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The accuracy of cross-time-scale runoff prediction is affected by data characteristics, and accuracy 
improvement is challenging. This study examined 18,250 global hydrological stations, identified the 
multi-scale effect of runoff time series (MSER), and proposed an MSER-based improved prediction 
method (MSEIP). It introduced models, such as multiple linear regression (MLR) and Gaussian process 
regression (GPR), and evaluation metrics, including optimization proportion (OP) and optimization 
efficiency (OE), for comparative analysis. The results showed that MSER is applicable to over 73% of 
hydrological stations, and its applicability increases with larger flow rates. The improvement effect 
of MSEIP is negatively correlated with time scales (weekly to yearly scale, OPMAE: 0.99–0.60) and 
positively correlated with flow rates (from less than 100 to more than 2000 m3/s, OPQR: 0.6–0.85). 
MLR is suitable for identifying MSER at small scales (OPMAE of 1 at the weekly scale), while 
GPR performs better at large scales (seasonally and yearly scales, GPR’s OPQR is 0.67 and 0.58, 
respectively, higher than MLR’s 0.29 and 0.21). MSER explains differences in runoff prediction accuracy 
across time scales from data characteristics, and MSEIP provides technical support and a reference for 
improving cross-scale prediction accuracy.
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Global climate change and intense human activities have exacerbated the uncertainty of hydrological systems, 
highlighting the significance of runoff forecasting in basin planning, flood control, drought relief, and ecological 
security1,2. Runoff forecasting involves many practical challenges, and within the context of multi-scale research, 
two specific issues merit attention. First, the causal mechanisms underlying prediction accuracy across different 
time scales remain unclear. Second, the application of multi-scale data to enhance prediction accuracy is still 
inadequate.

Hydrological forecasting methods are roughly divided into process-driven and data-driven models3. Process-
driven models simulate the physical process of rainfall-runoff conversion through conceptual or distributed 
frameworks with physical interpretability4,5. However, process-driven models are highly dependent on 
detailed basin data, such as topography and soil properties. When there are data gaps or errors, their ability to 
characterize key processes is weakened, leading to prediction deviations6–8. Data-driven models use machine 
learning algorithms to mine hidden patterns and spatiotemporal correlation characteristics of runoff series and 
show excellent performance in flexibility and adaptability9–12. Nevertheless, data-driven models lack physical 
interpretability, face difficulties in generalizing to extreme events, and are at a risk of overfitting13–16. Although 
innovative methods such as gated recurrent unit (GRU)17,18, time convolution network (TCN)19,20, and deep 
autoregressive model (DeepAR)21,22 have improved the prediction performance of runoff time series at single 
time scales, these models have not addressed cross-scale challenges.

Most current studies focus on single time scales, and cross-scale prediction methods are still in the 
exploratory stage23. Runoff prediction accuracy decreases continuously with an increase in time scales, among 
which predictions at small time scales, such as daily and weekly scales often perform well24,25. This highlights the 
untapped potential of integrating multi-scale data to improve predictions at large time scales.
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This study aims to address the deficiencies in the cross-scale prediction of multi-time-scale runoff time series. 
Taking 18,250 hydrological stations worldwide as the research object, this study explored the characteristics 
of multi-scale effects in runoff time series and proposed a solution to improve the accuracy of multi-time-
scale prediction. We: (1) Use multiple correlation coefficients to quantify the autoregressive characteristics of 
18,250 global hydrological stations at different time scales and analyzed the patterns of MSER characteristics; 
(2) Verified the feasibility of the MSEIP method through the analysis of 8 stations, and introduced optimization 
proportion (OP) and optimization efficiency (OE) metrics to analyze model performance; (3) Tested the 
universality of the MSEIP method in global stations; (4) For stations where the MSEIP method performs poorly 
in prediction, heterogeneous mechanism models were supplemented to identify the reasons for inapplicability. 
The research results reveal the decay law of MSER characteristics and establish the MSEIP framework, which 
realizes the transfer of prediction from small to large time scales and improves the prediction accuracy at large 
scales. This study aims to improve forecast accuracy, with more precise predictions expected to support practical 
efforts, such as water resource management, while offering theoretical and methodological insights for multi-
scale hydrological forecasting.

The remainder of this paper is organized as follows. “Methodology” introduces the definition and 
discrimination method for the MSER and MSEIP methods. “Case study” presents the research area and 
experimental results. “Discussion” provides discussion. “Conclusion” summarizes the conclusion.

Methodology
Definition of multi-scale effects in runoff time series
From the studies of Rahmani, it is known that long-term hydrological time series usually exhibit core features, 
such as long-term trends, periodic fluctuations, random noise, autocorrelation, and chaotic characteristics, 
whereas short-term series may lack obvious trends or periodic fluctuations due to limited time spans26,27. 
These features form a hierarchical structure of information: long-term trends reflect the macro evolutionary 
trajectory of the basin; periodic fluctuations encode cyclical drivers such as seasonal hydrology; autocorrelation 
and chaotic characteristics embody the subtle dependencies between consecutive states; and this hierarchical 
difference is crucial for distinguishing signal patterns across different scales28–30.

Watershed regulation and water conservancy project operations often involve cross-scale decision-making, 
thus requiring multi-time-scale runoff prediction. However, resampling runoff time series to larger scales 
smooths out high-frequency variations, such as short-term rainfall-runoff responses or diurnal flow fluctuations, 
thereby weakening the original signal. This smoothing is not merely a mathematical operation but a reflection 
of the transition of physical processes: runoff at small scales is dominated by immediate local interactions (e.g., 
raindrop impact, overland flow convergence), with each time step retaining a strong “memory” of previous 
states, thus resulting in pronounced autoregressive characteristics. In contrast, larger scales integrate these local 
processes into basin-wide cumulative effects (e.g., year-scale water balance and groundwater storage changes), 
where short-term “memories” are diluted by the aggregation process, leading to weakened autoregressive 
characteristics. This scale-dependent shift in the dominance of processes is what we term the multi-scale effect 
of the runoff time series (MSER).

The identification of MSER characteristics in the runoff time series involves the use of multiple correlation 
coefficients to quantify the strength of autoregressive characteristics across different scales. Specifically, if 
the multiple correlation coefficient of the runoff time series decreases with increasing scale, it indicates that 
autoregressive characteristics decline at larger scales, thereby confirming the presence of MSER characteristics. 
Physically, this pattern embodies the transition from "event-driven processes" at small scales (e.g., storm runoff) 
to "equilibrium-dominated processes" at large scales (e.g., year-scale runoff). This transition means that the 
information content supporting predictability undergoes fundamental changes across scales: small scales rely on 
fine-grained temporal correlations, whereas large scales depend on the comprehensive properties of the basin, 
which is consistent with the logic of parsing and prioritizing information hierarchies in complex system analysis.

In this study, the multiple correlation coefficient serves two roles: identifying MSER characteristics and 
screening input variables to determine the amount of historical data used for runoff prediction. It quantifies 
the overall correlation between the linear combination of the dependent and independent variables through a 
multiple linear regression model. The specific method involves calculating the multiple correlation coefficient 
using formula (1) and (2).

	 ŷ = α0 + α1x1 + α2x2 + · · · + αkxk � (1)

	
R =

∑
(y − y)(ŷ − y)√∑
(y − y)2(ŷ − y)2

� (2)

where α0, α1, α2, . . . , αk  are regression coefficients; ŷ is the predicted value of linear regression; y is the actual 
observed runoff; y is the actual observed mean runoff.

Improved prediction method based on MSER
Based on the MSER characteristic of the runoff time series, this study proposes an improved prediction method 
to address the excessive decay of the forecasting accuracy of runoff time series across different temporal scales.

The specific implementation steps of the MSEIP method for different temporal scales are as follows. When 
weekly scale prediction is required, multi-step forecasting is performed using daily scale runoff time series data, 
and the results of multi-step forecasting are averaged as the weekly scale prediction result, denoted as MSEIP-w. 
When monthly scale prediction is required, multi-step forecasting is performed using weekly scale runoff time 
series data, and the results are averaged as the monthly scale prediction result, denoted as MSEIP-m. Similarly, 
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seasonally scale prediction uses monthly scale multi-step forecasting, denoted as MSEIP-y. In contrast, the 
commonly used conventional prediction method at present, namely, direct prediction at large temporal scales, 
is abbreviated as DPL for ease of description. In the DPL, weekly scale prediction is denoted as DPL-w, monthly 
scale prediction as DPL-m, seasonally scale prediction as DPL-s, and yearly scale prediction as DPL-y. The 
technical roadmap of MSEIP is shown in Fig. 1, and the technical roadmap for multi-step forecasting is shown 
in Fig. 2.

Data driven runoff forecasting models
To comprehensively evaluate the effectiveness of the proposed MSEIP framework, we selected seven 
representative models covering linear statistical, nonlinear extended, and deep learning methods for short-term 
runoff prediction across multiple time scales. These models were chosen to encompass various methodological 

Fig. 2.  Schematic diagram of multi-step forecasting technology route.

 

Fig. 1.  Schematic diagram of multi-scale forecasting technology route.
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paradigms, ranging from simple linear relationships to complex nonlinear mappings, static statistical fitting to 
dynamic sequence learning, and deterministic prediction to probabilistic inference31–34. This diversity ensures 
that we can rigorously test the adaptability of the MSEIP framework under different modeling philosophies and 
identify its added value compared with traditional methods. The selected models were as follows:

Multiple linear regression (MLR)35: A basic linear statistical model that assumes the dependent variable y is 
the sum of the linear combination of multiple independent variables x1, x2, . . . xn and the error term, and its 
mathematical expression is shown in formula (3).

	
y = b0 +

n∑
i=1

bixi + ε� (3)

where b0, b1, . . . bn are regression coefficients and ε is random errors.
Polynomial regression (PR)36: An extension of linear regression that extends linear regression to a nonlinear 

model by introducing higher-order terms of independent variables (such as square and cubic terms). Its general 
form is shown in formula (4).

	 y = b0 + b1x + b2x2 + · · · + bmxm + ε� (4)

where b0, b1, b2, . . . bm are polynomial coefficients.
Deep neural network (DNN)37,38: A multi-layer nonlinear model that constructs multi-layer nonlinear 

mapping by stacking multiple hidden layers (such as a full connection layer). Its structure includes an input 
layer, a hidden layer, and an output layer. The network adjusts the weight W  and bias b of each layer using a 
back-propagation algorithm to minimize the prediction error31. The output yl of layer  can be expressed as 
formula (5).

	 yl = σ(Wlyl−1 + bl)� (5)

where σ is the activation function.
Gated recurrent unit (GRU): A simplified version of the long-term and short-term memory network (LSTM), 

which captures the long-term dependence of sequence data by introducing “update gate” and “reset gate”. The 
core formula is formula (6).

	 ht = (1 − zt)fht−1 + ztf tanh (Wh [σ(Wr[ht−1, xt])fht−1, xt])� (6)

where f  is element by element multiplication.
Temporal Convolutional Network (TCN): A model optimized for a time series that combines causal 

convolution (ensuring time order) and extended convolution (expanding receptive field), which is suitable for 
time series prediction. The output y(t) is calculated by the weighted sum of the historical input x(t − k)32. The 
formula is shown in formula (7).

	
y(t) =

K−1∑
k=0

wk · x(t − k)� (7)

where wk  is the weight of convolution kernel; K  is the convolution kernel size.
Deep autoregressive (DeepAR) model: A probability prediction model that combines autoregressive logic 

with a recurrent neural network (RNN) to learn the conditional probability distribution of a time series. The 
main formula is formula (8).

	 yt ∼ N (µ(y1:t−1, x1:t−1; θ), σ(y1:t−1, x1:t−1; θ))� (8)

where yt is the prediction data at time t; y1:t−1 is historical observation data; External covariates of x1:t−1; µ 
and σ are the mean and standard deviation functions determined by the neural network parameter θ; N  is the 
Gaussian distribution.

Gaussian process regression (GPR)34,39: A Bayesian nonparametric model that assumes data are generated 
by the Gaussian process. The covariance function is used to describe the correlation of the data points to fit the 
training data and then realize the prediction. The formula is (9).

	 y′ = kT
∗ (K + σ2

nI)−1y� (9)

where y′ is the predicted value; K is the historical observation data of covariance matrix of n × n; k∗ is 
an n-dimensional vector; σ2

n is the variance of observation noise; I is the identity matrix of n × n; y is the 
observation vector corresponding to the training data.

Simple data preprocessing
To preserve the authenticity of the characteristics of runoff time series across different time scales, this study 
only conducted necessary minimal processing to avoid excessive operations from obscuring intrinsic multi-scale 
characteristics. The specific steps were as follows: (1) For stations with continuous missing segments shorter 
than one day, linear interpolation was used to fill the gaps to maintain local trends; otherwise, the station was 
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excluded; (2) The sliding window interquartile range method was adopted to identify outliers, which were then 
processed using linear interpolation.

In this study, all modeling and data analyses were performed using Python 3.9.

Prediction performance evaluation indicators
To comprehensively evaluate the prediction performance of the model, the following evaluation indices were 
selected in this study: mean absolute error (MAE), root mean square error (RMSE), qualified rate (QR), Nash–
Sutcliffe efficiency coefficient (NSE), and maximum error (ME). The mathematical expression for the evaluation 
index is as follows:

	
MAE = 1

n

n∑
t=1

|QOt − QSt|� (10)

	

RMSE =

√√√√ 1
n

n∑
t=1

(QOt − QSt)2� (11)

	
QR = k

n
× 100%� (12)

	

NSE = 1 −

n∑
t=1

(QOt − QSt)2

n∑
t=1

(QOt − QOt)2
� (13)

	 ME = max(|Si − Oi|)� (14)

where QOt and QSt are measured and predicted flow values at time t respectively; n is the total number of time 
periods included in the hydrological sample data; k is the number of samples in which the relative error between 
the measured flow and the predicted flow is less than 20%; The range of MAE and RMSE values is [0, + ∞), 
the closer to 0 means the smaller the prediction error; QR value range is [0, 1], the closer to 0 means the lower 
the reliability of the prediction result and the closer to 1 means the higher the reliability of the prediction result; 
The range of NSE value is (− ∞, 1]. The closer to 1, the higher the prediction accuracy. The range of the ME 
value is [0, + ∞]. The closer it is to 0, the more accurate the prediction result; the larger the value, the worse the 
accuracy of the forecast in the most extreme cases.

Due to the large number of sites, in order to facilitate the evaluation of the forecasting effect of MSEIP, 
optimization proportion (OP) and optimization efficiency (OE) indicators are adopted. The mathematical 
expressions are as follows:

	
OP = Nm

N
× 100%� (15)

Among all sites, Nm represents the number of sites where each evaluation metric performs better in MSEIP than 
in DPL. N  represents the total number of sites involved in the calculation. The optimization proportion (OP) for 
each evaluation indicator is defined using the following metrics: optimization proportion mean absolute error 
(OPMAE), optimization proportion root mean square error (OPRMSE), optimization proportion qualified rate 
(OPQR), optimization proportion Nash–Sutcliffe efficiency coefficient (OPNSE), and optimization proportion 
maximum error (OPME). The OP values range from [0,1], and the closer the value is to 1, the more sites MSEIP 
outperforms DPL among all sites.

	
OE = Im − I

I
× 100%� (16)

where Im represents the evaluation index of MSEIP, and I  represents the evaluation index of DPL. The optimization 
efficiency (OE) for each evaluation indicator was defined using the following metrics: optimization efficiency 
mean absolute error (OEMAE), optimization efficiency root mean square error (OERMSE), optimization 
efficiency qualified rate (OEQR), optimization efficiency Nash Sutcliffe efficiency coefficient (OENSE), and 
optimization efficiency maximum error (OEME). The value ranges for OEMAE, OERMSE, OEME, OEQR, and 
OENSE are all [− 100, + ∞). The closer OEMAE, OERMSE and OEME are to − 100, the more significant the 
improvement in the predictive effect of MSEIP compared to DPL. For OEQR and OENSE, the opposite is true; 
the larger the value, the better.

Case study
Study area and data
The streamflow observation data for over 20,000 rivers worldwide (1979–2013) used in this study are derived 
from the SWOT Global Reach-level A priori Discharge Estimates (GRADES) data archive developed by Lin 
et al.40. For detailed descriptions of this global discharge database, please refer to the following paper: ​h​t​t​p​s​:​/​
/​d​o​i​.​o​r​g​/​1​0​.​1​0​2​9​/​2​0​1​9​W​R​0​2​5​2​8​7​​​​​. This study selected 18,250 hydrological stations distributed across different 
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climate zones and geomorphic units to construct a global multi-scale runoff dataset. Site selection adheres to the 
principles of spatial representativeness and data continuity, covers tropical to cold climate regions, and includes 
natural watersheds as well as systems affected by human activities. Additionally, eight typical stations were 
chosen as cases, and seven hydrological prediction models (MLR, PR, DNN, GRU, TCN, DeepAR, and GPR) 
were used to verify the model dependence of MSER characteristics. The global-scale analysis integrates the time-
series data of 18,250 stations, focusing on analyzing the regulatory effects and boundary conditions of different 
flow magnitudes on the MSER. The study area is illustrated in Fig. 3.

Value range of number of lag order
In this study, when selecting the lag order based on the multiple correlation coefficient method, the optimal lag 
order is determined by selecting the value that maximizes this coefficient within a preset range to ensure the 
model fitting effect. The selection range of lag orders for different time scales was determined through verification 
by pre-experiments, which calculated the multiple correlation coefficients for a large number of lag orders at 
various scales in some stations, and found that they all first increased rapidly with the lag number, then entered 
a stable stage, and there were no significant fluctuations or increases in the multiple correlation coefficients 
when the lag order continued to increase. Verification shows that when using lag numbers within this range 
for prediction, the model fitting is robust; exceeding the range cannot significantly improve performance but 
instead increases the computational burden, whereas an overly narrow range will miss key lag orders, leading to 
a decrease in accuracy. Therefore, Table 1 was selected as the selection range for lag orders.

Parameter setting of forecasting model
The PR model was constructed in the form of a quadratic polynomial, and the GPR model used a radial basis 
kernel function. For the DNN, TCN, GRU, and DeepAR models, the number of hidden layers listed in Table 
2 was determined through pre-experiments, and the number of neurons in each hidden layer was determined 
using the grid search optimization method. Specifically, we first conducted pre-experiments to determine 
the number of hidden layers, then adopted the grid search hyperparameter optimization method to perform 
optimization within the parameter range of each model, evaluated the performance of each set of parameters 
based on the prediction error of the validation set, and finally selected the combination with the smallest error 
as the optimal parameter of the model.

Time scale Range

Daily 12–25

Weekly 8–21

Monthly 6–16

Seasonally 3–8

Yearly 1–4

Table 1.  Lag order selection range.

 

Fig. 3.  Global Location Map of 18,250 Hydrological Stations. The black dots in the figure denote the locations 
of hydrological stations.
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Analysis of multi-scale effects in runoff time series at global hydrological stations
In this study, a case study involving 18,250 stations worldwide was conducted. The multiple correlation coefficient 
was calculated for the daily, weekly, monthly, seasonal, and yearly runoff data of these stations to investigate 
the autoregressive characteristics of the hydrological time series across different time scales. Specifically, Fig. 4 
provides an overview of how the multiple correlation coefficient changes with the increase in time scale for the 
18,250 global stations, where black dots represent stations consistent with the decrease in the multiple correlation 
coefficient with time scale and red dots represent inconsistent cases. Figures 5 and 6 depict the proportion and 
number of stations across different flow ranges among all stations, in which the multiple correlation coefficient 
decreases as the time scale decreases.

As shown in Figs. 5 and 6, for stations in the large flow range (over 2000 m3/s), the proportion of stations where 
the multiple correlation coefficient decreased with increasing time scale was generally higher than 0.91:0.918 for 
2000–5000 m3/s and 1 for over 10,000 m3/s, indicating the high stability of the MSER characteristic in large flow 
ranges. In the medium flow range (100–2000 m3/s), the proportion increased from 0.702 (100–500 m3/s) to 0.739 
(500–1000 m3/s), and finally to 0.834 (1000–2000 m3/s), showing that the MSER characteristic applicability 
strengthens with increasing flow. For the low-flow range (less than 100 m3/s), the proportion drops significantly; 
the values are 0.467 for 0–20 m3/s and 0.550 for 50–100 m3/s, indicating that the MSER characteristic is less 
evident in the low-flow range.

It can be seen that in low-flow systems, the characteristics of noise dominance, significant nonlinear effects, 
and constrained data quality lead to a weaker manifestation of the attenuation law of MSER. According to a 
study by Rahmani and Fattahi on the 13-year daily hydrological time series of the Parishan Lake sub-basin in 
the Helle Basin, Iran, after wavelet transform denoising, the prediction errors of the models were significantly 
reduced, and the correlation and autocorrelation of the series were simultaneously enhanced27. Therefore, in 
hydrological modeling, random interference can be offset through noise suppression algorithms, and complex 
interactions can be characterized by nonlinear correction terms to avoid systematic errors in runoff prediction.

Analysis of results of the MSEIP method at 8 randomly selected hydrological stations
To validate the application of the MSER conclusion in runoff prediction, this study randomly selected 8 stations 
from 18,250 global stations, used 7 prediction models, and applied MSEIP. The results of the OPMAE index are 
shown in Fig. 7, and those of the OPQR index are shown in Fig. 8. The remaining indices, OPRMSE, OPNSE, 
and OPME, are shown in Supplementary Figs. S1–S3. The average values of the specific evaluation indicators in 
the MLR and GPR models for the 8 stations are listed in Supplementary Table S1.

Fig. 4.  Composite chart of multiple correlation coefficient across time scales at 18,250 global hydrological 
stations.

 

Models Hidden layer Number of neurons Iterations

DNN 4 16–256 100

TCN 3 16–256 100

GRU 3 16–256 100

DeepAR 3 16–256 100

Table 2.  Hyper parameters of forecasting models.
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As shown in Figs. 7 and 8 and Supplementary Figs. S1–S3 at MSEIP-w, all indicators of MLR reach 1.0, whereas 
GPR only achieves an OPQR of 1.0, with slightly lower values in other indicators, highlighting MLR’s significant 
advantage of MLR. At MSEIP-m, MLR maintains all indicators at 1.0, demonstrating clear dominance; the GRU 
model has an OPME of 0.5 but achieves 1.0 in all other indicators, second only to MLR. The DeepAR model 

Fig. 6.  Number and proportion of hydrological stations with MSER characteristics across different discharge 
ranges—broad flow classification.

 

Fig. 5.  Number and proportion of hydrological stations with MSER characteristics across different discharge 
ranges—detailed flow classification.
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Fig. 8.  Column chart of OPQR indicator at 8 hydrological stations.

 

Fig. 7.  Column chart of OPMAE indicator at 8 hydrological stations.
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reaches 1.0 in OPMAE and OPNSE models, the DeepAR models show poor performance. These results indicate 
that MLR has overwhelming advantages for short-to medium-term forecasting. At the MSEIP-s, MLR’s OPMAE 
and OPRMSE remain at 1.0, although its advantage is relatively reduced compared with short-term forecasting, 
with other indicators below 1.0. The GPR and PR models exhibited outstanding performance in OPQR, reaching 
0.875 and exceeding the MLR 0.75. At MSEIP-y, MLR’s OPMAE and OPRMSE are 0.75 and 0.875, respectively, 
the best among all models, while other models generally show indicators below 0.75. The significant performance 
decline across all models corroborates the theoretical characteristics of the MSER. Overall, MLR was preferred 
as the primary model for the global validation of MSER characteristics, followed by GPR.

At MSEIP-s, MLR’s OPQR of 0.75 is lower than GPR’s 0.875. Analysis of the model error metrics in 
Supplementary Table S1 shows that for seasonally scale prediction, MLR using the MSEIP-s method yielded 
an average QR of 0.569 across 8 stations, compared to GPR’s 0.428, a 32.8% improvement. In contrast, MLR 
using the DPL-s method had an average QR of 0.468, versus GPR’s 0.352, a 33.0% improvement. Both models 
demonstrated better performance with the MSEIP method than with the DPL method, further validating the 
MSER characteristics. Collectively, MLR significantly outperformed GPR at these 8 stations, confirming its role 
as the model of choice for global validation.

Analysis of results of the MSEIP method at hydrological stations globally
In this study, the MLR model was applied to 13,385 stations conforming to the MSER characteristics to verify the 
MSEIP method. Through the analysis of the prediction effects, it was found that there are significant differences 
in the optimization efficiency of the MSEIP method across different flow rate ranges. The results of the OEMAE 
indicator at the weekly, monthly, seasonal, and yearly scales for 13,385 global hydrological stations are shown 
in Figs. 9, 10, 11 and 12. The remaining result charts for OERMSE, OEME, OEQR, and OENSE across different 
time scales are presented in Supplementary Figs. S4–S19. The results of the OPMAE and OPQR indicators 
across multiple time scales and different discharge ranges are shown in Figs. 13 and 14. The remaining OPRMSE, 
OPME, and OPNSE results are presented in Supplementary Figs. S20–S22.

As shown in Figs. 9, 10, 11, 12, 13 and 14 and Supplementary Figs. S4–S22. In the large flow range (over 2000 
m3/s), the OP of the prediction effect of each time scale was the most significant. For example, the OP of each 
index of MSEIP-w generally exceeded 0.97, and OPMAE, OPRMSE, and OPNSE reached 1. The OP of MSEIP-m 
indicators is still greater than 0.75, and OPMAE, OPRMSE, and OPNSE are as high as 0.84. MSEIP-s is similar to 
MSEIP-m, and the OP of each index exceeds 0.71. The OP of MSEIP-y decreased slightly but still exceeded 0.63. 
These results indicate a high level of validation consistency for the MSER characteristic in large-flow regimes, 
and the MSEIP method demonstrates significant improvements over the DPL method in prediction accuracy.

The medium flow range (100–2000 m3/s) was characterized by transition. The MSEIP-w OP is outstanding, 
with OPMAE, OPRMSE, OPQR, and OPNSE reaching 0.98, and OPME reaching 0.93. With an increase in 
scale, the OP exhibits a stepped attenuation. The OP of MSEIP-m was similar to that of MSEIP-s, and the worst 
attenuation of each index was 0.63. The OP of MSEIP-s is the worst and further decreases to 0.55–0.65, but 
MSEIP still has more than half of the advantages. Specifically, the MSEIP method outperformed the DPL method 
in terms of error indicators for more than half of the stations.

The OP of the small flow range (less than 100 m3/s) is the lowest, especially on the long-term scale. The OP 
in MSEIP-w is still outstanding, the OP of each index is more than 0.88 and OPMAE, OPRMSE, and OPNSE are 
greater than 0.99. MSEIP-m and MSEIP-s decline severely, and the OP of each index is only 0.59–0.70 and 0.51–
0.61 respectively. MSEIP-y shows similar trends to MSEIP-s, with slight further decreases in some indices. The 

Fig. 9.  Results map of the OEMAE indicator at 13,385 global hydrological stations on a weekly scale. In the 
figure, the darker colors correspond to better values.
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OP values were only 0.53–0.59. This indicates that the validity of the MSER characteristic decreases gradually 
with increasing time scale in small flow regimes.

Notably, all flow magnitude ranges exhibited strong OP values at MSEIP-w, with the OPMAE exceeding 0.99. 
With an increase in time scale and decrease in flow magnitude, the OP demonstrates a gradual attenuation trend. 
Stations in the large and medium flow magnitude ranges exhibited the most pronounced OP values at MSEIP-w 
and MSEIP-m, whereas stations in the small flow magnitude ranges only excel at MSEIP-w, showing mediocre 
OP performance at other scales. This highlights that the MSER characteristic is more applicable to large and 
medium flow magnitude ranges, whereas its validity in small flow magnitude ranges is limited to short-term 
MSEIP-w forecasting.

Analysis of results of prediction models with different mechanisms for the MSEIP method
Among the 13,385 global stations conforming to MSER characteristics, 24 stations with poor prediction results 
were randomly selected. Predictions were then performed using the GPR model and MSEIP to test whether 
the linear assumption of MLR fails to capture the complex characteristics of MSER. The OP indicators of the 
prediction results for the 24 hydrological stations are shown in Fig. 15.

Fig. 11.  Results map of OEMAE indicator at 13,385 global hydrological stations across seasonally scale. In the 
figure, the darker colors correspond to better values.

 

Fig. 10.  Results map of OEMAE indicator at 13,385 global hydrological stations across monthly scale. In the 
figure, the darker colors correspond to better values.
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As shown in Fig. 15, at MSEIP-w, MLR’s OPMAE, OPRMSE, and OPNSE values all reached 1.0, with only 
OPQR slightly lower than GPR. This highlights the MLR’s ability to identify MSER characteristics at the weekly 
scale of the MSEIP method. At MSEIP-m and MSEIP-s, GPR’s nonlinear fitting capability gradually becomes 
evident: GPR demonstrates a significant advantage over MLR in the OPQR metric, while MLR underperforms 
GPR across all indicators. At MSEIP-s, both models exhibited degraded performance, although GPR still 
outperformed MLR. Notably, MLR recorded values of 0 for OPRMSE and OPME, indicating that its MSEIP 

Fig. 13.  Composite results chart of OPMAE indicator across multiple time scales and discharge ranges at 
13,385 global hydrological stations.

 

Fig. 12.  Results map of OEMAE indicator at 13,385 global hydrological stations across yearly scale. In the 
figure, the darker colors correspond to better values.
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method produced worse predictions than the DPL method at these 24 stations. In contrast, GPR achieves values 
of 0.167 and 0.333 for these metrics, highlighting GPR’s stronger ability to capture the MSER characteristic in 
long-term runoff prediction.

The performance discrepancy between MLR and GPR was attributed to their model assumptions. MLR’s 
linear assumption of MLR imposes performance constraints that intensify with increasing temporal scales, 
rendering it inadequate for characterizing the nonlinear dynamics of runoff. GPR’s advantage lies in the 
adaptability of its kernel function, which effectively simulates nonlinear features and mitigates MLR’s limitations 
of MLR at long scales.

Overall, in stations where MLR demonstrated poor adaptability, deploying GPR provided a more robust 
validation of the applicability of the MSER characteristic.

Discussion
This study focuses on discovering MSER characteristics and validating the effectiveness of the proposed MSEIP. 
Studies have shown that over 73% of the hydrological stations exhibit significant MSER characteristics. Based 
on the MSER characteristic, compared with DPL, MSEIP effectively reduces prediction errors in weekly runoff 
forecasting and performs well at monthly, seasonal, and annual scales, but there are still some limitations.

Chen et al. achieved multi-scale modeling by capturing temporal resolution through patch partitioning and 
dual attention41, whereas this study focused on quantifying autoregressive characteristics to realize prediction 
from small to large time scales. This study uses the multiple correlation coefficient to quantify autoregressive 
characteristics, which is similar to Zhang et al., who applied Pearson’s correlation to analyze lags42, both 
confirming the practicality of linear indicators. However, runoff exhibits certain chaotic characteristics and 
nonlinearities. The use of linear relationships to quantify autoregressive characteristics has certain limitations. 
Future work should consider the impact of characteristics, such as nonlinearity. Owing to limitations in 
computing resources, only the MLR model was used for global verification, and a few stations were randomly 
selected to use seven prediction models for verification. Although the existing results can prove the effectiveness 
of the proposed MSEIP, it is planned to use more comprehensive prediction models for verification globally 
in the future, such as introducing high-performance cluster computing systems and establishing combined 
prediction models43–45. This study only considered the runoff of the stations as input, without considering the 
river morphology and climatic characteristics. In the future, it will be necessary to integrate multi-source data, 
including river geometric and meteorological parameters retrieved from satellite remote sensing, to analyze the 
environmental dependence of multi-scale effects.

Fig. 14.  Composite results chart of OPQR indicator across multiple time scales and discharge ranges at 13,385 
global hydrological stations.
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It should be emphasized that the core of runoff forecasting remains reliant on process-driven models. While 
data-driven methods can efficiently mine temporal patterns, they mostly stay at the level of “phenomenal 
correlation” and struggle to explain core mechanisms such as runoff generation and concentration and 
groundwater-surface water interactions. In cases of extreme events or abrupt changes in underlying surfaces, 
they are prone to deviations owing to the failure of statistical patterns46. Process-driven models, built on physical 
processes such as precipitation interception and soil infiltration, can inherently reflect the logic of runoff 
formation with an irreplaceable ability to explain mechanisms47–49. Therefore, future research should promote 
the integration of the two, achieving synergy between “data capture” and “mechanism characterization”.

Overall, runoff forecasting remains a challenge. Although this study verifies the modeling capability of 
multi-scale autoregressive characteristics, nonlinearity, data heterogeneity, and extrapolation-based uncertainty 
remain the core challenges. Future studies should address the limitations of single-method approaches and 
integrate multiple hydrological characteristics to generate more accurate runoff predictions.

Conclusion
This study focused on multi-scale runoff time series predictions by discovering MSER in hydrological 
autoregressive characteristics. MSEIP was proposed, and a global runoff time series prediction model covering 
18,250 hydrological stations was established for the case studies. The main conclusions are as follows:

	(1)	 An MSER characteristic exists in the hydrological time series, and its applicability is constrained by the flow 
scale: the larger the average flow rate, the higher the applicability of the characteristic. Through analysis of 
the multiple correlation coefficients of 18,250 global stations, the proportion of stations exhibiting this char-
acteristic accounted for 0.51, 0.74, and 0.96 of the total stations with flow rates less than 100 m3/s, 100–2000 
m3/s, and greater than 2000 m3/s, respectively, showing a significant upward trend.

	(2)	 Compared with the DPL method, as the time scale increased, the proportion of stations with improved 
prediction effects by the MSEIP method gradually decreased. The OPMAE of MSEIP-w reached 0.99, and 
even the worst-performing OPME reached 0.94. However, for MSEIP-m, MSEIP-s, and MSEIP-y, the OP-
MAE values were 0.76, 0.70, and 0.60, respectively, showing a clear downward trend. On a weekly scale, the 
MSEIP method significantly improved the accuracy of runoff prediction.

	(3)	 Compared with the DPL method, as the runoff flow rate increased from low to high, the proportion of 
stations with improved prediction effects by the MSEIP method gradually increased. At MSEIP-m, among 
stations with flow rates of 0–100 m3/s, the OPQR index is 0.60; among stations with flow rates of 100–2000 

Fig. 15.  Chart of multi—scale op index results for 24 hydrological stations.
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m3/s, the OPQR value rises to 0.64, and among stations with flow rates greater than 2000 m3/s, the OPQR 
index reaches 0.85, showing a clear upward trend.

	(4)	 Compared with linear models such as MLR, nonlinear models such as GPR exhibit a stronger ability to 
capture MSER characteristics at long time scales. For 24 selected stations where the MLR model shows poor 
prediction performance, GPR achieved OPQR values of 0.67 and 0.58 at the seasonally and yearly scales, 
respectively, while those of the MLR model were only 0.29 and 0.21. However, the high computational 
complexity of GPR leads to over-smoothing of daily scale data. At the weekly scale, except for OPQR being 
1 (superior to MLR), all other GPR indicators were worse than those of the MLR model. This suggests that 
MLR has a stronger ability to capture the MSER characteristic at small time scales, whereas the GPR non-
linear model demonstrates more obvious advantages at large time scales.

Data availability
The streamflow observation data for over 20,000 rivers worldwide (1979–2013) used in this study are derived 
from the paper: https://doi.org/10.1029/2019WR025287. The datasets generated during and/or analyzed during 
the current study are available from the corresponding author on reasonable request.
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