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About 30% of temporal lobe epilepsy (TLE) cases are negative on MRI, so quantitative diagnosis 
based on clinical symptoms becomes challenging. There is an urgent need for an accurate and reliable 
method to differentiate patients with MRI-negative TLE from healthy individuals. This study aimed to 
explore the use of machine learning methods to diagnose MRI-negative TLE patients based on single 
and combined resting-state fMRI (rs-fMRI) metrics. This study investigates the diagnostic implications 
of using both singular and composite resting-state fMRI (rs-fMRI) indices in patients with MRI-negative 
TLE. We carried out a retrospective analysis of the clinical data and rs-fMRI data of 90 patients with 
MRI-negative TLE and 90 healthy controls (HCs). Next, the participants were divided into a training 
set and a test set at 8:2. Functional indices extracted from each brain region included degree centrality 
(DC), voxel-mirrored homotopic connectivity (VMHC), regional homogeneity (ReHo), fractional 
amplitude of low-frequency fluctuations (fALFF), and amplitude of low-frequency fluctuations (ALFF). 
A two-sample t-test was utilized to select significant voxels. After this, classification models based on 
individual rs-fMRI indices and combined rs-fMRI indices were constructed using ML algorithms such 
as support vector machines (SVM), random forests (RF), and logistic regression (LR) on the training 
set. Model performance was evaluated using metrics such as specificity, the area under the receiver 
operating characteristic curve (AUC), sensitivity, and accuracy, and validations were performed 
on the test set. Lastly, the feature contribution was assessed using Shapley Additive explanations 
(SHAP) values. The SVM model employing a combination of rs-fMRI functional indices had optimal 
performance. On the test set, this model achieved an AUC of 0.89, with an accuracy rate of 82%, where 
the ALFF values from the cerebellum contributed most significantly to the model. In contrast, ML 
models based on individual rs-fMRI indices demonstrated inferior classification performance, whereas 
the RF model using the DC index had the lowest accuracy of 47% on the test set. The SVM model 
combining the fMRI indices has the greatest potential to distinguish between MRI-negative temporal 
lobe epilepsy patients and healthy individuals, suggesting a complementary role for the classification 
of resting-state fMRI indices.
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Epilepsy ranks among the most prevalent and debilitating chronic neurological disorders worldwide, affecting 
more than 70 million individuals globally, primarily characterized by recurrent episodes of abnormal neuronal 
discharges1,2. Temporal lobe epilepsy (TLE), the leading type of focal epilepsy in adults, exhibits significant 
resistance to pharmacological treatments and often necessitates further evaluation and surgical interventions3. It 
is noteworthy that approximately 30% of patients with TLE do not exhibit lesions in magnetic resonance imaging 
(MRI), a condition referred to as MRI-negative temporal lobe epilepsy (MRI-NTLE)4. Consequently, epileptic 
foci are difficult to precisely localize, and it is challenging to formulate diagnostic and therapeutic plans. This 
adversely affects patients’ life quality and survival, which imposes a significant societal and health burden. In this 
context, it is necessary to develop more accurate and objective methods for diagnosing MRI-NTLE.
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With the advancement of artificial intelligence, ML has an ascendancy in diagnosing, understanding the 
pathogenesis, and predicting the prognosis of neuropsychiatric disorders5. ML has robust medical diagnostic 
functional metrics that offer more effective predictions. These capabilities not only allow for the detection 
of spatial distributions in neuroimaging data but also facilitate the differentiation between individuals with 
neuropsychiatric disorders and healthy controls (HCs) at a personal level6–8. SVMs, a typical ML model, 
demonstrate strong classification performance and interpretability for multivariate and high-dimensional 
complex data5. Additionally, the random forest (RF) and logistic regression (LR) models are important for 
solving classification problems in neuroimaging studies.

Studies have shown that combining SVM with the surface area of the region of interest and cortical 
thickness has a detection accuracy of 83% for temporal lobe epilepsy9. Both Spitzer et al.10and Yang et al.11 
have also developed diagnostic models using structural MRI data, which provide strong support for identifying 
epilepsy with subtle epileptogenic foci. In recent years, machine learning research based on structural MRI 
data has made significant progress in the field of epilepsy diagnosis. However, most prior studies on rs-fMRI 
for epilepsy focused on single functional metrics or structural MRI integration, and comprehensive diagnostic 
models combining multi-dimensional rs-fMRI indices for MRI-negative TLE remain underexplored. rs-fMRI 
is a non-invasive neuroimaging technique. It can measure blood oxygenation changes to reflect connectivity 
between brain regions12,13. The amplitude of low-frequency fluctuations (ALFF) mainly reflects the level of 
spontaneous neural activity in the brain14–16, while the amplitude score of low-frequency fluctuations (fALFF) 
is an optimization of the ALFF value, which can further improve the specificity and sensitivity of detecting 
spontaneous neural activity in local brain regions17–19. Singh et al.20 found that the brain regions significantly 
activated by ALFF were mainly located in the executive control network and the default mode network. ReHo 
reflects the changes in the coordination of neuronal activity in local brain regions21,22. Studies have shown that 
ReHo values in the precuneus of MRI-NTLE patients are significantly lower, suggesting that epilepsy may affect 
the synergistic work of localized functional modules in the brain23. VMHC reflects the pattern of information 
integration and communication between the right hemispheres24, and in previous studies, VMHC-altered brain 
regions in TLE patients have been found to have a strong association with the directional functional connectivity 
of multiple brain regions, suggesting that epilepsy may disrupt the functional balance between the left and right 
hemispheres functional balance25–27. DC quantifies the strength of a node by summing the total number of 
connections to that node, indicating the functional connectivity within the brain network28. These indices, each 
with distinct characteristics and advantages, provide multifaceted reflections of brain function, which could 
help the identification and assessment of MRI-NTLE patients. Therefore, we will extract multiple functional 
indicators of ALFF, fALFF, ReHo, VMHC, and DC for each brain region as features based on an automated 
anatomical labeling atlas29.

In this study, based on individual and combined rs-fMRI indices, we constructed and tested classification 
models using SVM, RF, and LR classifiers. This study aims to investigate whether rs-fMRI indices combined with 
ML can differentiate MRI-NTLE patients from healthy subjects and whether a composite of rs-fMRI indices 
can aid in classification by providing more comprehensive information. Furthermore, this study assesses the 
contribution of the rs-fMRI functional index to the classification process.

Materials and methods
90 patients with MRI-NTLE who were seen at our Epilepsy Center from January 2019 to April 2024 were 
covered. An HC group comprised 90 individuals recruited from our health screening center, totaling 180 
participants. The inclusion and exclusion criteria for MRI-NTLE patients were as follows: (1) All epilepsy 
diagnoses conformed to the diagnostic standards of the International League Against Epilepsy30, primarily based 
on ictal electroencephalography (EEG) showing epileptiform discharges, clinical manifestations, and medical 
history. (2) No history of neuropsychiatric disorders or intracranial space-occupying lesions. (3) No evidence 
of past alcohol or drug misuse. (4) Exclusion of patients with incomplete scan data or poor scan quality. The 
inclusion criteria of the healthy control group were as follows: (1) No contraindications to MRI examination; (2) 
Good compliance and cooperation in the examination; (3) No history of neurological or psychiatric disorders 
or intracranial space-occupying lesions; (4) No history of alcohol and drug abuse. (5) Age and gender were 
matched with the MRI-NTLE group. Each participant or their relative was briefed on the study specifics and 
consented formally by signing. Our institution’s Clinical Trials Ethics Committee approved the study.

The basic demographic and clinical characteristics of the participants are presented in Table 1. In this study, 
the MRI-NTLE patients and the HC did not have notable differences in educational level, age, and gender 
(P > 0.05). The average duration of illness for the MRI-NTLE patients was 10.52±8.911 years. About 48.9% of the 
patients in the MRI-NTLE group had bilateral seizures, and about 53.3% of the patients had generalized seizures.

MRI scanning parameters
MRI data for all participants were collected using a GE SIGNA Architect 3.0T scanner with a 48-channel head 
coil. Lying supine, participants had their heads fixed in place using foam or sponge pads to prevent any head 
movement. While being scanned, participants were instructed to maintain wakefulness, avoid moving, close 
their eyes, relax, and avoid any mental activity as much as possible. The rs-fMRI scans utilized a gradient-echo 
planar imaging (EPI) sequence with the following parameters: slice thickness = 4  mm, matrix = 64 × 64, field 
of view (FOV) = 240 mm × 240 mm, flip angle (FA) = 90°, echo time (TE) = 30 ms, repetition time (TR) = 2000 
ms, no gap, with 36 slices covering 240 time points. A three-dimensional magnetization-prepared rapid 
gradient-echo (MPRAGE) sequence was used to capture the T1-weighted structural images, with parameters: 
matrix = 256 × 256, FA = 8°, TE = 2.38 ms, FOV = 240 mm × 240 mm, TR = 2400 ms, slice thickness = 1 mm, no 
gap, comprising 156 slices.
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Data preprocessing
Data preprocessing of rs-fMRI was performed using the DPARSF 4.5 software package on a MATLAB 2020a 
platform (http://rfmri.org/DPARSF). The specific steps included: (1) Format conversion; (2) the first 10 time 
points removed to mitigate the effects of initial MRI signal instability; (3) Time correction to ensure consistent 
acquisition start times for each voxel; (4) Motion correction, excluding participants with head movement 
exceeding 3  mm or rotation beyond 3 degrees; (5) Coregistration of structural images with functional 
images followed by segmentation into gray matter, white matter, and cerebrospinal fluid using DARTEL; (6) 
Normalization of images to the Montreal Neurological Institute (MNI) space and resampling voxel size to 3 mm 
× 3 mm × 3 mm; (7) Nuisance covariate regression, including Friston-24 parameters and signals from white 
matter and cerebrospinal fluid; (8) A 4 mm Gaussian kernel was used for spatial smoothing, which effectively 
suppressed the effects of physiological noise and instrumental noise, integrated the signals between neighboring 
voxels, reduced random fluctuations in the data, and improved the signal-to-noise ratio. Referring to previous 
studies, the 4 mm Gaussian kernel is especially suitable for functional signal analysis of structures such as the 
temporal lobe and cerebellum27,31,32; (9) Detrending and band-pass filtering (0.01–0.08 Hz) for reducing the 
impacts exerted by high-frequency noise and low-frequency drift.

Feature selection
Based on the automated anatomical labeling (AAL) atlas, we extracted five resting-state functional metrics from 
90 brain regions across the cerebral cortex and subcortical structures, yielding 450 features in total29.

Each rs-fMRI measure was calculated as follows: (1)ALFF was calculated as the square root of the average 
power spectrum within the 0.01–0.08 Hz band for each voxel. (2)fALFF is the ratio of the power of low-frequency 
fluctuations (0.01–0.08 Hz) within a voxel to the total power across all frequencies, normalized by the square 
root of the number of frequency points. (3)ReHo assesses the local synchrony of neuronal activity by calculating 
Kendall’s coefficient of concordance (KCC) among time series of neighboring voxels within a 26-voxel sphere. 
(4)VMHC measures the functional connectivity between symmetric regions of the left and right hemispheres. 
For each voxel, the Pearson correlation coefficient between its time series and that of its mirror voxel in the 
opposite hemisphere was calculated, followed by spatial averaging. (5)DC quantifies the number of functional 
connections a brain region has with others within the whole-brain network. In DPARSF, DC was calculated 
by summing the Pearson correlation coefficients between each voxel’s time series and those of all other voxels, 
followed by spatial averaging within AAL regions.

It has been shown that dealing with features with high dimensionality and redundancy tends to lead to model 
overfitting33,34. Thus, feature selection was crucial for improving model performance.

The entire dataset was randomly partitioned into training and test sets at an 8:2 ratio in each iteration. We used 
the same training set to select features and train the classifier. The test set was used to verify the performance of 
the classification model. Following that, a two-sample t-test was conducted on the training set to select features 
with a significance level of P < 0.05 for further analysis. The two-sample t-test classifies features based on the 
computed t-values, eliminating those with weaker discriminative power to enhance classifier performance13. 
Subsequently, principal component analysis (PCA) was employed to perform dimensionality reduction on the 
selected features, thereby further reducing the complexity of the data and enhancing the efficiency of analysis 
and the interpretability of the results35. In 100 iterations of 8:2 segmentation, PCA was fitted only on the training 
set features, and the resulting principal component projection matrix was applied to the training and test sets, 
ensuring that no test set data affected the PCA parameters. Additionally, PCA was performed independently 
for each iteration to enhance model robustness across different data subsets. For individual rs-fMRI metrics, 
features were selected following the above steps. For the combined indicators, the features of all five indicators 
were combined, a t-test was performed, and then dimension reduction was performed by PCA. This approach 
ensures that single-indicator specificity and cross-indicator complementarity are preserved.

Item MRI-NTLE HC T/Z/χ² P-value

Gender (Male/Female) 39/51 32/58 χ²=1.140 0.286

Age (Years) 26(17.75,40) 28.50(18.75,40) Z=−0.840 0.347

Education Level (Years) 12(9,15) 12(9,15) Z=−0.401 0.728

Disease Duration (Years) 10.52±8.911 - - -

Types of medication 2(1,3) - - -

Laterality of seizures

left 34(37.7%)

right 12(13.3%)

bilateral 44(48.9%)

Nature of seizures

generalized seizures 48(53.3%)

partial seizures 42(46.7%)

Table 1.  Basic clinical Information. Types of medication, This indicator indicates that the patient is currently 
using 1–3 antiepileptic drugs.
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Model construction and evaluation
To optimize model parameters, leave-one-out cross-validation (LOOCV) was applied within the training set 
during grid search, which means leaving one subject out as the testing data, and the others as the training 
data36,37. Radial Basis Function (RBF) kernel was chosen for its effectiveness in handling non-linearly separable 
neuroimaging data, as validated in prior epilepsy studies. For the SVM model, the kernel function was 
predefined as radial basis function (RBF), and grid search was applied to optimize its hyperparameters: gamma 
(kernel coefficient) and C (regularization strength). The search ranges for gamma and C were set as [(0.0001, 1, 
100)] and [(0.0001, 10, 100)], respectively. (The range of hyperparameter settings for the grid search strategy is 
detailed in Supplementary File 1. The hyperparameter values for the SVM, RF, and LR models are provided in 
Supplementary File 2).

The performance of each model is comprehensively evaluated by calculating the area under the receiver 
operating characteristic curve (AUC), accuracy, sensitivity, and specificity, and by plotting the receiver 
operating characteristic (ROC) curve. Models with an AUC value closer to 1 are considered to perform better. 
Additionally, the statistical significance of the model performance is tested through 1000 random permutation 
tests to assess whether the AUC and accuracy are significantly higher than random values. Finally, the Shapley 
Additive Explanations (SHAP) method is used for interpretation and visualization. SHAP values are calculated 
by combining features and determining the contribution of each feature to different combinations, thereby 
measuring each feature’s contribution to the model’s predictive outcomes38,39. Higher SHAP values indicate a 
greater contribution to model predictions. All training and testing of ML processes are implemented using the 
“scikit-learn” package on the Anaconda3 platform (http://www.anaconda.com)40.

Statistical analysis
SPSS software (version 26.0) was employed for statistical analyses. Demographic data were analyzed to examine 
differences between the MRI-NTLE group and the HC group in terms of gender, age, and educational attainment. 
Differences were assessed using the Mann-Whitney U test, independent samples t-test, or Chi-square test, with 
a significance level set at P < 0.05.

Results
Performance of classification models based on rs-fMRI indices
Table 2 displays the AUC, accuracy, sensitivity, and specificity of the models based on rs-fMRI indices. Figure 1 
illustrates the ROC curves for the three classification models tested on the validation set. All ROC curves were 
generated using the scikit-learn roc_curve function with default parameters, without additional smoothing. The 
results indicated that the ML models utilizing combined rs-fMRI indices outperformed those using individual 
indices, with higher accuracy, AUC, sensitivity, and specificity values. Specifically, the SVM model based on 
combined rs-fMRI indices exhibited the best performance, with an AUC of 0.98 and an accuracy of 99% on the 
training set, and an AUC of 0.89 and an accuracy of 82% on the test set. In contrast, classification models based 
on individual rs-fMRI indices achieved AUC values ranging from 0.53 to 0.79 on the test set. For instance, the 
model combining the DC index with the RF algorithm showed the lowest accuracy and specificity of 47% and 

model indices

Training set Testing set

AUC Acc Sens Spec AUC Acc Sens Spec

SVM

ALFF 0.98 0.91 0.96 1.00 0.74 0.75 0.82 1.00

fALFF 0.98 0.93 0.99 0.99 0.74 0.69 0.86 0.93

ReHo 0.97 0.92 0.99 0.97 0.79 0.69 0.82 0.88

VMHC 0.97 0.91 0.95 1.00 0.78 0.69 0.76 1.00

DC 0.96 0.92 0.99 1.00 0.70 0.72 1.00 1.00

Combined-fMRI 0.98 0.99 1.0 1.0 0.89 0.82 0.94 0.92

RF

ALFF 0.91 0.85 0.81 0.81 0.61 0.56 0.35 0.81

fALFF 0.97 0.91 0.83 0.95 0.59 0.53 0.35 0.75

ReHo 0.75 0.66 0.71 0.73 0.63 0.58 0.50 0.69

VMHC 0.93 0.85 0.73 0.92 0.60 0.56 0.40 0.75

DC 0.85 0.78 0.71 0.77 0.53 0.47 0.50 0.44

Combined-fMRI 0.93 0.85 0.81 0.86 0.67 0.69 0.60 0.81

LR

ALFF 0.86 0.78 0.77 0.78 0.64 0.58 0.56 0.60

fALFF 0.65 0.66 0.67 0.65 0.63 0.64 0.65 0.64

ReHo 0.73 0.68 0.70 0.66 0.67 0.63 0.65 0.62

VMHC 0.59 0.60 0.61 0.58 0.57 0.58 0.60 0.56

DC 0.71 0.66 0.66 0.65 0.63 0.59 0.59 0.60

Combined-fMRI 0.82 0.74 0.71 0.76 0.73 0.65 0.63 0.67

Table 2.  Performance of classification models based on rs-fMRI Indices. Note: AUC, the area under the 
receiver operating characteristic curve; Acc, accuracy; Sens, sensitivity; Spec, specificity; Combined-fMRI, 
combined fMRI indices (including ALFF, fALFF, ReHo, VMHC, and DC).
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0.44, respectively, while the model combining ALFF with RF and the model combining fALFF with RF exhibited 
the lowest sensitivity at 0.35.

Feature contribution
To evaluate the significance of differences in the top 20 features between the two groups, this study first computed 
the mean absolute SHAP values to determine feature importance. Subsequently, the Wilcoxon rank-sum test was 
employed for intergroup comparisons of individual features. To address the issue of multiple comparisons, the 
Benjamini-Hochberg method was applied for false discovery rate correction. The results demonstrated that all 
top 20 features exhibited adjusted P-values < 0.05 after correction, indicating statistically significant differences 
between MRI-negative temporal lobe epilepsy patients and healthy controls. These findings suggest these features 
possess robust discriminative power for distinguishing between the two cohorts. The SHAP values for the SVM 
model based on integrated rs-fMRI indices are illustrated in Fig. 2. The top 20 contributing brain regions are 
depicted in Fig. 3. To comprehensively understand the selected features, this study employed SHAP values to 
interpret the importance of features. Relative to the other features extracted, the ALFF value of the cerebellum_3 
region had the highest average SHAP value, indicating that this region may have the greatest potential for 
distinguishing between MRI-NTLE patients and HCs. Additionally, the DC values of the cerebellum_6, the 
ALFF values of the cuneus, and the VMHC values of the superior temporal gyrus also played important roles in 
the predictive accuracy of the classification model.

Discussion
In clinical practice, the diagnosis of MRI-NTLE posed significant challenges due to the absence of detectable 
structural abnormalities on conventional MRI. Traditional diagnostic approaches were prone to misdiagnosis 
or missed diagnosis, often resulting in delayed or ineffective therapeutic interventions for patients41. Although 
advancements in neuroimaging and ML have facilitated progress in epilepsy research, studies specifically 
targeting MRI-NTLE remained scarce, highlighting an urgent need for reliable diagnostic methodologies. As far 
as we know, this study was the first to utilize a multi-level rs-fMRI indices approach combined with various ML 
models to differentiate between MRI-NTLE patients and HCs. We found that ML models based on integrated rs-
fMRI indices perform better than those using a single rs-fMRI index, and a single rs-fMRI index cannot provide 
sufficient information to distinguish between MRI-NTLE patients and healthy individuals. The combined 
indicators complement each other from the four levels of “activity intensity, local coordination, hemisphere 
symmetry, and network center”. This multi-dimensional integration can more comprehensively cover the diffuse 
network abnormalities of MRI-NTLE, rather than the local changes of a single lesion. In addition, combined 

Fig. 1.  ROC Curves of the Three Classification Models in the Test Set. (Note: ALFF, Amplitude of Low-
Frequency Fluctuations; fALFF, Fractional Amplitude of Low-Frequency Fluctuations; ReHo, Regional 
Homogeneity; VMHC, Voxel-Mirrored Homotopic Connectivity; DC, Degree Centrality; SVM, Support 
Vector Machine; RF, Random Forest; LR, Logistic Regression. ROC curves were plotted based on true labels 
and model-predicted probabilities in the same 36-case test set. LR models showed relatively smooth curves 
due to their linear probability estimation, while SVM/RF curves reflect non-linear decision boundaries and 
ensemble effects without post-processing.)
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indicators can reduce the bias of single indicators through multi-dimensional feature averaging, provide a richer 
feature space, and enable the model to learn more essential pathological patterns. This suggests that combining 
the five sets of functional indices(ALFF, fALFF, ReHo, VMHC, and DC)provides a more comprehensive 
representation of the intrinsic functional changes in the brain.

At present, only a few studies have attempted to use brain imaging data combined with ML techniques for 
MRI-NTLE diagnosis. For example, Bennett et al.42 used multimodal MRI data, including T1, T2, and FLAIR, 
as input features. They trained a random forest classification model that demonstrated the distinctive abnormal 
patterns differentiating MRI-NTLE patients from positive TLE patients. Additionally, Yang et al.11 extracted 
morphological features including surface area, cortical thickness, and gray matter volume. They found that using 
an extreme learning machine significantly improved the identification of MRI-NTLE, achieving an accuracy 
of 92.79%. In a more recent study, researchers proposed using diffusion kurtosis imaging data input into an 
SVM model to identify epilepsy characteristics, achieving an accuracy rate as high as 95.24%43. Recently, certain 
researchers utilized independent component analysis to extract features from rs-fMRI data for the diagnosis of 
temporal lobe epilepsy, attaining an accuracy rate of 97.5%. Notwithstanding, in these studies, an independent 
test dataset was conspicuously absent. This deficiency potentially introduced biases during the model evaluation 
phase, as it could have led to an overestimation of the model’s performance. However, in these studies, an 
independent test dataset was absent, which may introduce biases during the model evaluation phase. In contrast, 
we have meticulously established separate training and test models. This effectively mitigates the risk of model 
overfitting, thus rendering the results more objective and reliable.

In this study, the classification performance of three models using a single rs-fMRI index was generally 
mediocre. Among them, the performance of the model based on ReHo was superior to that based on ALFF, 
fALFF, VMHC, and DC. Moreover, models utilizing integrated rs-fMRI indices outperformed those based on 
a single index. Previous studies have demonstrated that the ReHo directly correlates with the synchrony of 
spontaneous neural activity during resting-state conditions and exhibits an association with regional glucose 
metabolic rates44. This evidence suggests that ReHo may demonstrate superior sensitivity compared to other 
functional indicators in detecting aberrant neural activity associated with neurological dysfunction. rs-fMRI is a 
powerful imaging technique that can accurately reflect spontaneous neural activity in the brain during rest13,45. 
ALFF, fALFF, and ReHo are three reliable for functional metrics that quantify neural activity. They can delineate 
the brain into functionally specific regions14,17,21. Recent studies have demonstrated that ALFF, fALFF, and ReHo 
exhibit diagnostic sensitivity comparable to fluorodeoxyglucose positron emission tomography (FDG-PET) and 
specificity similar to video-electroencephalography (VEEG) in focal epilepsy46. Furthermore, Yang et al.47have 
proposed that these three metrics provide divergent perspectives on pathophysiological processes and play 

Fig. 2.  Feature Contributions in the SVM Model Based on Integrated rs-fMRI Indices.(Left: The mean 
absolute values of SHAP values for each feature. Right: The SHAP values for each feature across individual 
samples, where each line represents a feature and each dot represents a sample. The horizontal axis indicates 
the SHAP value).
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complementary roles in interpreting localized spontaneous neural activity. VMHC and DC primarily focus on the 
functional connectivity between different brain regions24,28. Wu et al.48 reported that the functional coordination 
between homotopic regions in the brains of TLE patients was impaired, suggesting that VMHC could potentially 
serve as a neuroimaging biomarker for guiding the diagnosis of TLE patients. Additionally, scholars like Song 
et al. proposed that the combined application of multiple rs-fMRI indices could more comprehensively unveil 
the abnormal neuronal activities and cognitive function impairments in MRI-NTLE patients49. Furthermore, 
some scholars conducted research based on multiple rs-fMRI indices from perspectives such as the changes in 
brain activities in unilateral temporal lobe epilepsy50, the differences in brain activities between left and right-
sided temporal lobe epilepsy26, and the differences in brain activities between hippocampal sclerosis and MRI-
NTLE51. They discovered that each rs-fMRI index reflected different aspects of brain activities and these indices 
had complementary effects. Currently, an increasing number of studies have been integrating rs-fMRI indices to 
enhance classification performance. This approach has been applied to the research of various neuropsychiatric 
disorders, including Alzheimer’s disease52,53, Parkinson’s disease54,55, and obsessive-compulsive disorder38,56. The 
results of this study provide a highly valuable theoretical framework for subsequent comprehensive research on 
the diagnosis of MRI-NTLE, which contributes to a better understanding of the underlying neurophysiological 
and compensatory processes driving MRI-NTLE.

In this study, the performance of the SVM is markedly superior to that of the LR and RF models. When a large 
number of features are present, SVM can effectively mitigate the impact of highly correlated noisy features. It is 
particularly well-suited for high-dimensional and complex datasets, as well as non-linear binary classification 
tasks57. This suggests that the consistent advantage of SVM over LR and RF is attributed to two interrelated 
factors: its theoretical applicability to high-dimensional small-sample data and the nonlinear representation 
ability of the RBF kernel. To address the “black box” issue in ML models and increase their transparency and 
credibility, we employed SHAP analysis58. This method quantifies the contribution of each feature to the model’s 
predictions. In the SVM model based on integrated rs-fMRI indices, the cerebellum was the most influential 
feature, where the ALFF of cerebellum_3 and DC of cerebellum_6 had the largest SHAP values. Traditionally 
considered a regulator of motor behavior, the cerebellum also influences non-motor functions such as attention, 
language, memory, and emotion59. This finding aligns with growing evidence that the cerebellum plays a 
pivotal role in epilepsy beyond motor control, involving three interrelated mechanisms. First, the cerebellum-
hippocampus circuit dysfunction may underlie MRI-NTLE pathogenesis. Rondi-Reig60 and Froula J.M. et al.61 

Fig. 3.  Top 20 Feature Contributions by Brain Region in the SVM Model Based on Integrated rs-fMRI Indices.
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found a bidirectional dynamic functional connection between the cerebellum and the hippocampus. Our result 
of increased cerebellar ALFF may indicate a compensatory response to hippocampal dysfunction, though further 
metabolic imaging is needed to validate this hypothesis. The cerebellum can suffer acute damage from TLE 
episodes, leading to emotional disturbances. Research has shown that abnormal changes in cerebellar neurons 
and atrophic changes during TLE episodes significantly impact the development of epilepsy62,63. Second, the 
cerebellum’s elevated DC suggests its transformation into a hub of abnormal functional connectivity. Hao et al.64 
also suggested that significant changes in the cerebellar region of TLE patients might be associated with recurrent 
epileptic discharges. This highlights the cerebellum’s considerable role in TLE and indicates that the bidirectional 
functional connection between TLE and the cerebellum could be a driving factor in epileptic episodes. This 
is consistent with our SHAP analysis, where cerebellar DC contributed to model predictions alongside ALFF, 
indicating combined effects of excitability and connectivity abnormalities. Third, the cerebellum’s role in 
interhemispheric balance may be disrupted in MRI-NTLE. Shi et al. found reduced VMHC in the superior 
temporal gyrus of TLE patients, reflecting interhemispheric dyssynchrony. Although our study focused on 
the cerebellum, the co-occurrence of cerebellar ALFF elevation and temporal pole VMHC changes suggests a 
network-level disturbance involving both cerebellar hyperexcitability and hemispheric functional imbalance.

Notably, the cerebellar findings in our study challenge the traditional view of MRI-NTLE as a purely temporal 
lobe disorder, highlighting instead a distributed network pathology. The cerebellum’s dual role in motor and 
non-motor functions may explain why its functional alterations correlate with both seizure control and quality 
of life in MRI-NTLE patients.

Limitations and prospects
This study has several limitations. First, the sample size was relatively limited, increasing the risk of overfitting. 
Future studies should expand the sample size and conduct multicenter collaborative studies. Second, the current 
study is mainly based on rs-fMRI data. Combining rs-fMRI with other neuroimaging techniques and clinical data 
can be explored in the future. Multimodal data fusion can provide information about brain structure, function, 
and metabolism from multiple dimensions, which can help to understand the pathological mechanisms of MRI-
NTLE more comprehensively and improve the accuracy and specificity of diagnosis. Third, the cross-sectional 
design of this study could not reveal the disease process of MRI-NTLE and the long-term effects of therapeutic 
interventions on brain function. Future studies could conduct a longitudinal study with long-term follow-up of 
patients to observe changes in their rs-fMRI indexes over time. Fourth, the choice of a 4 mm smooth kernel in 
this study is the optimal trade-off based on the current voxel resolution of 3 mm, but there are still shortcomings. 
In the future, rs-fMRI data with higher spatial resolution should be used, and a 2-3 mm small kernel can be tried 
to further improve the detail capture ability of cerebellar subregions. At the same time, the ‘adaptive smoothing’ 
algorithm can be combined to adjust the kernel size based on the brain region structure to achieve more accurate 
noise suppression. In addition, sensitivity analysis of the model results for different kernel sizes was not included 
in this study, and this validation will be supplemented later to enhance the robustness of the conclusions. Finally, 
Common antiepileptic drugs, such as valproate and carbamazepine, may affect low-frequency fluctuation 
(ALFF/fALFF) and functional connectivity (VMHC/DC) by regulating neuronal excitability. The heterogeneity 
of drug use among patients in this study was low (mainly two drugs), but in subsequent studies, sensitivity 
analysis should be performed to exclude patients with specific drugs to verify the robustness of the results, and 
drug dose and duration should be included to further control the influence.

Conclusion
In summary, using comprehensive rs-fMRI indices can more thoroughly reveal abnormal changes in brain 
regions and improve diagnostic accuracy. Firstly, the approach combining comprehensive rs-fMRI indices with 
various ML algorithms shows promising potential in distinguishing MRI-NTLE patients from HC, providing 
preliminary support for ML-assisted diagnosis of MRI-NTLE. Secondly, abnormal cerebellar neural activity 
plays a significant role in the diagnosis of MRI-NTLE. The ALFF value of the cerebellum could serve as a 
neuroimaging biomarker for distinguishing MRI-NTLE, offering objective guidance for future diagnosis and 
treatment of MRI-NTLE.
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