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This study integrates network science and intersection graph theory to analyse the structural 
properties of recipe networks in Catalan cuisine. Using three distinct cookbooks, two traditional 
and one haute cuisine, we construct the recipe similarity networks by linking recipes based on 
shared ingredients, with link weights reflecting ingredient similarity. We introduce a new, ad hoc, 
similarity measure that overcomes some limitations of traditional similarity metrics. We explore 
how different methodological approaches, such as the substitution of recipes/ingredients with 
their composing ingredients and link weight normalisation, influence network structure and node 
centrality. Our analysis reveals that recipe similarity networks are highly interconnected but show 
structural differences across cuisines, particularly in haute cuisine, which features more specialised 
recipes. Node centrality metrics identify key recipes that define culinary traditions, such as “Allioli” 
in traditional Catalan cuisine and “Becada con brioche de su salmis” in haute cuisine. We also develop 
a community detection algorithm based on link removal and clique identification, which uncovers 
tightly-knit recipe groups. This study advances the field of computational gastronomy by providing 
a methodological foundation that can be integrated with artificial intelligence techniques to support 
recipe personalisation, food recommendations, and gastronomic innovation.

Computational gastronomy (CG) is an emerging interdisciplinary field using data-driven and computational 
methods to the study of food and cooking practices1–3. CG seeks to uncover patterns and relationships 
within recipes, ingredients, and cuisines by integrating concepts from food science, cultural studies, and data 
analytics4,5. Advances in computational technologies have enabled the application of numerical, simulation, and 
algorithmic approaches to analyse complex culinary datasets4,6–8. Research in CG employs machine learning 
(ML) techniques with direct applications in the field of artificial intelligence (AI)1,7–9. Large companies are 
launching ambitious projects aimed at leveraging AI in the culinary field, focusing on empowering chefs with 
AI and robotics to unleash creativity in recipe creation and execution (https://ai.sony/projects/gastronomy/).

Network science has experienced significant growth over the past two decades due to its ability to model 
diverse real-world complex systems10–17. Its application has extended to food science18 and gastronomy, where it 
has been used to analyse culinary systems19. Ahn et al. introduced a flavor network to study flavor compounds 
shared by ingredients, showing that Western cuisines tend to pair ingredients with shared flavor compounds, a 
pattern supporting the food pairing hypothesis, whereas East Asian cuisines favor ingredients with fewer shared 
compounds20. In the same year, Teng et al.21 constructed a ‘complement network’ based on the co-occurrence 
frequency of ingredients, revealing two dominant communities in the network: savoury and sweet.

Intersection graph theory, a branch of discrete mathematics and graph theory, models graphs based on the 
intersection patterns of sets22,23. The foundation of intersection graph theory can be attributed to Szpilrajn-
Marczewski24, who demonstrated that all graphs can be viewed as intersection graphs25. Intersection graph 
theory has found applications in modeling diverse real-world problems23. In our context, the intersection graph 
formalism provides an intuitive and mathematically grounded way to model recipe similarity based on shared 
ingredients. Each recipe is treated as a set of ingredients, and links between recipes indicate the non-empty 
intersection of these sets. This representation aligns with the intuitive way of thinking about recipes as ingredient 
sets, making it not only theoretically sound but also conceptually accessible. This approach allows us to define 
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a flexible threshold on the magnitude of the overlapping and to analyse the structure of the resulting recipes 
network as this threshold varies. Intersection graph theory is thus particularly well-suited for modeling systems 
like culinary data, where entities (recipes) are composed of overlapping subsets (ingredients), and where the 
similarity between entities depends on the size and structure of these intersections. Furthermore, it enables a 
principled way to explore how strongly recipes are connected and to identify cohesive subgroups within the 
recipe space using graph-theoretic tools.

In this study, we integrate network science and intersection graph theory to analyze the recipe cookbooks 
structure of Catalan cuisine. The dataset comprises three Catalan cookbooks: two focusing on traditional recipes 
and one on haute cuisine. Since all recipes are drawn from published, expert-authored sources and manually 
harmonized, our dataset is therefore reliable, standardized, and coherent, ensuring consistency and reliability 
of the input data, an aspect often lacking in studies relying on user-generated content. We construct the recipe 
similarity network (RSN) for each cookbook by linking recipes based on shared ingredients, where the link 
weights reflect the similarity of ingredients among recipes. We propose a novel similarity measure that accounts 
for the number of ingredients in each recipe, providing a normalized similarity score that avoids size bias and 
ensures a fair comparison across recipes. These RSNs are represented as complex weighted graphs, with weights 
indicating the magnitude of ingredient overlap between recipes.

We first investigate how methodological choices in constructing the RSN, such as simplifying recipes to 
their basic ingredients and normalising link weights considering the size of the ingredient sets, affect network 
structure and node rankings. These methodological adjustments significantly change the identification of key 
recipes within the network. Our analysis reveals that RSNs are highly connected, with most recipes sharing 
at least one ingredient. However, as the ingredient similarity threshold increases, connectivity decreases more 
rapidly in the haute cuisine network, highlighting the specialised and unique nature of these recipes compared 
to traditional cookbooks.

Next, we use node centrality measures from network science to identify pivotal recipes within the structure 
of the RSNs, uncovering essential dishes that define specific culinary traditions. This analysis provides insights 
into the interconnectedness of ingredients and recipes, shedding light on the underlying organisation of culinary 
systems.

Finally, we propose an algorithm that combines link removal and clique detection to identify tightly 
connected communities of recipes with varying levels of ingredient similarity. Technically, this approach relies on 
detecting maximal cliques after progressively filtering the network by increasing similarity thresholds, allowing 
us to extract fully connected subgraphs that represent core clusters of highly similar recipes. This algorithm has 
potential applications in computational gastronomy, including uncovering recipe communities that embody the 
‘essence’ of a culinary tradition, generating ingredient-based recommendations, and identifying characteristic 
ingredients across different recipe categories. Beyond the culinary domain, the same clique-based framework 
can be applied to diverse fields: in biology, to detect groups of microbial communities with highly overlapping 
species (e.g., in microbiome studies); in ecology, to identify habitats with similar species assemblages; and in 
computer science, to group users or systems sharing highly overlapping access privileges or behavioral patterns.

This manuscript is organised as follows: Sect. 1 introduces computational gastronomy and its connection to 
network science and intersection graph theory, reviewing existing research on recipe and ingredient networks. 
Section 2 discusses related works, highlighting key studies and their main content. Section 3 details the dataset 
and methodology, including data extraction, network construction, and the proposed similarity measure build 
RSNs. Section 4 presents and discusses the results. Finally, Sect. 5 concludes by summarising findings, discussing 
implications, and suggesting future directions.

Related works
Network science is a powerful tool for characterising recipe collections and ingredient pairings by handling 
and analysing large, complex datasets19. By applying network analysis, researchers can reduce the complexity 
of recipe datasets, classify cuisines, and compare culinary traditions at both regional and global levels. This 
approach facilitates insights into the cultural, functional, and structural aspects of culinary systems.

Ahn et al.20 explored the use of network analysis in food science to study culinary ingredients and their 
chemical flavor compounds. Drawing on global online culinary databases, they construct a bipartite network 
linking ingredients to their flavor compounds. Then, the authors project the bipartite network into a weighted 
network of ingredients, where links represent shared flavor compounds. The analysis reveals modular structures 
within the ingredient network, corresponding to food categories such as fruits, vegetables, and meats. 
Furthermore, it demonstrates how shared compounds influence ingredient compatibility in different cuisines. 
This work laid the foundation for “computational gastronomy,” an interdisciplinary field combining data science 
with culinary studies2.

Kular et al.26 investigate the relationship between cuisine and culture through network analysis. They propose 
that recipes and their ingredients reflect the cultural origins of their creators. Their research constructs a Network 
of Recipes (NoR), where nodes represent recipes, and shared ingredients define edges. The NoR exhibits high 
connectivity between recipes, suggesting that dietary habits may be less diverse than anticipated. A PageRank 
analysis ranks recipes to identify universally significant dishes, showing that certain foods hold a central role 
across cultures. Community analysis further highlights the dominant cultural influences in specific regions, with 
Asian cuisine offering a clearer regional cultural identity than others.

Teng et al.21 propose a novel approach to recipe recommendations by analysing ingredient relationships within 
online recipe collections. They construct two types of networks: the complement network and the substitute 
network. In the complement network, nodes represent individual ingredients, and links indicate statistically 
significant co-occurrence in recipes. The substitute network, derived from user-generated suggestions, connects 
ingredients based on their ability to replace each other in recipes, with weighted edges reflecting substitution 
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frequency. These networks reveal distinct clusters, such as sweeteners (sugar, honey, maple syrup) and cooking 
fats (butter, olive oil, margarine), showcasing functional and culinary similarities. Their study demonstrates 
how structured ingredient networks can support recommendation systems to individuate personal preferences, 
dietary needs, or ingredient availability.

Simas et al.27 explored two hypotheses in cooking, the well-known food-pairing20, and the food-bridging. 
Food-pairing suggests that if two ingredients share important flavor compounds, they likely occur together 
in recipes, while food-bridging proposes that contrasting ingredients can be connected through intermediate 
ones with shared affinities. The authors used network science to analyse the two hypotheses across various 
cuisines, identifying four culinary classes based on the prevalence of these mechanisms. They suggest that food-
bridging enhances ingredient compatibility in recipes and is widespread in traditional cuisines, providing a 
novel perspective on culinary practices.

Caprioli et al.28 built a network of ingredient combinations in global cuisines using data from the CulinaryDB 
online repository, which provides structured information on recipes and ingredients ​(​​​h​t​t​p​s​:​/​/​c​o​s​y​l​a​b​.​i​i​i​t​d​.​e​d​u​
.​i​n​/​c​u​l​i​n​a​r​y​d​b​/​​​​​)​. Each cuisine is represented as a network, where nodes correspond to ingredient types, and 
weighted links indicate how frequently ingredient pairs co-occur in recipes. A bipartite network is also modeled, 
connecting ingredient nodes to recipe nodes based on ingredient presence. The analysis identifies distinctive 
ingredient pairing patterns characterising different cuisines and reveals geo-cultural clusters formed by these 
combinations.

However, these studies rely on online databases that are the product of contributions from thousands of 
different authors, leading to a lack of standardised and curated data. This absence of uniform ingredient labeling 
often results in inconsistencies and inaccuracies. Herrera19 highlights the challenges of mining such data, 
emphasising the necessity of standardising ingredient information, and addressing biases and inaccuracies in 
recipe datasets.

Table  1 summarises the related works cited in this chapter, highlighting their strengths, limitations, and 
furnishing a comparative analysis with the approach we propose in this study.

Methods
Gastronomical database: mining and processing cookbooks
To study the recipe networks, three different compilations were selected: (1) Corpus del patrimoni culinari català 
(CTrad), 2011, La Magrana, Barcelona, (2) El Celler de Can Roca (Roca), 2018, Librooks, Barcelona, (3) 100 Plats 
indispensables de la cuina catalana (101), 2018, Cossetània, Barcelona. The CTrad book contains 1136 recipes 
of Catalan cuisine collected from over 400 restaurants and from interviews with people around Catalonia. The 
Roca contains 86 recipes representative of the cuisine developed at El Celler de Can Roca until 2016 selected 
by the three Roca brothers, Joan, Josep and Jordi. Finally, the 101 contains 100 recipes as representative of the 
Catalan cuisine carefully selected by a recognised expert, Jaume Fàbrega i Colom, PhD. Only the 779 recipes 
from the three cookbooks that were not categorised as desserts were included in the analysis.

Study Main Contribution Pros Cons/Limitations Comparison with Our Work

Ahn et al.20 – Flavor 
Network

Built ingredient networks based on shared 
flavor compounds to test the food pairing 
hypothesis

Highlights network science in food 
studies; Introduced flavor compound-
based analysis; large dataset; cross-
cultural insights

Relies on non-standardised, 
heterogeneous online databases 
(potential noise in data);

Focuses on ingredient pairs, while 
we model complete recipes and 
their structural similarity; We use 
curated, expert-verified data

Teng et al.21 – 
Complement/
Substitute Networks

Constructed ingredient complement and 
substitution networks from user recipe 
data

Useful for ingredient recommendation; 
incorporates user behavior

Based on noisy, user-generated 
data; lacks standardisation

We use curated, expert-verified 
data and model recipe-level 
similarity, not just pairwise 
relations

Kular et al.26 – 
Network of Recipes 
(NoR)

Built recipe-level networks to explore 
cultural culinary identities

Cultural insight; recipe importance via 
node centrality; community structure 
analyses identifying different cultures

Coarse similarity metric; no link 
weight normalisation

We introduce a normalised 
similarity measure and explore 
network dynamics (e.g., 
percolation, cliques)

Caprioli et 
al.28 – Network of 
Ingredients

Built ingredient co-occurrence networks 
from a global online recipe repository 
(CulinaryDB)

Broad coverage; highlights geo-cultural 
ingredient patterns

Based on user-contributed data; 
lacks link weight normalisation

Our networks are based on 
standardised, annotated data 
and propose a refined similarity 
metric between recipes

Simas et al.27 – 
Food-bridging

Proposed the food-bridging hypothesis 
using intermediate ingredients

Novel theoretical perspective; goes 
beyond pairwise interactions

Relies on non-standardised, 
heterogeneous online databases 
(potential noise in data);

We use curated, expert-verified 
data

This Study

Constructs Recipe Similarity Networks 
(RSNs) from curated cookbooks; 
introduces a new normalised similarity 
measure; introduced clique-based 
community detection

Uses expert-curated data; robust 
similarity metric; adaptable to other 
fields (e.g., biology, ecology, computer 
science)

Currently applied to Catalan 
cuisine; does not yet integrate 
sensory or nutritional data

Offers a generalisable, 
interpretable network framework 
based on recipe structure and 
similarity

Table 1.  Summary of related works in computational gastronomy and network analysis of recipes. Each 
row describes a key study. The columns are as follows: Article: the referenced research and the main concept 
introduced. Main contribution: A concise description of the core methodological or conceptual advancement. 
Pros: strengths and advantages of the research. Cons/Limitations: identified limitations or methodological 
drawbacks. Comparison with our work: A direct comparison highlighting how the proposed method differs or 
improves upon the referenced research.
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Ingredient processing from each cookbook was done following an inhouse annotation guide that contains 
directives to overcome language related issues like synonymous naming or more culinary related issues, like 
decomposing complex (elaborated) ingredients (for example Chicken broth) into their unprocessed ingredients. 
For the analysis, each ingredient was assigned to a general base category that groups all the unelaborated varieties 
of the product by applying a gastronomic equivalence criterion. For example, all the ingredients written as onion, 
white onion, purple onion and purple onion sliced into pieces were assigned to the same general base category 
Onion. In a similar way all the cuts of meat from an animal were assigned to the original animal from which 
they were obtained. For example, minced veal, veal steaks, veal bones, veal, veal shank, diced veal trimmings, 
cooked veal head, legs of veal, veal heart groups in the general base category Veal. The rest of the ingredients 
were processed in the same way, resulting in 415 different general base categories in which the original written 
ingredients were grouped. The rest of the terms contained in the ingredient’s original name that could refer to its 
elaboration process, or properties as its origin, variety, colour, among others were also processed and assigned 
to different categories named Elaboration process 1, 2 or 3, and Intrinsic property 1, 2 or 3 to keep as much useful 
information as possible of each ingredient. Furthermore, all the terms extracted from the unprocessed original 
ingredients were lemmatised and underwent through a paraphrasis process to avoid multiple naming for the 
same ingredient. The Supplemental Material file contains the complete list of ingredients for the Ctrad (Table 
S1), 101 (Table S2), and Roca (Table S3) cookbooks.

Building gastronomical recipes networks with intersection graph theory
To construct the recipe similarity network (RSN), we apply principles from intersection graph theory22,23. In 
graph theory, a graph is a structure consisting of a set of objects called nodes (or vertices) connected by links (or 
edges)29. An intersection graph represents the pattern of intersections within a family of sets22.

Let be G = (N , L) an intersection graph where N  is the set of nodes N = {n1, n2, n3, . . . , nn} and 
L = {l1, l2, l3, . . . , ll} the set of links. Formally, the intersection graph G is formed from a family of sets 
S = {s1, s2, s3, . . . , sn} where each set si corresponds to the node ni. The link (ni, nj) exists if and only 
if the corresponding sets si and sj  have at least one common ingredient. In other words, two nodes ni and 
nj  are connected by a link if and only if the corresponding two sets si and sj  have a non-empty intersection:

	 E (G) = {( ni, nj ) | si ∩ sj ̸= ∅ }� (1)

In a recipe network, the family of sets defining the link among nodes is the recipe ingredient sets. Specifically, the 
set si contains the ingredients of the recipe i, the set sj  contains the ingredients of the recipe j and so forth. A 
link (ni, nj) exists if and only if recipes i and j share at least one common ingredient.

A recipe network can be described by an n × n recipes matrix R, where the element R(i, j) is:

	
R (i, j) =

{ = 0 if si ∩ sj = ∅
> 0 if | si ∩ sj | > 0 � (2)

Where si ∩ sj  denotes the intersection between the ingredient sets of the recipes i and j, and | si ∩ sj | 
indicates the cardinality of the intersection. Thus, R (i, j) = | si ∩ sj |; where R (i, j) = 0 when the recipes 
i and j do not share ingredients, and R (i, j) ≥ 0 if they share at least one ingredient in common between the 
recipes i and j. The element R(i, j) quantifies the number of ingredients shared between two recipes.

Recipe similarity normalisation for computing link weight
The generic element R(i, j) of the weighted adjacency matrix R indicates the number of common ingredients 
between the link ending nodes/recipes. If we define the weight of the links as the cardinality of the intersection, 
we obtain weights that represent the number of shared ingredients between pairs of recipes. This graph can be 
described as a trivial weighted recipe network.

However, the number of shared ingredients depends on the total number of ingredients in each recipe. 
Recipes with many ingredients are more likely to share components with other recipes. Therefore, relying solely 
on the cardinality of the intersection may overestimate similarity, particularly for recipes with many ingredients.

To address this issue, we introduce a normalised similarity measure that accounts for the number of 
ingredients in each recipe. This similarity value becomes the weight wij  of the link connecting recipes i and j 
in the network.

We calculate the weight wij  of the links (ni, nj) in this way:

	
wij = 1

2

(
|si ∩ sj |

|si|
+ |si ∩ sj |

|sj |

)
� (3)

Where |si ∩ sj | is the cardinality of the intersection between recipes si and sj , |si| is the cardinality of the 
ingredient set of recipe i, and |sj | is the cardinality of the ingredient set of recipe j. This formula measures the 
relative similarity between si and sj ​, independent of the absolute size of their ingredient sets. wij ​ represents a 
normalised similarity measure between two recipes i and j and ranges in the closed interval [0,1]. The minimum 
wij=0 indicates that there are no common ingredients ( |si ∩ sj | = 0). The maximum wij=1 indicates that the 
recipes share all their ingredients ( si= sj). Thus, the weight reflects the proportion of shared ingredients relative 
to the sizes of the ingredient sets. It assigns higher values to links connecting recipes with a significant ingredient 
overlap. The similarity measure we introduce offers advantages over traditional metrics such as the Jaccard 
index. While the Jaccard index normalises the intersection of two sets by the size of their union, our measure 
computes the average proportion of shared ingredients with respect to the size of each individual recipe set. This 
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formulation reduces the bias against comparisons involving sets of differing sizes, which are often penalised by 
the Jaccard approach. At the same time, it retains important properties such as symmetry and normalisation 
within the [0,1] interval. Consequently, our measure more effectively captures meaningful overlaps in ingredient 
composition, particularly in cases where one recipe is fully or largely contained within another.

In summary, the RSN is an undirected weighted graph where nodes represent recipes, and link weights 
indicate the normalised number of shared ingredients. RSN captures the degree of similarity between recipes 
based on their ingredient composition. See Fig. 1 for a schematic representation of how the RSN is constructed 
from a database of recipe ingredients.

The recipe network with increasing overlapping threshold
The RSN is constructed using varying intersection threshold values, a process equivalent to removing links 
with weights below a specified threshold. This operation, known as link removal (or link attack), is called bond 
percolation in statistical physics30. Link removal is a valuable method for exploring various problems in network 
science31–33. This approach removes links with weights below the threshold, retaining only those links with 
higher weights. The weight w of a link reflects the similarity level between nodes (recipes) and increases with a 
higher intersection threshold. Links connecting recipes with greater ingredient overlap are stronger, indicating 
higher similarity.

Initially, the network is built for w > 0, where links are drawn if the intersection of ingredient sets between 
recipes is not empty ( ∩ ̸= ∅), corresponding to at least one shared ingredient. At this stage, the network 
represents the most connected recipe network, capturing all possible links based on minimal recipe similarity. 
Subsequent networks are generated for progressively higher thresholds. For example, the network at w > 0.1 
includes only links where the weight w is higher than 0.1, implying a more substantial intersection between the 
connected nodes. Similarly, the network at w > 0.2 considers links with w > 0.2, and this pattern continues 
for higher thresholds.

This approach highlights how the network connectivity decreases as the criteria for recipe similarity become 
more severe, providing insight into the clustering and fragmentation dynamics within the RSN.

The network properties
We analysed the RSN by adopting the basic properties of the complex network theory. Below, we outline the 
network properties applied in the analysis:

Node degree  The degree of a node represents the number of links connected to it16,34,35. The node degree is the 
most straightforward measure of node importance, accounting for how many links a node has. In the RSN, the 
degree k of a node indicates the number of recipes that share at least one common ingredient with the corre-
sponding recipe. Nodes with higher degrees are also more central in the network.

Node strength  The strength of a node is the sum of the weights of its links11,16. Node strength is the weighted 
counterpart of the node degree and is also named the weighted node degree16. Node strength reflects both the 
number of links and their respective weights, offering a more nuanced measure of node importance11. In the 
RSN, node strength represents the total ingredient similarity of a recipe with all other recipes, as computed using 
Eq. (3).

Diameter  The network diameter is a structural measure based on the notion of node distance. The distance 
between nodes in the network is the minimum number of links to travel from one node to the other29. The dis-
tance between nodes is also called the shortest path length. The diameter of the network (also called the longest 
geodesic) is the longest distance to travel between a couple of nodes16. In the RSN, a larger diameter indicates 
that recipes are more distantly related in terms of ingredient similarity.

The largest connected component (LCC)  The largest connected component (LCC) is a widely used measure of 
network functioning34–36. The LCC is also known as the giant component, and it accounts for the highest number 
of connected nodes in the network. In the recipe network, the LCC reflects the maximum number of recipes that 
are connected through shared ingredients. This measure does not account for link weight heterogeneity, focusing 
solely on topological connectivity.

Recipes communities by finding cliques in the network
Clique identification is a central technique in community detection for complex networks37–39. A clique is a 
subset of nodes where a link directly connects every pair, forming a complete subgraph. Cliques are pivotal for 
understanding cohesion, clustering, and tightly-knit groups in networks40.

Formally, in graph theory, a k-clique is a subset of nodes where every pair of nodes is connected by a link. For 
instance, a 3-clique (triangle) is a complete subgraph of three nodes and represents the smallest possible clique 
in a simple network; 4-clique is a fully connected subgraph of four nodes, often referred to as a quadrilateral.

In weighted networks, a weighted clique forms a complete subgraph where link weights represent the 
intensity, cost, or strength of relationships. A maximum-weighted clique maximises the sum of link weights, 
while a threshold clique includes links where all weights exceed a specified threshold.

Identifying cliques in the RSN after removing links with weights lower than a specified threshold value (see 
Sect. 2.4 above) is a threshold clique detection that allows us to find subsets of nodes with each link weight value 
higher than the threshold. In our RSNs, the weight of the links represents the level of similarity between nodes 
(recipes). Finding cliques after removing links weaker than the threshold reveals sets of recipes with a defined 
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Fig. 1.  The recipe network assembling. (A) The process starts from the recipe sets. A recipe is a set of 
individual ingredients from which we compute the intersection set with another recipe. (B) The intersection 
set among recipes represents the common ingredients. If there are no common ingredients between two 
recipes, the intersection is an empty set. Each non-empty intersection corresponds to a network link 
connecting the two recipes sharing common ingredients in the intersection graph; (C) the intersection graph 
of recipes in which each link represents an intersection set of ingredients; (D) the trivial weighted network of 
recipes extracted from the intersection graph in panel (C); here, link weight indicates the number of common 
ingredients between recipes, i.e., the cardinality of the intersection; (E) the recipe similarity network (RSN) in 
which we compute the link weight using Eq. 3; the RSN is an undirected and weighted network where the link 
weight indicates the normalised average measure of ingredient similarities between recipes.
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minimum level of similarity. These subsets of recipes, defined by an arbitrary minimum similarity threshold, can 
be interpreted as recipe communities based on ingredient similarity.

Results and discussion
Comparison of different approaches to network construction
This section examines how varying methodologies influence the structure of the RSN derived from the cookbook 
database. Specifically, we analyse the centrality of nodes in the RSN built from the ‘Corpus del patrimoni 
culinari català’ (Ctrad), comparing results obtained with and without substituting recipes/ingredients with their 
constituent ingredients. In complex networks, node centrality measures a node’s importance or influence, often 
using metrics such as degree and strength to assess this from different perspectives33,41,42.

Here, we use node degree, representing the number of links connected to a node16, and node strength 
(weighted degree), representing the sum of the link weights connected to a node33. These metrics quantify the 
topological centrality, indicating the relative importance of nodes in the network.

Table 2 lists the 20 nodes with the highest degree (k) and strength (s) in the Ctrad RSN before (no substitution) 
and after (substitution) replacing recipes/ingredients with their basic components. The substitution affects node 
rankings for both metrics. For instance, by degree centrality, the top-ranked node changes from node 175 (no 
substitution) to node 905 (with substitution). Similarly, the highest-ranked node changes from node 144 (no 
substitution) to node 55 (with substitution) for strength centrality.

Node 55 becomes the most central by strength after substitution but is absent from the top 20 before 
substitution. Node 55 represents the “Allioli” recipe, a traditional Catalan sauce made primarily of garlic, olive 
oil, and salt. Known for its distinct flavor and creamy texture, Allioli is a representative sauce of the Catalan 
cuisine used for meat, vegetables, rice or pasta dishes. Substituting recipes with their ingredients significantly 
increases Allioli’s similarity to other recipes, increasing its centrality. This result highlights Allioli’s role in 
traditional Catalan cuisine as it is made with three of its most common ingredients, reflected by its highest 
strength in the substituted network.

These changes underscore the importance of methodological choices in constructing RSN. For example, 
replacing recipes/ingredients with their basic components resolves inconsistencies where nodes might 
simultaneously represent recipes and their ingredients (e.g., mayonnaise). Without such substitution, the same 
entity could appear as both a recipe/node and an ingredient in other recipes, introducing ambiguity into the 
network’s structure. Considering and clarifying how recipes/ingredients and their basic components are handled 
is particularly important when constructing networks from online recipe databases20,21,43, where each user can 
input recipes/ingredients without specifying what they consider to be the basic ingredients.

To build the recipe network, we may use the simple ingredients intersection. However, this approach doesn’t 
consider the overall number of ingredients in each recipe. Instead, we opt for a more nuanced approach that 
normalises link weight using a similarity measure that accounts for shared and total ingredients. We find that 
this choice significantly influences the recipe network structure.

Table 3 shows the ten nodes with the highest strength (s) in the three cookbooks before (Not norm) and 
after (Norm) normalisation using Eq. 3. Normalisation alters node rankings across all networks. For instance, 
in the 101 network, node 3 is the Allioli, a recipe composed of just three ingredients, that rises to the top after 
normalisation despite not being in the top 10 initially.

In the Ctrad network, before normalisation, the recipe “Platillo de pollastre amb mandonguilles i bolets” 
(a rich dish combining chicken, meatballs, mushrooms, and various seasonings with 19 ingredients) holds the 
highest strength. After normalisation, Allioli becomes the most central node in the RSN. This change reflects how 
normalisation accounts for ingredient set sizes: before normalisation, link weights depend on the intersection 
size of recipe ingredients, favoring recipes with many ingredients. After normalisation, the similarity is calculated 
independently of ingredient set size and may favor recipes with fewer, widely shared ingredients, like Allioli.

Previous studies have employed various methods to connect ingredients within networks. For example, 
Ahnert et al.20 linked ingredients based on shared aromatic compounds, using the number of shared compounds 

Rank

No Substitution Substitution No Substitution Substitution

Recipe ID k Recipe ID k Recipe ID s Recipe ID s

1 175 606 905 617 144 311.62 55 327.30

2 497 606 398 616 962 311.62 144 327.30

3 814 606 814 616 124 304.9 133 311.67

4 862 606 179 615 1063 301.3 1063 311.54

5 876 606 369 615 1049 300.81 1122 305.60

6 462 605 474 615 1066 300.61 542 303.77

7 656 605 497 615 859 300.55 949 301.89

8 721 605 721 615 803 297.94 20 300.51

9 939 605 22 614 564 297 984 300.05

10 961 605 56 614 133 296.29 124 299.05

Table 2.  Identities and values for the Twenty highest degrees (k) and highest strength (s) nodes for the Ctrad 
cookbook before (no substitution) and after (substitution) of the recipes-ingredients with their composing 
ingredients.
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as link weights but without considering the total number of compounds per ingredient. Similarly, Caprioli et 
al.28 connected ingredients co-occurring in recipes with link weights based on their frequency of co-occurrence, 
again without accounting for the total ingredient set size. While effective, these approaches do not normalise link 
weights relative to the total size of ingredient or aromatic compound sets, which may alter network structure and 
centrality metrics. Calculating link weights while considering ingredient set sizes may ensure a more balanced 
representation of relationships within the network, ultimately enhancing the reliability of node importance 
assessments.

Our findings demonstrate that the choice of methodology, substitution of ingredients and link weight 
normalisation, impacts the resulting network’s structure and node centrality. Defining and applying appropriate 
methods to compute link weight in the network is critical, as these decisions influence key outcomes, such as 
node rankings and identifying essential recipes.

The recipes network properties
The statistical properties of the three RSNs are summarised in Table  4. The Ctrad RSN is the largest, with 
622 nodes/recipes and 184,799 links, followed by the 101 network, with 100 nodes/recipes and 4052 links. 
The smallest is the Roca network, with 57 nodes/recipes and 1594 links. The average link weight < w > is 
approximately 0.38 for both the Ctrad and 101 RSNs and slightly lower at 0.32 for the Roca network.

The connectance (C) quantifies the degree of interconnectedness within a network44. It is calculated as 
C = L

N·(N−1) , representing the density of observed links relative to the total possible links. The connectance 
values for the Ctrad and Roca networks are near their maximum possible values and are also very high for the 
101 network. This indicates that most recipes in the RSNs share at least one ingredient. In other words, the RSNs 
exhibit interconnectedness close to a complete graph, where all nodes are linked.

The node degree ( k), representing the number of links connected to a node16, is high on average, reflecting 
the high connectivity of the RSNs. The node strength ( s), or weighted degree, is the sum of the link weights of 

101 Ctrad Roca

N 100 622 57

L 4052 184,799 1594

C 0.82 0.96 0.99

< w> 0.37 0.39 0.32

< k> 81.04 594.21 55.92

< s> 29.96 231.44 17.85

D 3 3 2

LCC 100 621 57

Table 4.  Statistical properties of the three rsns. Structural indicator keys are: N  number of nodes, L number 
of links, C  connectance, < w > average link weight, < k > average node degree, < s >  average node 
strength, D network diameter, and LCC  Largest connected component. Cookbook keys are: corpus Del 
patrimoni culinari Català (CTrad), El celler de can Roca (Roca), 100 plats indispensables de La Cuina Catalana 
(101).

 

Rank

Ctrad 101 Roca

Not Norm Norm Not Norm Norm Not Norm Norm

Recipe ID s Recipe ID s Recipe ID s Recipe ID s Recipe ID s Recipe ID s

1 862 3773 55 327.3 70 503 3 46.14 03_5 66 09_2 22.02

2 1011 3675 144 327.3 61 451 1 44.56 03_3 52 01_5 21.99

3 652 3548 133 311.67 43 438 70 43.96 04_3 50 04_3 21.27

4 660 3528 1063 311.54 35 429 69 42.29 01_5 41 09_5 21.16

5 968 3479 1122 305.6 74 428 29 41.59 09_5 41 01_4 21.05

6 1035 3473 542 303.77 33 427 55 41.46 03_4 40 11_2 20.71

7 82 3391 949 301.89 69 419 44 40.88 01_2 36 03_3 20.67

8 611 3377 20 300.51 73 405 37 40.84 01_4 34 04_7 20.64

9 389 3372 984 300.05 27 395 30 40.66 14_4 33 14_4 20.56

10 462 3331 124 299.05 26 385 46 40.64 09_2 33 03_5 20.52

Table 3.  Identities and values for the ten highest strength (s) nodes for the three cookbooks for not 
normalised (Not norm) and normalised (Norm, using Eq. 3) link weights. Cookbook keys are: corpus Del 
patrimoni culinari Català (CTrad), El celler de can Roca (Roca), 100 plats indispensables de La Cuina Catalana 
(101).
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a node33. The average node strength ( < s >) is lower than the average node degree ( < k >), as expected since 
link weights in recipe networks range between 0 and 1.

The network diameter ( D), the longest distance between any two nodes16, is very small for all recipe 
networks. It is D=3 for the Ctrad and 101 networks and D=2 for the Roca network. The largest connected 
component ( LCC) encompasses all nodes ( N ) in each network, showing that the RSNs are globally connected.

These statistical properties demonstrate that the recipe networks, when constructed using the lowest 
similarity threshold, such as the presence of just a single shared ingredient to draw links, exhibit a high level of 
connectivity, with dense interrelationships between nodes and a structure approaching that of a fully connected 
graph.

The RSN features increasing the intersection threshold
Figure 2 depicts how key network properties evolve as a function of the intersection threshold t, which controls 
the minimum required ingredient overlap between recipes to establish a link. As t increases, weak links are 
progressively removed, leading to a sharp decline in connectivity metrics, including the number of links L, 
average degree < k > and average node strength < s >. This effect is observed in all three networks but is most 
pronounced in the Roca RSN, where a significant collapse occurs already for t>0.2.

This observation suggests that Roca recipes tend to have fewer common ingredients with each other, 
reinforcing the hypothesis that haute-cuisine recipes are more individualised and specialised, compared to 
traditional cookbooks. The faster decay in connectivity for Roca indicates that its links are weaker and less 
uniformly distributed, leading to a network that disintegrates more rapidly as stricter similarity criteria are 
imposed.

The average link weight < w >, on the other hand, increases with t, reflecting the removal of weak 
connections and the retention of stronger, more meaningful links. However, once t exceeds a certain value, the 
network becomes too sparse, and < w > collapses as no links remain, thus indicating that even the strongest 
similarities are too rare to sustain network connectivity under high-threshold conditions.

The network diameter D, which captures the maximum distance between any two connected recipes, 
remains stable at low thresholds but increases sharply at critical values of t, signaling network fragmentation. 
Once the largest connected component ( LCC) begins to break down, D typically reaches a peak and then 
declines as only small, tightly connected clusters remain. The thresholds at which D peaks, t=0.5 for Roca, t

Fig. 2.  Structural properties of the three recipe networks as a function of the intersection threshold (t). The 
x-axis values indicate that the intersection graph is built with increasing t. By increasing t, we remove weaker 
links from the network, performing a link removal analysis of the network’s structural properties. We remove 
links with weight w < t. t=0 indicates that we hold links with w > 0, and it corresponds to the original 
network; t = 0.1 indicates that we hold links with w > 0.1 and remove links of w ≤ 0.1; t = 0.2 indicates 
that we hold links with w > 0.2 and remove links of w ≤ 0.2, and so on. Network structural indicators keys: 
number of links ( L), average link weight ( < w >), node degree ( < k >), node strength ( < s >), network 
diameter ( D) and largest connected component ( LCC). Each structural property is normalised by the 
maximum value for that indicator. Cookbook keys are: Corpus del patrimoni culinari català (CTrad), El Celler 
de Can Roca (Roca), 100 Plats indispensables de la cuina catalana (101).
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=0.6 for 101, and t=0.75 for Ctrad, represent points of structural transition, where the network shifts from a 
globally connected structure to a set of isolated recipe communities.

The faster fragmentation of the Roca network is further supported by its lower average link weight (Table 4), 
and its left-shifted link weight distribution (Fig.  3). This distribution, bell-shaped but skewed toward lower 
values for Roca, confirms that ingredient overlap is weaker and less frequent in haute cuisine. In contrast, the 
101 and Ctrad networks maintain stronger internal connectivity across a broader range of thresholds, suggesting 
greater homogeneity in ingredient usage within traditional Catalan cooking.

Figure 4 provides a visual progression of the Roca RSN under increasing thresholds. As t rises, the network 
transitions from a densely connected graph ( w>0) to a fragmented structure where only tightly similar recipes 
remain linked ( w>0.2, w>0.3, etc.). This percolation-like process highlights the emergence of highly cohesive 
subgroups of recipes potentially reflecting thematic or functional clusters such as sauces, desserts, or meat dishes 
with consistent ingredient bases.

These isolated components are not artefacts, but rather meaningful communities, identified through 
increasingly strict similarity criteria. They can be interpreted as culinary modules, where shared ingredient 
profiles could correspond to shared gastronomic roles, preparation methods, or flavor profiles. This opens new 
possibilities for automatic classification of recipes, identification of canonical preparations, or ingredient-based 
recommendations.

In summary, this analysis illustrates how adjusting the similarity threshold provides a multiscale view of 
recipe similarity, and how haute cuisine exhibits structural differences in ingredient connectivity when compared 
to traditional cookbooks. The method also lays the foundation for advanced applications such as clustering of 
recipes by style, diet, or gastronomic function, and even cross-cultural comparisons of culinary systems.

The characterising recipes
Identifying the most central nodes in a network allows researchers in various scientific fields to gather essential 
information about the system being analysed41. In our RSN, the most central nodes represent the recipes 
that show the greatest overall similarity to other recipes in the collection. We can refer to these nodes as 
“characterising recipes” of the culinary style the recipe set represents. In Table 5, we list the most central node in 
the network according to the strength ( s) of recipes for the three cookbooks. The characterising recipe with the 
highest strength in the network for the Ctrad is node 55. As discussed above, node 55 represents Allioli, a very 
traditional Catalan sauce made primarily from garlic and olive oil.

The characterising recipe for the Roca network is node 09_2, the recipe for the Becada amb brioix del seu 
salmís (Woodcock with brioche of its own sauce), a reinterpretation of haute cuisine by Joan Roca of a traditional 
dish from Catalan cuisine. The Becada amb brioix del seu salmís is a dish where the woodcock is prepared with a 
rich sauce, served with a brioche, which complements the flavors of the bird. Joan Roca has described the Becada 
as the dish that most represents his culinary philosophy, presenting the complete recipe in a journalistic feature 
dedicated to the renowned Catalan chef and his restaurant (R-225 La Cocina de los Sentidos 2014, ​h​t​t​p​s​:​​/​/​w​w​
w​.​​r​e​v​i​s​t​​a​r​e​s​t​a​​u​r​a​d​o​​r​e​s​.​c​o​​m​/​r​e​c​e​​t​a​s​-​-​c​​o​c​i​n​a​-​d​e​-​l​o​s​-​s​e​n​t​i​d​o​s). Identifying the most significant recipe in Roca’s 
cuisine validates the effectiveness of the network science methodology proposed in this study for characterising 
representative recipes within a specific culinary domain.

The ingredients statistical analyses
The analysis of ingredient frequency across the three cookbooks highlights significant ingredient usage patterns, 
emphasising commonalities and distinct culinary preferences. The ingredient frequency follows a highly right-
skewed distribution, presenting a long and heavy right tail (Fig. 5). This would indicate that most ingredients 
occur a few times, and a few more common ingredients occur many times. In other words, most ingredients are 
used sparingly, while a select few dominate the recipes. In Table 6, we list the twenty most frequent ingredients 
and their frequency for the three cookbooks. Salt, olive oil, water, onion, and garlic are the most common 
ingredients in all the cookbooks. The data reveal that these ingredients are staples and universally dominant 
across all three cookbooks. These ingredients form the backbone of most recipes, reflecting their fundamental 
role in the Catalan culinary traditions (Ctrad and 101) and Catalan haute cuisine (Roca).

The Roca cookbook presents some peculiar, highly frequent ingredients not in the Ctrad and 101 recipes. 
The Roca cookbook stands out for its inclusion of unique, high-frequency used ingredients such as technologic 

Fig. 3.  Link weight ( w) frequency distribution for the three recipe networks. X-axis: link weight w; Y-axis: 
probability P (w) to have a link weight of w value. Cookbook keys are: Corpus del patrimoni culinari català 
(CTrad), El Celler de Can Roca (Roca), 100 Plats indispensables de la cuina catalana (101).
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ingredients (xanthan gum, agar-agar, and kudzu) or gastronomic ingredients like truffle, which are absent or 
not common in the other cookbooks. The presence of new and uncommon ingredients reflects a modernist 
culinary style, incorporating innovative techniques and ingredients that shape avant-garde cuisine as opposed 
to everyday cooking.

Rank

Ctrad 101 Roca

Recipe ID s Recipe ID s Recipe ID s

1 55 327.30 3 46.14 09_2 22.02

2 144 327.30 1 44.56 01_5 21.99

3 133 311.67 70 43.96 04_3 21.27

4 1063 311.54 69 42.29 09_5 21.16

5 1122 305.60 29 41.59 01_4 21.05

6 542 303.77 55 41.46 11_2 20.71

7 949 301.89 44 40.88 03_3 20.67

8 20 300.51 37 40.84 04_7 20.64

9 984 300.05 30 40.66 14_4 20.56

10 124 299.05 46 40.64 03_5 20.52

Table 5.  Identities and values for the ten highest strength (s) nodes for the three cookbooks. Cookbook keys 
are: corpus Del patrimoni culinari Català (CTrad), El celler de can Roca (Roca), 100 plats indispensables de La 
Cuina Catalana (101).

 

Fig. 4.  The Roca recipe network with increasing overlapping threshold. During the percolation process, as 
the intersection threshold used to construct the network increases, the weight w of the links grows. Thus, the 
similarity between the nodes/recipes connected by the links increases. The first graph, w > 0, indicates the 
recipes network where links are drawn if the recipes intersection is not empty ( ∩ ̸= ∅), e.g., where at least one 
ingredient is in common. The graph for w > 0.1 indicates the recipes network where links among nodes are 
drawn if the weight w is above 0.1. The graph for w > 0.2 indicates the recipes network where links among 
nodes are drawn in the case the weight w is above 0.2, and so on. The last chart depicts the largest connected 
component (LCC) along the overlapping threshold.
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Ingredients communities
The analysis of recipe communities using clique detection in the RSN revealed several key insights into the 
structural organisation of recipes based on their ingredient similarity. A clique is a highly cohesive substructure, 
defined as a complete subgraph where every pair of nodes is connected by a link37,38. By identifying cliques, we 
can uncover tightly knit groups of recipes that share significant similarities in their ingredient composition.

The RSN for w > 0 (Fig. 6A) showed a high level of connectivity, indicating that most recipes share at least 
one ingredient. In general, RSNs show high connectivity at low thresholds. We expect lower connectivity and 
an increasing number of disconnected nodes for a higher threshold. Applying a stricter similarity threshold 
( w > 0.6) revealed a more fragmented network structure (Fig. 6B). Several nodes became disconnected (green 
nodes), while the remaining recipes formed the largest connected component ( LCC , red nodes). The LCC  
emerging at a higher threshold connects only closely related recipes.

Fig. 5.  Ingredient frequency for the three cookbooks analysed. (Panels A-B) X-axis: f frequency of the 
ingredient in recipes; Y-axis: N (f) number of ingredients showing frequency f . (Panel D) X-axis: p
normalised frequency of the ingredient in recipes (normalised by the total number of recipes in the cookbook); 
Y-axis: P (p) probability to have that ingredient frequency showing frequency f . Cookbook keys are: Corpus 
del patrimoni culinari català (CTrad), El Celler de Can Roca (Roca), 100 Plats indispensables de la cuina 
catalana (101).
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Within the LCC  for w > 0.6, we performed a clique detection, finding a 7-clique, i.e., a fully connected 
subnetwork of seven nodes (Fig. 6C). This subset represents a tightly-knit community of highly similar recipes 
( w > 0.6), indicating that these recipes share a significant proportion of their ingredients. We depict the 
7-clique with node identities in Fig. 6D and detail the composing recipes in Fig. 6E. These recipes represent 
a cohesive culinary group characterised by overlapping ingredients such as garlic, oil, and salt alongside 
complementary proteins (fish, seafood, and meats) and starchy bases (potatoes, rice, or beans). The presence of 
the 7-clique highlights how traditional recipes often cluster based on a core set of ingredients that define regional 
cuisines. Garlic, oil, and salt emerge as unifying components in Catalan cooking. Despite their base of common 
ingredients, the recipes in the 7-clique exhibit a wide variety of culinary expressions, ranging from simple sauces 
(Allioli) to complex dishes like country-style rice or monkfish stew. This underscores the versatility of the shared 
ingredient base in creating diverse culinary outcomes. What accounts for the variety of recipes with a common 
ingredient core? Recipes often start with a standard base of ingredients (such as garlic, oil, and salt) and then 
diverge based on a few distinctive elements. For example, “Monkfish stew” and “Potato and bean stew” both 
include water, garlic, salt, and oil. However, they are vastly different dishes due to the inclusion of monkfish 
(Lophius piscatorius) in one and beans and potatoes in the other. Understanding the clique structure of the 
network can inform recipe development, suggesting potential ingredient substitutions or combinations that 
align with traditional flavor profiles while fostering innovation.

In practical terms, this analysis opens the door to developing a culinary recommender system or a recipe 
generation algorithm.

A concrete example: using the 7-clique structure we identified (which includes recipes such as “Allioli,” 
“Monkfish stew,” and “Potato and bean stew”), the system could generate a novel hybrid recipe that combines 
the shared base ingredients with complementary elements drawn from different recipes in the clique, such as 
fish and potatoes. This could lead to the creation of a novel, non-catalogued dish, such as “Garlic and potato 
cream with steamed fish bites”, which, although absent from the original dataset, aligns with the flavor profiles 
and ingredient patterns identified in the network, thereby remaining consistent with the culinary style of the 
cookbook.

In summary, this model not only maps the semantic cohesion of existing recipes but also provides a structured 
framework for the guided creation of new recipes, respecting traditional flavor profiles while encouraging 
culinary innovation.

Conclusions
The application of network science and intersection graph theory to Catalan cuisine reveals critical insights into 
the interconnectedness and diversity of culinary traditions. Traditional RSNs demonstrate high connectivity, 
indicating higher recipe similarity, while haute cuisine RSN exhibit lower connectivity, reflecting their specialised 
and unique nature.

Rank

Ctrad 101 Roca

Ingredients Frequency Ingredients Frequency Ingredients Frequency

1 salt 623 salt 81 salt 55

2 olive oil 549 olive oil 75 water 53

3 garlic 423 garlic 46 olive oil 49

4 water 370 onion 45 onion 30

5 onion 342 water 41 sugar 30

6 pepper 295 tomato 40 butter 29

7 tomato 261 pepper 31 carrot 29

8 parsley 192 pork 24 xantana rubber 28

9 pork 183 parsley 20 leek 24

10 flour 160 almond 19 chicken egg 23

11 wine 145 flour 18 cream 21

12 chicken egg 132 wine 18 flour 14

13 almond 109 chicken egg 16 milk 14

14 potato 104 bread 16 sunflower oil 14

15 bay leaf 98 sugar 12 truffle 13

16 bread 97 bacon 11 agar-agar 12

17 bell pepper 69 cinnamon 11 garlic 12

18 carrot 67 bay leaf 11 orange 12

19 beef 64 potato 11 shallot 11

20 arròs 55 chicken 10 fennel 10

Table 6.  Twenty of the most frequent ingredients in recipes, with their frequency for the three cookbooks. 
Cookbook keys are: corpus Del patrimoni culinari Català (CTrad), El celler de can Roca (Roca), 100 plats 
indispensables de La Cuina Catalana (101).
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Our findings highlight that choosing methods to build the recipe networks from data, including ingredient 
substitution and link weight normalisation, significantly influences network structure and node centrality. 
Defining and applying appropriate methods is essential to accurately rank nodes and identify key recipes in 
RSNs.

We identified key nodes/recipes using node centrality metrics from network science, discovering 
characterising recipes that represent each culinary style’s essence.

Additionally, clique-based community detection reveals ingredient-based clusters that highlight traditional 
culinary patterns and potential innovation pathways.

The similarity measure used in this study provides a simple and interpretable representation of recipe 
similarity. However, it can be considered an ad hoc choice. An alternative approach could leverage statistical 
physics. For instance, treating the network as an ensemble of randomised realisations would allow us to assess 
whether the observed link weights between recipes reflect meaningful similarity or merely random chance. 
Future work should explore the impact of more principled network models, such as the configuration model for 
weighted networks45,46, on the topology and interpretability of the resulting similarity networks. Additionally, 
employing different similarity measures may lead to distinct network structures. We plan to investigate how 
alternative similarity metrics, such as the Jaccard or Bray–Curtis indices47, influence the resulting network 
topology.

A limitation of the present RSN construction is that all ingredients are treated uniformly without accounting 
for their frequency across recipes. Common ingredients such as salt, water, or olive oil are omnipresent and 
thus may contribute less to recipe similarity than rare ingredients. Incorporating ingredient frequency into 
the similarity computation may reduce this bias and provide a more discriminative network structure. Future 

Fig. 6.  Recipe communities by finding cliques in the network. (A) 101 recipe network for w > 0, i.e., there 
is a link between nodes if there is at least one ingredient in common ( ∩ ̸= ∅). The 101 recipe network for 
w > 0 shows a very high connectivity among nodes. (B) 101 recipe network for w > 0.6, i.e., there is a 
link between nodes that have weight w > 0.6. The 101 recipe network built with this link weight threshold 
presents disconnected nodes (green nodes), and the remaining nodes form the largest connected component 
( LCC , red nodes). (C) LCC  of the 101 recipe network for w > 0.6, where we outline a 7-clique, i.e., a 
complete graph of 7 nodes. (D) The 7-clique with the node identities. In our recipe networks, the weight of the 
links represents the level of similarity between nodes/recipes. The 7-clique in Fig. 6C is a subset of connected 
recipes with >0.6, thus presenting a high level of similarity. (E) Table listing the recipes composing the 7-clique.
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work should address this by weighting ingredient contributions, for example, by considering the ingredient 
contribution inversely to its frequency. An interesting framework would also involve constructing a bipartite 
network connecting recipes and ingredients as two distinct node types. This representation, common in the 
literature20,48,49, would enable projection methods and statistical modelling that capture ingredient–recipe 
relationships.

Our findings highlight the importance of network-based approaches for analysing culinary heritage, 
while also facilitating practical applications in gastronomy, such as personalised recipe recommendations 
and fostering culinary innovation. The proven success of AI-driven methods in emulating creative processes, 
such as writing, poetry, painting, and music, has amplified interest in their application to the culinary domain, 
particularly for developing innovative and flavorful recipes1. Future research should explore the extension of 
these methodologies to diverse cuisines and their direct implementation in AI-driven culinary and gastronomic 
practices. In particular, the recipe similarity network we construct, with recipes as nodes and shared ingredients 
as weighted links, could be useful as input for graph-based machine learning models. For example, one could 
apply a graph neural network (GNN) to predict missing links or to recommend new recipe combinations based 
on ingredient similarity.

Data availability
The data of recipe networks will be available upon personal request to the corresponding author.
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