ditions. A DC power supply is used to charge the battery, while a DC electronic load facilitates discharg-
ing, both operating under a constant current mode to ensure consistency during experiments31. The overall 
configuration of this test bench is shown in Fig. 2. Specifically, a 15 kW programmable power source from 
Keysight is used for battery charging, whereas a 15 kW electronic load from Chroma is employed to manage 
the discharging process. To monitor thermal behaviour during cycling, a temperature sensor integrated with 
a smart BMS tracks the temperature of individual cells. The test procedure involves repeated charging and 
discharging cycles at a current of 25 A to generate a rich and diverse dataset. The charging process follows 
the Constant Current–Constant Voltage (CC–CV) protocol, continuing until the battery voltage reaches 55 
V, corresponding to 100% SOC. After a short resting phase, the battery is discharged at a constant current of 
0.25C until it hits the predefined cutoff voltage, simulating typical use scenarios.

•	 The faulty data (FD) were intentionally generated to rigorously test the model’s diagnostic accuracy under 
abnormal and potentially hazardous conditions. These faults were not incidental but were deliberately en-
gineered within the test setup to replicate realistic degradation and failure scenarios observed in practical 
battery systems. The faults were introduced during various phases of the battery cycle by applying controlled 
disturbances, such as abrupt voltage fluctuations induced by modulating the power source output during 
the charging phase, and temperature spikes simulated through the application of an external heat source to 
specific cells, mimicking thermal runaway or localised overheating. Additionally, current surges were intro-
duced to simulate short circuits or load anomalies, and sensor disconnections or drift were simulated to test 
the system’s resilience against data quality degradation and partial monitoring failures. All faults were intro-
duced incrementally and under tight supervision to ensure safety and preserve the integrity of the hardware. 
This behaviour replicates real-world safety protocols where systems are required to enter protective states 
upon detecting anomalous behaviour. To support effective training and evaluation of the model, the dataset 

Fig. 2.  Data acquisition using different load.
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was designed to maintain class balance between normal and faulty instances. A median voltage reference of 
51.5 V was used to categorise the samples. Similarly, for temperature, 33.5 ◦C was set as the neutral bound-
ary, with higher values flagged as thermally abnormal. This labelling strategy aids the learning algorithm in 
distinguishing subtle patterns associated with different fault types. Moreover, the dataset captures not just 
steady-state anomalies but also transient behaviours, such as short-lived spikes and gradual drifts, enhancing 
the model’s ability to detect both abrupt and progressive failures. All data were collected using high-precision 
instruments and synchronised time-logging, ensuring a high signal-to-noise ratio and enabling robust bench-
marking. This meticulously curated faulty dataset thus serves as a vital component in evaluating and validat-
ing the model’s capacity to detect, classify, and respond to early signs of battery degradation and malfunction, 
offering strong potential for real-world fault diagnosis in battery-powered systems.

•	 In Test Bench 2, a custom-designed E-kart is used to discharge the battery under real-world driving condi-
tions, allowing for the collection of dynamic and randomly varying data samples. This experimental setup 
is intended to evaluate the system’s performance in practical scenarios. A 1300-watt charger is employed to 
recharge the battery between runs, ensuring it is ready for repeated testing.

The E-kart is powered by a 2500-watt motor, which can draw a peak current of up to 100 A. This high load 
creates variable and realistic discharge profiles that reflect diverse driving behaviours, including acceleration, 
deceleration, and stop-and-go traffic. These fluctuations naturally generate a rich dataset, capturing the 
complexity of actual vehicle operation. The data collected from this test setup is referred to as the DS2 dataset. 
It includes parameters continuously monitored and recorded by the BMS, such as voltage, current, temperature, 
and state of charge. Because the E-kart was designed and developed in-house, it allowed the researchers to test 
under controlled yet realistic driving patterns and environmental conditions. This hands-on approach ensures 
that the data mirrors practical battery usage and provides a solid foundation for evaluating and training the IFD 
model.

Table 3 presents an overview of the threshold values and corresponding sample sizes used in the development 
of the IFD model. These thresholds serve as critical reference points for identifying deviations in battery 
behaviour that may indicate potential faults. It’s important to note that the threshold values are not fixed; they 
vary depending on the specific chemistry of the lithium-ion battery being used. For instance, batteries based on 
LiFePO4, NMC, or LCO chemistries may each exhibit different safe operating limits for parameters like voltage 
and temperature.

The dataset used for model training and evaluation includes samples collected across a range of operating 
conditions, reflecting both normal and faulty states. Each sample is labelled and aligned with its corresponding 
threshold to help the IFD model learn to distinguish between healthy and abnormal behaviour accurately. By 
tailoring the thresholds to the battery’s chemistry and capturing sufficient data across various states, the model 
becomes more adaptable and reliable in real-world applications.

Data processing
The raw data collected from the battery is further preprocessed. The data pre-processing plays a vital role in data 
analysis and machine learning methodologies, as it converts raw input data into a suitable format for further 
analysis. This process involves cleaning and feature selection to enhance its quality and manageability32. Cleaning 
involves addressing duplicates and missing values, with the removal of duplicates being necessary to avoid biased 
analysis. Whereas, feature selection is essential for improving model performance, reducing computational 
complexity, and avoiding over-fitting. Overall, data pre-processing is essential for ensuring data quality and 
suitability for analysis, reducing biases, noise, and inconsistencies to improve output accuracy. Subsequently, 
the prepossessed dataset undergoes additional processing with K-means clustering to identify valid data ranges.

K means clustering
Clustering is used to classify input data into groups, segmenting a data set into groups based on shared 
characteristics33. When categorising data such as voltage and temperature ranges, the initial choice of cluster 
centres plays a crucial role in determining the quality of the resulting clusters, as the algorithm can potentially 
converge to a local minimum. To address this concern, K-means is often run multiple times with varying 
initialisations, and the optimal outcome is chosen. During the algorithm’s update stage, outliers are heavily 
influenced by cluster mean calculations and potentially impact the clustering results34. To partition dataset 
{d1, d2, . . . , dn} into clusters {K1, K2, . . . , Kk}, each containing a subset of data points. The goal is to find 
centres {C1, C2, . . . , Ck} that minimise the sum of squared distances between each data point and its respective 
cluster centre. This objective function is expressed mathematically as:

Data Time Sample size Threshold for voltage Threshold for temperature

DS1 600 min 7200 46–56 V 5–45 ◦C

DS2 600 min 7200 46–56 V 5–45 ◦C

FD 200 min 2400 46–56 V 5–45 ◦C

Table 3.  Specification for LiFePO4 generated dataset.
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J(C, di) =

N∑
i=1

K∑
j=1

||di − Cj ||2.� (1)

Then, the mean of the cluster is updated until the convergence criteria are met. The pseudocode for K-means is 
illustrated in Algorithm 1.

Algorithm 1.  Pseudo code for K-means clustering.

Intelligent fault detection model
This section explains the proposed model using ensemble learning, which is a group of base models to foresee a 
fault detection system for lithium-ion batteries using Support Vector Machine (SVM), Decision Tree (DT) and 
Random Forest (RF) models. The output of the proposed model is labelled as the safe operating area and shows 
the decision boundary for the features and status of the fault.

Ensemble learning
The ensemble approach is a strategy that amalgamates multiple classification algorithms to enhance and optimise 
overall performance35. There are two prevalent ensemble-based methods: bagging and boosting. Boosting is 
a sequential process where each subsequent model corrects the errors of the preceding one, while bagging 
consolidates the results of multiple models to derive the outcome. The proposed framework employs a voting 
mechanism to combine the models from the present research into an ensemble. This approach implements an 
ensemble approach using the majority voting method to combine the best-performing models identified in the 
previous training phase.

The ensemble comprises two datasets, DS1, DS2, and FD, validated through time-series division. The 
algorithm allocates 80% of each dataset for model training and reserves 20% for testing. The final prediction 
is determined by the highest number of votes among the models. The ideal model output, depicted in Fig. 3, 
delineates real-time battery operation, defining safe and unsafe zones based on the decision boundary in the 
feature space. This boundary is learned during training and used for classification during prediction.

Support vector machine
SVM is a set of supervised learning algorithms for classification that approximates complex multivariate functions 
with high accuracy. Initially designed for classification tasks, SVM’s primary goal is to predict outcomes for data 
points within known data limits accurately. This is achieved through training the SVM model on a specific 
dataset referred to as the training set36.

	 y = mx + c.� (2)

Here, m is the slope, and c is the constant. The hyperplane exists in either two dimensions or three dimensions. 
The SVM algorithm operates on the basis of the maximum-margin classifier, which aims to maximise the 
geometric margin while minimising the error value. The pseudocode for SVM is given in Algorithm 2.
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Algorithm 2.  Pseudo code for SVM.

Decision tree
The DT algorithm is a popular supervised learning method specifically developed to handle regression and 
classification problems37. Within the framework of a DT, nodes represent features, while edges indicate the 
corresponding outcomes. The attribute with the greatest information gain value is chosen as the root node. This 
technique is repeatedly applied to each feature until the final node no longer undergoes additional partitioning. 
The subsequent equation determines the calculation of entropy.

The equation is given by:

	
H(S) =

∑
c∈C

−p(c) log2 p(c).� (3)

Here, H(S) represents entropy, where C represents the set of classes, S represents voltage and temperature in 
the data, and p(c) represents the probability of C with respect to S. The pseudo-code for DT is represented in 
algorithm 3.

Fig. 3.  IFD output.

 

Scientific Reports |        (2025) 15:32190 8| https://doi.org/10.1038/s41598-025-17145-4

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Algorithm 3.  Pseudo code for DT.

Random forest
RF builds multiple decision trees using different subsets of the dataset and aggregates their predictions to 
determine the final result. Essentially, it is an ensemble of simple decision trees. After combining the outputs 
from each tree, a voting process takes place, where the classification outcome is decided based on the majority 
vote. Algorithm  4 presents a concise pseudo-code explanation of how RF operates. The thermal runaway 
threshold indicates the highest and lowest temperatures of the battery, safeguarding it against thermal runaway 
and optimising performance using real-time data. Once it comes to voltage, the classifier determines the range 
based on charging and discharging voltage, while for temperature, it specifies only the min-max range38. The 
decision for RF depends on the gain of entropy.

Algorithm 4.  Pseudo code for RF.

Information gain represents the anticipated decrease in entropy resulting from dividing the examples based 
on a specific attribute. A greater information gain indicates that the attribute is more successful in categorising 
the training data. The final prediction results from a majority vote. This approach employs multiple decision 
trees through ensemble learning to improve the accuracy and robustness of the classifier39.

Hyperparameter tuning using Bayesian optimisation
Bayesian Optimisation offers a smart and efficient way to tune ensemble models used in fault detection, 
especially when working with complex and high-dimensional data, like that collected from electric vehicles. In 
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ensemble techniques such as Random Forest (RF), Support Vector Machine (SVM), and Decision Tree (DT), the 
performance of the model depends heavily on the choice of hyperparameters. Rather than testing every possible 
combination, Bayesian Optimisation builds a predictive model that estimates how different hyperparameter 
settings might affect key performance metrics, like accuracy, precision, recall, or F1-score. It then uses this 
model to choose the most promising hyperparameter combinations, balancing the need to explore new options 
with refining those that already show good results. This approach helps save time and computational resources 
while improving the model’s effectiveness. In the context of fault detection, where anomalies are often rare, 
inconsistent, or difficult to distinguish, Bayesian Optimisation plays a crucial role in fine-tuning ensemble 
models to reliably differentiate between normal and faulty conditions. The hyperparameters are shown in Table 
4. This makes it especially useful when traditional trial-and-error tuning or exhaustive searches would be too 
time-consuming or inefficient.

In this proposed model approach, individual models are trained on historical temperature and voltage data, 
labelled with the safe operating area. The outputs of the three classifiers are then aggregated using majority 
voting or weighted averaging to derive the final prediction. This combination leverages the diversity of the base 
learners to reduce the overall prediction error and improve sensitivity to various fault patterns. The ensemble 
model is particularly suitable for real-time monitoring applications, where early and accurate fault detection is 
crucial for system stability and preventive maintenance. The pseudo-code for the ensemble is represented in 
Algorithm 5.

Algorithm 5.  Pseudo code for proposed IFD model with Bayesian hyperparameter tuning.

Optimal values

Parameter Value

SVM

C 10

kernel rbf

gamma 0.01

Decision tree

max_depth 10

min_samples_split 5

criterion gini

Random forest

n_estimators 150

max_depth 12

min_samples_leaf 2

Table 4.  Hyperparameter tuning using Bayesian optimisation.
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Results and discussion
This research provides valuable insights into the EV industry and serves as a foundation for advancements 
in battery fault detection and BMS. The safe operating area of a Li-ion cell is determined by its temperature 
and voltage range. To facilitate battery grouping, K-means clustering is applied to categorise batteries based on 
similarities in their temperature and voltage characteristics. Ensemble methods are utilised to detect anomalies 
in battery performance. A battery displaying temperature and voltage deviations significantly different from 
others in the group may indicate specific conditions related to safe or unsafe operation. The implementation of 
this research requires minimal hardware, with a system specification of 4 GB RAM and an Intel i3 processor. 
The work is conducted using Python 3.9.0, leveraging libraries such as NumPy, pandas, torch, SNF, sklearn, and 
matplotlib. The scikit-learn package is primarily used for algorithm implementation.

Performance parameters
To evaluate this model’s effectiveness, four performance criteria, which are accuracy, recall, precision, and F1-
score, have been employed. The abbreviations TP, TN, FP, and FN in binary classification commonly represent 
True Positive, True Negative, False Positive, and False Negative, respectively. These parameters are quantified 
using the following mathematical expressions:

	
Accuracy = T P + T N

T P + T N + F P + F N
, � (4)

	
Recall(R) = T P

T P + F N
, � (5)

	
P recision(P ) = T P

T P + F P
, � (6)

	
F 1 − score = 2 × P × R

P + R
. � (7)

Results
It is essential to comprehend the implementation prerequisites of an ensemble in real-world applications. An 
example of how ensemble approaches can be practically applied in fault classification is by combining many 
separate classifiers to enhance overall predicted accuracy and resilience. Once it comes to defect detection, where 
it is crucial to identify abnormal conditions accurately, ensemble approaches like RF, DT, and SVM are used. 
Ensembled approaches function by independently training numerous base classifiers and then combining their 
predictions to conclude. Within fault classification, individual base classifiers specialise in identifying specific 
fault patterns or features, enhancing the overall comprehension and nuanced perception of potential concerns. 
The collective decision-making of the ensemble is generally more dependable than that of individual classifiers, 
as it reduces the likelihood of overfitting specific training data outliers. It offers significant benefits when working 
with imbalanced datasets or complex fault scenarios since it effectively tackles these issues by utilising various 
models. Ensemble classifiers improve the overall dependability and precision of fault classification systems by 
working together, which makes them suitable for real-world applications where misclassification might have 
significant repercussions.

Figure 4 illustrates the normal working state of the battery, Fig. 4a shows the DS1 result, and Fig. 4b 
represents the result of DS2 for the temperature upper limit and lower limit. The battery is operated safely, 
and the unsafe area for under and over-temperature is marked as blue, which provides a safe environment to 
use the battery within the limit. For over-temperature, monitoring batteries is crucial to prevent overheating, 
which can accelerate degradation and compromise safety. Over-temperature protection ensures that the battery 
is not operated in conditions that exceed safe temperature thresholds, safeguarding both the battery and the 
surrounding environment. Whereas, under temperature accelerates in cold environments, batteries experience 
reduced performance or damage if operated below certain temperature thresholds. Under-temperature 
protection prevents the battery from being used in certain conditions.

Figure 5 illustrates the area of voltage safety for operation using two distinct actual data sets. Figure 5a 
displays the DS1 results, whereas Fig. 5b shows the DS2 results and the unsafe area for the battery is marked 
as yellow. In particular, this abrupt voltage breakdown may be attributed to a faulty connection, short circuit, 
collision, and other related causes. In the case of approaches that rely on a model threshold, it is possible that 
the abrupt decline in voltage may not have reached the prescribed limit, resulting in the possibility of detection 
failure. Under-voltage Protection setting a lower threshold for voltage helps prevent the battery from being 
discharged beyond a safe limit. Falling below this threshold can lead to diminished performance, irreversible 
damage, or safety hazards. Under-voltage protection ensures the battery is not over-discharged, preserving its 
overall health. Similarly, overvoltage protection, establishing an upper voltage limit, protects the battery from 
overcharging, which can result in overheating and electrolyte degradation and, in extreme cases, pose a safety 
risk. Over-voltage protection prevents the battery voltage from exceeding a level that could compromise its 
integrity. In the event of an atypical circumstance, it is imperative that the fault detection algorithm possesses 
the capability to accurately and expeditiously identify the defective battery.

The performance parameters of the algorithm using the ensemble are shown in Table 5. Battery fault detection 
falls within the acceptable range. While a fault is present, each fault indicator exhibits a distinct pattern.
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Testing of fault dataset on proposed model
For the evaluation of our proposed model, it is important to note that the battery dataset is currently operating 
without faults. In order to evaluate the algorithm, a faulty data set is generated that simulates charging and 
discharging scenarios. For example, during the charging mode, abrupt changes in voltage are induced by the 
power source, which in turn leads to fluctuations. The change in temperature is also generated by the increase in 
battery temperature due to a heat source. The data set contains balanced values with both negative and positive 
data samples, with 51.5 V as the median value for voltage, so above this value are positive samples and below this 
value are negative samples. Similarly, for temperature, the neutral temperature is 33.5 ◦C. When the operation 
value exceeds its threshold, it turns off the battery and restarts the operation.

F1, F2,..., and Fn depict the faults that occur for voltage and temperature. The voltage threshold we selected 
for protection is an upper limit of 55 V and a lower limit of 48V. Whereas the upper threshold for temperature 
is 45 ◦C and the lower threshold is 10 ◦C. Fig. 6a,b depict the upper and lower limits for voltage40. This study 
used evaluation criteria to assess and compare the model’s performance. Understanding the implementation 
requirements of the ensemble model in practical applications is crucial. Figure 7a,b represent the temperature 
upper limit and lower limit41.

The approach that necessitates matrix inversion and intensive calculations in IFD typically avoids these 
operations. Using appropriate training data and suitable kernel functions, the proposed predictive model 
efficiently calculates the IFD in a reduced time frame and with minimal storage requirements. When the inputs 
exceed the voltage level beyond the limiter value, the battery cuts off the load and regains its original position. A 
reset signal is generated and applied to the controller so that it can restart battery operation.

The dataset includes several borderline cases where fault indicators are either near or exactly at the detection 
threshold. The IFD model does not trigger a fault detection when conditions are at or just below the threshold. 
However, once the parameters exceed this threshold, even slightly, the model reliably identifies the fault. This 
behaviour highlights a deliberate balance between avoiding false positives and maintaining accurate fault 
detection.

Comparative analysis
The detection of voltage issues in a lithium-ion battery pack by employing an outlier detection technique. The 
battery dynamics are represented through the utilisation of the ECM, while the parameters are determined by 
employing the EKF technique24. Consequently, by establishing a correlation between the states of the battery 
and the characteristics of the model, the objective of detecting problems inside the battery pack is effectively 

Fig. 4.  (a) Temperature safe and unsafe using DS1. (b) Temperature vs time using DS2.
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converted into the objective of recognising abnormalities within the set of parameters. To tackle this matter, a 
methodology utilising a distance-based approach is implemented for outlier detection.

The defect is remedied by evaluating whether the fault indicator exceeds the predetermined threshold. 
In order to evaluate the effectiveness of the proposed technique, simulations and test bench experiments 
are conducted. The SVMs demonstrated efficiency in analysing real-world datasets, exhibiting superior 
performance with an accuracy rate25. The SVM has emerged as a prominent technique in pattern recognition, 
garnering substantial attention and engagement from researchers. The selection of this specific method has been 
determined to produce superior results compared to other classifications in this particular application. This 
study used evaluation criteria to assess and compare the model’s performance. The accuracy of the model is 
observed at 0.91. Figure 8 compares the model with existing work.

Finally, the ensemble fault detection model provides much better output, which is about 94% and provides 
a more robust and accurate prediction on a variety of data patterns. The ensemble’s success often relies on the 
diversity of the constituent models and the effective combination of their predictions.

Limitations of the proposed work
Despite the significant progress, some flaws in the research should be considered. For the ensemble model 
algorithm to perform well, it requires high-quality data, since it is already robust and accurate. The accuracy 
of predictions can be minimally affected if datasets in the real world are very sparse. It could also be optimised 

Model Accuracy Precision Recall F1-score

SVM 0.72 0.69 0.74 0.71

DT 0.82 0.83 0.83 0.80

RF 0.89 0.91 0.91 0.90

Ensemble (IFD) 0.94 0.93 0.95 0.94

Table 5.  Performance evaluation of proposed model.

 

Fig. 5.  (a) Voltage safe and unsafe using DS1. (b) Voltage vs time using DS2.
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Fig. 8.  Comparison of proposed model with existing work.

 

Fig. 7.  Safe and unsafe area—(a) Temperature for discharging. (b) Temperature for charging.

 

Fig. 6.  Safe and unsafe area—(a) Voltage limiter (discharging). (b) Voltage limiter (charging).
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to work better and more efficiently with larger applications or systems that have limited resources. Changes 
in calibration and several features could help apply the framework to lithium-ion batteries, for which it was 
primarily developed. All in all, it is crucial to carry out further research to prove that this framework can easily 
work in situations with tight and varying schedules to ensure prompt adjustment.

Conclusion
In this paper, we emphasised the critical importance of accurate fault estimation in batteries, especially for 
electric and hybrid electric vehicles, where safety and performance are paramount. The proposed IFD framework 
enhances safety by effectively identifying outliers and linearly separable faulty patterns within the dataset. Our 
approach leverages real-time system data, such as voltage and temperature collected during controlled charging 
and discharging cycles of a 51.8 V, 100 Ah lithium-ion battery. Key techniques employed include K-means 
clustering to identify behaviour classes and an ensemble learning strategy to classify safe versus unsafe operating 
conditions. The fault detection model, trained with carefully selected data and kernel functions, demonstrates 
strong predictive capability in identifying potential faults. By integrating machine learning models, the 
framework not only improves fault detection accuracy but also establishes meaningful correlations between safe 
operational behaviour and battery ageing. Ultimately, the IFD model serves as a valuable tool for determining 
optimal battery usage conditions, contributing to enhanced safety, extended battery life, and more reliable 
electric vehicle performance.

Data availability
The dataset generated and analysed in this study is available from the corresponding author upon request (Rahul 
Kumar Kamboj).
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