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Using digital archaeology and
machine learning to determine sex
in finger flutings
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One of the earliest and most enigmatic forms of rock art are finger flutings and previous methods of
studying them relied on biometric finger ratios from modern populations to make assumptions about
the people who left the flutings, which is theoretically and methodologically problematic. This work is
a proof-of-concept for a paradigm shift away from error-prone human measurements and controversial
theories to computational digital archaeology methods for an innovative experimental design using

a tactile, virtual, and machine learning approach. We propose a digital archaeology experiment using
a tactile and virtual approach based on multiple samples from 96 participants. We trained a machine
learning model on the known data to determine the sex of the person who made the fluting. While
the virtual dataset did not provide sufficiently distinct features for reliable sex classification, the
tactile experiment results showed potential for the identification of the sex of fluting artists, but
more samples are needed to make any generalization. The significant contribution of this study is the
development of a foundational set of methods and materials. We provide a novel digital archaeology
approach for data creation, data collection, and analysis that makes the experiment replicable,
scalable, and quantifiable.

Keywords Virtual reality, Experimental archaeology, Computational archaeology, Rock art, Digital tracing

Artistic expression can be a powerful means of exploring how early humans understood the world around them
and how they engaged with their environments. Among the earliest forms of art, finger flutings (Fig. 1) (also
known as digital tracings) — offer a window into the cognitive and cultural practices of prehistoric societies.
These distinctive markings, made by pressing or scraping fingers against soft sediment lining the walls, ceilings
and floors of limestone caves are found at sites across Western Europe and Australia during the late Middle to
Upper Paleolithic period, ca. 60,000-12,000 years before present (BP). Not only are finger flutings one of the
earliest types of art associated with Homo sapiens but they are also one of very few types of art that was clearly
made by them and Neandertals'.

Flutings have the potential to reveal information about age, sex, height, handedness and idiosyncratic mark-
making choices among unique individuals who form part of larger communities of practice®. However, previous
methods for making any determination about the individual artist from finger flutings have been shown to be
unreliable*. Accordingly, we propose a novel digital archaeology approach to begin understanding this enigmatic
form of rock art by leveraging machine learning (ML) as a tool for uncovering patterns from two datasets, one
tactile and one virtual, collected from a modern population. We aimed to determine whether ML can reveal
subtle differences in the sex of the artist based on their finger-fluted images.

The results of this study are significant because sex is one variable that can be used to study how identities
were constructed in the past. Its intersectionality with other variables such as age or gender allows archaeologists
to identify what might have been meaningful social categories in ancient societies. Further, in the history of
archaeology, women’s roles in society including in the production of art were often understudied®~’. The method
proposed here, if successfully applied to the archaeological record, could be a means of rendering women
more visible in the past with concomitant implications for how women are viewed today>®°. There has been a
long history of research using morphometrics for rock art classification'®-!>. Recent work on using geometric
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Fig. 1. Finger flutings from Koonalda Cave, Australia (adapted from)>.

morphometrics to classify age and sex in hand stencils, demonstrates the potential and current trends in the use of
algorithmic methods for rock art analysis'®. Our interdisciplinary approach combines experimental archaeology
and machine learning, opening new avenues for understanding prehistoric art-making processes and human
behavior. This paper provides a first step towards understanding the potential of ML for analysing finger flutings
as a proof-of-concept model that would need refinement to be applied to ancient sites with potentially different
physical characteristics.

Literature review

Prehistoric finger flutings

Finger flutings are impressions created by dragging one or more fingers across a soft, compactable surface
such as moonmilk, a calcium carbonate that covers the floors, walls and ceilings of some limestone caves.
Historically, these markings were misinterpreted as “parasite lines” (i.e., lines that detracted from “real art”) or
the result of animal activity rather than human interaction®'”. By the 1960s, research shifted to confirming their
anthropogenic origins and discussing their cultural significance!®-22. These markings may have held symbolic
or ritualistic significance, possibly related to early forms of communication or shamanistic practices, connecting
humans to the spiritual or supernatural world?*?%. Similarly, the work of Clottes on cave art explores the concept
of art for ritual purposes, proposing that finger flutings were integral to the sensory and experiential nature of
prehistoric art?. The study of finger flutings initially aimed to affirm their human origin, focusing on patterns
or repetitive sequences that might signify proto-language or mnemonic devices?®?:2°-2°, These investigations
were influenced by Marshack’s work on symbolic marks and Jungian interpretations of psychograms®. While
earlier interpretations emphasized codes and symbolic meaning, later research suggested these flutings might
also represent playful or exploratory activities by children?!.

The role of children in creating finger flutings became a significant focus, particularly following Bednarik’s
hypothesis that children contributed to Paleolithic art®2. This theory had been supported by experimental
techniques correlating fluting width with age?®*** and continues to be cited**. However, this approach has been
shown to be unreliable. A recent study of finger flutings in Koonalda Cave, a>30,000-year-old site in southern
Australia has looked to ethnographic data to understand tracings in a specifically Australian context arguing that
the repetitive motif of the tracings at Koonalda is most similar to markings created in the context of propagation
ceremonies®®’. This relationship between finger flutings and ceremony has recently been further affirmed in the
Australian context with a clear link identified between archaeological evidence at a Victorian finger fluting site
and local oral histories?*. These studies underline the potential of finger flutings to offer insights into symbolic
and cultural practices of early to contemporary humans and neanderthals. Further, the study of sex in prehistoric
art creation, particularly finger flutings, raises intriguing questions about the role of physical attributes in artistic
expression and the relationships between identity and cultural practice.

Previous methods

Attempts to determine the sex of the makers of Paleolithic art have focused primarily on two categories of
mark making- (1) finger flutings and (2) hand stencils and handprints. A third method of using fingerprint
analysis remains novel within the literature®*3°. A common approach to finger flutings and hand stencils is the
application of the 2D:4D ratio. This ratio describes the relationship between the length of a person’s second
digit (or index finger) and their fourth digit (or ring finger). The 2D:4D ratio is predetermined in utero through
exposure to estrogen and testosterone. Ratios of less than 1.0 (i.e., the index finger is shorter than the ring finger)
reflect greater testosterone exposure and are said to be characteristic of males while ratios greater than 1.0 are
described as female®. This ratio has been applied to prehistoric finger flutings in cases where the tips of the
middle three fingers of either hand could be determined*!. However, variability due to the pressure applied when
fluting, arm height, palm/wrist angle relative to the fluting surface, and humidity of fluting matrix in conjunction
with the fact that the flutings tend to widen over time?? mean that this method cannot be used to determine the
sex of fluters with any degree of accuracy™.
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The ratio has also been applied to handprints (when a hand is dipped in pigment and pressed against a cave
wall) and hand stencils (when pigment is blown around the hand leaving a negative imprint of it). In these
cases, experimental studies using North American subjects found their samples masculinized (i.e., both males
and females patterned as males)*. Some researchers have had greater success using additional ratios (3D and
4D) or other morphological data in conjunction with size measurements even though hand size between males
and females can overlap by as much as 85%*>-44. However, it should be noted that neither handprints nor hand
stencils are a precise reflection of the soft tissue hand. For example, applying pressure with the palm will often
make fingertips of handprints “invisible” while the height/angle at which pigment is blown around a hand will
introduce error to a hand stencil. Other factors such as the natural topography of a cave wall and the level of

expertise/motor control of the mark maker can also introduce error.

Digital archaeology: virtual reality & machine learning

The application of Virtual Reality (VR) and machine learning (ML) in archaeology has grown in recent years,
offering promising new tools for analyzing ancient artifacts, human remains, and cultural practices. Virtual
Reality has been of use to archaeologists since the 1990's as an immersive research communication tool*>~*” and
has increasingly been used as a platform for experimental archaeology, including experiential analysis of rock
art*® but continues to be on the periphery of archaeological practice*=!. The proliferation of VR technology in
recent years has further improved the fidelity and accessibility of VR as a platform for experimental archaeology
making it one that is both engaging for participants and a productive research tool.

Machine learning algorithms, particularly Convolutional Neural Networks (CNNs) and Recurrent Neural
Networks (RNNs), have been increasingly used to analyze patterns in archaeological data, such as the classification
of artifacts, sex determination from skeletal remains®?, or gender biases in cultural heritage catalogues®?. In rock
art research, there has been some progress towards using ML to detect rock art but also to classify rock art motifs
and styles®7.

A growing area of interest is the integration of tactile and motion-based data for understanding human
behavior in prehistoric contexts. MLs potential to identify subtle, individualized features in human motion
patterns has been explored: ML was used to analyze fingerprint data to determine the identity of individuals®®;
and the ability of ML to predict demographic attributes from biometric data such as fingerprints was explored™.
These studies suggest that ML, when applied to data sets like flutings, can identify patterns that may not be
immediately visible to the human eye. However, MLs integration into archaeological research remains in its
infancy, particularly in terms of dealing with complex, multimodal datasets like tactile and VR data. The use of
VR in cultural heritage highlights both the potential and challenges of using virtual environments to simulate

and analyze archaeological information®.

Methodology

Experimental design

Our study consisted of two approaches: a tactile and a virtual reality (VR) experience that collected flutings from
a modern population. The data were used to train and test a ML model that could classify finger flutings based
on biometric attributes. The aim was to test if these approaches could be used to provide information about the
artists.

Participant sampling and data collection

Ninety-six participants volunteered to contribute both tactile and virtual finger fluting data. Data collection
was conducted in 2024 at the Australian Archaeological Association Conference, Griffith University, and SAE
University College in the Gold Coast and Brisbane, Australia. There were no predetermined criteria for sex or
height, but individuals were required to be over 18 years old. This age restriction introduced a bias, but as this
was a pilot project we wanted to limit the scope and not further complicate the dataset with the variability of
children’s hand size. Further, the sample is biased toward a demographic of those who attend higher education
and Australian archaeology conferences®!. The definition of sex used in our study is a binary sex categorization
(male/female) which was self-reported by participants. While this binary does not reflect the diversity of
biological sex or gender, for the sake of the methodology participants were limited to this binary choice. The
obvious bias is that our dataset is from a modern population collected from two universities and an Australian
Archaeology Conference, which might have skewed the results towards the dominant demographics of these
venues (e.g. “white”, Australian, women, and well-educated). However, this bias does not affect the validity of
our study.

The physical attributes of each participant—hand measurements (palm width, 3 finger width, hand span),
age, sex, handedness (left, right, ambidextrous), and height—were recorded. This data served as a foundation
for analyzing the experimental outcomes. All methods were carried out in accordance with relevant guidelines
and regulations. Ethical clearance was obtained through Griffith University and identified as protocol number
2023/667.Informed consent was obtained from all subjects. Participants were provided with a project information
form which identified potential risks to both themselves and their data before being asked for written consent.

Instructions for participants

The instructions for the fluting experiment were designed to capture a wide range of fluting motions that
prehistoric artists may have used (Fig. 2). This included specific combinations of hand motions, such as forehand
and backhand strokes, to simulate possible different techniques used for fluting. Since finger flutings are an
esoteric form of rock art, we attempted to give participants a better understanding by providing a printed 3D
model of finger flutings from a prehistoric cave to see and touch.
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1. Forehand bottom to top - First left than right 5. Backhand bottom to top - First left than right

4. Forehand top to bottom - Together 8. Backhand top to bottom - Together

Fig. 2. Instructions for participants of tactile approach.

Tactile approach
The tactile experiment installation: moonmilk simulacra Due to the unavailability of large quantities of moon-
milk, a substitute material was sought. The key criteria for the substitute were:

o Structural Integrity: The material needed to maintain its form during and after the fluting process.

o Adherence: It had to stick to a vertically erected canvas, simulating a cave wall.

« Texture: Similar look and feel to moonmilk, leaving a similar imprint (fluting).

« Resetting: The canvas needed to be reset between flutes to facilitate hundreds of data points (images).

Previous experimental studies utilised various mediums (e.g., plaster of Paris, finger paints and clay) to simulate
finger-fluting creation®**. After testing the different materials previously used, it was clear that none of these fit
the criteria. Therefore, a substitute material was developed in consultation with Danielle Clarke, a master potter
(Appendix A). This material was designed to replicate moonmilk’s texture and properties. The substitute was
applied to a canvas approximately 5 cm deep with an effective drawing area of 86 cm by 56 cm accounting for
the frame. The frame was mounted on an easel with the top of the frame reaching a height of 175 cm above the
ground.

Fluting and image capture Each participant was asked to perform eight predefined flutings based on structured
instructions, followed by one freehand fluting (Figs. 2 and 3). The instructions included a set of forehand and
backhand motions in different sequences (one hand a time or together), designed to cover a range of possible
fluting techniques. Flutings were mostly captured using a Panasonic DC-GH5 camera mounted on a tripod to
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Fig. 3. Tactile (left) and virtual (right) data collection.

ensure high-quality, consistent images (Appendix B). At times there were issues with the camera and a Samsung
Flip 5 was used to capture the images, in order not to delay participants. Notes were taken on observations made
about some participant’s behaviour and stance.

Virtual reality approach

Data collection through a bespoke Virtual Reality (VR) program was pursued for two reasons. First, it would
provide a consistent experimental medium and environment between participants as well as producing a well-
controlled data output in the form of born-digital images. Secondly, the VR platform allowed for multiple
other kinds of data to be gathered unobtrusively and inexpensively such as finger, hand and head positions.
The program was designed for the Meta Quest 3, which at the time had the most affordable and accurate
consumer grade inbuilt hand tracking system. Furthermore, the Meta Quest 3 continues to be well supported for
independent development allowing easy use of bespoke software on the hardware.

The primary functional requirements of the VR approach were to allow users to create virtual finger flutings
with natural hand movements and to save each finger fluting to local/network storage. Secondary to this was the
creation of a user interface (UI) which could independently instruct and guide users through the experiment.
The Unity Game Engine was chosen for its range of both official and unofficial VR support and integration.
OpenXR was used to manage VR integration as it provided better support for required add-ons and simpler
customisation of tracked hand skeletons compared to the Oculus plugin, the officially supported integration
plugin for the Meta Quest 3. Additionally, OpenXR allows for greater interoperability with other VR platforms
if desired in the future.

Both primary requirements were largely met using the add-on Drawing Board VR available from the Unity
Store, which provides assets and scripts to draw virtually and to save the images. Although designed for PCVR,
it proved completely functional on the standalone Meta Quest 3. Adapting the prefab assets from Drawing Board
VR was trivial, capsules were attached to the hand skeleton anchor points (see Fig. 4) with each capsule having
the ability to leave an impression on the virtual board. After some testing and manual adjustments, the capsules
accurately translated real world finger position and angles. The virtual board was scaled to match the tactile
board (frame size 90 cm by 60 cm).

To avoid having participants alternate between hand tracking and controller interaction with UI elements, all
UI was interactable through poke or raycast interactions created by hand pose and movement. Participants were
prompted to press buttons to move through the experiment (Fig. 5). It was anticipated that many participants
would have no prior VR experience, particularly with hand tracking exclusive interaction, therefore, the initial
instructions acted to allow participants to become familiar with the feel of the UT interaction. This integrated
tutorial approach was further developed by having a test board which users could finger flute on without it
being recorded. When ready, the users were instructed to press the large start button on their left which would
then start the recorded experiment. Each of the nine instructions came with textual and animated instructions.
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Fig. 4. An early development version of the drawing capsules attached to hand skeleton anchors. Not visible in
the final version.

Fig. 5. (Top left) Introductory instructions, (bottom left) Image saving UI and start button, (top right) The
virtual test board, (bottom right) Animated phantom hands demonstrating the hand movements wanted from
the participants. (Note: High angle point-of-view does not reflect typical participant view, head position of user
in demonstration images was ~2 m).
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The animated instructions, which were phantom hands demonstrating the desired movement, were added to
avoid any confusion that might arise from the wording of the text. Following the completion of an instruction,
users were directed to press the corresponding number to their left, all other numbers were disabled to avoid
misselection. Participants performed the same eight predefined flutings and one freehand fluting in the VR
environment as they did in the tactile experiment.

The images were saved locally onto the Quest 3 at a resolution of 4096p x 6144p and were manually transferred
via link-cable connected to a laptop during the experiment. In practice, this proximity to the participant allowed
them to be actively monitored for both safety and guidance throughout the experiment. A limitation of this
approach was the lack of tactile feedback for participants as real-world objects could not be effectively and
consistently tracked into the virtual environment to provide tactility. To partly mitigate the lack of tactile
feedback, pseudo-depth was added to the virtual canvas, meaning users’ hands could only sink approximately
5 cm into the virtual board, mimicking the tactile experiment. This meant that rather than users’ virtual fingers
skimming the surface of the virtual board, they were able to sink them in and drag them across. For detailed
instructions on how to recreate the virtual experiment and a link to the github repository, see Appendix C.

Dataset curation
Data from both the tactile and VR experiments were processed for analysis and used to train neural networks
designed to identify correlations between participants’ physical attributes and their fluting techniques.

VR images did not require manual cropping, as they did not contain redundant backgrounds. Tactile images
underwent a semi-automated process to remove the background using the segmentation model SAM2%% SAM2
employs click points as input prompts to guide the segmentation process. When initial segmentation results
were suboptimal, additional click points were applied iteratively to refine the output. Following automated
segmentation, all SAM2-segmented images were manually reviewed to ensure the complete removal of personal
information while preserving the integrity of the primary’s content. In rare cases (approximately 5%), when
SAM?2 failed to achieve satisfactory segmentation, manual cropping was performed as an alternative measure.

The dataset consisted of both virtual (63 female, 29 male) and tactile (56 female, 23 male) images. To
maximize data utility, the dataset was split into training and test sets in an 8:2 ratio at the individual level,
ensuring that no participant appeared in both sets. For virtual images, the training set included 666 images (463
female, 203 male), while the test set contained 152 images (108 female, 44 male). For tactile images, the training
set comprised 573 images (411 female, 162 male), with the test set consisting of 126 images (90 female, 36 male).

Machine learning approach

We employed two deep learning models, ResNet-18% and EfficientNet-V2-S%, due to their strong classification
performance and relatively small parameter counts, making them well-suited for the dataset’s limited size.
ResNet-18 is a lightweight convolutional neural network (CNN) architecture from the ResNet family, consisting
of 18 layers. Its residual learning framework enhances feature extraction while mitigating vanishing gradient
issues, making it particularly effective for smaller datasets. EfficientNet-V2-S is a more recent CNN model
designed to optimize both computational efficiency and classification accuracy. Compared to ResNet-18,
EfficientNet-V2-S provides enhanced feature representation with fewer parameters, making it a robust choice
for classification tasks involving limited data availability.

Model training was conducted on a Linux workstation (Ubuntu 18.04) with an NVIDIA RTX 3060 GPU
using PyTorch. To determine the optimal learning rate, two different training settings were applied: one with 200
epochs at a learning rate of 1x 10~ and another with 1000 epochs at a reduced learning rate of 2 x 107°. Input
images were automatically resized to match the pretrained model requirements, with ResNet-18 using 224 x 224
pixels and EfficientNet-V2-S using 384 x 384 pixels.

For training, a batch size of 32 was used for ResNet-18, whereas EfficientNet-V2-S was trained with a batch
size of 16. Input images were normalized using the ImageNet mean [0.485, 0.456, 0.406] and standard deviation
[0.229, 0.224, 0.225] to align with the pretrained model input distributions. To enhance model robustness and
generalization, data augmentation techniques were applied, including random rotation (+ 10°), horizontal and
vertical flipping (p=0.5), perspective distortion (scale=0.6), and Gaussian blur (kernel size=5x9, 0=0.1-5).
Model accuracy was computed as the ratio of correctly predicted instances to the total number of predictions.
The code is publicly accessible at https://github.com/johnnydfci/FingerFluting-SexClassification.

Statistical analysis

Model performance was evaluated using three key metrics: Area Under the Curve (AUC), accuracy, and F1
score. AUC was calculated to assess the model’s ability to distinguish between male and female-generated finger
fluting patterns, with higher values indicating better discrimination. Accuracy was defined as the proportion
of correctly classified samples among all predictions, providing an overall performance assessment. F1 score,
which balances precision and recall, was used to quantify classification reliability, particularly in handling class
imbalances.

Performance metrics were computed for each model configuration, including different learning rates
(Ix10-5 and 2x10-6) and architectures (ResNet-18 and EfficientNet-V2-S). The statistical significance of
differences in model performance across learning rates and architectures was analyzed to determine the optimal
training configuration.
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Fig. 6. Training and testing accuracy of ResNet-18 and EfficientNet-V2-S on virtual images using two different
learning rates (1 x 107 and 2 x 10~6). The accuracy of both the training and test sets is plotted throughout

the training process. Training was conducted for 200 epochs at a learning rate of 1x 107> and 1000 epochs at
2x107°. The Y-axis represents accuracy, calculated as the number of correct predictions divided by the total
number of predictions.

Model Learning Rate | Accuracy | AUC | F1 Score
EfficientNet | 2x 107 0.736 0.6566 | 0.0417
ResNet 2x10°¢ 0.758 0.6156 | 0
EfficientNet | 1x107° 0.743 0.7051 | 0.5289
ResNet 1x107° 0.742 0.5683 | 0.1644

Table 1. Performance metrics of ResNet-18 and EfficientNet-V2-S trained on virtual images under two
different learning rates. AUC = Area under the Curve.

Results
Neural network training on the virtual images
We trained two deep learning models, ResNet-18 and EfficientNet-V2-S, using two different learning rates
(Ix10-5and 2 x10-6), resulting in four separate training conditions (Fig. 6). The model weights achieving the
highest accuracy were selected for AUC and F1 score calculation, with the results presented in Table 1.
ResNet-18, despite achieving the highest overall accuracy (0.758) at a lower learning rate (2x10-6),
struggled with AUC (0.6156) and yielded an F1 score of 0, indicating poor classification balance. The same
model at a higher learning rate (1 x 10— 5) exhibited a slight drop in accuracy (0.742) but an increase in F1 score
(0.1644), reflecting marginal improvements in handling class imbalances. EfficientNet-V2-S demonstrated more
consistent performance across learning rates, with a minimal drop in accuracy but notable improvements in
AUC and F1 score at the higher learning rate.
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Fig. 7. Training and testing accuracy of ResNet-18 and EfficientNet-V2-S on tactile images using two different
learning rates (1 x 107 and 2 x 107%). The accuracy of both the training and test sets is plotted throughout

the training process. Training was conducted for 200 epochs at a learning rate of 1x 107> and 1000 epochs at
2x107°. The Y-axis represents accuracy, calculated as the number of correct predictions divided by the total
number of predictions.

model Learning Rate | Accuracy | AUC | F1 Score
EfficientNet-V2-S | 2x107° 0.839 0.7051 | 0.5289
ResNet-18 2x107¢ 0.839 0.8731 | 0.6087
EfficientNet-V2-S | 1x107° 0.813 0.8667 | 0.4643
ResNet-18 1x107° 0.813 0.7892 | 0.5432

Table 2. Performance metrics of ResNet-18 and EfficientNet-V2-S trained on tactile images under two
different learning rates. AUC = Area under the Curve.

Neural network training on the tactile images

Similar to the virtual image experiments, for the tactile experiments we trained two deep learning models,
ResNet-18 and EfficientNet-V2-S, using two different learning rates (1 x10—-5 and 2 x 10— 6), resulting in four
separate training conditions (Fig. 7). The model weights achieving the highest accuracy were selected for AUC
and F1 score calculation, with the results presented in Table 2.

The results on the tactile image dataset were significantly better than the virtual image dataset. Both models
achieved the highest accuracy (0.839) when trained with a lower learning rate (2x107°), with ResNet-18
demonstrating the highest AUC (0.8731) and F1 score (0.6087). EfficientNet-V2-S, while maintaining the same
accuracy, showed alower AUC (0.7051) and F1 score (0.5289). At the higher learning rate (1 x 107°), both models
exhibited a slight drop in accuracy (0.813), with EfficientNet-V2-S attaining a higher AUC (0.8667) but a lower
F1 score (0.4643) compared to its lower learning rate counterpart. ResNet-18, at the higher learning rate, had a
decreased AUC (0.7892) but maintained an F1 score of 0.5432.
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Incidental observations during the tactile approach

There were incidental observations made during the tactile approach that provided valuable insights into the
finger fluting techniques and behavior of participants. These observations can be used to inform future avenues
of exploration. Participants demonstrated a wide range of hand movement techniques. Most notably, participants
exhibited different thumb placement techniques during the fluting process. Some did not involve their thumb,
leaving only four marks on the surface, while others dragged the thumb across the canvas, which is not typical
in cave flutings. Also, there was a noticeable distinction between the forehand and backhand techniques used.
Forehand movements were typically more controlled and produced precise flutings, while backhand motions
often resulted in broader, less defined strokes.

Finally, there was an obvious correlation between height and reach. Shorter participants faced specific
challenges fluting backhand starting from below going upward, due to the top of the board being approximately
175 cm above the ground, often resulting in shorter flutings. The behaviour of the participants also influenced
the markings. The position of a sample of participants’ feet were noted to have had an influence on the symmetry
of the flutings and the standing position impacted the direction and depth of the flutings. For example, those
with one dominant foot forward tended to shift their weight, which in turn affected the final markings. Another
example is that those who adopted a crouching position often produced deeper and more pronounced flutings,
suggesting that posture influenced the final markings. The freehand flutings revealed a significant variation in
artistic intent. While some participants focused on symmetry and precision, others leaned toward more abstract
and expressive designs. This variation in creativity demonstrated the unique ways individuals interpreted the
fluting task.

Discussion and future recommendations

Machine learning results

Overall, the deep learning models achieved high accuracy during training, with AUC values exceeding 0.85
for certain tactile image conditions. These results suggest that the models effectively learned patterns within
the tactile dataset and demonstrated strong discrimination between male and female-generated finger fluting
images. However, the relatively lower AUC values for virtual images, coupled with their unstable test accuracy,
indicate that they do not provide sufficiently distinct features for reliable sex classification. This discrepancy
highlights the greater robustness of tactile images over virtual images in capturing relevant classification features.

Despite the promising performance on tactile images, deep learning models exhibited a pronounced disparity
between training and test performance. While training accuracy consistently increased, reaching near-perfect
levels in the later epochs, test accuracy remained unstable and showed no substantial improvement over time.
This pattern indicates overfitting, where the models effectively learn dataset-specific features but fail to generalize
to unseen test data. The instability in test accuracy further suggests that the models struggle to extract robust and
generalizable patterns from the finger fluting images, ultimately limiting their reliability for sex classification.

A possible contributing factor to this challenge could be individual variation in hand size and fluting
characteristics. For example, some females may have larger hands and exhibit stronger fluting patterns
resembling those of males, while some males may have smaller hands and display lighter, less pronounced fluting
strength. This variability could confuse the model, making it difficult to accurately differentiate between sexes
and ultimately hindering its performance on the test set.

These results underscore the critical need to increase the dataset size to alleviate overfitting and improve the
model’s generalizability. Moreover, the inherent variability in finger fluting images may impose fundamental
limitations on the feasibility of using deep learning for sex classification, suggesting that alternative approaches
or additional contextual data may be necessary to enhance classification accuracy.

The limited success of the tactile data in sex prediction underscores the importance of material-based
approaches in understanding finger flutings. While the VR data failed to provide useful results, it opens up new
and exciting possibilities for exploring the dynamic aspects of fluting and artistic intent in the future. While a
modest achievement, this study highlights the potential of ML to enhance traditional archaeological methods.

Implications for finger fluting research

The traditional methods of using ratios described earlier in the literature review were flawed in their experimental
method and the theory they were based on is contentious. For example, traditional methods when measuring
had to be offset from the finger flutings to avoid damaging the rock art, introducing human error. Also, the ratios
are not universally accepted because they are not consistent between modern populations nor proven applicable
to ancient populations. In combination these issues cast doubt on the results of these traditional methods.

In contrast, our digital archaeology method addressed human error by introducing quantifiable methods
through ML and the contention around ratios by adopting a theoretically agnostic approach. The ML model
analyzed the photograph itself, not the physical characteristic of the hand. This is an important distinction
between traditional methods that used hand measurements and inferred the results of the hand measurements
onto the flutings, while our method simply classified the patterns in the photograph. Another advantage of the
theoretically agnostic approach afforded ML is that it allows for the discovery of new theories that can be tested.
The use of photography and computer vision as ways of remote sensing and measuring finger flutings makes the
study scalable, replicable, and quantifiable, ultimately making it more robust than previous methods. Our study
innovated in all aspects of the experimental design: the toolkit, the activity and the measurement.

Toolkit
As part of the tactile approach, an important contribution of this study is the recipe for a moonmilk substitute
(Appendix A) that is a substantial improvement over the materials used in previous experiments with finger
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flutings. Creating this simulacrum of moonmilk that can be easily replicated enables other researchers to
undertake more realistic tactile finger fluting experiments.

This is the first known attempt of collecting finger fluting data through VR and the first use of ML to analyze
finger flutings. The VR approach provides a convenient experimental environment, allowing it to be infinitely
replicable. Furthermore, it has the ability to control, monitor and measure all aspects of the experiment. This
multidimensionality produces rich observational data that is accurately and consistently recorded. However, it
lacks fundamental realistic elements which are present in the tactile experiment.

Furthermore, we designed the finger fluting instructions used in both approaches to encourage different
hand and body movements. While lacking in previous publications, this study produced a baseline instructional
toolkit for finger flutings that is scalable and reproducible and can be used and improved upon by future
researchers. Lastly, we developed a machine learning pipeline for finger fluting data that is made available on
Github: https://github.com/johnnydfci/FingerFluting-SexClassification.

Activity

The design of the tactile and VR approach allowed for observations of modern populations’ flutings. This
provided insights into body balance, foot placements, reach, use of thumb etc., which previous studies may have
noticed but did not publish. We also created a novel VR experiment space, while not successful, it has revealed
other forms of data which can be captured during the experiment, such as exact finger, hand and arm positions
throughout the activity. Furthermore, more VR data can be collected, for example where the participant looks
(eye-gaze), providing further insight into the subtleties of the activity might be improved by future studies.

Analysis

Previous methods relied upon human judgement, which could have introduced variability in techniques,
interpretation, or inherent biases. The experiments were often not designed to be agile enough to accommodate
any other questions or to be expanded on. Furthermore, these methods often made assumptions that particular
measurements were relevant to understanding physical characteristics.

In contrast, our method surpasses human capabilities and can uncover subtle unnoticed distinctions.
Furthermore, it does not rely on the assumption that the measurements have a specific relationship to the
artist’s attributes; rather we are using machine learning with a computer vision approach that was not trained
on these previous methods. Ideally, it would treat all potential avenues as equal initially, however, because we
used transfer learning there may be residual biases. But these biases are different from human judgement biases
and are computational and measurable. An example is the overfitting in our results where the models may have
learned dataset-specific features but did not translate to the test data. Therefore, our data-driven approach is not
only reproducible and consistent but improves the overall accuracy of the analytical model applied, making any
potential shortcomings measurable.

The greater potential of this ML method is scalability and efficiency by feeding more data into the model
and testing its accuracy. The dataset is also agile and can easily be used for a variety of other applications. For
example, our binary approach for male and female can easily be expanded to right or left handedness. Another
example is that third party researchers can take our toolkit and test the 2D:4D ratio theory and other traditional
methods in a more rigorous way. Our current dataset was insufficient but showed promise, which can be further
tested by adding more data. We can adapt the method in the future, by for example, making small changes to the
variables in the code, while continuing to reuse the original dataset. The expansion of this data is enabled by the
replicable toolkit we have designed.

Limitations and challenges, insights and potential

A major limitation is our sample size. Ninety-six participants producing 699 tactile data points and 818 virtual
data points was not sufficient to make a definite determination of sex. Additionally, the lack of external validation
further constrains the generalizability of the findings. At present, our model was trained and evaluated using
data from a single center. While this provides internal validation, it may not fully reflect how the model performs
on data from different imaging centers and populations, even when following similar photography standards.

In machine learning for image classification, a strong model is typically expected to also be validated on
external datasets — for example, images collected from another center under similar standards. This helps
demonstrate that the model’s accuracy is stable and not simply the result of overfitting. Here, overfitting means
the model learns patterns that are too specific to the training data. These patterns may include noise or unique
characteristics, such as the lighting setup, camera settings, or background features in photographs, rather than
the actual finger fluting patterns we aim to identify. As a result, an overfitted model performs well on the training
data but poorly on unseen data. There are many cases showing that accuracy drops when moving from internal
to external validation, even under similar photography standards. Therefore, including external validation is
generally considered a more rigorous evaluation of model generalizability.

Another limitation of this experiment was that it did not intend to capture the environmental context. For
example, fluting on a canvas is inherently different from fluting on a cave wall. Other differences include the
moonmilk substitute, the humidity of the cave, and the lighting. This could also shed more light on the cultural
context or intent of finger flutings, which was absent from this experiment.

The instructions were limited to eight vertical movements, which do not reflect the real-world range of finger
flutings. Future experiments may need to include superimposition, more varied hand and arm movements,
and body positions. Participants may have been influenced by observing other participants, which needs to be
controlled in future experiments. For example, some participants were gouging the moonmilk simulacra instead
of fluting, which was then copied by the next participant.
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The tactile approach proved to be very time-consuming, impacting the quantity of samples. The tactile
approach is also not as easily scalable as the VR approach because it requires more material and personnel time.

The VR approach was limited by both the capabilities of the hardware and design choices in the development
of the application. The Meta Quest 3, while a very capable VR device, is reliant on camera detection of finger
and hand position, with only limited ability to manage occlusion. This limited the accuracy of the virtual finger
flutings of some hand positions, particularly the back handed movements. Furthermore, the virtual hand
movements could not be easily matched with tactile feedback, i.e., an augmented reality approach, with the
software available at the time, though this has since changed.

Design choices in the development of the VR application also posed significant limitations on the utility of
the virtual data. For example, finger flutings were recorded as a 2D texture, providing no evidence of depth. This
could be resolved using pseudo depth or 3D deformation of virtual surfaces and while the latter is more accurate
it is more computationally intensive. Another design issue observed during the experiment was the difficulty a
small number of participants had with the user interface elements, particularly the poke interactions with the
virtual buttons, requiring significant guidance. This seemed to correlate to limited prior experience with VR but
should be resolved by more intuitive UI to improve participant experience and accessibility.

While our intention was to develop a proof-of-concept to determine the sex of finger fluting artists based
on modern populations, future researchers cannot assume a modern population has the same biomechanics
as the ancient population that made the in-situ finger flutings. Future research into paleoanthropology for
understanding the biomechanics of ancient populations is needed.

The novel combination of methods utilised in this study to understand the production of finger flutings
has demonstrated several limitations and challenges, but also a range of insights into the application of these
methods. The tactile approach captured nuances in the finger fluting that transferred to the images, which were
computed by the ML model. The VR approach could be improved by adding motion capture and exploring
alternative VR devices that could address the current limitations. For example, using haptic gloves to capture
nuanced hand movements.

The methodologies developed in this study hold promise for a range of disciplines beyond archaeology, such
as forensic science, human-computer interaction, and art history. AI-driven analysis of physical behavior and
artistic intent could transform the way we study and understand ancient cultures, and the insights generated
could have applications in modern fields such as user experience design and psychological research.

Conclusion

Our study makes an important contribution to experimental archaeology by using digital archaeology to
understand if it is possible to determine the sex of the artist from the images of finger flutings taken from tactile
and VR approaches. This study establishes a foundation for a paradigm shift from traditional analog methods
that relied heavily on human-derived measurements (e.g., 2D/4D ratios) towards using purely computational
digital archaeology methods, including ML, computer vision, remote sensing, for finger fluting analysis. While
the tactile approach initially demonstrated promising performance, there was a pronounced disparity between
training and test performance, likely the result of overfitting. The overfitting can potentially be remedied by
increasing the sample size.

Another significant contribution of our study is the development of a quantifiable and scalable toolkit for
finger fluting analysis. The toolkit can be used by future researchers for the entire lifecycle of the experiment,
from planning to collecting and the tools for analyzing the data are available on github. It also includes the recipe
for the moonmilk simulacra that was developed specifically to replicate the characteristics of moonmilk. The
study paves the way for future research that integrates interdisciplinary approaches to cultural heritage studies
with applications extending into diverse fields like forensics, psychology, and human-computer interaction.

Data availability

The data used in this study are openly available in github (https://github.com/johnnydfci/FingerFluting-SexClas
sification). The authors confirm that the data supporting the findings of this study are available within the article
and its supplementary materials.
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