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Novel multiagent reinforcement
learning framework using twin
delayed deep deterministic policy
gradient for adaptive PID control in
boiler turbine systems

U. Kruthika & Surekha Paneerselvam®™

The latest developments in industrial control applications emphasize the need for incorporating
intelligent algorithms for enhanced adaptability and performance. This study addresses the
challenge of controlling a nonlinear, multivariable Boiler-Turbine System (BTS), which exhibits strong
interactions, non-minimum phase behavior, and instability due to the integrating nature of water
level dynamics. Traditional PID tuning methods often fail to manage such complexities effectively.

In this work, a reinforcement learning (RL)-based approach is proposed using the Twin Delayed

Deep Deterministic Policy Gradient (TD3) algorithm for adaptive PID tuning. Specifically, two novel
multi-agent TD3 algorithms are introduced: Shared-Critic Multi-Agent (SCMA-TD3) and Individual-
Critic Multi-Agent (ICMA-TD3). These architectures explore the use of shared versus independent
critic networks, with varying actor-critic depths, to improve learning efficiency and control accuracy.
The BTS control problem is meticulously modelled as an RL task, and the performance of SCMA-
TD3, ICMA-TD3, and standard DDPG is compared for PID tuning under standard step signals and
different disturbance scenarios. The findings highlight the capability of SCMA-TD3, ICMA-TD3 and
DDPG algorithms to minimize oscillations and reduce settling time, while simultaneously enhancing
efficiency and stability in BTS both qualitatively and quantitatively for the characteristics namely drum
pressure, electric power and drum water level. The stability analysis of the BTS is conducted based

on the computation of error metrics such as Integral Time Absolute Error (ITAE), Integral Square Error
(ISE) and Integral Absolute Error (IAE). The ICMA-TD3 method demonstrates superior performance in
control applications, achieving a 99.33% and 99.76% reduction in ITAE for electric power and drum
water level control, respectively, compared to SCMA-TD3 and DDPG in BTS control. Additionally,
ICMA-TD3 exhibits a 91.40% faster rise time and an 84.37% reduction in overshoot for electric power
control. In the case of drum pressure regulation, while ICMA-TD3 achieves a 99.866% lower ITAE than
SCMA-TD3, it experiences greater overshoot compared to SCMA-TD3. Furthermore, DDPG, despite
its implementation, incurs a high cost function, along with excessive rise time and overshoot, making
it the least effective approach for precise control applications. These results demonstrate that the
proposed multi-agent TD3 frameworks offer a robust and adaptive solution for complex industrial
control systems like BTS.
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Abbreviations

BTS Boiler Turbine System

RL Reinforcement Learning

MIMO  Multi-Input Multi-Output

PID Proportional-Integral-Derivative

DDPG  Deep Deterministic Policy Gradient

TD3 Twin Delayed Deep Deterministic Policy Gradient
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ICMA Individual Critic Multi-Agent

SCMA  Shared Critic Multi-Agent

CSTR Continuous Stirred Tank Reactor

PCA Principal Component Analysis

MSPC Multivariate Statistical Process Control
MPC Model Predictive Controller

EMPC Economic Model Predictive Controller
ADRC  Active Disturbance Rejection Controller

ADP Adaptive Dynamic Programming
ITAE Integral Time Absolute Error
IAE Integral Absolute Error

ISE Integral Square Error

GS Gain Scheduling

FO Fractional Order

IOFL Input / Output Feedback Linearization
PILCO  Probabilistic Inference for Learning
LSTM Long Short Term Memory

MV Manipulated Variable
LQG Linear Quadratic Gaussian
NL Non-linear

Symbols

Drum pressure of BTS (kg/cm?)
Electric power of BTS (MW)

z1-BTS, Y1-B1S (t)
Z2-BTS, Y2-BTs (t)

T3-BTS Fluid density of BTS (kg/m?)
£1.BTS, £2-BTS, £3-BTS State derivatives of BTS states
U1-BTS Fuel control valve (normalized mass flow rate)
U2-BTS Steam valve to turbine
U3-BTS Feedwater valve to drum
y3-BTs (£) Drum water level deviation (m)
Gev(BTS) Evaporation rate

Sq(BTS) Steam quality

ky Proportional gain

ki Integral gain

0 Policy parameters

P Q-function parameter

s State

a Action

r Reward

s’ Next state

d Terminal flag

targ Target

po(s) Policy

€ Exploration noise

D Replay buffer

B Batch of transitions

y Goal value

~ Discount factor

Q Q function

Vo Gradient descent

t Time

e(t) Error

i Index

j Iterations

c Clipping threshold

p Update rate

Boilers are vital to worldwide power generation, especially in coal or nuclear thermal power plants. Chemical
production, district heating, and manufacturing sectors depend on boilers. Using a boiler that delivers steam to a
single turbine, a boiler-turbine setup is able to transform the chemical energy of the fuel into mechanical energy,
which is then converted into electrical energy. When it comes to the management of this system, the primary
objective is to ascertain that the amount of electrical power generated is in accordance with the requirements of
the electricity grid and that essential parameters such as drum pressure, electric power and drum water level are
maintained within predetermined limits. The control of BTS must adhere to specific constraints regarding the
rate at which the value of the fuel flow, steam flow, and drum water levels can be altered. To meet the constantly
changing demand for electricity, the power plant sector must operate well in a wide range of temperature and
humidity levels. Addressing the increasing demands for electricity and guaranteeing a reliable power supply
for both industry and households poses a significant challenge. Process control analysis is a complex field with
intricate and inherent concepts. The electricity industry relies largely on hydroelectric and thermal power sources.
Thermal power plants are recognized for their efficiency and cost-effectiveness, which make them capable of

Scientific Reports |

(2025) 15:34558

| https://doi.org/10.1038/s41598-025-17928-9 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

meeting substantial demand reliably. Among these, BTS are commonly employed for generating electricity and
are integral to diverse industries, both large- and small-scale. Such systems are valued for their dependability
and adaptability with various fuel sources, which effectively generates power in line with rapidly increasing
demands. A thermal power station generates energy by producing steam in boilers, with the core aim of a BTS,
to maintain constant voltage and frequency to meet load demands. Achieving this goal involves optimizing
thermal efficiency and implementing effective heat recovery from flue gases, which requires precise control
of the plant model. BTS are typically nonlinear and operate as Multi-Input Multi-Output (MIMO) systems,
presenting numerous control problems due to their nonlinearity and wide operational scope. Key control loops
within BTS manage important aspects such as pressure and power, and the systems demonstrate non-minimum
phase behavior along with shrink and swell effects. The need for control over the boiler is crucial to prevent
disastrous occurrences. Bell and Astrom described a sophisticated third-order model for the BTS in 1987 using
first-order principles, serving to devise control methods and understand the BTS’s dynamic behavior.

In real-time industrial applications, achieving a balance between fast setpoint tracking, system stability, and
computational efficiency remains a significant challenge. Various conventional and hybrid control approaches
have been explored in the literature to address these issues. In contrast, this research employs Reinforcement
Learning (RL) techniques to optimize the PID controller in the Bell and Astrom BTS model. Specifically, this
research applies advanced multi-agent Reinforcement Learning (RL) algorithms—namely, SCMA-TD3, ICMA-
TD3, and DDPG to intelligently tune the parameters of the PID controller within the Bell and Astrom BTS
model. These RL algorithms are selected for their ability to learn optimal control policies through continuous
interaction with the environment, allowing for real-time adaptation to varying system dynamics. By using these
techniques, the controller is capable of achieving superior control performance, characterized by evaluating the
time-domain error metrics such as ITAE, TAE, and ISE. Furthermore, the use of multi-agent frameworks helps
to distribute computational tasks, thus reducing overall computational overhead and improving the efficiency
of the control system. The ultimate objective is to establish a robust, self-learning, and computationally efficient
RL-based PID control strategy that enhances the dynamic response of the BTS.

The subsequent sections of the paper are outlined as follows. The literature survey section gives a detailed
review on various controllers utilized for the BTS. A brief introduction of Non Linear (NL)-BTS and its
linearization is provided in the Boiler turbine system section. The next section provides an in-depth description
of Reinforcement Learning (RL) and discusses the role of RL agent as a supervisor to adjust the parameters of a
Proportional-Integral-Derivative (PID) controller. The paper provides a detailed analysis of the Twin Delayed
DDPG (TD3) and Deep Deterministic Policy Gradient (DDPG) techniques, as well as the algorithmic procedure
used for tuning PID controllers. The details are found in the sections RL algorithm background and proposed RL-
based BTS control. The effectiveness of the suggested algorithms, coupled with PID controller, is implemented
for the BTS and the analysis is provided in results and discussions section. The analysis includes a discussion on
the efficiency of adopting the recommended technique, as well as the computing time and complexity involved.
The last section provides concluding remarks along with the potential for further work.

Literature survey

The literature survey section discusses the controllers used for BTS, starting from conventional controllers to
advanced controllers and various ranges of intelligent controllers like bio-inspired, optimization-based, AI-
based controllers, including RL-based PID controllers. Figurel illustrates the extensive range of controllers that
have been employed for the controlling, optimizing and monitoring the BTS over the last two decades.

Conventional controllers

Various conventional controllers like PID, Internal Model Controller (IMC)-PID, Gain scheduled (GS) PI
controller, cascade controller, state feedback, feedforward controller, Linear Quadratic Regukator (LQR) and
Linear Quadratic Gaussian (LQG) used for the BTS are reported in the literature and shown in Fig. 1. A partially
decentralized IMC based PID controller is analysed for a quadruple tank system and BTS'. The simulation results
show that this IMC controller works well for non-linear boiler system with interactions being reduced, zero
tracking error and operates well in a wide operating range. An ideal decoupler for 3*3 MIMO BTS is examined
in%. The controller modes can be changed manually without the loss of decoupling and addressing the servo
problem. Decoupling, effective tuning, and constraint management are used in this multivariable PID design®
process to solve nonlinear BTS problems. Its performance matches industrial needs, making it a potential, widely
applicable option. The control of the boiler drum level is analysed using cascaded PI controller* along with
feedback and feedforward control structures. The feedforward controller improves the performance of Tyreus
Luyben and Zeigler Nichols tuning techniques. A 2-Degrees of Freedom (DOF) PI controller outperforms the
1-DOF controller in actuator limitations, according to the paper’. This gain scheduled 2-DOF PI controller
has operating range constraints. A major change in the operating point leads to stauration of the drum level
control input. The paper® discusses BTS's severe nonlinearities and ways of choosing the right operating range to
reduce the effect due to non-linearity. A linear controller with loop-shaping Hoo and anti-windup compensation
works well in this range. Two controllers’ are designed using feedback linearization and gain scheduling
methods based on pole placement. The tracking objectives are compared for ‘near), far’ and ‘so far’ operating
ranges. Feedback linearization approach has quick time response with more overshoot when compared to gain
scheduled controller. The gain scheduled controller produces oscillation for the electric output signal which can
be eliminated by reducing the speed of the tracking.

The authors in® evaluated the system states using a linear observer, namely a Kalman filter augmented with
an LQG controller. This estimation method is then validated with the performance of an LQR controller. The
LQR controller aims to achieve a zero state or equilibrium state as the intended trajectory. The State Dependent
Algebraic Riccatti Equation (SDRE) is capable of effectively tracking all operating points while taking into

Scientific Reports |

(2025) 15:34558 | https://doi.org/10.1038/s41598-025-17928-9 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

TS Fuzzy model [35]
MPC and robust H= [34]

Pathological model [16] MV-PID [3] LOR-MMO [11] ) MPC [30]
PID [6] DMC [29] Adaptive DMC
with fuzzy [46]
2005 2008 2009 2010 2011 2012
MOPSO + MRAC [47] LQR-PID (selection matrices) [42]
H2, He via LMI [51] MPC [23], [4] Fuzzy stable MPC [52] Disturbance rejection using feedback
EMPC [24 , i via » MV-SMC [31 linearization [15]
24 MPC + Successive online He LQR MIMO [33] gmchid Fuzzy andMPC[36]  pdtos
ZN, TL-PID [4] linearization [39 Fuzzy [18] PSO-PI [45]
d inearization [39] ESM [10] PI[2] Feedback linearization and GS-PI [7]
LQG [8] IMC [1] PID [14]
2018 2017 2016 2015 2014 2013
Model based SMC & adaptive Neural network- integral RL [49]
kalman filter [21] Receding galerkin optimal control for
Finite horizon MPC [28] SMC [43]
MV-PID [19] Fractional order MPC [22] PSO-PID [44] .
State feedback and Data driven adaptive critic  pynamic event based s Back propagation
feedforward tracking optimal control [76] tracking control [26] Hybrid LQR [40] Neu!a! network based
controller [17] MPC + bi level Event triggered optimal  Fixed time control of ~ |OFL based EMPC [41]  explicit MPC [57]
GARDC MESO [38] Disturbance rejection optimization [40] ~ control [41] asymmetric output [27] Stable constrained MPC by e pipy
DMC, LQR [13] controller and SMC [25]  ADP [48] GS-PI[12] LQR [32] on IOFL technique [42] | o ‘Robust LQR
SRDE [9] GS-PI [5] ADRC [20] and LQR+PI [15]
2019 2020 2021 2022 2023 2024 2025 >

Fig. 1. Control strategies used for benchmark BTS. (Conventional controller (Brown text), Advanced
controllers (Pink text) and Optimization based controllers (Blue text).

account the constraints of the control signals, without causing any disruptions to the system. The paper!?
investigates robust decentralized control for a nonlinear drum boiler utilizing the Equivalent Subsystem Model
Method (ESM) and traditional decoupler approaches. ESM is better in handling uncertainty and achieving
better stability when compared to the other conventional approaches. The paper!! optimizes MIMO system
control under disturbances with known dynamics but unknown initial conditions, concentrating on stability
degree limitations. It proves the existence and uniqueness of a feedforward-feedback control law and shows
its efficacy with a practical application. A sophisticated boiler-turbine control mechanism uses a model-based
GS-PI controller'?. This method compares to fixed gain PID controllers by changing gains to erroneous input,
improving system performance under diverse scenarios. The GS-PI controller performs better in Integral Time
Absolute Error (ITAE), Integral Square Error (ISE), and Bode stability and is complex when compared to fixed
gain controllers, which makes installation and tuning difficult. This paper!? examines the LQR controller and the
DMC for the BTS under unconstrained conditions. The LQR controller gives stable and optimized output under
unconstrained conditions. DMC is based on future forecasting and developing efficient control even under
constrained cases. Decentralized PID and decoupled PID controller for the BTS are discussed in'%. In'® a detailed
analysis of 5 controllers for the BTS is carried out. LQR+PI and Robust LQR controllers significantly enhance the
stability and performance of BTS, achieving superior rise time, settling time, and overshoot reduction compared
to PID, IMC-PID, and LQR controllers. Their effectiveness in set-point tracking and minimizing oscillations
makes them ideal for efficient BTS control. From the analysis it is evident that decoupled PID is better than
decentralized PID since the interactions are neglected by decoupling. This section of conventional controllers
shows a variety of control solutions for BTS that handle operational issues such as nonlinearity, multivariable
interactions, and operating range limits. The methods including gain scheduling, feedback linearization, and
state-dependent methods, coupled with robust classic methods like PID and LQR controllers, have showed
better performance in enhancing system stability, response, and robustness. To reduce interactions and maintain
safe, efficient operations, decoupling and constraint management are essential. The methods like SDRE, ESM,
and LQG controllers improve adaptability with performance under different operating situations. A variety of
options emphasizes the need to choose control strategies that balance stability, performance, and complexity
while meeting system requirements.

Advanced controllers
Tables 1 and 2 present a structured summary of various advanced controllers and control strategies applied
for the BTS. This compilation provides a comparative understanding of different approaches, highlighting the
effectiveness of various methods and their implications for BTS performance.

Advanced BTS control strategies like MPC, SMC, and GADRC, as well as data-driven methods like
multimodel predictive control, improve disturbance, uncertainty, and input constraint handling. The methods
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Reference Objectives Methods Inference

Moradi et al. (2013)'¢ Multivariable nonlinear BTS model Feedback linearization-based control Improves reliability but requires precise models
Han et al. (2008)!7 Improve BTS modeling accuracy Nonlinear model validated for 300MW, 600MW | Better dynamic characterization

Wang et al. (2020)'8 Enhance tracking control Takagi-Sugeno fuzzy tracking controller 8;[1;)5; f;i?ixgi f{l Predictive Controller
Jeyanthi et al. (2016)!° | Validate sensor data Fuzzy-based validation for oxygen sensor defects | Enhances combustion control and safety
Ghabraei et al. (2020)*° | Handle model uncertainty Robust control with regulator-observer system Improves stability under disturbances

Zrigan et al. (2023)?!

Optimize Active Disturbance Rejection

Controller (ADRC) tuning Firefly optimization for ADRC Enhances robustness over standard PID

Rehman et al. (2022)*> | Address BTS nonlinearity

Dynamic Sliding Mode Controller (DSMC) with

adaptive Kalman filter Better control over drum pressure

Zhao et al. (2022)% Improve marine BTS power tracking FO-MPC-based technique Improves robustness, high computational cost
Sunori et al. (2015)* Optimize BTS control Linearized MPC Faster response, better tracking

Liu et al. (2018)% Optimize economic performance Economic MPC (EMPC) with Sontag controller | Ensures efficiency and tracking

Su et al. (2020)%° Improve disturbance rejection High-order sliding mode observer Ensures stability, better load tracking

Zhang et al. (2023)* Optimize tracking under constraints Event-based optimal control with NNs Reduces controller updates

Wang et al. (2023)% Fixed-time control strategy Set-time control with constraints Balances precision and response time

Table 1. Summary of advanced controllers for the BTS.

Reference Objectives Methods Inference

Wang et al. (2022)% Simplify nonlinear BTS control Finite-horizon MPC Ensures real-time feasibility

Moon et al. (2009)*° Improve drum water-level control DMC using step-response data Enhances tracking and robustness

Jalali et al. (2012)3! Reduce computational cost Multiple-model control with Vinnicombe distance Improves closed-loop stability

Ghabraei et al. (2015)% Enhance stability Robust Adaptive SMC (RASMC) with adaptive rules Outperforms Type-I controllers

Kruthika et al. (2023)* Optimize PID tuning LQR-based optimal PID tuning Reduces error metrics, improves set point tracking
Wei et al. (2016)%* Address actuator saturation Hoo-LQR coordinated control Better setpoint tracking

Wu et al. (2010)* Avoid feedback linearization Fuzzy H oo tracking with anti-windup Enhances durability across operating points
Lietal. (2010)% Automate fuzzy rule generation Fuzzy c-regression clustering Improves modeling accuracy

Sarailoo et al. (2014)%7 Strengthen MPC Fuzzy predictive control Ensures strong disturbance rejection

Wu et al. (2013)% Improve predictive accuracy Data-driven multimodel predictive control Adapts to plant changes, improves robustness

Zhu et al. (2019)*

Generalized ARDC (GADRC) with Multivariable

Handle disturbances Extended State Observer (MESO) estimator

Superior tracking performance

Kruthika et al. (2024)%

Hybrid LQR provides better performance
with lower rise and settling time but has slight
overshoot due to integral action

Compare LQR and Hybrid LQR-PI for | LQR and Hybrid LQR-PI control techniques evaluated
BTS control. using simulations and error metrics

Develop an EMPC for BTS to handle Input / Output Feedback Linearization (IOFL)-based . .
Improved dynamic and economic performance

4 s . - . . L
Abdelbaky et al. (2024) strong r}onhnearltles and economic decouphr}g, qqadratlc programming optimization, and over fuzzy hierarchical MPC and nonlinear EMPC
constraints adaptive iterative constraint mapping
Abdelbaky et al. (2024)%2 Ensure stability and constraint feasibility | Stable IOFL-based MPC with min-max constraint Enhanced dynamic output performance and
’ in BTS control under nonlinearities. mapping and LMI-based rate-of-change constraints stability compared to advanced control schemes

Table 2. Summary of advanced controllers for the BTS.

improve tracking, robustness, and system stability. Implementation issues such as computing complexity, model
correctness, and parameter adjustment persist.

Optimization-based controller and Al-based controllers
In Table 3 various studies on optimization-based controllers and Al-based controllers are summarized to
illustrate methodologies, inferences and the performance effects in BTS.

The literature also records other advanced optimization algorithms like moth swarm optimization®® for tuning
of fractional order fuzzy PID controller for the frequency regulation of microgrids and sunflower optimization®
for tuning fractional-order fuzzy PID controller for control of load frequency in an integrated hydrothermal
system with hydrogen aqua equalizer-based fuel cells which resulted in 84.61% and 88.61% of improved ITAE
and settling time respectively, over GA, Teaching learning based optimization, and conventional controllers.
OPAL-RT real-time validation and sensitivity analysis demonstrate the method’s robustness and practicality
under uncertain operating conditions. A Grasshopper optimization-tuned PDF plus (1 + PI) controller®® for
Automatic Generation Control (AGC) in a thermal power system with Flexible AC Transmission system devices
is proposed in this paper. The controller outperforms PI, PID, PIDE, GA, and PSO-based techniques in ITAE error
and dynamic response. Real-time validation using OPAL-RT proves the approach’s robustness and practicality
under various operational situations. This paper introduces an improved equilibrium optimization algorithm
(i-EOA) to tune an F-TIDF-2 controller for load frequency regulation in freestanding microgrids with stochastic
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Reference

Objective

Methods

Inference

Lawrynczuk et al.
(2017)%

Improve BTS control using predictive
techniques

State-space method, online model linearization,
quadratic optimization, MPC

Enhanced control precision and offset-free
performance, superior to conventional methods

Wang et al. (2021)*

Robust MPC for nonlinear BTS

Bi-level optimization

Improved BTS control but difficult to implement in
real-world scenarios due to computational complexity

Wei et al. (2022)*°

Near-optimal event-triggered control

Neural networks, Adaptive Dynamic Programming
(ADP) in a parallel framework

Better results in dynamic conditions but challenging
for unpredictable environments

Das et al. (2013)%

Optimal tuning for continuous/discrete
PID controllers

LQR-based optimal tuning, Genetic Algorithms,
fractional-order integral performance index

Improved control performance, process-based
integral order selection suggested

Zhao et al. (2023)*7

High-order sliding mode disturbance
observer for BTS

Receding Galerkin optimum controller

Improved disturbance rejection and constraint
handling in various conditions

Kruthika et al. (2023)*

Optimized PID controller for a utility
boiler

Particle Swarm Optimization (PSO), Adaptive PSO
(APSO), Improved Adaptive PSO (IAPSO) with PID

APSO and TAPSO provide better tuning than
standard PSO

Sayed et al. (2015)*

Hybrid optimization for PI controller
gains

Hybrid Jump PSO (HJPSO)

Faster convergence, better parameter optimization
than conventional PSO

Moon et al. (2011)*°

Adaptive DMC for nonlinear BTS

Online interpolated step-response model with fuzzy
inference

Maintains control performance across operational
conditions

Suganya et al. (2014)°!

Multi-objective optimization for BTS
control

Multi-objective PSO-based Model Reference Adaptive
Controller (MRAC)

Outperforms lexicographic tuning, meets control
objectives effectively

Liu et al. (2021)

Adaptive tracking controller for
nonlinear BTS

Offline policy iteration ADP with neural networks

Adjusts to load fluctuations while retaining efficiency

Wei et al. (2023)°3

RL-based tracking control for 160
MW BTS

Integral RL, online policy iteration

Outperforms MPC but requires high computational
resources

Zhao et al. (2023)>*

Hybrid modeling for power plant boiler
simulation

Recurrent Neural Networks (RNN), Long Short Term
Memory (LSTM) networks

Improved predictive maintenance and efficiency, but
computational complexity is a challenge

Dehghani et al. (2017)>°

Multi-objective robust BTS control

Linear matrix inequality approach

Balances performance, disturbance rejection, and
energy efficiency

Wu et al. (2014)%

Hierarchical control structure for BTS

Takagi-Sugeno fuzzy model, fuzzy reference governors,
MPC

Improves robustness against plant behavior variations

Lietal. (2025)*7

Develop an explicit MPC framework
for nonlinear BTS with bounded input
disturbances

Back propagation Neural network-based control
surface learning, support vector machine for state
space approximation, and Hoeffding’s Inequality for

Reduces online computational burden, enhances
control accuracy, and ensures stability and recursive
feasibility

probabilistic guarantees

Table 3. Summary of optimization-based and Al-based controllers for BTS.

wind, solar, and load changes. The proposed solution reduces frequency deviations and improves dynamic
stability better than PID, TID, and TIDF controllers. Imperialist competitive algorithm®!-optimized cascade
PDF(1+PI) controllers for load frequency management in AC multi-microgrid®® systems with RES, thermal,
and storage units are proposed in this study. The controller outperformed PI, PID, and PIDF controllers in ITAE
(up to 70.64%) and settling time under various uncertainties. The study does not address demand response
variations or solar and wind energy stochasticity, limiting its practicality and requiring further investigation.

Optimization-based methods incorporated with controllers like LQR, PID tuning with PSO, and MPC
variants improve control precision and efficiency while managing disturbances and restrictions. However,
computational hurdles arise, especially in nonlinear BTS applications, where linearization and event-based
algorithms balance performance and resource limits. The review shows a shift toward hybrid and Al-integrated
control methods that balance optimization efficiency with intelligent adaptation to complicated BTS dynamics.
Computational demand, stability verification, and industry accessibility are practical implementation challenges
that need additional study.

Reinforcement learning

The research article®®, investigates deep RL in process control, pushing Al beyond games. By constructing reward
functions effectively, neural networks can learn industrial process control policies without predefined control
rules, adjusting to the process environment over time. This method eliminates complex dynamic models and
allows continuous on-line controller tuning, which are major enhancements over typical control algorithms. The
approach’s limitations include the need for large computer resources for neural networks to learn and the reward
function’s major impact on learning. Due to the novelty of deep RL in process control, such systems’ long-term
stability and dependability in varied industrial contexts should be thoroughly assessed. An informative look
at RL and process control sectors is available in research article®’. RUs ability to handle complicated stochastic
systems and manage decision-making sequentially is useful for industrial applications with uncertain or time-
varying variables. By using pre-calculated optimal solutions, RL can reduce online calculation times, which
is important for systems that need computational speed. RL does not always outperform traditional MPC
methods, especially when they are based on highly accurate models that guarantee globally optimal solutions.
This research article®® proposes an enhanced deep deterministic actor-critic predictor to increase process control
learning performance. The results show that the enhanced deep RL controller outperforms finely-tuned PID and
MPC controllers, especially in nonlinear processes, and has the potential for practical application. Incorporating
deep RL into practical process control settings can be difficult, ensuring consistent stability and meeting process
constraints. The required substantial offline training and hyperparameter tuning limits applicability without
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additional technique refinement. RL in process control systems is thoroughly examined in®® where the authors
developed suggestions to bridge the gap between RL theory and process control applications. These guidelines
attempt to help practitioners better integrate RL into their control systems. The processing demands of RL
algorithms limit them, especially in real-time situations that require fast decision-making. Although difficult,
the research provides useful ideas for enhancing process control using RL.

RL-based PID

By controlling bioreactors, which are nonlinear and difficult to regulate with linear control algorithms, the
research article®” makes major advancements. It presents RL-based control system that uses RL to solve difficult
nonlinear control problems, making it more flexible and perhaps more successful. Due to bioprocess complexity
and stochasticity, gathering enough and accurate data to train the RL algorithm is time-consuming and resource-
intensive. The hyperparameters and RL model structure can affect the system’s performance, which limits the
scalability of the suggested RL control technique for bigger or more variable bioreactor systems. The authors
in® have proposed a Continuous Stirred Tank Reactor (CSTR) system in a custom environment for economic
optimization using RL. Three algorithms namely Proximal Policy Optimization (PPO), DDPG and TD3
algorithms are analysed and all the 3 algorithms effectively optimize the system. But TD3 algorithm outperforms
the other two algorithms. In research article®®, RL is used for industrial valve operations, with a focus on stiction
as a substantial contribution to control inefficiencies. RL approaches the model-based policy search method
Probabilistic Inference For Learning (PILCO) to reduce model bias and requires fewer trials than model-free
methods by learning the probabilistic dynamics of the system and planning by incorporating model uncertainty.
Non-linearity and high-frequency response rates make valve control systems difficult, requiring sophisticated
and perhaps computationally expensive RL algorithms. An adaptive mechanism that allows the PID controller to
modify its settings in real time to system dynamics is a fundamental contribution of the research article’®. Linear
and nonlinear unstable processes can be efficiently handled, by this approach which improves stability and
control accuracy over typical PID controllers. Although computationally complex, the research provides useful
ideas for enhancing process control using RL. An adaptive PI controller using RL method improves DC motor
speed control in”!. The study in”? RL-based PI tuning for a two-tank interaction system, where TD3 and DDPG
agents optimize the controller using experimental data. PI controller tuned using TD3 algorithm reduces rising
time, settling time, and error metrics faster and more reliably than DDPG algorithm. Real-time autonomous
control parameter adjustment using an actor—critic RL framework and the TD3 is proposed in the research
article. This adaptive technique lets the controller dynamically adjust to motor operating circumstances without
system knowledge, optimizing performance and stability. The controller’s performance generalization across DC
motor systems or other industrial applications needs further testing and validation. RL is used to tune model-
free MIMO control for HVAC chillers in the research article’”>. Learning-based control tuners change MIMO
decoupling PI controller coefficients in real-time. Due to its robustness on online information for adaptation,
the methodology struggles with minimal data or initial deployment without past performance indicators. RL
methods are complex, which increases the computational cost and the need for specialized knowledge to design
and maintain adaptive control systems. A PID controller is tuned adaptively using the DDPG algorithm”*. This
method improves flexibility and stability when prior knowledge is insufficient, tackling a major difficulty in
mechatronics and robotics. By adding a residual structure to the actor network, the vanishing gradient issue is
addressed and allows for reward-based action in various stages. This solution reduces PID controller tracking
error by 16-30% compared to conventional methods. Deep RL is used to adjust multiple Single Input Single
Output (SISO) PID controllers in multivariable nonlinear systems’>. The method outperforms typical PID
tuning techniques in simulations of complex plant dynamics like multivariable non-minimum phase processes.
One drawback in all the research work mentioned above is the need for considerable computational resources
for deep RL agent training and a full plant simulation model, which can be difficult to build for complex systems.
The paper’® proposes a data-driven adaptive-critic output regulation method for BTS which is a continuous
linear time system with unknown dynamics and unmeasurable disturbances to stabilize and track set point
optimally. This approach uses optimal feedback and feedforward control by solving regulator equation. This
method is applicable for system with linear disturbance.

Research gap and problem definition

Although non-linear boiler control strategies have advanced, there is still a significant research gap in creating
approaches that successfully strike a balance between two important goals: enhancing controller performance,
especially in minimizing error metrics, and reducing computational costs. The practical deployment of intelligent
control systems that can effectively manage the complex and dynamic behavior of BTS in modern power plants
depends on resolving this issue. Effective BTS control requires minimizing error metrics such as ITAE, Integral
Absolute Error (IAE) and ISE. Many advanced control strategies struggle to maintain robustness under real-
world conditions, leading to trade-offs between fast setpoint tracking and stability, particularly in MIMO
systems. Industrial BTS setups demand controllers that can operate in real-time, making it imperative to reduce
computational complexity without compromising accuracy. RL aims to reduce computational overhead, but
further refinement is needed to ensure their feasibility in large-scale power plants. Modern BTS control strategies
like MPC?, SMC?2, GADRC?’, and data-driven multimodel predictive control are better at managing system
disturbances, uncertainties, and input constraints. Setpoint tracking, system robustness, and operational stability
improve greatly using these methods. These approaches have several drawbacks, including high computational
needs, more model errors, and the necessity for online controller parameter tuning. Optimization-based control
methods like LQR'5, PSO-tuned PID*3, and advanced MPC?” variants have been combined to improve control
accuracy and efficiently handle dynamic constraints. In highly nonlinear BTS situations, higher computational
time makes the execution difficult in real-time. To have a balance between the performance and computational
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feasibility, system linearization and event-triggered control techniques are used. Recent advancements in the
control algorithms include hybrid control frameworks and AlI-driven solutions that combine classical control
qualities with machine learning’s capability and adaptability. These developing strategies show promise in
controlling the BTS’s complicated multivariable interactions.

BTS has complex dynamics along with non-minimum phase behavior of the electric power and the shrink
swell effect due to the integrating nature of the drum water level. The BTS is 3*3 MIMO system with interactions
among each variable with high non linearity. The highly non linear system is linearized using Taylor series
approximation. PID controller is an effective controller over the decades but tuning PID controller for a MIMO
process is quite challenging. Therefore, RL algorithms such as Shared Critic Multi-Agent (SCMA)-TD3,
Individual Critic Multi-Agent (ICMA)-TD3 and DDPG are introduced as multi-agents to fine tune the PID
controller. RL can significantly upgrade the functionality of PID controllers in industrial settings when compared
to classic tuning techniques. Figure 2 gives the block diagram of RL. This approach allows the controllers to
adjust in real-time to system shifts and devise superior control strategies through direct interaction with the
environment, augmenting performance metrics including response time, stability, capabilities of dealing with
disturbances, and overall operational proficiency. RL-based PID controller is analyzed by the detailed analysis
of various RL algorithms by measuring the error metrics such as ITAE, IAE and ISE to ensure the robustness of
the proposed methods.

Contributions of this research

« In this work, RL algorithms are used for fine-tuning the PID controller gains in the Bell and Astrom BTS
plant model.

« Two novel multi-agent TD3 variants - SCMA-TD3 (shared critic) and ICMA-TD3 (individual critic) are
introduced in this research to explore critic sharing and actor-critic depth to enhance learning efficiency and
control accuracy in BTS.

o The performance of SCMA-TD3, ICMA-TD3, and standard DDPG is compared with different disturbance
scenarios, and the stability is assessed on the BTS characteristics - electric power, drum pressure and drum
water level.

+ RL-based PID controller parameter estimation evaluates the RL-driven boiler system’s performance in terms
of key performance metrics like ITAE, IAE, ISE, and computational time.

o The results are evaluated and validated under different input conditions and disturbances, reflecting the ro-
bustness and efficacy of the RL-based PID controller for the BTS model.

Boiler turbine system

K. J. Astrom and R. D. Bell created a third-order non-linear dynamic model for boilers using fundamental
principles, accurately simulating the plant’s behaviour. Bell and Astrom boiler is a natural circulation water tube
boiler, in which chemical energy (coal) is converted into heat energy, then heat energy (steam) is converted into
mechanical energy (turbine shaft movement), and finally mechanical energy is converted into electrical energy.
BTS continues to be a significant contributor to global electricity production and energy-intensive industrial
processes. The major applications of boiler in the field of control engineering are controller design and tuning,
control system validation, control system training and education, optimization and energy efficiency, fault
detection and diagnosis, etc. The futuristic applications of the BTS involve energy efficiency, renewable energy

Agents

State )
Action
POLICY B

Policy update

REINFORCEMENT
LEARNING ALGORITHM

Reward

ENVIRONMENT

Fig. 2. Block diagram of RL.
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integration and sustainability. Control of boilers can involve multiple complexities due to the dynamics and
nature of the boiler model. The Bell and Astrom boiler is a simplified representation of the BTS that captures
its dynamic behavior. The complexities that are associated with it are non-linear dynamics, constraints due to
control with multivariable interactions, and the shrink-swell effect due to non-minimum phase behaviour.

The mathematical model of non-linear BTS
The model for the BTS used in this work is shown in Fig. 3 and the governing equations of the systems are as
follows:

9
i1-prs(t) = —0.0018uz_pTsz? g — 0.9u1—pTs — 0.15us_pTs (1)
9

o s () = (0.73u2—prs — 0.16)x°_gpg — T2-BTS (2)

10

141us— — (1. 1uo— —0.19)z: -

b5 mrs(t) = uz—pTs — (I.lua—pTs )T1-BTS 3)

85
y1—BTs(t) = T1-BTS (4)
y2—Brs(t) = T2—BTS (5)

GQev(BTS)

ys—prs(t) = 0.05 (0.13073x3_BTs + 100acs + - 67.975) (6)

(1 — 0.001538%37]3'1‘5)(0.8$1713TS - 25.6)
z3-prs(1.0394 — 0.0012304z1—BTS)

sq(BTS) = (0.854’&27]3'1‘5 — 0.147).%17]3'1‘3 —+ 45.5111,17]3'1“5 — 2.154’u,37]3Ts — 2.096 (8)

7

Gev(BTS) =

where z1-Brs, yi-Brs(t) denote the drum pressure of BTS (kg/cm?), z2.1s, y2-Brs(t) denote the electric
power of BTS (MW), z3_prs is the fluid density of BTS (kg/m3), &1-8Ts(t), #2-Brs(t), ©s-Brs(t) are the state
derivatives of £1.BTs, Z2-BTS, Z3-BTS,u1-BTS is the control valve position (normalized) controlling mass flow
rate of fuel, u2-Bs is the control valve position controlling mass flow rate of steam to the turbine, uz-gs is the
control valve position controlling mass flow rate of feedwater to the drum, ys-grs(t) is the drum water level
deviation (m), gev(BTs) is the evaporation rate, and s,(BTS) is the steam quality.

The operating points (various load conditions) for the BTS are shown in Table 4. The nominal values of
21-BTS, 3-BTs and the controlled inputs u1-BTs, u2-BTS, u3-BTs are determined based on the load demand
Z2-BTS .

The Bell and Astrom boiler model, which is initially non-linear represented by Eqs. (1)-(8), is linearized using
a Taylor series approximation around its 4'" operating point. The non-linear model is converted into linear
MIMO transfer function model as given in Eq (9).
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Fig. 3. BTS model.
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#|"1-BTS® |Uy_pTs0 |Us_BTsO |X1-BTSO |X2-BTSO |X3—BTS8{HTSO
1 | 0.1560 0.4830 0.1830 75.60 15.270 299.60 -0.970
2 10.2090 0.5520 0.2560 86.40 36.650 342.40 -0.650
310.2710 0.6210 0.340 97.20 50.520 385.20 -0.320
4 | 0.3400 0.6900 0.4330 108.00 66.650 428.00 0.000
5 10.4180 0.7590 0.5430 118.80 85.060 470.80 0.320
6 | 0.5050 0.8280 0.6630 129.60 105.800 513.60 0.640
7 1 0.6000 0.8970 0.7930 140.40 128.900 556.40 0.980

Table 4. The operating points of Bell and Astrom boiler model®.

RL algorithm: background

Reward-based RL has become a useful paradigm for addressing complicated control issues by allowing agents
to learn optimal actions via environmental rewards. Trial-and-error learning reinforces environmental state-
based actions in RL, which is judged by cumulative rewards”’. Learning an appropriate state-action mapping
maximizes the cumulative discounted reward for the agent. Bellman’s principle of optimality ensures that the
agent’s policy evolves to maximize outcomes from any state, independent of initial conditions. RL agents learn
via experience rather than repetitive instances, adjusting their methods depending on past actions. Due to
their simplicity and efficacy, PID controllers are commonly employed for control systems. In complicated or
nonlinear systems, PID controllers require accurate parameter adjustment. RL-based techniques like TD3 and
DDPG improve PID controllers by using their capacity to learn optimal control policies in dynamic contexts.
The agent in actor-critic RL algorithms TD3 and DDPG has two main components:

« The Actor Network identifies the best action (a) based on the current state ().
o Critic Network estimates state quality by estimating the expected cumulative discounted reward.

These algorithms directly output actions from the actor network, which can reflect physical system control
signals like PID parameters. These activities are evaluated by the critic network by estimating future rewards.
At each time step, the agent observes the current state ('), selects an action (a) and receives a reward (r). The
environment changes to the next state and the agent refines its policy iteratively. This methodology integrates
RL algorithms like TD3 and DDPG with PID control to provide a strong foundation for adaptive and optimal
control of complex systems where typical PID tuning methods may fail. This work applies RL-based approaches
to tuning PID controllers, showing its potential to solve dynamic and nonlinear problems.

DDPG: exploration and exploitation

Adaptive tuning via DDPG is particularly advantageous in complex, model-free scenarios where classical
methods fail to capture the dynamism inherent to the system. In the pursuit of enhancing PID controller
adaptability and stability, the integration of DDPG, an RL algorithm, presents a promising approach. DDPG,
suited for continuous action spaces, allows for the simultaneous learning of a policy and a Q-function. Actor
and critic networks coordinate in a stepwise manner in the DDPG algorithm. In the DDPG algorithm, the actor
network proposes an action based on the current state, while the critic network estimates the Q-value. The error
between the predicted Q-value and the target Q-value is minimized by the critic learning. The actor updates its
policy once the critic evaluates the actor’s actions. By applying Actor-Critic methods, DDPG fine-tunes the PID
parameters k, (Proportional gain), k; (Integral gain), k4 (Derivative gain) through a policy network (Actor) (Eq.
(15)) that suggests control actions and a Q-value network (Critic) (Eq.(14)) that evaluates these actions. Through
trial and error, the algorithm optimizes the PID parameters to reduce tracking error and maintain stability
without dependency on predefined models. In the context of DDPG for adjusting PID controller parameters,
exploration is crucial, especially during the initial stages of learning. It prevents the algorithm from prematurely
converging to suboptimal policies by encouraging the evaluation of a wider range of PID parameter settings.
This is typically achieved by adding a noise process, such as Ornstein-Uhlenbeck or Gaussian noise, to the
actor policy’s output. Such stochasticity in action selection allows the agent to discover and learn from various
operational consequences, which is vital for identifying the optimal PID settings across diverse and uncertain
system dynamics. On the other hand, exploitation is about using the best strategy that the agent has learned so
far. As the agent gradually learns the optimal actions, the balance shifts towards exploitation, enhancing the
accumulated knowledge encapsulated in the actor network to select the most effective actions. Ultimately, the
aim is to diminish the exploration noise over time, stabilizing the selection of actions and converging towards an
optimal policy that adaptively tunes the PID controller, thus reflecting a learned balance between exploration and
exploitation. DDPG effectively tracks continuous action spaces and enables model-free control of complicated,
nonlinear systems. Deterministic policy allows repeatable control actions. Sensitivity to hyperparameters is a
major issue with DDPG and it can also converge slowly and be unstable in high-dimensional situations. The
number of layers in the actor and critic network, activation function used for this algorithm is shown in Fig. 4.
The pseudocode for DDPG algorithm® is given below.

Pseudocode of DDPG
Input and initialization:
Input: Initial policy parameter g.
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Initially Q-function parameters ¢.
Replay buffer D holds past experiences (s, a,r, s’, d).
Step 1: Initialize target parameters:

Set target (targ) parameters to match primary parameters:

(10)
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Fig. 4. Structural diagram of actor and critic network in DDPG, ICMA-TD3 and SCMA-TD3.
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Step 2: Repeat steps 3 to 14 until convergence or max episodes reached
Step 3: Check current state and choose action
Check the current state g'.
Choose an action a using policy p¢(s) and exploration noise e

a = clip(uo(s) + €, Arow, GHigh) (11)

where € is Gaussian noise.
Step 4: Execute action
Execute a in the environment.
Step 5: Observe transition
Record the next state ¢/, reward 7, and terminal flag D.
Step 6: Store experience
Add experience tuple (s, a,r, s', d) to replay buffer D.
Step 7: Reset environment if s’ is terminal.
Step 8: Check update condition
Follow these steps if it’s time to update.
Step 9: Set the number of updates
Step 10: Randomly sample a batch of transitions

B = {(s,a,r,s',d)} C D (12)
Step 11: Compute the goal value for each transition
y(Tv 5/> d) =r+ ’Y(l - d)Q¢targ (slv HO¢arg (8/)) (13)

where ~y is the discount factor.
Step 12: Update the Q-function One step of gradient descent using

Ve > (Qelsa)—y(rsd)) 1)

(s,a,r,s’,d)EB

Step 13: Update policy using

Vot D Qels.po(s) (15)

sEB

Step 14: Soft update of target networks

(btarg — p¢targ + (]- - P)¢ (16)
etarg — petarg + (1 - P)e (17)

where p regulates the update rate.

ICMA-TD3 and SCMA-TD3: exploration and exploitation

In this study, the application of the TD3 algorithm for the adaptive tuning of a PID controller is explored. The
Twin Delayed Deep Deterministic Policy Gradient-TD3 algorithm, renowned for handling the overestimation
of Q-values inherent in its predecessor DDPG, is utilized to optimize the PID parameters dynamically. TD3 uses
twin critic networks and delayed policy updates to stabilize and reduce reinforcement learning overestimation.
By incorporating a pair of critic networks to estimate the Q-function in Eq. (23) and employing delayed policy
updates along with target policy smoothing mentioned in Eq. (25) and Eq. (26), the TD3 algorithm ensures a robust
and stable adaptation of the PID controller to varying conditions. As a result, the PID controller continuously
refines its gains based on the feedback received from the controlled system, aiming to achieve and maintain the
desired performance without requiring apriori knowledge about the system dynamics. In the context of TD3
algorithm applied to PID controller tuning, exploration refers to the process by which the agent investigates
various PID parameters to discover how they affect the performance of the controlled system. Exploitation, on
the other hand, involves using the knowledge gained from exploration to choose the PID parameters predicted
to offer the best performance. TD3 achieves a balance between exploration and exploitation by using a noise
process for the policy’s action output during exploration, ensuring a sufficient variety of PID parameters are
tested, and by subsequently exploiting the learned policy to fine-tune the parameters for optimal performance.
Two variations of TD3 algorithm are introduced as SCMA-TD3 and ICMA-TD3 algorithm. The underlying
logic behind TD3 remains the same, with only a difference in the network structure in the critic. In ICMA-TD3
two individual critics are used for the PID parameters with a shallow network to avoid the complexity and
computational cost. In SCMA-TD3, shared critic with deeper structures and activation functions are used for
PID parameter tuning. The individual critic structures in the network structure allows the ICMA-TD?3 to capture
better dynamics and enhance the PID parameters identified for the complex BTS. The number of layers in the
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actor and critic network, activation function used for these two algorithm is shown in Fig. 4 which shows the
difference between the architectures. The pseudocode for TD3 algorithm is given below®.

Pseudocode of TD3
Step 1: Input and initialization:
Input: Initial policy parameter g.
Initially Q-function parameters ¢1, 2.
Replay buffer D holds past experiences (s, a,r, s’, d).
Step 2: Initialize target parameters
Set target parameters to match main parameters:

Htarg — 67 ¢targ,1 — ¢17 ¢targ,2 — ¢2 (18)

Step 3: Repeat steps 4 to 16 until convergence.
Step 4: Check state and choose Action
Check the current state.
Choose an action a using policy e (s) and exploration noise e

a = clip(pe(s) + €, aLow, GHigh) (19)

Step 5: Execute action
Perform action a in the environment.
Step 6: Observe transition
Record the next state ¢/, reward r, and terminal flag D.
Step 7: Store experience
Add experience tuple (s, a,r, s, d) to replay buffer D.
Step 8: Reset environment
If s’ is terminal, reset the environment.
Step 9: Check update condition
If a predetermined frequency indicates an update, follow the instructions.
Step 10: Perform updates for a predefined number of iterations (j)
Step 11: Sample a batch of transitions

B ={(s,a,r,s,d)}cD (20)
Step 12: Compute target action for each transition
a'(s') = clip(140,a. (s") + clip(e, —¢, €), aLow, GHigh) (21)
Step 13: Compute target Vvlue

y(r,s',d) =7 +9(1 = d) min Qp,,,,.; (s',a'(s) (22)

where 7 is the discount factor.
Step 14: Update Q-functions
Perform one step of gradient descent on the Q-function loss:

1 ’ .
Vm‘ﬁ Z (Qg,; (s,a) —y(r,s ,d))2, fori=1,2 (23)

(s,a,r,s’,d)EB

Step 15: Update policy

Vorg D Qo (s 10(5) 24)
sEB
Step 16: Soft Update target networks
Prarg,i < PPrarg,s + (1 — p)gps, fori=1,2 (25)
Orarg < POrarg + (1 — p)o (26)

where p regulates the update rate.

A shared critic network structure is used for all agents in SCMA-TD3 which centralizes the value estimation.
The shared critic network has more layers than the TD3 critic network. This enhanced depth allows the shared
network to record and process more complicated inter-agent interactions and shared environmental dynamics,
which is necessary for agent coordination. SCMA-TD3 lowers computing overhead and assures consistent agent
action evaluation based on a single environmental perspective by maintaining a single critic network. ICMA-
TD3 assigns each agent a critic network, decentralizing the process. The SCMA-TD3 shared critic has more layers
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than these individual critic networks. This architecture lets ICMA-TD3 focus on each agent’s localized learning
and evaluate behaviors depending on their environment interaction. This decentralized structure increases
computing complexity due to agent-specific critic networks, but it allows greater flexibility and adaptability
to unique agent dynamics. Both implementations use the TD3 algorithm’s strengths—delayed policy updates,
target smoothing, and noise regularization-but differ in critic network architecture. SCMA-TD3’s deeper shared
critic stresses coordination and inter-agent robustness, while ICMA-TD3’ individual critic networks highlight
autonomous learning and network simplicity. In multi-agent RL settings, shared and individual critic designs
affect performance, scalability, and computational efficiency, and this methodological comparison illuminates
the trade-offs between these characteristics.

Proposed RL-based BTS control

The analysis of RL-based control strategy focuses on complex multivariable BTS with three inputs and three
outputs. The main goal is to maximize the PID gains in order to achieve efficient regulation of the process. The
configuration of the RL is designed to replicate real-life industrial situations where processes display complex
interactions and interdependencies among their variables. The PID controllers are assigned to BTS variables,
which are characterized by their proportional (P), integral (I), and derivative (D) gain characteristics and are to
be tuned using the RL algorithms. The control scheme of the BTS using RL-based PID is shown in Fig. 5.

PID = kpe(t) + ki/e(t)dt + kd%e(t) (27)

The difficulty lies in coordinating the tuning process across several controllers to guarantee the overall stability
and performance of the system. To carry out the tuning procedure, three separate RL agents are utilized, with
each agent assigned to a specific PID controller. Each agent is provided with a collection of state observations,
including error measurements and system performance indices relevant to its respective PID controller. The
agents aim to acquire policies that minimize a predetermined LQG cost function and desired performance
requirements through the adjustment of their individual PID gains. Despite the emergence of advanced control
methods like fuzzy logic, adaptive mechanisms, and model-based techniques, PID controllers remain dominant
because of their simple design and demonstrated ability to provide reliable performance in many operating
circumstances. Metrics for evaluating the performance is determined by the effectiveness of the PID controllers
and it is assessed using various metrics such as the rate at which they approach the desired value, the extent to
which they exceed the desired value and the error that persists in the steady state. These measurements offer a
thorough understanding of the effectiveness of the SCMA-TD3, ICMA-TD3 and DDPG algorithms in acquiring
suitable PID settings in a multivariable configuration.

RL framework
The Simulink configuration used for both training and evaluating the RL controller is shown in Fig. 6. The multi-
agent structure receives feedback from the environment through the observations vector.

Environment design

To effectively teach an agent to follow control signal trajectories, several design elements must be considered
when creating the environment. They can be categorized as agent-related or environment-related. Agent-related
factors include the composition of the observations vector and reward strategy. Environment-related elements
include training techniques, signals, initial conditions, and criteria for terminating episodes.

Process variable

l State
A 4

RL AGENTS (SCMA-
TD3, ICMA-TD3,
DDPG)

I

Set point u(s) + ) | MULTIVARIABLE y(s)
>® PID » BOILER TURBINE ———>
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Fig. 5. Block diagram of PID controller for BTS with RL.
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Fig. 6. Environment interface object for BTS.

Training strategy

The RL agents are trained to precisely follow the benchmark trajectory with random quantities of constant
signals. The agent is further tasked with acquiring the ability to commence from a randomly initialized value.
This combination constitutes an effective and versatile training approach to instruct the agent in tracking control
signal trajectories. The MV-BTS is considered for this application and three agents are created for RL algorithm
which captures the dynamics and interactions of the system perfectly to follow the benchmark trajectory. So
each agent is responsible for each loop along with the interactions present in this highly interacting BTS system.

Observation vector and rewards strategy
The observation vector

{ fedtr (28)

e

where e = error is utilized in the training of RL controllers to the PID parameters. The reward function for the
RL agent is the negative of the LQG cost function, which is given by the equation,

Reward = — ((ref signal — output)? + 0.01u2(t)) (29)

The RL agent maximizes this reward, thus minimizing the LQG cost. LQG’s quadratic cost functions penalize
large mistakes more than smaller ones. This reduces control effort and enhances stability. For linear systems
with Gaussian noise, LQG control gives a theoretically elegant solution that is optimum for the quadratic cost
function. Although linear cost functions are straightforward for linear systems, they sometimes lack the desired
features of quadratic cost functions. Its quadratic cost makes LQG control a potential foundation for reliable,
efficient, and customizable linear system control.

Actor critic network
The structure of the actor-critic network for DDPG, SCMA-TD3 and ICMA-TD3 algorithm is shown in Figs. 7
and 8 respectively.

Results and discussions

A thorough examination of the closed-loop performance and error metrics provides insights into the efficacy of
PID controller for different RL algorithms in managing the drum pressure, electric power and the drum water
level inside the multivariable BTS. The RL technique helps in tuning the PID controller to get the gain value. It
is important to note that these sophisticated algorithms have their own pros and cons, but ultimately aims to
maximize the BTS performance and stability of the system.

PID controller parameters
PID gain values are calculated by the RL agent for the given input for 10,000 episodes. The calculated gains are
presented in Table 5.
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Error metrics

The SCMA-TD3, ICMA-TD3 and DDPG-RL algorithms for servo performance are analysed using errors
metrics. All three algorithms are evaluated for error metrics like ITAE, IAE, and ISE when the BTS set point is
introduced. The results are provided in Tables 6, 7 and 8.

o The ITAE metric prioritizes errors that persist over time. ITAE can measure how well a system recovers from
disturbances or set-point changes in stability analysis.
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Parameters SCMA-TD3 ICMA-TD3 DDPG

kp k; kp ki kp ki
Drum pressure 0.6366 | 0.1942 | 6.0928 | 7.8489 | 0.3003 | 0.3052
Electric power 0.4226 | 0.3678 | 6.0928 | 7.8489 | 0.9537 | 0.3031
Drum water level | 0.1108 | 0.3338 | 6.0928 | 7.8489 | 0.9509 | 0.9450

Table 5. PID controller parameters for the BTS.

Cost Rise Settling Peak
Method ITAE IAE ISE Function time (s) | time (s) | Overshoot (%) | amplitude (kg/cm 2)
SCMA-TD3 | 6.2780 x 102 |33.8410 | 0.0830 | -754.0685 2.00 11.4482 | 1.301 1.209
ICMA-TD3 | 8.3848 0.8017 | 0.099 —4.8657 x 10° | 0.2116 1.7357 13.9070 1.139
DDPG 1.1335 x 10% | 19.2277 | 0.0370 | —7.0593 x 103 | 1.886 | 30.554 | 54.83 1.548
Table 6. Performance metrics of drum pressure.
Cost Rise Settling Peak
Method ITAE |IAE ISE Function | time (s) | time (s) | Overshoot (%) | amplitude (MW)
SCMA-TD3 | 4.8886 | 0.2899 | 4.1847 | -137.9315 | 0.283 2.379 7.972 1.080
ICMA-TD3 | 0.0327 | 0.0219 | 0.0058 | -143.6243 | 0.0245 0.0440 1.245 1.0124
DDPG 1.9439 | 0.1524 | 4.3978 | -109.7789 | 0.1555 0.252 1.377 1.014
Table 7. Performance metrics for electric power.
Cost Rise Settling Peak
Method ITAE IAE ISE Function time (s) | time (s) | Overshoot (%) | amplitude (m)
SCMA-TD3 | 2.1587E+04 | 117.9397 | 46.0535 | -2.2651E+04 | 20.658 744.65 73.731 1.737
ICMA-TD3 | 50.8423 4.8946 1.6797 | -6.6722E+04 | 4.223 32.233 25.011 1.250
DDPG 2.1361E+03 | 35.7226 13.3503 | -3.1101E+04 | 12.139 227.226 |55.389 1.5539

Table 8. Performance metrics for drum water level.

ITAE = /t\e(t)\dt

(30)

« ISE measures overall error by squaring instantaneous error values of each time point and integrating them
over time. A controller that reduces overall deviation from the set point has a lower ISE value, suggesting a
more stable system.

ISE = / e(t) dt

(31)

« IAE is calculated by adding absolute control error levels over time. A control system with a reduced IAE re-
duces error magnitude, which is vital to stability.

[AE = / le(t)] dt

Experimental analysis and discussions
The simulations are carried out for 10,000 episodes and the results obtained using the three RL algorithms
namely DDPG, SCMA-TD3 and ICMA-TD3 are compared The system receives a continuous reference input
without external disruptions. The controller’s steady-state responses and reference input tracking are examined.
PID controller tuning is the focus of this study, which uses SCMA-TD3, ICMA-TD3, and DDPG RL algorithms.
Three frequently used error metrics such as ITAE, IAE, and ISE are chosen to systematically evaluate their
performance. These measurements show the controller’s transient responsiveness and steady-state performance.
Figure 9 shows the overall approach implemented in this work to analyse the performance of BTS. Experiments

(32)
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are conducted on the three RL-based algorithms for three different input and disturbance scenarios as defined
below, and the closed-loop responses are obtained.

« Case 1: System response to constant reference input
o Case 2: System response to time-varying reference input
« Case 3: System response to constant reference input with disturbances at the plant input

Case 1: System response to constant reference input
Figure 10 shows the closed-loop response of the drum pressure for a constant reference input. ICMA-TD3 has the
fastest settling time among the examined algorithms, SCMA-TD3 and DDPG. Although SCMA-TD3 produces
the appropriate output, its oscillations compromise its stability. However, the DDPG algorithm tracks the setpoint
with minimal oscillations, balancing stability and robustness. Table 6 gives the performance metrics for drum
pressure. Figure 11 shows the closed-loop response of electric power for a constant reference input. Compared
to SCMA-TD3, ICMA-TD3 and DDPG perform better for electric power control. SCMA-TD3 manages the

overshoot, which is under tolerable level. This extensive assessment shows that ICMA-TD3 and DDPG achieve

robust electric power regulation. Table 7 presents the performance measures for BTS electric power. Figure 12
shows the closed-loop response of drum water level for a constant reference input. The SCMA-TD3 algorithm
has a peak overshoot, which may reduce its robustness in control applications. However, ICMA-TD3 and DDPG
achieve excellent setpoint tracking with minimum variation and no overshoot, ensuring stability and robustness.
This investigation shows that ICMA-TD3 and DDPG provide robust and precise drum water level management.
Table 8 gives the performance metrics for drum water level.

Interms of drum pressure, ICMA-TD3 has the least ITAE (8.3848) compared to SCMA-TD3 (6.2780E+03)
and DDPG (1.1335E+03), indicating better transient performance. ICMA-TD3 has a faster rise time (0.211
sec) than SCMA-TD3 (2.0 sec) and DDPG (1.886 s) and decreased overshoot of 13.907%. Least settling time is
recorded by ICMA-TD3 of 1.74 sec. DDPG's oscillatory behavior, huge overshoot (54.84%), and widened rise
time make it a less suitable control algorithm to control drum pressure.

Considering electric power, ICMA-TD3 has the lowest ITAE (0.0327) and IAE (0.0219), surpassing SCMA-
TD3 (4.8886, 0.2899) and DDPG (1.9439, 0.1524), thus reducing tracking errors respectively. ICMA-TD3 has
the fastest rise time (0.0245 sec) and the lowest overshoot (1.2446 %) demonstrating stability of the algorithm.
ICMA-TD3 algorithm records the least settling time of 0.040 sec when compared to the other two algorithms in
tuning the PID controller. SCMA-TD3 and DDPG have larger error values and slower response times, showing
that ICMA-TD3 is the better controller for precise electric power regulation.

Case 3: Constant reference input
side with disturbance introduced

Case 1: Constant reference
signal

Set point

State

at the plant input

v

RL agent
(SCMA-TD3
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DDPG)
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Fig. 9. Overall approach for BTS with 3 cases of input and disturbance.
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ICMA-TD3 stabilizes drum water level best with the lowest ITAE (50.8423), IAE (4.8946), and ISE (1.6797).
ICMA-TD3 has the fastest rise time (4.223 sec) and lowest overshoot (25.011 %) ensuring smoother operation.
SCMA-TD3 had increased ITAE (2.1587E+04), overshoot (182.941), and peak response (1.730), indicating less
robustness compared to the other algorithms. The settling time is 32.233 sec by the ICMA-TD3 algorithm,
which is the least recorded settling time when compared to other algorithms. DDPG’s high ITAE (2.1361E+03)
and extended rise time (12.139 sec) make it less effective and less robust than ICMA-TD3 for drum water level
management.

Overall, it can be observed that ICMA-TD3 is the most robust controller for precise and stable performance,
with the least error, less rise time, settling time and minimal oscillations across all control variables. SCMA-TD3
gives better control but with a significant amount of overshoot and oscillations. Although DDPG has a high cost
function, its lengthy response times and overshoot make it unsuitable for real-time control applications. Based
on the obtained results, ICMA-TD3 emerges as the effective method for optimizing the BTS. Figure 13 gives the
comparison of error metrics for proposed algorithms using 100% stacked column plot. SCMA-TD?3 suffers with
long-term accumulated error due to significant contribution of ITAE. ICMA-TD3 achieves a more balanced
performance across error metrics, particularly in electric power regulation. Higher contributions to IAE and
ITAE by DDPG indicate either possible less robustness or more variations in control performance. Drum
pressure and drum water level has more ITAE implying that controllers need improved adaptation mechanisms
to reduce error over time.

Case 2: System response to time-varying reference input

Model-based controllers like IMC-PID controller cannot handle disturbance when sudden changes occur
instantly. RL is used to train agents for random input, so even if unknown disturbances occur, they can handle
without any prior knowledge, since they have learned the complete dynamics of the BTS. SCMA-TD3, ICMA-
TD3, and DDPG algorithms are evaluated using ITAE, IAE, and ISE across three process variables for Case 2.
The closed-loop responses of RL-PID for Case 2 are shown in Figs. 14, 15, 16. The error metrics are presented in
Tables 9, 10 and 11 respectively. Case 2 scenario can occur when there is a need for varying the control signals
or the control signals may be distorted due to sensor fault or any other reasons. ICMA-TD3 outperformed
SCMA-TD3 and DDPG in drum pressure control with low ITAE (2.33), IAE (12.18), and ISE (13.10). In electric
power, ICMA-TD3 again demonstrated excellent control with low IAE (0.50) and ISE (0.38), while SCMA-
TD3 has greater ITAE (1.06E+04), indicating slower response, and DDPG has considerable tracking errors and
instability. ICMA-TD3 has shown reduced IAE and ISE error for the control of drum water level, but its ITAE
(1.77E+03) is moderately greater due to drum water level control’s dynamic complexity. ICMA-TD3 is the most
robust controller tested, with higher accuracy and convergence. However, DDPG’s significant error metrics in
all situations show its limits in addressing multivariable nonlinear interactions with variable set point tracking.
ICMA-TD3 tracked all three variables of BT'S with good performance and has less error margins when compared
to the other two outputs.

Case 3: System response to constant reference input with disturbances at the plant input

ITAE, IAE, and ISE metrics are used for assessing the controller performance for drum pressure, electric power,
and drum water level under plant input disturbance conditions for the third case. The closed loop responses
of RL-PID for Case 3 are shown in Figs. 17, 18, 19. The error metrics are presented in Tables 12, 13 and 14
respectively. In Case 3, external disturbances, which are very common in industrial settings and real-world
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Fig. 13. Comparison of error metrics for proposed algorithms using 100% stacked column plot.
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Method ITAE IAE ISE
SCMA-TD3 | 1.75E+05 | 299.1969 | 272.6033
ICMA-TD3 |2.3283 | 12.1753 | 13.0969
DDPG 1.38E+03 | 758.1801 | 1.08E+03
Table 9. Drum pressure performance metrics with varying set point.
Scientific Reports|  (2025) 15:34558 | https://doi.org/10.1038/s41598-025-17928-9 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

Method ITAE TIAE ISE
SCMA-TD3 | 1.06E+04 | 18.1114 | 6.7677
ICMA-TD3 | 287.2308 | 0.4975 0.3816
DDPG 6.42E+04 | 109.2461 | 110.3095

Table 10. Electric power performance metrics with varying set point.

Method ITAE IAE ISE
SCMA-TD3 | 1.22E+05 | 209.0771 | 133.8605
ICMA-TD3 | 1.77E+03 | 3.0533 2.3283
DDPG 4.87E+05 | 857.2762 | 1.38E+03

Table 11. Drum water level performance metrics with varying set point.
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Fig. 18. Tracking of set point with disturbance for electric power for Case 3.

systems, are introduced to the plant input. ICMA-TD3 has outperformed SCMA-TD3 and DDPG, which has
less tracking errors, for drum pressure with ITAE = 3.82E+04, IAE = 62.34, and ISE = 358.13. DDPG has a lower
ISE (96.91) than SCMA-TD3 (817.99), but its IAE and ITAE are much higher than ICMA-TD3, indicating less
control. In electric power tracking, ICMA-TD3 demonstrated better IAE (2.77) and comparable ISE (0.80) than
SCMA-TD3, indicating improved disturbance rejection. DDPG again performed poorly with the highest ITAE
(3.00E+03), IAE (10.11), and ISE (2.60), indicating its susceptibility to disturbances. ICMA-TD3 performed
better than SCMA-TD3 and DDPG in drum water level with low ITAE (2.26E+04), IAE (37.11), and ISE (65.21).
DDPG’s lower ISE (99.47) than SCMA-TD3 (266.44), but higher TAE value indicated delayed settling and weaker
control. ICMA-TD3 is the best algorithm for real-time industrial deployment in complicated multivariable
systems and regularly shows robust and dependable control under disturbances.
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Fig. 19. Tracking of set point with disturbance for Drum water level for Case 3.

Method ITAE IAE ISE
SCMA-TD3 | 2.69E+05 | 430.0459 | 817.9960
ICMA-TD3 | 3.82E+04 | 62.3385 | 358.1331
DDPG 9.43E+04 | 220.6955 | 96.9149

Table 12. Drum pressure performance metrics with disturbance at BTS plant input.

Method ITAE IAE ISE

SCMA-TD3 | 1.87E+03 | 3.8861 | 0.7419
ICMA-TD3 | 1.67E+03 | 2.7708 | 0.7997
DDPG 3.00E+03 | 10.1136 | 2.5980

Table 13. Electric power performance metrics with disturbance at BTS plant input.

Method ITAE TIAE ISE
SCMA-TD3 | 1.03E+05 | 175.4347 | 266.4424
ICMA-TD3 | 2.26E+04 | 37.1145 | 65.2076
DDPG 1.03E+05 | 236.3107 | 99.4668

Table 14. Drum water level performance metrics with disturbance at BTS plant input.

If sudden unknown disturbances are introduced to the plant, all the three RL algorithms are capable of
handling these disturbances, with minor impact on the set point tracking with tolerable levels of oscillations and
overshoot. Thus, the overall advantage of using RL for tuning PID is reduced settling time, less overshoot and
less oscillations.

Given its capacity to acquire knowledge from the environment and its ability for autonomous decision-
making, RL is undoubtedly advantageous for use in the field of process control. Due to the inherent non-linearity
of many industrial processes, RL can provide an advantage in fine-tuning the controller’s parameters. The
proposed SCMA-TD3, ICMA-TD3 and DDPG RL-PID controller in this study demonstrates effective response
in controlling linear multivariable BTS. During the training phase, the RL agent is exposed to the complete
spectrum of the process and its behavior. The RL agent acquires the ability to forecast the PID tuning settings
for a given operating point, depending on the condition of achieving the highest reward. During the validation
step, the RL agent selects suitable PID tuning settings for the process depending on its operating conditions.
Nevertheless, the controller tuning parameters are continuously forecasted by the RL agent, taking into account
the current process operating conditions. Once tuned, the RL-PID controller effectively handles variations in the
setpoint as well as external disturbances. By using automated exploration and learning from interactions with
the environment, the controller continually improves its performance to achieve the desired system response.

Implementing TD3 and DDPG has resulted in decreased oscillations and settling time, along with enhanced
system efficiency and stability in comparison to conventional PID tuning techniques. RL algorithm captures the
dynamics of the system and then tunes the PID controller based on the rewards function, which makes it more
robust and stable. Handling system instabilities is the major challenge to be tackled when integrating RL-based
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approach for tuning the PID controller parameters. The SCMA-TD3, ICMA-TD3 and DDPG algorithms use
the reward obtained by the agent as an evaluation criterion to decide the optimal tuning parameters of the PID
controller. The evaluation criteria used here is LQG cost function. It is well known that the RL agent attempts to
attain maximum rewards. But LQG cost function is a standard and well accepted performance metric. Selecting
and fine tuning the cost function according to the application is a tedious and time consuming task. It is thus
observed that learning progress stagnates as the agent found a sub optimal solution that leads to poor tracking
performance. The choice of learning rate can significantly impact the performance. If the learning rate is too high
the algorithm can skip the optimal solution. If the learning rate is too small, we will need too many iterations
and it takes more time to converge. Deciding the optimal learning rate is challenging and time consuming task.

Computational cost

Table 15 shows the computational time needed by the RL agent to compute PID gains for a given input on two
different system configurations. The first test is done with a system in MATLAB environment on 64-bit operating
system (CPU 1), an x64-based processor with 16 GB RAM and 3.4 GHz speed. The second test is done with a
system in MATLAB environment on 64-bit operating system (CPU 2), an x64-based processor with 16 GB RAM
and 2.5 GHz speed. To assure accuracy and consistency, the computing procedure is done for 10,000 episodes
on the three algorithms. The results show that the RL agent determines PID gains in less time, demonstrating
the computational efficiency of the suggested approach. Real-time applications need rapid response from
trustworthy control decisions to preserve system performance and stability. From Table 15 for CPU 1, it is
evident that ICMA-TD3 (0.5 sec) takes less time to compute than SCMA-TD3 (0.6 sec) and DDPG (0.7 sec)
and CPU 2 takes 1.27 sec, 0.62 sec and 0.96 sec respectively. Hence it is to be noted that adding the proposed RL
agent to the existing conventional PID controller will lead to a very small overhead in terms of computational
complexity. The episode reward vs iteration plot is shown in Figs. 20 - 22 along with the computational cost for
CPU 2 configuration.

Conclusion

This research investigates an adaptive method to tune PID controller using RL algorithm for a multivariable
BTS. The system is complex, with non-minimum phase behavior exhibiting shrink and swell effects and the
integrating nature of the drum water level. Industry relies on PID controllers due to its simplicity, reliability,
and durability, even as more advanced control methods emerge. Industry favors PID controllers because they
work with many control loop designs, from simple SISO to complicated MIMO. A wide range of hardware and
software supports PID controllers, making them easy to integrate with existing technologies. These controllers
are well-suited for real-time applications with limited computational resources, as they are less computationally
demanding compared to more complex control strategies. Despite non-linearity and system disturbances, PID
controllers can be improved with adaptive and learning-based methods like RL algorithms. PID controllers
remain popular in industrial applications because of their simple approach and ability to respond to more
complicated changes. This research utilizes the advantages of RL to tune the parameters of the PID controller.
SCMA-TD3, ICMA-TD3 and DDPG algorithm is successfully used to tune multivariable complex process of
BTS. Implementing TD3 and DDPG has resulted in decreased oscillations and settling time, along with enhanced
system efficiency and stability in comparison to conventional PID tuning techniques. The proposed ICMA-
TD3 algorithm outperforms SCMA-TD3 and DDPG algorithms in reducing errors across several measures.
ICMA-TD?3 controls electric power and drum water level with lower error metrics and faster response while
maintaining less overshoot to achieve optimal performance. SCMA-TD3 regulates drum pressure better but
with a considerable amount of undershoots. DDPG has a high-cost function but is ineffective owing to more rise
time and oscillation. The results indicate that ICMA-TD3 improves system performance in a balanced manner,
improving the overall system performance for the BTS.

Future work can be extended to test the algorithms on real-time industrial data to ensure their practicality
and robustness under plant-level disturbances and operational limitations. Other advanced RL algorithms can be
used, including new actor-critic variants like Soft Actor-Critic (SAC) and Proximal Policy Optimization (PPO),
to assess their performance and convergence behavior in more complex control scenarios. The convergence
speed, robustness, control speed can be compared to varying initial conditions and noise levels. There is a
need to develop a generalized MIMO PID tuning framework that can be applied to a wider range of industrial
processes characterized by strong coupling and nonlinearities. This includes extending the approach to systems
such as distillation columns, CSTRs, and other complex process applications. Future research can also focus
on establishing standardized performance benchmarks under varying load conditions and disturbances. Such
benchmarks would facilitate the evaluation of RL-based control techniques in real-time industrial settings by

Computational Time SCMA-TD3 ICMA-TD3 DDPG

CPU 1 (10000 Episodes) | 5983 sec (1:39:43) | 46099 sec (1:48:19) | 7224 sec (2:00:24)
CPU 1 (1 Episode) 0.6 sec 0.5 sec 0.7 sec

CPU 2 (10000 Episodes) | 4567 sec (3:31:07) | 12667 sec (1:43:37) | 9615 sec (2:40:15)
CPU 2 (1 Episode) 1.27 sec 0.62 sec 0.96 sec

Table 15. Computational time for SCMA-TD3, ICMA-TD3, and DDPG RL-PID control algorithms across
two system configurations.
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Fig. 20. Episode reward vs iteration for ICMA-TD3.

verifying algorithm scalability and adaptability through standardized disturbance profiles, load step tests, and
fault injection scenarios.
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