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Construction of a prognostic

risk model for acute myeloid
leukemia based on exosomal
genes and analysis of immune
microenvironment characteristics
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Acute myeloid leukemia (AML) exhibits significant heterogeneity in disease progression and
therapeutic response, highlighting the urgent need for novel biomarkers to improve risk stratification
and therapeutic targeting. In this study, we integrated multi-omics data from The Cancer Genome
Atlas (TCGA, n=151) and Genotype-Tissue Expression (GTEX, n=337) cohorts to systematically analyze
dynamic expression patterns of exosome-related genes in AML. Using univariate Cox regression

and least absolute shrinkage and selection operator (LASSO) algorithms, we identified 13 exosome-
associated genes (EXOSC4, TMEM109, THBS1, MYH9, HLA-DRA, CAPZB, ITGA4, MYL6, CYB5R1,
PSMA2, MPO, NDST2, and CANX) and constructed a prognostic risk model. The model demonstrated
superior predictive accuracy compared to traditional clinical parameters, with area under the curve
(AUC) values of 0.819, 0.825, and 0.832 for 1-, 2-, and 3-year survival predictions in the training set,
and 0.909 in the independent GEO validation cohort (GSE71014). Kaplan-Meier analysis revealed
significantly shorter overall survival in the high-risk group (log-rank P<0.001, hazard ratio=0.22, 95%
Cl=0.13-0.36). Immune microenvironment characterization using CIBERSORTx identified increased
infiltration of regulatory T cells (Tregs, P <0.01) in high-risk patients. Functional enrichment analysis
revealed enrichment of PI3K-Akt signaling pathways and TP53 transcriptional networks in high-risk
groups. Molecular docking studies confirmed strong binding affinity of verteporfin (ITGA4 inhibitor,
docking score=-16.0 kcal/mol) and ebselen (MPO inhibitor) to their respective targets, suggesting
potential therapeutic strategies to overcome chemotherapy resistance. This study establishes a
robust 13-gene exosome-based prognostic signature for AML risk stratification and identifies novel
immunomodulatory mechanisms mediated by exosome-driven Treg polarization.

Keywords Acute myeloid leukemia, Exosome-related genes, Prognostic risk model, Tumor
microenvironment, Molecular docking

Acute myeloid leukemia (AML) is an aggressive hematological malignancy arising from the malignant clonal
evolution of myeloid hematopoietic stem cells. It is pathologically characterized by abnormal proliferation of
bone marrow blasts, failure of normal hematopoiesis, and infiltration of extramedullary tissues. AML exhibits
significant heterogeneity, and clinical management faces dual challenges of chemotherapy resistance and
relapse!2. In particular, elderly patients bear a substantial clinical burden due to complex comorbidities and
poor tolerance to chemotherapy, resulting in induction treatment failure rates as high as 40%-50%*.
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The pathogenesis of AML involves dysregulation at multiple hierarchical levels, including aberrant epigenetic
regulation (e.g., DNA methylation disorders caused by TET2/DNMT3A mutations), high-frequency driver
mutations (such as FLT3-ITD and NPM1 mutations), and immune evasion mediated by the bone marrow
microenvironment™’. In recent years, exosomes have garnered widespread attention as core signaling
carriers within the tumor microenvironment. These 30-150 nm nanovesicles play pivotal roles in AML clonal
competition, stromal remodeling, and drug resistance transmission by delivering functional molecules,
including non-coding RNAs (e.g., miR-155, IncRNA HOTAIR), oncogenic proteins (e.g., FLT3-ITD mutants),
and immunomodulatory molecules®~!%. Recent studies have underscored the critical functions of exosomes
as key mediators in the tumor microenvironment, influencing AML clonal evolution, bone marrow stromal
remodeling, and immune evasion!!~!3. For instance, exosomes secreted by AML cells can induce the expansion of
regulatory T cells by delivering TGF-P signaling pathway activators, thereby suppressing anti-leukemic immune
responses'?. Moreover, exosomes released by chemotherapy-resistant AML cells are enriched with drug efflux
pump proteins (e.g., MDR1/P-gp), which can confer a multidrug-resistant phenotype to sensitive cells through
horizontal transfer mechanisms'. Although strategies targeting exosome biogenesis (e.g., Rab27a inhibitors) or
cargo loading have advanced to preclinical studies'®, the molecular heterogeneity and spatiotemporal dynamic
regulation of exosomes remain poorly understood, hindering their translation into precision diagnostic and
therapeutic tools.

Increasing evidence highlights that the tumor immune microenvironment (TME) plays a pivotal role in AML
progression and treatment resistance, with factors such as immune checkpoint expression, immunosuppressive
cell infiltration, and TME remodeling attracting considerable attention. For instance, the IOBR tool enables
multi-omics dissection of the TME landscape, providing valuable insights into immune dynamics and their
correlation with treatment outcomes, akin to our approach using GTEx and TCGA datasets!”. Immune
profiling studies also reveal that molecular subtypes exhibit distinct immunological features, suggesting that
TME heterogeneity may contribute to differential therapeutic responses'®. Notably, recent integrative models
such as iMLGAM further highlight the prognostic importance of immune cell infiltration, identifying CEP55
as a critical regulator of immune evasion, and raising the possibility that exosome-mediated pathways may play
similar roles®.

Addressing this context, this study transcended the limitations of single-cohort analyses by integrating multi-
omics data from healthy individuals (GTEx, n=337) and AML patients (TCGA, n=151) to systematically dissect
the dynamic expression profiles of exosome-related genes and their prognostic associations. A risk scoring
model incorporating 13 exosome genes (including EXOSC4, ITGA4, MPO, etc.) was constructed using LASSO-
Cox regression. A nomogram integrating age and pathological features was developed, achieving an overall
AUC of 0.924 in predicting 1-, 2-, and 3-year survival, significantly outperforming traditional clinical indicators.
Further analysis using the CIBERSORTX algorithms revealed molecular characteristics of increased regulatory
T cells infiltration (P<0.05). Potential targeted drugs, such as verteporfin (an ITGA4 inhibitor with a docking
score of —16.0), were identified through molecular docking. This study not only elucidated novel mechanisms by
which exosomes remodel the immune microenvironment but also provided translational evidence for AML risk
stratification and combination therapy strategies.

Materials and methods

Data collection and preprocessing

In this study, gene expression data from 337 healthy whole blood samples (formatted as log2(FPKM +0.001),
calculated by RSEM) were downloaded from the Genotype-Tissue Expression (GTEx) project via the UCSC
Xena website (https://xena.ucsc.edu/). Transcriptomic and clinical data of 151 acute myeloid leukemia (AML)
patients were obtained from The Cancer Genome Atlas (TCGA-LAML) dataset. Notably, the TCGA expression
data were provided in the format of log2(FPKM + 1), resulting in a scale difference between the two datasets.
To ensure consistency, GTEx expression values were first subjected to inverse log2 transformation, followed by
re-transformation using log2(FPKM + 1), aligning the format with TCGA data. The human reference genome
annotation file (human.gtf, version GRCh38.p14) was downloaded from the Ensembl database to extract gene-
level annotation information. Perl (v5.30.2) was used to parse the GTF file and establish a mapping between
Ensembl gene IDs and standard HUGO gene symbols (Gene Symbol). If an Ensembl ID corresponded to
multiple gene symbols, only the first non-empty symbol was retained. The dataset GSE71014 (platform
GPL10558-50081), containing gene expression and survival data for AML from the Gene Expression Omnibus
(GEO) database, was downloaded as a test set. After probe ID matching, merging of redundant genes (avereps),
and removal of missing values, a standardized gene expression matrix was obtained for validating prognostic
features. To identify genes associated with exosome biogenesis, secretion, and function, we initially queried
the GeneCards database (https://www.genecards.org/) using the keyword “exosome.” Genes with a relevance
score greater than 2 were selected to ensure a high degree of functional relevance. To enhance the robustness
of the gene set, we supplemented the list by reviewing published literature and incorporating genes with well-
characterized roles in exosome biology. After removing duplicate entries and excluding non-coding genes, a
curated list of 922 protein-coding exosome-related genes was obtained for subsequent analyses.

Batch correction and dataset merging

The preprocessed GTEx and TCGA AML gene expression matrices were converted into numerical matrices. The
avereps function from the limma package was used to average the expression levels of duplicate genes, ensuring
that each gene uniquely corresponded to one row in the expression profile. Common genes between GTEx
and TCGA were extracted, and the two datasets were merged horizontally to generate a combined expression
matrix. The normalizeBetweenArrays function from the limma package in R was employed to perform quantile
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normalization on the GTEx and TCGA data to eliminate technical biases and standardize the expression value
distributions across datasets.

Screening of exosome-related genes and differential expression analysis

Low-expression genes (average expression value >0 across all samples) were filtered from the merged expression
matrix, and the gene expression profiles overlapping with the exosome gene list were extracted. A Venn diagram
was drawn using the ggvenn package. The Wilcoxon rank-sum test was used to perform differential expression
analysis on the exosome-related gene expression data between the healthy control group and AML patients,
identifying differentially expressed genes (FDR<0.05, |logFC| = 2). A heatmap of the differentially expressed
genes was plotted using the pheatmap package.

Construction and validation of exosome-related prognostic features

Datasets from the TCGA database and the GSE71014 dataset from the GEO database were used as the training
and validation cohorts, respectively. Exosome-related gene sequencing data for each sample were integrated
with corresponding survival data. Univariate Cox regression analysis (p<0.01) was performed to screen
key genes associated with AML prognosis in the TCGA cohort. A forest plot was drawn using the bioForest
function (p-value<0.001, HR(95% CI)). The glmnet package was used to select prognostic genes via LASSO-
Cox regression (10-fold cross-validation, A.min criterion). Based on the gene expression values (Expi) and
their regression coefficients (i) from the LASSO-Cox model, an individual risk score was calculated using the
following formula (Eq. (1)):

n

Risk Score = Z (Exp; x Bi) (1)

i=1

where n, Bi, and Expi represent the number of feature genes, the coefficient value of the gene in LASSO analysis,
and the gene expression, respectively. The surv_cutpoint function was used to automatically determine the
optimal cutoff value for the risk score based on the maximum survival difference criterion, thereby dividing the
samples into high- and low-risk groups. This method selects the cutoff point by maximizing the chi-square value
(x2) of the Log-rank test, thereby maximizing the survival difference between groups. The formula is as follows
(Eq. ):

Optimal Cutof f = arg max [X2 (High — risk vs Low — risk at cutof f T)] (2)

Kaplan-Meier curves were used to evaluate the overall survival (OS) differences between groups. Principal
component analysis (PCA) was also performed to estimate the clustering ability of the risk features. The
prognostic performance was further validated in the validation set.

Comprehensive analysis of prognostic risk scores and clinicopathological parameters in aml
patients

The risk scores of each AML sample were combined with corresponding clinicopathological features. To assess
the clinical relevance of the risk score, we used the Wilcoxon rank-sum test in R to analyze its associations with
clinicopathological characteristics including gender, age, and previous treatment. Statistical significance was
defined as P <0.05. Univariate and multivariate Cox regression analyses were conducted to identify independent
prognostic factors among these variables. A p-value <0.05 was used as the selection criterion. ROC curves were
plotted to assess the prognostic prediction accuracy of the risk score model and clinical variables.

Construction and evaluation of a nomogram for aml patients

To further explore individual prognosis, a novel prognostic nomogram incorporating independent prognostic
indicators was constructed using the “nomogram” package in R. Additionally, ROC curve analysis and Cox
regression analysis were performed to evaluate the predictive ability of the nomogram from different perspectives.

Characterization of immune cell infiltration

CIBERSORTX (https://cibersortx.stanford.edu/), an advanced algorithm based on support vector regression,
was used to estimate the relative abundance of 22 immune cell subsets in each AML sample by deconvoluting
bulk transcriptomic data against the LM22 leukocyte gene signature matrix. The analysis was performed with
500 permutations to ensure robust estimation. The Wilcoxon rank-sum test was applied to compare differences
in immune cell infiltration between the high- and low-risk groups.

Functional enrichment analysis

Differentially expressed genes (DEGs) were screened between the high- and low-risk groups, with cutoft values set
at [log2FC| = 1 and raw p-value <0.05, and further corrected for false discovery rate (FDR) using the Benjamini-
Hochberg method (q-value <0.05). Based on the significant DEGs, gene ontology (GO) and Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathway enrichment analyses were performed using the clusterProfiler package.
GO analysis covered three categories: biological process (BP), molecular function (MF), and cellular component
(CC). KEGG analysis focused on metabolism and signal transduction. Significant enrichment results were
visualized using ggplot2, with a significance threshold of q-value <0.05.
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Construction and analysis of protein-protein interaction (PPI) networks

Based on the STRING online platform, a human protein-protein interaction (PPI) network was constructed
for the DEGs screened between the high- and low-risk groups, with a particular focus on Homo sapiens data.
High-confidence protein interactions were filtered based on a combined score > 0.4 from the STRING database
to explore the functional synergies of DEGs in the tumor microenvironment.

Screening of core exosome prognostic differential genes and construction of transcription
factor regulatory networks

Core exosome prognostic differential genes were screened through univariate Cox regression analysis (P <0.001).
In the TRRUST (Transcriptional Regulatory Relationships Unraveled by Sentence-based Text mining) database,
the species was set to human, and relevant transcription factors for the core genes were searched, resulting in
a list of related transcription factors. Subsequently, a core gene-transcription factor regulatory network was
further constructed using Cytoscape software.

Drug enrichment analysis and construction of drug regulatory networks for core exosome
prognostic-related genes

The DSigDB (Drug Signature Database) was selected as the reference database. The enricher function from
the clusterProfiler package was used, and the core gene list and drug-gene interaction data from the DSigDB
database were input for drug enrichment analysis (p <0.05 and q<0.05). To ensure information richness and
result accuracy, the minimum and maximum sizes of gene sets were set to 10 and 500, respectively. A drug
enrichment model and regulatory network based on core genes were constructed, providing valuable clues for
subsequent drug development and therapeutic target discovery.

Molecular docking

To enhance clinical translation potential, a hierarchical screening strategy was adopted in molecular docking
studies. Candidate compounds were selected from a drug library with p<0.05 in enrichment analysis. Priority
was given to FDA-approved first-line drugs for AML and emerging targeted inhibitors with well-defined
mechanisms. Non-drug entries and highly toxic compounds were excluded, focusing on compounds with good
safety profiles. Compounds that potentially regulate exosome secretion, packaging, or signaling pathways were
retained. High-quality three-dimensional structures of drug targets were screened from the PDB database to
ensure the reliability of molecular docking. Based on the results of drug enrichment analysis for core genes,
suitable drugs or compounds were selected as docking drugs, and the core exosome prognostic-related genes
with the closest enrichment were determined as docking targets. During the docking process, high-precision
3D molecular structure data for the docking drugs or compounds were obtained from the PubChem database
(https://pubchem.ncbi.nlm.nih.gov/), and detailed protein structure data for the core exosome prognostic-re
lated genes were downloaded from the RCSB PDB database (https://www.rcsb.org/). The CB-Dock2 website
(https://cadd.labshare.cn/cb-dock2/index.php) was selected as the docking tool.

Statistical methods, software, and tools

Perl (v5.30.2) was used to assist in data processing, including large-scale text parsing and format conversion.
Statistical analysis, modeling, and visualization were performed using the R language (v4.4.3) environment. The
Benjamini-Hochberg method was used for multiple testing correction to control the FDR. The Wilcoxon rank-
sum test was used for differential expression analysis. Cytoscape software (version 3.10.1) was used for drawing.
The experimental design and workflow are illustrated in Fig. 1.

Results

Data collection and preprocessing

Gene expression data from 337 healthy whole blood samples were obtained from the GTEx database, stored
in the format of log2(FPKM +0.001). The TCGA database contained transcriptomic and clinical data for 151
AML patients. The GTEx data underwent an inverse log2 transformation followed by re-normalization via log2
transformation, resulting in a standardized expression matrix that included expression profiles for 56,754 genes.
In the TCGA AML data, 60,660 Ensembl IDs were successfully converted to HUGO symbols, and after removing
unannotated genes, 58,697 genes were retained. Following data cleaning and ID conversion, the integrated
dataset of GTEx and TCGA AML retained a total of 55,150 common genes. The GEO dataset GSE71014
(platform GPL10558-50081) was processed through probe matching, merging of redundant genes (avereps), and
removal of missing values, ultimately retaining a standardized expression matrix for 104 AML samples (covering
34,681 genes) for independent validation. Among the 922 exosome-related genes extracted from the GeneCards
database, 878 genes were effectively expressed (average expression value>0) in the combined GTEx and TCGA
expression matrix and were included in subsequent differential expression analysis and modeling.

Differential expression analysis of exosome-related genes

After overlapping the combined GTEx and TCGA expression matrix with the list of 922 exosome-related genes,
a total of 836 exosome-related genes were extracted. A Venn diagram was used to illustrate the intersection
between the exosome genes and the combined GTEx and TCGA expression matrix (Fig. 2A). Based on the
Wilcoxon rank-sum test (FDR<0.05, |[logFC| = 2), a total of 174 exosome-related genes were identified as
differentially expressed between healthy controls and AML patients. A heatmap revealed distinct clustering
patterns of the differentially expressed genes between the two groups (Fig. 2B).
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Fig. 1. Flow chart of research design and analysis.
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Fig. 2. (A) Venn Diagram Identifying Differential Genes Associated with Exosomes from AML. (B) Heatmap
of exosome-related DEGs in AML and normal samples (red for high, blue for low).
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Construction of an exosome-related prognostic signature

In the TCGA dataset, univariate Cox regression analysis (P <0.01) was employed to screen 20 exosome-related
genes that were significantly associated with the overall survival (OS) of AML patients (Fig. 3 A). Subsequently,
LASSO-Cox regression (with 10-fold cross-validation and A=min) was applied to further determine the
optimal prognostic genes. Eventually, 13 exosome-related genes were identified (Table 1) and incorporated into
a prognostic risk model (Fig. 3B, C).

The risk score for each patient was calculated using the following formula: Risk Score = (Expression
of EXOSC4x0.489131757414089) + (Expression of TMEMI109x0.122385896623323) + (Expression
of THBS1x0.0315566929862512) + (Expression of MYH9x0.291033480323073) + (Expression of
HLA-DRA x 0.107916651629561) + (Expression of CAPZB x 0.269733384075537) + (Expression
of ITGA4 x -0.164132610693896) + (Expression of MYL6x0.405708399356843) + (Expression of
CYB5R1x0.150359117251523) + (Expression of PSMA2 x —0.297116568474912) + (Expression of MPO
x —0.244293996471651) + (Expression of NDST2 x -0.658043797748103) + (Expression of CANX x
—0.0644590533948854). Based on the criterion of maximum survival difference, the optimal cutoff value for
the risk score was determined to be 3.991441. Patients were then divided into high-risk (71 cases) and low-risk
groups (71 cases). Kaplan-Meier analysis revealed a significantly worse OS in the high-risk group (log-rank
P<0.001, HR=0.22, 95% CI=0.13-0.36)(Fig. 3D).

Furthermore, principal component analysis (PCA) was conducted to compare the gene expression levels
between high-risk and low-risk patients based on the 13 exosome-related genes included in the prognostic
signature. The results demonstrated that the risk signature exhibited the best discriminatory ability between the
two groups (Fig. 3E).

Independent validation and clinical relevance of the prognostic model

In the independent validation set GSE71014, the high-risk group also exhibited a significantly shorter overall
survival (OS) (log-rank P<0.001, Fig. 4A). The receiver operating characteristic (ROC) curve demonstrated that
the area under the curve (AUC) values for the risk score in predicting 1-year, 2-year, and 3-year OS were 0.819,
0.825, and 0.832, respectively (Fig. 4B). When comparing the risk score with all clinical variables in predicting
OS, the risk score achieved the highest AUC value of 0.909 (Fig. 4C). Both univariate and multivariate Cox
regression analyses confirmed that the risk score was an independent prognostic factor for AML (univariate
HR=4.10, P<0.001; multivariate HR =3.40, P<0.001) (Figs. 4D, E).

Association between risk score and clinicopathological features

Given the accuracy of survival risk prediction, we further investigated the role of the risk signature in predicting
AML progression and explored the associations between the risk score and clinicopathological features. The risk
score was significantly correlated with an age of 65 years or older (P=0.00022) (Fig. 5A). However, no significant
correlations were observed between the risk score and gender or previous treatment (p>0.05)(Figs. 5B, C).
Moreover, the ROC curve shown in Sect. 4 further supported the prognostic predictive power of the risk score
compared to traditional clinical variables (Fig. 4C).

Construction of a nomogram for AML patients

A prognostic nomogram incorporating independent risk factors (age and risk score) was constructed to predict
the 1-, 2-, and 3-year survival probabilities of AML patients (Fig. 6 A). The area under the curve (AUC) analysis
demonstrated that the nomogram (AUC =0.924) exhibited higher sensitivity and specificity compared to other
single prognostic factors, such as age (AUC=0.775), gender (AUC=0.460), previous treatment (AUC=0.641),
and the risk score alone (AUC=0.910) (Fig. 6B). Furthermore, the calibration curves indicated excellent predictive
performance, with our model closely resembling the ideal model in estimating 1-, 2-, and 3-year overall survival
(OS) (Fig. 6 C). Additionally, Cox regression analysis was conducted to confirm that the nomogram score was an
independent predictor of AML prognosis among all participants (Fig. 6D and E). Overall, we have validated the
outstanding predictive capability of the disease prognostic signature and revealed its high potential for clinical
application from multiple perspectives.

Landscape of tumor microenvironment (TME) and immune cell infiltration in AML patients
CIBERSORTX analysis revealed that the proportion of regulatory T cells (Tregs) was significantly elevated in
the high-risk group (P<0.05), whereas the proportions of resting mast cells and resting dendritic cells were
significantly reduced (P<0.05) (Fig. 7).

Functional enrichment and regulatory network analysis

To distinguish the biological functions and networks associated with the risk signature, we screened a total of 43
differentially expressed genes (DEGs) (|log2FC|>1, FDR <0.05) between the high-risk and low-risk groups. GO/
KEGG enrichment analysis revealed that these genes were significantly enriched in biological processes such as
“collagen-containing extracellular matrix”, “extracellular matrix organization’, and “DNA-binding transcription
activator activity”, as well as in signaling pathways including PI3K-Akt signaling pathway, Cytokine-cytokine
receptor interaction, Focal adhesion, and ECM-receptor interaction (Fig. 8A and C). Functional clustering of
the DEGs was visualized through principal component dimension reduction, showing the mutually exclusive
distribution of MHC class II antigen presentation (right quadrant) and angiogenesis (left quadrant), suggesting
parallel mechanisms of immune escape and microenvironment remodeling (Fig. 8B). The protein-protein
interaction (PPI) network (combined score > 0.4) identified 12 hub genes (such as HOX family proteins), which
were primarily involved in functional modules related to embryonic development and cell differentiation
(Fig. 8D).
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Fig. 3. Construction of the prognostic risk model. (A) forest plot displays 20 exosome-related genes identified

through univariate Cox regression analysis as being associated with prognosis. (B, C) LASSO Cox regression

analysis was employed to determine exosome-related genes closely associated with the prognosis of acute

myeloid leukemia (AML). (D) Kaplan-Meier curve of the gene signature. (E) Principal component analysis
(PCA) was conducted based on the exosome risk score to distinguish tumor samples from normal samples.
The group marked in blue represents low-risk patients, while the group marked in red represents high-risk

patients.
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Gene Coef

EXOSC4 0.489131757414089
TMEMI109 | 0.122385896623323
THBS1 0.0315566929862512
MYH9 0.291033480323073
HLA-DRA | 0.107916651629561
CAPZB 0.269733384075537
ITGA4 —0.164132610693896
MYL6 0.405708399356843
CYB5R1 0.150359117251523
PSMA2 —0.297116568474912
MPO —0.244293996471651
NDST2 —0.658043797748103
CANX —0.0644590533948854

Table 1. Exosome-related genes and their corresponding risk coefficients.
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Fig. 4. Validation of the prognostic risk signature. (A) Kaplan-Meier survival curves in the GEO cohort.
(B) Receiver Operating Characteristic (ROC) curves for predicting 1-year, 3-year, and 5-year survival rates
in the GEO cohort. (C) ROC curves comparing the prognostic performance of the risk score versus clinical
characteristics. (D, E) Univariate and multivariate Cox regression analyses of clinical parameters in acute
myeloid leukemia (AML) patients.

Construction of a transcription factor regulatory network

Based on univariate Cox regression analysis, seven core exosome-related genes significantly associated with the
overall survival (OS) of acute myeloid leukemia (AML) patients were identified (p <0.001) (Fig. 9A). To further
explore the expression characteristics and synergistic relationships of these genes, box plots were first generated
to illustrate their expression differences between the AML group and the normal control group (Fig. 9B).
Subsequently, Pearson correlation coefficients were calculated among the seven core genes to construct a co-
expression relationship matrix (Fig. 9C). Next, the selected seven core exosome-related prognostic differential
genes (P<0.001) were analyzed in TRRUST (Transcriptional Regulatory Relationships Unraveled by Sentence-
based Text mining), a database focusing on the interactions between mammalian transcription factors and
their target genes. By setting the species to human, we searched for the transcription factors of these seven
core exosome-related differential genes in the TRRUST database and obtained a list of transcription factors
associated with the THBS1 and MVP genes. A transcription factor regulatory network was then constructed
using Cytoscape software (Fig. 9D).
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Fig. 6. Development and evaluation of a nomogram for patients with AML. (A) Nomogram for predicting

the 1-year, 2-year, and 3-year overall survival rates in AML patients. (B) Calibration plot analysis to evaluate
the predictive power of the nomogram. The x-axis is the survival rate predicted by the nomogram, and the
y-axis is the actual survival rate. (C) Nomogram for predicting prognosis, risk score, and ROC curve for
clinical characteristics. (D, E) Univariate and multivariate Cox regression analysis was performed to determine
whether nomogram score was an independent predictor of AML patients. Green square: danger is higher than
HR < 1; Red squares: HR> 1.

Drug enrichment analysis and construction of a drug regulatory network for core exosome-
related prognostic differentially expressed genes

The enrichment results revealed that the seven core exosome-related prognostic differentially expressed genes
were primarily enriched in drugs and compounds such as “5-Aminosalicylic acid”’, “CHLOROGENIC ACID’,
“verteporfin’, “MAGNESIUM’, and “ebselen” (p<0.05 and q<0.05)(Fig. 10A). Based on these enrichment
results, a drug regulatory network was constructed (Fig. 10B).

Molecular docking

Drug enrichment analysis (DSigDB, P < 0.05) identified 221 drugs (such as verteporfin, ebselen, and Ginsenoside
Rh1) that potentially target the core exosome prognostic genes. Ultimately, three drugs were selected for further
study. Molecular docking results demonstrated that Verteporfin exhibited a strong affinity for the ITGA4
protein, with a docking score as low as —16.0 calculated using AutoDock Vina software (Table 2; Fig. 11A).
Similarly, Ebselen showed a strong affinity for the MPO protein, with a docking score of —7.6 (Table 3; Fig. 11B).
Ginsenoside Rh1 also displayed a strong affinity for the ITGA4 protein, with a docking score of —10.2 (Table 4;
Fig. 11C).
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p<0.01; and *** p<0.001.

Discussion

In this study, we constructed and validated a robust 13-gene exosome-related prognostic signature that
effectively stratifies AML patients by survival risk and reveals immunological distinctions within the tumor
microenvironment (TME). By integrating transcriptomic, survival, immune infiltration, and molecular docking
data, our findings suggest that exosome-associated genes critically contribute to immune suppression and
therapeutic resistance in AML, offering potential avenues for precision therapy.

Exosomes, as intercellular communicators, influence leukemic progression through bioactive cargoes such
as proteins, RNAs, and lipids*"?2. In our analysis, the high-risk group defined by the exosome-based signature
exhibited a distinct immunosuppressive TME, characterized by elevated regulatory T cells (Tregs), and reduced
resting mast cells and dendritic cells. Thisimmune landscape reflects a shift toward an immune-evasive phenotype,
consistent with prior studies showing that AML-derived exosomes promote Treg expansion via TGF-f and IL-10
signaling, and impair dendritic cell maturation and antigen presentation'?3. Such immunomodulatory effects
may partly underlie the reduced immunotherapy responsiveness observed in high-risk patients.

Functional enrichment analysis revealed that key oncogenic pathways, such as PI3K-Akt and TP53 signaling,
were significantly upregulated in the high-risk cohort. These pathways are not only essential for leukemogenesis
but also intersect with immunosuppressive signaling and therapy resistance mechanisms'""!>. Notably, TP53
has been shown to regulate THBS1, a poor prognostic gene in our model, and may modulate tumor immune
tolerance through downstream effects on TGF- signaling®*.

Among the 13 exosomal genes in our signature, several exhibit mechanistic relevance to AML biology.
ITGA4, known for mediating AML cell adhesion and homing, contributes to chemotherapy resistance through
the METTL3-m6A-ITGA4 axis?. Paradoxically, our model identified high ITGA4 expression as associated with
better prognosis, suggesting subtype-specific or context-dependent regulatory effects of exosome-associated
ITGA4. MPO, a myeloperoxidase involved in oxidative stress and cytarabine sensitivity, showed protective effects
in our cohort, aligning with its role in chemotherapy response?®. NDST2 exhibited a favorable association with
survival, in contrast to its tumor-promoting role in hepatocellular carcinoma?”-?, highlighting tissue-specific
expression dynamics.

Conversely, overexpression of genes such as EXOSC4, THBS1, MYH9, and CYB5R1 correlated with poor
outcomes, consistent with their roles in promoting stemness, immunosuppression, and ferroptosis resistance
in other malignancies?®~*. CAPZB and HLA-DRA, though better characterized in lymphomas and FUS-ERG-
positive AML respectively, may similarly impact immune cell infiltration and antigen presentation in high-risk
AML patients®*3>,

To identify potential therapeutic agents that could target the high-risk signature, molecular docking analyses
were performed. Verteporfin (VP), a YAP pathway inhibitor, demonstrated strong binding affinity with ITGA4
and may disrupt leukemic cell adhesion and survival via dual regulation of the Hippo/YAP and AKT/MAPK
pathways®*-3%. Similarly, Ebselen, a GPx mimic, targets MPO to inhibit ROS-mediated DNA damage and
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Fig. 8. (A, C) GO and KEGG pathway analyses of exosome-related core differentially expressed genes (DEGs)
in the high-risk and low-risk groups of acute myeloid leukemia (AML), adapted from the KEGG database
(https://www.kegg.jp/), Kanehisa Laboratories. Accessed 21 April 2025. © Kanehisa Laboratories®. (B) Gene
Ontology (GO) functional clustering distribution of the differentially expressed genes (DEGs). (D) Protein-
protein interaction (PPI) network.

resistance, while simultaneously activating the caspase cascade and promoting myeloid differentiation®-*2.

Importantly, both compounds have been shown to modulate immune and oxidative stress pathways, underscoring
their potential for exosome-guided therapeutic repurposing.

Another promising agent is Ginsenoside Rh1, a natural compound with pro-apoptotic and anti-invasive
properties. Recent studies have suggested that Rhl may target ITGA4-mediated cell-matrix interactions,
potentially disrupting leukemia stem cell niche maintenance***. Given its redox regulatory effects and anti-
MAPK activity, Rh1 may complement existing therapies in ITGA4-high AML subtypes.

Clinically, the exosome-based risk model demonstrated superior predictive performance compared to
conventional parameters, with AUCs exceeding 0.8 across both TCGA and GEO cohorts. The nomogram
combining the risk score and age (AUC =0.924) further enhances prognostic accuracy. By linking exosomal gene
expression to immune infiltration patterns and druggable molecular targets, this study proposes a dual-pronged
strategy—simultaneously targeting exosome-mediated immune dysfunction and guiding individualized drug
selection.

Nevertheless, this study has limitations. All results are based on publicly available transcriptomic datasets, and
the bulk RNA-seq data may obscure cell-type-specific exosomal gene expression. Functional validation through
in vitro and in vivo experiments is necessary to verify the causal roles of the identified genes and therapeutic
compounds. Additionally, although molecular docking provided mechanistic clues, further pharmacological
assessments are required before clinical translation.

In conclusion, our work highlights the prognostic and therapeutic relevance of exosome-associated genes
in AML. By uncovering their immunosuppressive functions and therapeutic vulnerabilities, we provide a
foundation for biomarker-guided, immune-informed treatment strategies to overcome drug resistance in AML.

Conclusion

In this study, through multi-omics integrative analysis and leveraging the dynamic regulatory network of
exosomes, we successfully constructed an AML risk scoring system incorporating 13 key genes, including
EXOSC4, ITGA4, and MPO. This system demonstrated excellent predictive performance in independent
validation cohorts. The integration of age, risk stratification, and the ExoRiskScore into a nomogram enables
individualized survival rate predictions, providing a quantitative basis for adjusting treatment intensity.
Molecular docking studies validated the potential of verteporfin and ebselen to reverse exosome-mediated
chemotherapy resistance, suggesting the initiation of multi-center Phase II clinical trials. The clinical application
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Fig. 9. (A) Forest plot showing the screening of core exosome-related prognostic difference genes by
univariate Cox regression analysis with P<0.001. (B) Box plot of core exosome-related prognostic difference
genes. (C) Correlation matrix of core exosome-related prognostic difference genes. (D) The regulatory

relationship diagram of transcription factors and core exosome-related prognostic differential gene regulation,
where yellow represents transcription factors and red represents differential genes.

of this model will usher in an era of “exosome-based molecular subtyping” for AML, offering a new paradigm
for precision immunotherapy combinations.
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Cl1 | -16.0 8161 12,22,43 35,35,25
C2 | -138 5702 10,65,4 35,32,25
C4 | -11.4 2924 —34,41,48 25,25,25
C5 | -13.8 1438 8,45,26 25,25,25
C3 | -13.8 3165 —-35,45,4 25,25,25

Table 2. Overview of protein pocket characteristics of verteporfin and ITGA4: Vina score, pocket volume and
3D coordinates, Docking region dimensions.
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Fig. 11. (A) Schematic diagram of molecular docking between Verteporfin and ITGA4. (B) schematic diagram
of molecular docking between ebselen and MPO. (C) schematic diagram of molecular docking between
ginsenoside Rh1 and ITGA4.
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CurPocket ID | Vina score | Cavity volume (A?) Cavity center (x, y, z) | Docking size (x, y, z)
C2 7.6 895 -4,37,23 19,19,19
Cl1 -7.2 1170 -30,11,18 25,25,35
C4 -7.0 746 23,38,27 19,19,19
C5 -6.3 688 42,11,24 19,19,19
C3 =57 832 6,27,9 19,27,19

Table 3. Overview of protein pocket characteristics of Ebselen and MPO: Vina score, pocket volume and 3D
coordinates, Docking region dimensions.

CurPocket ID | Vina score | Cavity 1 volume (A*) | Center (x, y;z) | Docking size (x, y; z)
C2 -10.2 5702 10,65,4 35,32,25
C5 -9.4 1438 8,45,26 25,25,25
C4 -8.0 2924 —34,41,48 25,25,25
C3 -7.8 3165 -35,45,4 25,25,25
Cl1 -5.8 8161 12,22,43 35,35,25

Table 4. Overview of protein pocket characteristics of ginsenoside Rh1 and ITGA4: Vina score, pocket volume
and 3D coordinates, Docking region dimensions.

Data availability
Raw data are directly accessible via the Gene Expression Omnibus (GEO) database (https://www.ncbi.nlm.nih.g
ov/geo/), the UCSC Xena website (https://xena.ucsc.edu/).
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