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Pumping stations are critical elements of water distribution networks (WDNs), as they ensure the 
required pressure for supply but represent the highest energy consumption within these systems. 
In response to increasing water scarcity and the demand for more efficient operations, this study 
proposes a novel methodology to optimize both the design and operation of pumping stations. 
The approach combines Feasibility-Guided Evolutionary Algorithms (FGEAs) with a Feasibility 
Predictor Model (FPM), a machine learning-based classifier designed to identify feasible solutions 
and filter out infeasible ones before performing hydraulic simulations. This significantly reduces 
the computational burden. The methodology is validated through a real-scale case study using four 
FGEAs, each incorporating a different classification algorithm: Extreme Gradient Boosting, Random 
Forest, K-Nearest Neighbors, and Decision Tree. Results show that the number of objective function 
evaluations was reduced from 50,000 to fewer than 25,000. Additionally, The FGEAs based on Extreme 
Gradient Boosting and Random Forest outperformed the original algorithm in terms of objective value. 
These results confirm the effectiveness of integrating machine learning into evolutionary optimization 
for solving complex engineering problems and highlight the potential of this methodology to reduce 
operational costs while improving computational efficiency in WDNs.
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In the past twenty years, water scarcity has become a global concern, reaching critical levels in certain regions 
of the world1,2. According to the United Nations, more than 2.4 billion people lived in water-stressed countries, 
primarily due to population growth, climate change, and inefficient resource management3,4. Acute water scarcity 
has been documented in several regions, including the Middle East and North Africa (MENA), parts of South 
Asia, and central Chile, where recurring droughts and overexploitation of aquifers have exacerbated supply-
demand imbalances5,6. This scenario highlights the urgency of addressing water sustainability challenges and 
optimizing systems that ensure its distribution. In this context, computationally efficient optimization methods 
are essential to accelerate the identification of cost-effective design and operation strategies, especially in regions 
facing acute resource constraints. Moreover, when optimization techniques are applied to real-scale networks, 
model complexity increases significantly, and traditional evolutionary algorithms often struggle to deliver high-
quality solutions within acceptable computational times. These challenges have prompted the development of 
hybrid and data-driven approaches that enhance performance and scalability6.

Water Distribution Networks (WDN) are crucial infrastructures in society, as they ensure equitable access 
to drinking water. These networks comprise highly complex systems, where their design, operation, and 
rehabilitation are critical areas of research7. One of the main challenges in WDNs is the high energy consumption8, 
specially in direct injection networks9. Previous works show that pumping stations (PSs) are responsible for the 
highest energy consumption in the system10,11, as they supply the energy needed to drive water through the pipes 
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to the consumption points. Therefore, optimizing PSs is essential for enhancing network efficiency12,13, as studies 
have shown that these stations significantly reduce energy consumption and costs14.

The optimization of PSs involves two approaches9. The first is the design approach, which focuses on aspects 
such as the location of PSs13, the selection of pump models based on capacity15, and optimizing the combination 
of the number of pumps and their capacity16, among others. The second approach is operational, which includes 
pump scheduling7,17, cost reduction in supplying variable flows18, and the scheduling of fixed-speed and variable-
speed pumps19. Some authors have even attempted to optimize both approaches simultaneously; however, this 
can greatly increase the complexity of the models20–22.

Efficient methods are required to solve these optimization models. Evolutionary algorithms (EAs) have 
proven to be effective tools for tackling highly non-linear problems, with genetic algorithms (GAs) standing 
out8,23. These metaheuristics have been applied in WDNs to address issues suchs as minimizing water loss24, 
maximizing hydraulic system performance while reducing operational and maintenance costs25, optimizing the 
design of a WDN using a hydraulic simulator26, and conducting multiobjective optimization of operational 
costs, water supply equity, and pressure level uniformity across the network27. Along these lines, a penalty-
free evolutionary approach was proposed28, which simultaneously integrates tank siting and sizing, pump 
scheduling, and water quality analysis through pressure-driven extended-period simulations, yielding feasible 
and hydraulically efficient solutions with competitive costs. For EAs to function properly, optimizing their 
hyperparameters is crucial, although it can be challenging29.

A clear example of this is a study that minimizes both investment and operational costs of pumping stations21 
through a nonlinear programming model solved using a Pseudo-Genetic Algorithm30.Verifying the fulfillment 
of model constraints is the most complex task, as it requires at least one hydraulic simulation for each analysis 
period. If leaks are considered, the number increases31. In real-world networks with thousands of components, 
computational effort becomes critical due to the vast solution space, where infeasibility predominates. 
Consequently, as the scale and complexity of the problems increase, the effectiveness and applicability of 
optimization methods become limited32.

To address computational effort challenges, some researchers have focused on reducing the search space, 
highlighting feasibility analysis in optimization, which accelerates both convergence and solution evaluation. 
Solution clustering has also been applied in various contexts, such as pipe sizing based on topological and 
hydraulic metrics33, feasibility evaluation of pump scheduling in hydraulic simulators34, and identifying 
feasible regions when applying mathematical models for energy reduction35. In the context of PSs in WDNs, 
methodologies have been developed to assess the feasibility of solutions, applying hierarchical analysis based 
on technical and economic criteria for the proper selection of pumps36,37. A bi-phase algorithm has also been 
employed for pump scheduling, creating a feasible solution and then refining it38, along with the development of 
infeasibility maps39, to exclude infeasible areas during the search process.

Another approach to optimization involves the use of surrogate or machine learning (ML) models40, which 
can include classification or regression models41. Some ML applications in complex infrastructures include the 
detection and localization of structural damage using convolutional neural networks42,43 and the development of 
models to classify and locate defects in sewer pipelines44. In WDNs, these models have been applied in various 
ways, such as failure prediction45, detecting pipe failures using Artificial Neural Networks (ANN)46, and the 
detection of events related to water quality parameters using SVM47. Other examples include enhancing the 
optimization process of genetic algorithms by using a trained model48, and replacing hydraulic simulations with 
ANN-based approximations49. Despite the success of these applications, there are three main limitations in the 
application of surrogate models: high dimensionality, which makes their application in real-world scenarios; 
their deterministic black-box nature, which limits transparency and applicability; and their rigid architecture, 
which restricts their generalization across different case studies50.

Currently, the data-driven evolutionary optimization methodology is emerging, which uses surrogate 
algorithms trained with historical data to predict the performance of specific parameter configurations51, 
supporting the optimization process of evolutionary algorithms. Data-driven evolutionary algorithms (DDEA) 
are effective in solving expensive real-scale optimization problems, achieving satisfactory solutions with a limited 
number of evaluations of the problem’s objective function52. DDEA can operate online, where they evaluate new 
sample points and continuously improve the accuracy of the surrogate model, or offline, where such feedback 
does not exist, making the quality and representativeness of the training database critical53.

Several studies have explored this methodology, although their focus is not on specific applications within 
civil engineering. This limited adoption is partly due to barriers such as the lack of integration between machine 
learning frameworks and widely used hydraulic simulation software, which complicates the deployment of 
hybrid workflows. Moreover, data-driven models typically require large volumes of labeled data, which are not 
readily available for most real water infrastructure systems. Finally, the implementation of these approaches 
demands a combination of domain-specific knowledge and advanced data science skills, which are not yet 
widespread in the civil engineering community. Instead, of focusing on civil engineering applications these 
studies aim to enhance training procedures for predictive models. For instance, some approaches support an 
evolutionary algorithm with a set of surrogate models integrated through ensemble learning, thereby optimizing 
local accuracy51. Similarly, a tri-training approach using radial basis function networks (RBFN) as surrogates 
has been proposed, where the models are dynamically updated through pseudo-labels automatically generated 
during optimization53.

The application of data-driven evolutionary optimization (DDEO) in WDNs is extremely limited, whereas 
most reported studies have focused on urban drainage systems. For instance, surrogate model–assisted 
evolutionary algorithms have been developed to optimize the design of stormwater networks54 and the operation 
of flow control and storage infrastructures during extreme rainfall events55. This greater adoption in the drainage 
domain can be explained by operational differences (free-surface flow versus continuous pressurized flow in 

Scientific Reports |        (2025) 15:34455 2| https://doi.org/10.1038/s41598-025-17630-w

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


WDNs), greater availability of historical or inspection data in drainage systems, and the strict regulatory and 
continuous service requirements characteristic of WDNs, which hinder the calibration, transferability, and 
application of surrogate models in such networks56,57.

The main contribution of this study is the development of a novel DDEA, which evaluates only those solutions 
classified as feasible by the already trained ML model inside of each evolutionary process, significantly reducing 
the computational effort associated with hydraulic simulations. A real case study was developed achieving a 
reduction in the number of objective function evaluations from 50,000 to less than 25,000, while also obtaining 
higher-quality solutions compared to traditional methods. These results underscore the computational efficiency 
of the proposed methodology and its potential for broader applications in civil engineering and water resource 
management.

The remainder of this article is structured as follows: Section 2 describes the materials and methods, including 
the proposed approach, the integrated machine learning classifiers, and the case study. Section 3 presents and 
analyzes the results, comparing the performance of the different methods and discussing their computational 
implications, highlighting the potential of the proposed methodology to reduce computational effort. Finally, 
Section 4 summarizes the key contributions and outlines potential directions for future research.

Methods
This study extends the previously proposed methodology21 to a real-scale application using the DDEO (Data-
Driven Evolutionary Optimization) approach.The section presents the mathematical model governing the 
optimization process, the decision variables and objective function, the constraints applied to the model, and the 
process for evaluating the feasibility of solutions. Additionally, it details the integration of a Feasibility Predictor 
Model (FPM) into the evolutionary optimization process, the application of the methodology to a real-world 
case study, and the computational tools used for its implementation.

Mathematical model
For a better understanding of the problem, this section presents a previously proposed mathematical model 
aimed at optimizing the operational and investment costs of pumping stations (PS)21. The model is based on the 
setpoint curve (SC)58, which defines the minimum head required by each pumping station to meet the demand. 
The content presented below is a summarized version of the mathematical model, with a detailed description 
available in the original study21.

The model considers several hydraulic parameters essential for the optimization process. These include 
the total time steps Nt and the total number of PSs in the network Nps, as well as the number of available 
pump models Nb in the dataset. Each pumping station (PS) contains a defined number of pumps NBi, which 
are characterized by head coefficients (H0,i, Ai) and efficiency curves (Ei, Fi). The model also incorporates 
operational constraints, such as the maximum number of pumps per PS Pmax, the maximum pump head HBmax , 
and the head supplied by each station Hmax,i. Furthermore, it distinguishes between fixed-speed pumps mi,j 
and variable-speed pumps ni,j, with the latter being supported by frequency inverters ni. Additional parameters 
include the specific weight of water γ and the division of analysis periods into discrete time intervals ∆t,j.

The model incorporates several economic parameters essential for assessing project viability. It considers 
the number of lifecycle periods (Np) and the amortization factor (Fa), which accounts for the interest rate r 
over time. Additionally, the model includes cost components such as energy costs (pi,j), pump acquisition costs 
(Cpumpi), accessories(Cfacilityi) and control tools (Ccontroli). This comprehensive approach ensures an 
accurate economic evaluation of the pumping station system while balancing efficiency and sustainability.

This integrated approach ensures accurate modeling of PS performance, considering both hydraulic efficiency 
and economic sustainability.

Decision variables
The optimization model determines the following decision variables:

Xi,j: Percentage of the flow supplied by PSi  at time step j.
mi: Number of fixed-speed pumps in PSi .
bi: Pump model ID to be installed in PSi , within the range [1, MB]

Objective function
The optimization seeks to minimize total project costs, including both capital CAP EX  and operational 
OP EX  costs. Equation (1) defines the total project cost by incorporating the amortization factor (Fa), which 
accounts for the interest rate r over Np periods.

	 F =Fa · CAPEX + OPEX � (1)

	
Fa = r · (1 + r)Np

(1 + r)Np − 1
� (2)

The capital costs (CAPEX) and operational costs (OPEX) are calculated using equations (3) and (4), respectively. 
Equation (5) presents the calculation of the parameter α, which enables pump control by adjusting their heads 
to the setpoint curve. This adjustment, in turn, is essential for determining the operational costs.

	
CAPEX =

Nps∑
i=1

(NBi · Cpump,i + ni · Cinv,i + Cfacility,i + Ccontrol,i)� (3)
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OPEX =

Nt∑
j=1

{
Nps∑
i=1

[
mij∑
k=1

ω · (H0i − Ai · Q2
ijk)

(Ei − Fi · Qijk) +
nij∑
k=1

ω · (H0i · αijk − Ai · Q2
ijk)

Ei/αijk − Fi/α2
ijk · Qijk

]
· Pij

}
∆tj � (4)

	
α =

√√√√HSij + Ai

(
Qijk

NBi

)2

H0i

� (5)

The parameter α in Equation (5) represents the speed adjustment factor for variable-speed pumps, reflecting 
how much the pump speed must deviate from its nominal operating condition to fulfill specific hydraulic 
requirements defined by the SC. Specifically, α = 1 indicates operation at nominal speed, α < 1 indicates 
reduced speed operation (lower head and flow, resulting in energy savings), and α > 1 indicates increased speed 
operation (higher head and flow at the expense of increased energy consumption). Thus, α directly influences 
energy efficiency by dynamically matching pump operations to varying hydraulic demands.

Constraints
The constraints in this model define the permissible values for the decision variables, ensuring that the system 
operates within realistic and practical boundaries. Equations (6) and (7) establish that the total demand flow 
must be fully supplied by the PSs; however, not all stations are required to operate during every time period. 
Equation (8) ensures that the selected pump has a head capacity exceeding the maximum required head to 
guarantee proper supply. Finally, Equation (9) imposes an upper limit on the number of pumps that can be 
installed at each PS.

	 xij ≥ 0 ∀ij � (6)

	

Nps∑
i=1

xij = 1 ∀j � (7)

	 H0i ≥ Hmax,i ∀ PSi� (8)

	 Pmax ≥ NBi ∀ PSi� (9)

Objective function evaluation (OFE)
To effectively address the optimization problem, it is essential to evaluate solutions on a large scale using an 
optimization algorithm. However, the evaluation process is the most computationally intensive stage, as each 
OFE requires at least one hydraulic simulation for every analysis period. In real-world scenarios, a single 
hydraulic simulation may involve assessing water supply to thousands of demand points, significantly increasing 
computational effort.

Moreover, due to the complexity of the problem, an OFE not only involves hydraulic simulations but also 
multiple interdependent calculations that interact to produce the final result. These calculations determine key 
cost components, specifically OPEX and CAPEX, which are critical for assessing the feasibility and efficiency of 
a solution. The interactions within the evaluation process are illustrated in Fig. 1.

Fig. 1.  Interactions in an OFE.
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Once all hydraulic simulations and cost calculations are completed, the feasibility status and total cost of each 
solution can be determined. However, many candidate solutions turn out to be infeasible and are subsequently 
discarded from the study. This inefficiency results in a substantial waste of computational resources, making the 
process both time-consuming and costly. To address this issue, this study proposes the implementations of a 
Feasibility Predictor Model (FPM), which optimizes the evaluation process by filtering out infeasible solutions 
before conducting extensive simulations, thereby reducing computational burden and enhancing efficiency.

Feasibility Predictor Model (FPM)
To enhance the efficiency of the optimization process, this study proposes the development of a Feasibility 
Predictor Model (FPM), which classifies solutions based on their feasibility before performing detailed 
evaluations. By acting as a pre-filter, the FPM identifies and discards infeasible solutions early in the process, 
significantly reducing the number of evaluations required and thereby decreasing computational effort. The 
proposed methodology is illustrated in Fig. 2.

To implement the FPM, essential input data is required to accurately contextualize and solve the problem. 
This includes a complete WDN model with details such as pipe lengths, diameters, and node elevations, a 
comprehensive pump catalog with model specifications, demand patterns for each analysis period (typically 24 
hours), and a modular design for pumping stations.

Step 1: Synthetic Data Generation
The first step involves generating synthetic data to create a labeled database composed of solutions classified 
by their feasibility. Each solution comprises two components: an operational component, which describes the 
demand flow distribution across PSs for each time period, and a design component, specifying the number of 
variable-speed pumps and the selected pump model for each PS.

To build the synthetic database, random solutions are generated by varying pump configurations and flow 
distribution. Each configuration is then evaluated using the hydraulic simulator EPANET, which assesses their 
feasibility across multiple analysis periods. The feasibility evaluation consists of three key criteria: (1) verifying 
compliance with pressure requirements based on the setpoint curve, (2) ensuring the selected pump model has 
sufficient head capacity to meet supply demands, and (3) confirming that the total number of pumps does not 
exceed predefined constraints. If all conditions are met for a given period, it is considered feasible. A solution is 
deemed fully feasible only if all its periods satisfy these constraints; otherwise, it is labeled as infeasible. Figure 3 
illustrates this period-by-period analysis.

Specifically, a candidate solution is considered to meet the pressure compliance requirement if the pressure 
head at every demand node i in the network and at each time step t ∈ {1, . . . , 24} satisfies the following 
condition:

	 Hi(t) ≥ Hmin = 20 mwc� (10)

where Hi(t) is the pressure head (in meters of water column) at node i at time t, and Hmin is the minimum 
allowable pressure threshold, set to 20 mwc in this study. This constraint is enforced across all demand nodes and 
all time steps in the 24-hour simulation horizon.

Fig. 2.  FPM Formation.
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This structured approach allows differentiation between solutions based on their feasibility levels. 
Additionally, it refines the training process by preventing the model from being influenced by an excessive 
number of parameters.

Once the database is structured, it includes the flow distribution percentages for each PS, the demand pattern 
for each period, and the characteristics of the selected pump model for each station (the maximum head and 
flow it can provide), along with the corresponding feasibility classification. Standardization of flow distribution 
values is not required, but class balancing techniques are applied to improve model performance.

Step 2: Preprocessing and model training
To effectively address the classification problem, multiple ML models were evaluated to identify those with the 
highest predictive accuracy and reliability. This step involves fine-tuning hyperparameters to optimize model 
performance, training the models offline using the processed dataset, and rigorously validating them with various 
evaluation metrics. A systematic approach is followed to ensure an optimal balance between computational 
efficiency and prediction quality. The process of training the FPM is detailed in Algorithm 1.

Algorithm 1.  Train Feasibility Predictor Model (FPM)

Data-driven evolutionary optimization with FPM
The DDEO methodology aims to reduce the computational effort of evolutionary optimization processes by 
integrating a ML model. The general framework of this methodology combines the fields of data science, machine 
learning, and evolutionary algorithms. The interaction among these fields involves using problem-related data, 
whether historical or generated through simulations, to train an ML model capable of learning patterns from 
these parameter configurations. Once trained, this model is integrated into the evolutionary algorithm, either as 
a surrogate model that replaces certain calculations in the optimization process or as a support tool for specific 
tasks.

Step 3: Evolutionary algorithm guided by FPM
Once the FPM has been trained, it is integrated into the evolutionary optimization process to enhance solution 
evaluation. The trained model is used to classify candidate solutions as feasible or infeasible before performing 
computationally expensive hydraulic simulations. This predictive filtering allows the evolutionary algorithm to 
focus on promising solutions while discarding unfeasible ones early in the process.

During the optimization process, each generated solution is first analyzed by the FPM. If the model classifies 
a solution as infeasible, it is assigned a penalty that directs the search towards more viable alternatives. The 
evaluation process begins by querying the model whenever a solution requires assessment. Conversely, if the 
FPM determines that a solution is feasible, it proceeds to full hydraulic simulations for further refinement. This 

Fig. 3.  Period-by-period analysis.
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Feasibility-Guided Evolutionary Algorithm (FGEA) significantly reduces computational costs and enhances 
optimization efficiency. The proposed methodology is illustrated in Algorithm 2.

Algorithm 2.  FGEA

By implementing this methodology, the FPM streamlines the optimization process, reducing computational 
load while ensuring that only promising solutions are considered for further evaluation. To enhance the efficiency 
of the optimization process, this study proposes the development of a FPM, which classifies solutions based on 
their feasibility before performing detailed evaluations. By acting as a pre-filter, the model identifies and discards 
infeasible solutions early in the process, significantly reducing the number of evaluations required and thereby 
decreasing computational effort.

Case study
The Curicó network, located in central Chile, was selected as a case study due to the availability of a calibrated 
hydraulic model and access to operational data through collaboration with the local water utility. This real-
world system reflects the complexity of medium-sized urban networks, featuring elevation differences, pressure 
constraints, and multiple pumping stations. These attributes present realistic operational challenges that make it 
particularly suitable for evaluating the proposed optimization methodology under practical conditions.

Fig. 4.  Curicó network.
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Standard benchmark networks such as Anytown or Hanoi are commonly used for methodological validation; 
however, they are relatively small and do not capture the full range of hydraulic and topological complexity 
found in operational water distribution systems. In contrast, the Curicó network enables a more rigorous and 
representative assessment of computational performance and feasibility prediction in a real-world context.

Figure 4 shows the topology of this network, which comprises 7,362 demand nodes, 8,358 pipes and two 
PSs. The analysis is conducted over 24-hour period, with each hour modeled as a discrete time step in the 
optimization process. The baseline demand for the network is 170 liters per second (L/s). 

The minimum pressure requirement at the nodes is set to 20 meters of water column (mwc), a crucial constraint 
to guarantee proper water distribution throughout the system. To address the optimization problem, a catalog 
containing 67 different pump models is considered, allowing for a broad selection of possible configurations. 
The optimization aims to determine the optimal number and type of pumps to install at each PS while ensuring 
compliance with hydraulic and economic constraints. The Curicó network serves as a practical validation 
scenario for assessing the computational efficiency and effectiveness of the FPM in guiding the evolutionary 
optimization process.

Computational implementation
The entire optimization framework is implemented in Python, leveraging multiple libraries to ensure robust 
data processing, machine learning model training, and evolutionary algorithm execution. The database used 
to train the ML models is created by evaluating 500 candidate solutions, which are generated and assessed 
based on their feasibility within the Curicó network. This sample size was selected to balance predictive model 
quality and computational feasibility. Preliminary tests with larger datasets yielded marginal gains that did not 
justify the added simulation cost, while smaller datasets led to reduced generalization and poorer optimization 
performance. The selected configuration enabled reliable prediction of solution feasibility and consistent 
convergence to high-quality results in more than 80% of the experiments.

For data preprocessing, the Panda´s library is utilized to structure and manage large datasets, while Scikit-
learn is used for class balancing via the undersampling method, ensuring a well-distributed dataset for model 
training. Randomized numbers for solution generation are handled using the Random library. Various machine 
learning models were trained — including Extreme Gradient Boosting, Random Forest, K-Nearest Neighbors, 
Decision Tree, Artificial Neural Networks, Logistic Regression, Naive Bayes, and Support Vector Classifier — 
using the Scikit-learn library, with hyperparameter tuning performed through the HalvingGridSearch method. 
To ensure robustness and a proper adjustment to identify feasibility, the HalvingGridSearch procedure was 
executed with different hyperparameter grids for each classification model. Model validation was carried out 
using K-Folds Cross-Validation with K = 10, and performance was evaluated based on accuracy, recall, and 
precision metrics. Subsequently, the best-performing models — Extreme Gradient Boosting, Random Forest, 
K-Nearest Neighbors, and Decision Tree — were selected, considering as the main criterion those that achieved 
a good accuracy score in testing. Finally, the selected models were exported using the Joblib library for efficient 
integration into the evolutionary optimization algorithm.

The genetic algorithm (GA) is implemented using the JMetalPy library, which provides a flexible structure 
for developing evolutionary algorithms. The trained FPM is integrated within this algorithm, acting as a filtering 
mechanism that prevents the evaluation of infeasible solutions during the optimization process. Each solution is 
evaluated using a full hydraulic simulation implemented in EPANET 2.2, integrated through a Python interface. 
The simulation comprises 24 demand periods, during which pressure and flow conditions are verified to ensure 
feasibility across the network. In the presented case study, the average computational time for evaluating a single 
solution is approximately 7.53 seconds on a personal computer with an Intel Core i7 processor and 16 GB of 
RAM. Although this time is relatively low for a single evaluation, the optimization process typically involves 
thousands or even hundreds of thousands of evaluations. This leads to accumulated computation times that 
may span weeks or even months, rendering the approach impractical for large or urgent design tasks. This 
computational cost motivated the introduction of the Feasibility Predictor Model (FPM) to reduce the number 
of full hydraulic simulations required.

To benchmark performance, 50 independent optimization experiments are conducted using the traditional 
method to obtain an optimal solution, followed by 50 experiments for each FGEA where each variant differs 
based on the applied ML-based feasibility filter. In total, 250 experiments are performed to validate the efficiency 
and robustness of the proposed approach. The final study analyzes the best solutions obtained, as well as the 
ability to identify good solutions. Good solutions are defined as those whose objective function values slightly 
exceed the best known value, in accordance with commonly accepted criteria in similar optimization studies59. 
The implementation is carried out in Python, using the Pandas, Scikit-learn, JMetalPy, and EPANET libraries. 
A total of 250 experiments are conducted, comparing the traditional approach with the proposed methodology 
enhanced by the FPM.

Results and discussion
This section presents the results obtained from applying the proposed methodology to the Curicó case study. 
Four variants of the FGEA approach were trained and validated, each integrating a different FPM. To ensure 
greater statistical validity of the results, 50 independent experiments were conducted for each FGEA, which were 
compared against 50 experiments performed using a traditional EA. The primary objective of this comparison 
is to evaluate the ability of the FGEAs to reduce the computational cost of the optimization process without 
compromising solution quality.

The stopping criterion of 50,000 solutions generated per experiment was established. The results indicate that 
the method achieved an optimal cost of €45,947.44. To evaluate the quality of the solutions obtained, a 1% loss 
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threshold was defined relative to the best value found, to classify the so-called “good solutions.” In this context, 
any solution with an objective function value below €46,406.91 is considered a good solution.

Cost and optimization performance
Figure 5 presents the cost distribution of the experiments conducted, illustrating the relationship between the 
objective value obtained and the number of OFEs required to achieve it in each experiment. This representation 
allows for mapping the results and analyzing the performance of the different proposed methods, facilitating 
their comparison with the traditional EA.

Regarding the behavior of the OFEs performed by the different methods to obtain the best solution in each 
experiment (considering a maximum of 50,000 OFEs), it is observed that the EA evaluates between 45,000 and 
50,000 solutions, although in some cases it fails to converge on good solutions. In the case of FGEA-RF and 
FGEA-DT, greater dispersion in the results is observed, as several experiments do not reach good solutions, 
with OFEs ranging approximately between 25,000 and 35,000 evaluations. This behavior is also observed in 
FGEA-XGB, which shows a similar pattern in terms of the number of evaluations. Finally, FGEA-KNN evaluates 
approximately 20,000 to 30,000 solutions in most experiments, achieving the highest savings performance.

To further analyze the performance of each FGEA, Table 1 summarizes the most relevant results obtained 
with each machine learning model, including the number of “good solutions” generated, the average costs 
achieved, and the best solution found by each approach. Notably, FGEA-RF obtained the best individual 
solution, with a cost of €45,909.32 after 28,248 objective function evaluations (OFEs). Meanwhile, FGEA-KNN 
achieved a similar cost of €45,924.15, requiring only 22,303 OFEs. These results demonstrate that some FGEAs 
not only significantly reduce computational effort but can also improve solution quality compared to traditional 
approaches.

The findings indicate that all FGEAs were able to generate good solutions in at least 80% of the experiments 
conducted. Notably, FGEA-KNN and FGEA-RF outperformed the traditional EA, with FGEA-KNN achieving 
better solutions on two separate occasions. These findings validate the effectiveness of ML-based feasibility filters 

Good Average objective Best solution

Method solutions value (€) Objective value (€) OFEs Saving

EA 84% 46,591.16 45,947.44 50,000 -

FGEA-DT 80% 46,620.79 45,954.03 28,833 42%

FGEA-KNN 94% 46,191.51 45,924.15 22,303 55%

FGEA-RF 82% 46,531.13 45,909.32 28,248 44%

FGEA-XGB 90% 46,283.53 45,948.89 31,669 37%

Table 1.  Summary of results for each model.

 

Fig. 5.  Cost and OFE relationship of the experiments.
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in guiding the optimization process toward high-quality solutions while significantly reducing computational 
costs.

Evaluation of hydraulic performance
This section presents a comparative hydraulic analysis between the best solution from the traditional EA 
(€45,947.44 with 50,000 OFEs) and the most efficient cost-OFEs solution, obtained through FGEA-RF 
(€45,909.32 with 28,248 OFEs).

Figures 6 and 7 illustrate the pumping scheme behavior over a 24-hour period for both solutions. In these 
graphs, the bars represent the number of active pumps in each period, while the dotted lines indicate the total 
flow required by the network.

The results show that both solutions exhibit a highly similar pump scheduling and flow distribution among 
the PSs. Moreover, for PS1, both solutions display identical behavior throughout the entire analysis period. The 

Fig. 7.  FGEA-RF optimal solution.

 

Fig. 6.  EA optimal solution.
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main difference lies in the pumping scheme of PS2, where the solution obtained using FGEA-RF operates with 
one less pump in period 3, leading to a reduction in operational costs. Additionally, the differences in operational 
costs (OPEX) and investment costs (CAPEX) are analyzed. Table 2 provides a detailed comparison of the total 
annual costs for both solutions. In terms of CAPEX, no differences are observed between the solutions, as both 
involve the same infrastructure investment: 7 pumps of the “GNI 50-13/5.5” model in PS1 and 3 pumps of the 
“GNI 50-13/7.5” model in PS2.

The main difference lies in the operational costs (OPEX), specifically in the variations observed in PS2, which 
directly impact the total operating cost. As a result, the solution obtained through FGEA-RF emerges as the most 
cost-effective alternative, optimizing resource utilization without compromising the hydraulic feasibility of the 
system.

Both solutions meet the hydraulic constraints defined by the problem and the mathematical model; however, 
the solution obtained through FGEA-RF demonstrates greater efficiency and cost reduction, while also aligning 
more precisely with the network requirements. This optimization is crucial, as an inefficient exploration of the 
search space can lead to unnecessary operational and infrastructure costs.

Analysis of computational effort to obtain good solutions
One of the key objectives of the proposed methodology is to reduce the number of OFEs required for optimization. 
Figure 8 shows the number of OFEs needed to obtain the first good solution in each experiment, allowing for a 
comparison of the computational savings achieved by the different methods. 

The distribution shown in Fig. 8 demonstrates that all FGEAs are capable of reducing the number of OFEs 
required to obtain good solutions compared to the original method. While the EA displays a distribution mainly 
concentrated between 20,000 and 35,000 OFEs, the FGEAs concentrate their evaluations between 10,000 and 
25,000 OFEs, reflecting a significant computational saving. For a more detailed analysis, Table  3 presents a 
statistical summary of the OFEs required to obtain good solutions.

According to the results presented in the previous table, all FGEAs reduce the average number of OFEs 
required to obtain a good solution by at least 35%. In particular, FGEA-KNN achieves the highest reduction with 
44%, followed by FGEA-RF with 41%, FGEA-DT with 38%, and FGEA-XGB with 36%.

From another perspective, when comparing the FGEAs with the EA based on the standard deviation, it is 
observed that the most optimistic scenario for the EA (one standard deviation below the mean) corresponds 

Fig. 8.  Cost and OFE relationship of the first good solution in each experiment.

 

OPEX CAPEX Fa· CAPEX + OPEX

EA FGEA-RF EA FGEA-RF EA FGEA-RF

PS1 € 25,170.2 € 25,156.7 € 6,918.2 € 6,918.2 € 32,088.4 € 32,074.8

PS2 € 10,922.8 € 10,898.2 € 2,936.3 € 2,936.3 € 13,859.1 € 13,834.5

Total € 45,947.5 € 45,909.3

Table 2.  Cost comparison between the best solutions EA and FGEA-RF.
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to obtaining a good solution with 24,378 OFEs. In contrast, even the most pessimistic scenarios for the FGEAs 
—that is, one standard deviation above the mean— show better performance: FGEA-KNN requires up to 
20,683 OFEs, FGEA-RF 21,097, FGEA-DT 23,181, and FGEA-XGB 24,269. This demonstrates that integrating 
ML classifiers into evolutionary optimization can lead to substantial computational efficiency improvements, 
enabling the generation of high-quality solutions at a significantly lower computational cost.

Conclusions
Water distribution networks (WDNs) are the subject of constant research due to the high complexity associated 
with their design and operation. While current metaheuristic tools have demonstrated good performance, 
their efficiency decreases significantly as the dimensionality of the problem increases, leading to high costs and 
considerable computational effort. In this context, this study proposes a new FGEA that involves integrating a 
Feasibility Predictor Model (FPM) into an EA. This model classifies the solutions generated by the evolutionary 
algorithm and allows the evaluation of only those labeled as feasible, thereby reducing the number of hydraulic 
simulations required in the heuristic optimization process. To construct the FPM, machine learning classification 
models were employed.

The proposed methodology was implemented and validated in a real-scale case study. The results demonstrated 
the effectiveness of the approach, as all the classification models used to formulate the FPM achieved significant 
savings in objective function evaluations (OFE). Specifically, the number of OFEs was reduced from 50,000 to 
less than 25,000, without compromising the quality of the solutions obtained compared to the original method. 
Furthermore, in some cases, the optimal cost defined by the original method was improved while reducing the 
number of evaluations, offering a dual benefit: computational savings and result optimization.

This methodology demonstrates its contribution to the optimization of complex infrastructures, such as 
WDNs, by offering an innovative approach with high potential for application to other critical infrastructures 
and possible expansion into new studies. However, since the current model is based on a specific dataset and 
optimization framework, its adaptability to different hydraulic conditions or larger-scale problems may require 
additional methodological adjustments. A key limitation of the proposed approach is that the FPM must be 
trained specifically for each water distribution network. Due to the strong dependency of hydraulic feasibility 
on network topology, pump configurations, and local demand patterns, the knowledge learned from one case 
cannot be transferred to another. Consequently, each new network requires a dedicated synthetic dataset and 
a newly trained model, which may significantly increase the computational cost when analyzing multiple 
scenarios. Moreover, as the number of pumping stations grows, the dimensionality of the solution space increases, 
demanding a larger dataset and further complicating model training. These aspects limit the direct scalability 
and generalization of the methodology across different network designs. Addressing these challenges—by 
exploring transferable learning models, domain adaptation, or data-efficient training strategies—represents an 
important direction for future research.

Regarding potential improvements and future developments, this research could evolve into a feasibility 
prediction model with a linear rather than categorical approach, allowing for a more precise and flexible 
classification of the generated solutions. Alternatively, an adaptive mechanism could be implemented, where, 
upon classifying a solution as infeasible, a directed mutation process is triggered, redirecting the search toward 
more promising regions of the solution space. Additionally, future research should explore multi-objective 
optimization approaches that balance cost, reliability, and computational efficiency. Expanding this methodology 
to real-time applications and integrating it with adaptive control strategies could further enhance its practical 
applicability in large-scale water distribution systems. These improvements not only open new research 
opportunities but also expand its potential applications in civil engineering and the efficient management of 
water resources.

Finally, although this study focused on a feasibility-guided integration of machine learning within the 
evolutionary algorithm, future work could examine alternative strategies—such as the use of predictive models 
to select the most promising individuals in each generation. Comparing these different integration approaches 
could provide valuable insights into their relative performance and suitability for large-scale water distribution 
network optimization problems.

Data Availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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EA FGEA-KNN FGEA-RF FGEA-DT FGEA-XGB

Average 30,660 17,202 18,035 19,018 19,649

Minimum 22,300 12,771 12,088 14,406 11,837

Maximum 48,200 29,654 26,346 30,599 31,684

Median 29,000 16,518 17,708 17,437 18,847

Standard deviation 6,282 3,481 3,062 4,163 4,620

Table 3.  Statistical summary of the OFEs required to obtain good solutions.
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