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Classifying polish in use-wear
analysis with convolutional neural
networks

Anastasia Eleftheriadou™, Youssef Djellal*2, Shannon P. McPherron3* &
Jodo Marreiros24>*

Lithic use-wear analysis examines micro- and macroscopic traces on tool surfaces resulting from
human use and post-depositional processes. Polish, formed through surface abrasion with different
materials, is a key diagnostic feature that is increasingly analyzed using machine learning to enhance
automation and standardization. However, further research is needed to explore whether deep
learning approaches, in particular, can be effectively applied to use-wear analysis and to determine the
optimal surface area size (e.g., patch size and microscope objectives) and model architecture (custom
vs. pre-trained) for achieving the best results. This study employs convolutional neural networks
(CNNs) to classify experimental polish based on contact material (wood, hide, bone) and use intensity,
while also assessing optimal imaging and analytical parameters. The results of this exploratory study
suggest that CNNs may effectively identify polish from bone and hide but perform less effectively with
wood. The models also successfully distinguish between polish formed by short- and long-term use.
Custom models outperformed pre-trained ones, particularly when using images that captured smaller
areas of the tool's surface, suggesting that bigger surface areas may lack the necessary information for
optimal results. These findings underscore the need to expand use-wear datasets in terms of size and
variability and optimize CNN architectures and workflows.

Keywords Lithic use-wear analysis, Polish classification, Convolutional neural networks, Experimental
archaeology, Deep learning

A central theme in human evolution studies is understanding how technological traditions and innovations
enabled hominins to survive and disperse across continents'. Stone artifacts play a pivotal role in this discussion
by offering valuable insights into subsistence strategies, cultural transmission, and cognitive abilities®. Use-
wear analysis, developed by Semenov in the 1960s, is a fundamental method for investigating tool function by
examining macroscopic and microscopic trace patterns left on tool surfaces after use>=>. Experimental archaeology
further enriches this approach by creating reference libraries of tool traces against which archaeological artifacts
can be compared®. Recently, controlled experiments have helped to establish more systematic, repeatable, and
reproducible workflows by implementing hypothesis-driven experimental designs and using mechanical or
automated instruments to isolate, control, and measure specific variables’.

One of the most extensively studied traces in use-wear analysis is polish, which refers to the modified area of
atool that appears brighter or smoother due to the gradual removal or deformation of the natural surface caused
by physical abrasion during contact with other materials®°. Polish formation is a dynamic process influenced by
factors such as tool material, contact material, and duration of use. Traditionally, polish classification relied on
qualitative assessments, where analysts visually identified and interpreted features®. However, these methods are
prone to intra- and inter-analyst errors and have demonstrated limited performance in blind tests'!. To address
these issues, researchers have introduced quantitative approaches for polish identification, such as surface
texture analysis'?, gray-level co-occurrence matrix (GLCM)'3, and fractal analysis'“.

Recent efforts have sought to improve the classification of use-wear traces by applying quantitative methods
ranging from traditional statistical approaches to more advanced machine learning (ML) techniques, to either
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tabular or image datal®. Statistical methods such as quadratic discriminant function analysis (QDA)!*1,
discriminant analysis (DA)'”!3, and logistic regression'® have been used to classify polish based on the contact
material and wear patterns. Although these approaches have provided valuable insights, they often require
predefined assumptions regarding data distributions and feature selection, which can limit their adaptability to
complex patterns of use-wear traces®.

In contrast, ML, a subset of artificial intelligence (AI) that enables algorithms to learn patterns from data
and improve their performance over time, offers a more robust approach?'. ML has been used to classify use-
wear based on various factors, including contact material hardness (e.g., soft vs. hard), type (e.g., bone vs. hide),
and condition (e.g., dry vs. fresh)!!. Overall, ML has shown promising results, achieving up to 78% accuracy
in classifying different contact materials'>. However, most studies reported lower classification performance,
with overall model accuracies of 67%*%, 60%'®, and 47%'!. The difficulty in achieving better results can be
attributed to several factors, including equifinality (i.e., different materials or activities exhibiting similar polish
characteristics), post-depositional processes (in the case of archaeological specimens), limitations in dataset size
and quality, and the selection of inadequate ML algorithms!'"17?223, Another aspect explored is how machine
learning models perform compared to blind tests, where analysts classify use-wear samples without knowing
which material group they belong to'®?2. While some models classify polish as accurately as, or better than,
human experts, scholars emphasize that expert knowledge is essential not only to validate the results but also to
ensure that the models base their decisions on meaningful features of use-wear polish!®?2. A growing body of
research has examined the different methodological factors influencing ML performance in use-wear analysis.
For instance, Stevens et al.'® compared DA and decision trees (DT), Pedergnana et al.!! compared support vector
machines (SVM) and DT, and Sferrazza'® compared SVM and random forest (RF). Others have investigated the
effectiveness of various micro surface texture analysis techniques, including ISO 25178-2, scale-sensitive fractal
analysis, and GLCM, to determine which best captures polish characteristics'’.

More recently, deep learning methods, particularly convolutional neural networks (CNNs), have shown
promise in automating the classification of polish by directly analyzing image data?>. CNNs are a type of neural
network used to learn the underlying spatial features in images and utilize this information for segmentation and
classification tasks?%. Compared to other machine learning approaches, CNNs directly process raw pixel data to
simultaneously learn hierarchical feature representations and perform classification, facilitating the detection
of complex patterns characteristic of lithic use-wear?>. Despite their potential, research on CNNs for use-
wear analysis remains limited. To date, Zhang et al.?? is the only study that systematically explores CNNs for
polish classification, testing different models (ResNet50, ResNet152, ConvNeXt, and ViT-H) training strategies
(e.g., pre-trained vs. custom-trained models), image resolutions, and sensing modalities (2D vs. 3D). However,
critical questions remain, including whether CNNs can effectively classify polish images in response to different
research questions, which model architectures are best suited for various polish types, and how data acquisition
and preprocessing parameters impact CNN performance.

This study aims to address this gap by identifying optimal acquisition settings and analysis parameters for the
classification of use-wear images using CNNs. Specifically, the main goal is to classify images of experimental
polish based on the contact material and number of strokes by evaluating two key factors: (1) the impact of the
‘window of analysis’ referring to the size of the area captured in an image and (2) the suitability of custom-trained
versus pre-trained models. The first factor examines how the scale at which polish is observed affects classification
(i.e., larger surface areas may capture more extensive wear, while smaller areas may reflect more localized wear),
which is quantified by the dimensions of image segments (patch size) and the choice of microscope objective.
The second factor evaluates whether a commonly used pre-trained model, such as ResNet50, performs better
than a model specifically trained on the current dataset. This study provides a heuristic tool to better understand
the potential and limitations of CNNs in use-wear analysis, while also presenting one of the first cases to explore
the effects of transfer learning and model interpretability. Although the results presented here are preliminary,
they offer insights into the influence of acquisition settings and analysis parameters on polish development and
classification on flint. The study provides a baseline that, with the availability of larger and more diverse datasets
from experimental and archaeological contexts, will support the refinement and integration of computational
techniques in material studies and archaeology.

Results

Overview of model performance

Given the large number of models and parameters involved, Fig. 1 summarizes the accuracy and loss values
for both the training and validation sets at the end of each model run. Kernel density estimate (KDE) plots
were used to visualize the distribution of values per model type, while scatterplots were used to illustrate the
relationships between model type, objective and patch size. The loss and accuracy values for both the training
and validation sets were similar for each model (Fig. 1e-h). ResNet50 shows for most models to have validation
accuracy ranging from 0.70 to 0.82 (Fig. 1b, f) and validation loss from 0.38 to 0.56 (Fig. 1b, h). The custom
CNN shows a similar range of validation accuracy values (0.73-0.89) but with a wider range of validation loss
(0.44-2.46) (Fig. 1c, d). When it comes to the performance of the models relative to the loss, all ResNet50
models show minimal to no difference between the training and validation sets (Fig. 1¢), with the majority of
loss values being approximately 0.5 (Fig. 1c, g). The custom CNN also showed minimal to no difference between
the training and validation sets (Fig. 1a—-d); however, the distribution of accuracy values among the models was
less consistent (Fig. 1a, d).

Both models show the same pattern in the effect of objective choice, showing 20x (median accuracy:
custom =0.82, ResNet50=0.79) to achieve higher accuracy than 10x (median accuracy for custom=0.75 and
ResNet50=0.72) (Fig. 2). The effect of patch size on classification performance differs per model, with the
custom CNN showing higher accuracy for 16 (median =0.83) than 9 (median=0.77), similar to ResNet50 (patch
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Fig. 1. Summary of final accuracy and loss values reached by the models combining different architectures,
patch sizes and objectives. Color gradients distinguish model configurations (upper legend): custom CNNs
(red-purple) and ResNet50 (blue-green), with hues varying by patch size (9 vs. 16) and objective (10x vs.

20x), (lower legend): custom CNN (red) and ResNet50 (blue). (a-d) Scatterplots comparing metrics across
training and validation sets: (a) training loss vs. training accuracy, (b) validation loss vs. validation accuracy,
(c) training loss vs. validation loss, and (d) training accuracy vs. validation accuracy. (e-h) Kernel density
estimates showing distributions of each metric per model type (e) training accuracy, (f) validation accuracy, (g)
training loss, and (h) validation loss.
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Fig. 2. Boxplot with overlaid data points showing the validation accuracy of fourteen CNN models, with
custom models in blue and ResNet50 in red, categorized by objective (a) and patch size (b).

size 16: median=0.78, patch size 9: median =0.71). Overall, the custom CNN exhibited higher median accuracy
values for both types of objectives and patch sizes.

The frequency of misclassifications, defined as instances in which images were incorrectly assigned to a
specific contact material or stroke count, was organized by model type and patch size (Fig. 3). For the ResNet50
model, misclassifications occurred as follows: six images were misclassified once, eight images two to four
times, and two images more than five times. For the custom CNN, misclassifications were distributed as follows:
eight images were misclassified once, seven images two to four times, and two images was misclassified more
than five times. When examining the effect of patch size, the dataset divided into nine areas exhibited 6 images
misclassified once,6 images 2 to 4 times and 2 images misclassified more than five times. In contrast, the dataset
divided into 16 areas showed 5 images misclassified once, 13 images 2 to four times, and 2 images misclassified
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Fig. 3. Line plots illustrating the number of misclassifications made by CNN models, categorized by model
type (a) and patch size (b) for each image.

more than five times. Only five images were misclassified more often, irrespective of model type or patch size,
whereas the majority of images exhibited no discernible pattern of recurrent misclassification.

Learning curves

All learning curves, confusion matrices, and ROC-AUC curves illustrating the performance of the models
are available in the Supplementary Fig. S4. Overall, both the custom CNN and ResNet50 exhibited learning
curves consistent with the expected pattern of decreasing loss and increasing accuracy for both the training
and validation sets. Additionally, in both model types, the curves displayed frequent but generally non-extreme
fluctuations.

The trends in accuracy and loss appear to be more stable in the custom CNNs, whereas the ResNet50
models exhibit greater irregularities, characterized by random fluctuations and plateaus (Fig. 4). When present,
small discrepancies between training and validation loss are primarily observed in the early stages of training
in custom CNNs but tend to diminish as training progresses. ResNet50 models also exhibit limited distance
between training and validation loss; however, in some instances, a persistent gap remains throughout the
training, preventing their convergence.

A difference is observed in the application of early stopping, with custom CNNs typically training for up to
50 epochs, whereas ResNet50 models terminate earlier, at approximately 17 epochs. Regarding classification
performance, confusion matrices indicate that custom CNNs yield false positive and false negative rates between
0.06% and 40% across different classes, whereas ResNet50 models exhibit higher misclassification rates, with
some models misclassifying wood in up to 50% of the cases (Supplementary Table S1). In terms of ROC-AUC
values, custom CNN models outperformed all ResNet50 counterparts.

Saliency maps

The performance of saliency maps varies depending on the model architecture and research question. For
the custom CNN, the results produced by Score-CAM, Integrated Gradients, and SmoothGrad were largely
consistent with one another, exhibiting minimal variation in color distribution (i.e. which areas were important)
and slight differences in color intensity (i.e. how important these areas were) (Fig. 5a). Models classifying polish
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Fig. 4. Learning curves of CNN models trained, tested, and validated on a dataset using a 20x objective, 2000
strokes, and a patch size of 16. (a) Accuracy and (b) loss for the ResNet50 model, and (c) accuracy and (d) loss
for the custom CNN model are displayed.

based on contact material predominantly highlight regions where polish is present and well-defined. In contrast,
models classifying based on the number of strokes also emphasize areas with prominent polish, but do not
necessarily assign them the highest importance scores. Instead, they tend to incorporate broader areas of the
lithic’s surface, sometimes emphasizing regions with more diffuse or weaker polish patterns (e.g., Fig. 5a). In
both classification tasks, Score-CAM effectively identified local patterns and provided a smoother distribution
of importance across the image.

For ResNet50, the saliency maps exhibit different patterns. Regardless of whether the classification pertains
to the contact material or the number of strokes, the highlighted regions do not always correspond to polished
areas, nor do they consistently emphasize the most well-developed polish. ResNet50 models typically focus
on the central portion of the image, identifying at most one or two regions of importance (Fig. 5b). Integrated
Gradients and SmoothGrad tend to capture more localized patterns and are largely in agreement with each other,
whereas Score-CAM appears to emphasize global patterns, covering larger portions of the image. In some cases,
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(a)
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Fig. 5. An example of saliency maps generated for an image (224 x 224 pixels) of bone polish acquired with a
10x objective, 1000 strokes, and 16 patches, classified using a custom CNN (a) and ResNet50 CNN (b). The
position of the polish is outlined in the original image (a, top left) for reference. Colder colors represent areas
with lower activation, indicating regions that the model focuses less on, while warmer colors highlight areas
with higher activation, showing regions the model pays more attention to.

although Score-CAM aligns with the location of the patterns observed in Integrated Gradients and SmoothGrad,
it redistributes the intensity of color in different ways (Fig. 5b).

Research question 1: material classification

Performance across materials

Figure 6 compares the classification performance of three material categories—hide, bone, and wood—based
on Fl-score, precision, and recall. Hide exhibits the highest overall classification performance, with a median
F1-score of 0.83 and low variance (0.79-0.87). It also achieved the highest precision (median: 0.94, variance:
0.79-1.00), although its recall was the lowest (mean: 0.73, variance: 0.71-0.93). Bone polish ranks second in
classification performance, with a median F1-score of 0.79 (variance: 0.73-0.89), precision of 0.86 (variance:
0.69-0.94), and recall of 0.81 (variance: 0.60-0.92). Wood demonstrated the lowest classification performance
with the lowest F1-score (median: 0.74, variance: 0.55-0.84) and precision (median: 0.69, variance: 0.55-0.83).
Although wood achieved the second highest recall (median: 0.77), it also exhibited the greatest variance among
all materials (0.50-1.00).

Effect of model, patch size and objective

Supplementary Fig. S1 illustrates the impact of contact material, objective and patch size on polish classification
based on model type. Both the custom and ResNet50 CNNs performed similarly, showing hide as the best
classified class (custom CNN: median=0.835, variance=0.83-0.84, ResNet50: median=0.83, variance=0.73—
0.87), followed by bone and wood. Overall, the custom CNN showed higher median F1-scores and lower
variance for the majority of classes. In terms of the objective, both models agree that 20x (median F1-score:
custom =0.82, ResNet50=0.75) is better classified than 10x (median F1-score: custom=0.75, ResNet50=0.70).
The median F1-scores are similar for both models, however the custom CNN has considerably lower variance
(20x=0.72-0.89, 10x: 0.74-0.76) than ResNet50 (20x=0.55-0.86, 10x=0.62-0.77). The effect of patch size on
classification performance differs for each model. The custom CNN shows the division in 9 areas to raise slightly
better results (median F1-score: 0.82, variance: 0.72-0.83) than the division in 16 areas (median F1-score: 0.79,
variance: 0.73-0.89). ResNet50 shows the opposite pattern with the division in 16 areas to raise better results
(median F1-score: 0.75, variance: 0.62-0.86) than the division in 9 areas (median F1-score: 0.73, variance: 0.55-
0.82).

Scientific Reports |

(2025) 15:36834 | https://doi.org/10.1038/s41598-025-18179-4 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

1.0

0.9

F1-Score
o
®

o
N

0.6

0.5

0.95

0.90

0.85

4
@
S

F1-Score
o
3
&

0.70

0.65

0.60

0.55

0.50

a b c
(a) 10 (b) 10 (c)
°
0.9 0.9
(]
0.8 0.8
<
o =
w
2 &
a
0.7 0.7
°
0.6 0.6
0.5 0.5
bone wood hide bone wood hide bone wood hide
Material Material Material

Fig. 6. Boxplot comparing the F1-score, precision, and recall values of all CNN models for hide (green), bone
(blue), and wood (orange). Data points representing the exact values are overlaid on the plot. The solid line
within each box denotes the median, while the dashed line represents the mean value.
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Fig. 7. Boxplot comparing the F1-score, precision, and recall values of all CNN models for polish created with
1000 (blue) and 2000 (orange) strokes. Data points representing the exact values are overlaid on the plot. The
solid line within each box denotes the median, while the dashed line represents the mean value.

Research question 2: classification based on number of strokes

Performance by stroke count

An overview of the classification performance of the different numbers of strokes can be found in Fig. 7. Polish
developed with 1000 strokes is the best classified in terms of F1 score (custom median: 0.91, variance: 0.73-0.92),
precision (median: 0.89, variance: 0.84-1.00) and recall (mean: 0.85, variance: 0.57-0.94). Polish developed with
2000 strokes exhibits lower median and variance values (F1-score median: 0.76, variance: 0.75-0.86, precision
median: 0.75, variance: 0.60-0.90, recall median: 0.83, variance: 0.73-1.00).
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Effect of model and patch size

Supplementary Fig. S2 illustrates the impact of model type and patch size on polish classification based on the
number of strokes. In terms of model type, custom CNNs achieve similar median F1-scores (1000 strokes: 0.82;
2000 strokes: 0.81), but exhibit large variance (1000 strokes: 0.73-0.92; 2000 strokes: 0.75-0.86). In comparison,
ResNet50 shows smaller variance (1000 strokes: 0.86; 2000 strokes: 0.760-0.765) and higher F1-scores for 1000
strokes. Furthermore, ResNet50 models perform similarly regardless of patch size (9 patches median: 0.815,
variance: 0.77-0.86, 16 patches median: 0.81, variance: 0.76-0.86), while custom models show higher F1-scores
for 16 patches (median: 0.88; range: 0.855-0.92) compared to 9 patches (median: 0.74; range: 0.73-0.75).

Discussion

This study demonstrates the potential and challenges of employing CNNs for lithic use wear analysis and polish
classification. The primary objective was to develop models capable of distinguishing microscopy images of
experimental polish based on the contact material and intensity of use, while also assessing the impact of key
parameters such as the size of the ‘window of analysis’ (quantified by the objective and patch size) and model
configuration (custom vs. pre-trained).

The custom CNN models demonstrate better performance, as evidenced by the evaluation metrics (i.e.,
high and consistent values of precision, recall, F1-score, accuracy, and ROC) and interpretability methods (e.g.,
saliency maps that effectively highlight areas of polish). In comparison, ResNet50 models tended to show lower
scores across these metrics. Although there are cases where ResNet50 outperforms custom CNNs in certain
areas, such as overall loss values and higher accuracy for specific classes, its overall performance is hindered by
two key limitations. First, the learning curves of certain models exhibit more intense and frequent fluctuations,
periods of inconsistent learning characterized by short plateaus during training, and instances where training
and validation loss curves fail to converge, suggesting potential stagnation in the model’s learning process.
Second, the saliency maps produced by ResNet50 exhibit discrepancies across different interpretability methods
and predominantly focus on the central region of the image, typically highlighting only one or two areas. This
tendency, referred to as center bias, has also been identifying by other scholars and is considered an artifact of
transfer learning, resulting from ResNet50’s pretraining on the ImageNet dataset, where images predominantly
contain a single, centrally located object of interest°.

While these findings indicate that custom CNNs perform well in terms of classification accuracy, learning
stability, and interpretability, it is important to note that the observed differences may also be influenced by the
limited dataset size and should therefore be interpreted with caution. Although these trends may not reflect
statistically significant differences in a strict sense, they are consistent across experiments (see Supplementary
Table S2 for more details) and provide a valuable starting point for future research. To the best of our knowledge,
previous research using CNNs in use-wear analysis has only employed pre-trained model architectures?>?’.
Therefore, a direct comparison with other studies on the suitability of custom versus pre-trained models is not
possible. Additionally, a comparison of ResNet50’s application between these studies and ours is challenging due
to methodological differences. For instance, Zhang et al.?? used different data types as input (texture scans or
heightmaps), so any performance discrepancies may be attributed to variations in data type. Similarly, Sferrazza?’
used ResNet50 solely for feature map extraction, with classification performed independently by a Multi-Layer
Perceptron, thus a comparison is not feasible as ResNet50 was not involved in the classification process.

For an Al system to accurately model and predict the phenomenon it is intended to measure, reliable and
representative data is essential?®. The distribution of misclassified images in our dataset is uniform across classes,
with no particular samples consistently predicted incorrectly across models or patch sizes. This suggests that the
errors stem from the difficulty of the model in distinguishing between classes rather than flaws in the dataset,
which would otherwise cause certain images to be repeatedly misclassified. Only one image of bone polish was
consistently misclassified, which may be due to the polish in that area being atypical or not well developed.

The models consistently demonstrate better performance when using images acquired with a 20x objective
compared to a 10x objective, likely because the information captured at lower magnifications is insufficient
for the polish patterns studied (Fig. 2 and Supplementary Fig.S1). In line with Zhang et al.?, our findings
suggest that a higher optical objective captures the characteristics of polish more effectively. However, this result
should be interpreted with caution, as the smaller sample size for the 10x objective may have contributed to the
observed lower performance. Further research using different objectives, microscopic image techniques, contact
materials, and models is necessary to draw more secure conclusions. The finding that images capturing smaller
areas of a tool’s surface are better suited for classifying polish may also be influenced by distortion introduced
when resizing images to 224 x 224 pixels, which could favor one objective over another. Since this image size was
selected to meet ResNet50’s requirements, a more detailed investigation of this effect was not possible, however,
it remains an important avenue for future research.

The choice of an optimal window of analysis (patch size) is not straightforward, as it appears to depend on
the model and the contact material. However, the analysis of smaller surface areas (division into 16 regions)
most frequently yielded better and more consistent F1-scores, as shown in Fig. 2 and Supplementary Figs. 1, 2.
Once again, our results align with Zhang’s?? findings that dividing the image into more patches leads to better
performance, which, according to their interpretation, occurs because smaller patches maintain a resolution
closer to the original image, preserving more detail and improving the model accuracy. A similar study was
conducted by Sferrazza'?, in which specific areas of images were cropped to 300 x 300 and 600 x 600 pixels, with
larger patches yielding better results. However, we cannot directly compare our results or Zhang’s?? findings with
those of Sferrazza’s approach, as the images were not systematically cropped into regions or resized for input into
models, which could lead to a loss of resolution. Further research is needed to determine whether the analysis of
smaller surface areas improves performance by better capturing the pattern of polish, or simply it is better suited
to specific datasets or contact materials.
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Considering the median and variation of the materials’ f1-scores, precision and recall, hide was the material
most consistently classified correctly, followed by bone, whereas wood exhibited the lowest classification
performance. Several factors could account for the model’s difficulty in classifying wood polish. One possible
explanation is data imbalance, as the wood polish samples may have been underrepresented. However, this is
unlikely, as the class imbalance was mitigated through weighted adjustments during training, assigning greater
importance to the minority class (see Supplementary Table S3). Another potential factor is model bias, which
can arise from inconsistencies in data processing and analysis. However, this is improbable, as preprocessing was
standardized across all classes (see scripts in Code availability section). Given that methodological limitations
have been addressed, the most plausible explanation for the misclassification of wood polish is its intrinsic
characteristics, which may lack sufficient distinctiveness for a reliable classification.

A direct comparison between this study and previous research applying CNNs in polish images is challenging
due to differences in models, hyperparameters, contact materials, raw materials, and experimental methodologies,
all of which significantly influence classification performance. However, to contextualize these findings within
the existing literature, the classification performance reported in key studies is hereby summarized. Pedergrana
et al.!’, who quantified polish on quartzite using Decision Trees (DT) and Support Vector Machines (SVM),
reported 100% accuracy for bone and hide, 67% for wood, and 40% for cane and antler. While the raw materials
and models used differ from those in this study, the overall trend of higher accuracy for bone and hide compared
to wood aligns with our findings. Sferrazza'® reported classification accuracies of 85% for butchering traces and
wood, 68% for shell, and 56% for antler. In a subsequent study, Sferrazza?’ achieved 97% accuracy for plant
traces, 84% for hide, 65% for shell, 63% for butchering, 42% for wood, 37% for bone, and 32% for antler. These
variations underscore the impact of methodological choices on classification performance. The general trend of
higher accuracy for certain contact materials, such as hide and bone, is consistent across most studies, suggesting
that intrinsic material properties may play a significant role in their successful classification.

According to Vaughan®, use intensity correlates with the development of polish progressing through three
distinct phases: generic weak, smooth pitted, and well-developed or diagnostic. This study aimed to classify
polish based on stroke count using samples generated with 1000 and 2000 strokes. According to Ibanez and
Mazzucco'®, their chosen stroke counts approximate 12,5-16,7 min (1000 strokes) and 25-33,3 min (2000
strokes) at 60-80 strokes per minute, aligning with their classification of polish development stages (10-20 min,
30-40 min, and 50-60 min). Owing to limited data availability, the analysis was restricted to wood polish,
precluding the examination of other contact materials. The results demonstrate that it is feasible to classify
the dataset based on stroke count with an accuracy of up to 93%, with the polish created using 1000 strokes
exhibiting better classification performance than that created using 2000 strokes. This finding suggests that for
the CNN models, the polish produced with 1,000 strokes differs markedly from that produced with 2,000 strokes.
The higher error rate for the 2000-stroke polish could suggest that, at higher stroke counts, polish may lose
distinguishing characteristics or exhibit greater variability. This aligns with prior research indicating that polish
reaches a phase of stability characterized by increased homogeneity and overlapping classifications'®!73%3!, To
investigate whether 2000 strokes represent a potential boundary or a transition toward a more homogeneous
phase, further experiments are needed to assess the differentiation of polish, under controlled conditions, at
progressively higher stroke counts.

Nevertheless, this study has several limitations stemming from both the data and nature of CNNss. First, the
need to eliminate unfocused areas from the images may have led to a significant loss of information. Second,
the dataset size was significantly smaller than that typically used for CNN models, which likely contributed
to the instabilities observed during model training. Even though data augmentation, weighted training, and
stratified dataset splitting were used to mitigate this issue, techniques such as data augmentation do not create
new information; they only generate variations of the existing data. Third, in their current state, the models can
only be successfully applied to datasets that are comparable in terms of raw material, activity, and acquisition
settings, as the dataset used had only a certain level of variability. Fourth, the pre-trained CNNs show lower
performance as they are trained on datasets with patterns that are significantly different and simpler compared
to those in the use-wear data.

Advancing the application of CNNs in use-wear analysis requires further research by both use-wear analysts
and computational archaeologists. To develop robust and generalizable models, larger and more diverse datasets
are essential’2. Expanding datasets with additional raw materials (e.g., different types of flint, quartzite, and
obsidian), contact materials (e.g., antler, shell, cane, and various types of wood and bone), and acquisition
settings (e.g., different objectives and microscopes) will enhance model stability by providing complementary
information to existing models, improving classification confidence. Furthermore, exposing CNNs to a broader
range of data is essential for more accurately capturing the complexity inherent in the archaeological record!!.
Further research is also needed to optimize CNN architectures, refine preprocessing techniques, incorporate
robust evaluation strategies such as cross-validation, and develop models that can better handle the needs of
use-wear patterns. Given the inherent challenges of polish patterns, characterized by their complexity, lack of
clear boundaries, variability, and frequent overlap, archaeologists need to adapt existing tools or develop new
methodologies tailored to these data?’. Optimizing CNN architectures for use-wear analysis is a trial-and-error
process requiring extensive experimentation, highlighting the importance of further research and the exchange
of data and methodologies within the research community. Adopting open science practices will facilitate and
accelerate this process by fostering collaboration, enhancing transparency, and ensuring that research adheres
to FAIR principles (Findable, Accessible, Interoperable, and Reusable)***%. Open access to datasets, models, and
methodologies will not only improve reproducibility, but also support the collective effort required to establish
CNNs as a reliable tool in use-wear analysis.

In summary, this study demonstrates that custom CNN architectures can offer a promising approach for
classifying experimental use-wear polish on lithic artifacts. However, the lower performance observed for
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wood polish and the higher error rate for images acquired with a 10x objective and 9-patch size highlight
the complexity of the dataset and the need for further research. Future work should focus on expanding the
dataset in terms of size and variability, optimizing CNN architectures, and refining preprocessing techniques.
Additionally, promoting collaborative research and adopting open science practices, including data sharing,
transparent methodology, and reproducible research, are critical for improving the robustness and reliability of
deep learning techniques in use-wear analysis.

Methods

The classification of use-wear images based on contact material and the number of strokes revolves around two
research axes: the effect of the surface area analyzed, as determined by patch size and objective, and the suitability
of a custom-trained or pre-trained model for this task. With the exception of image acquisition, all processes
involved in conducting the analyses and synthesizing this study are openly shared in a Zenodo repository (see
Data availability). Python scripts were used for data preprocessing (including cleaning, feature extraction, and
standardization) and analysis (model development and evaluation), and a Quarto file was created to visualize the
results and draft the current manuscript. The reproducibility of our analysis was further ensured by providing a
text file listing the names and versions of the libraries used along with the Python version. To ensure consistent
results across different runs, a random seed (=42) was set for both Python and TensorFlow operations. A
preprocessed and cropped subset of the dataset is provided in the repository to facilitate the reproducibility of
the current analysis, while the full dataset will be provided in a separate publication.

Data acquisition and organization

The dataset consists of 69 grey-scale images of polish created using controlled experimental protocols from
43 flint tools. Each tool was knapped by hand using a hard hammer and used with unidirectional movements
(one stroke per movement) for scraping, and bidirectional movements (two strokes per movement) for sawing,
depending on the working material. Each tool was used with a single motion on a single material for a specified
number of strokes (1000 or 2000). Three different working materials were processed during this experiment:
wood (Pinus pinaster), bone (Ovis aries), and hide (Ovis aries). The number of variables selected (i.e., contact
materials and strokes) was intentionally limited to isolate their individual effects on polish classification, to focus
on use-wear types that analysts can reliably distinguish visually (see Vaughan®on polish type interpretability)
and to ensure consistency with parameters established in previous studies (e.g., Pedergnana et al.!! for contact
materials; Ibanez and Mzzucco'® for stroke counts). The resulting polishes were documented using a reflected
light microscope (ZEISS Axio Scope.A1 MAT, objective EC Epiplan 10x/0.25 M27, Objective EC Epiplan 20x/0.4
M27). All images were acquired using the ZEISS Zen Core software and the Extended Depth of Focus (EDF)
stacking module. The image frame size is 2464 x 2056 pixels, and they were saved in TIFF format. Images acquired
at 10x magnification have a numerical aperture (NA) of 0.25, a field of view (FOV) of 850.08 x709.32 um, a
depth of field of 8.800 pum, and a pixel size of 0.345 pum. Images acquired at 20x magnification have an NA of 0.40,
an FOV of 425.04 X 354.66 pm, a depth of field of 3.438 pum, and a pixel size of 0.173 pum. Detailed information
on the data distribution by material, objective, and stroke count is presented in Supplementary Table S4 and
a summary of experimental design and acquisition settings in Supplementary Table S5. The filenames of the
images were standardized to encode the contact material, activity, number of strokes, area, subarea (a single tool
may have multiple areas of polish), and objective. Duplicate images were removed during the process.

Data preprocessing

Data cleaning

Due to the inherent limitations of the microscopy equipment and the position of the polish relative to the
shape of the tools, the images included areas that were (a) out of focus and (b) beyond the surface of the tool.
The former results from the microscope’s limited depth-of-field*, and the latter occurs because the polish is
primarily located at the edge of the tool, causing some parts of the image to show the background beyond the
tool surface. To isolate the in-focus regions, the Sobel operator (cv2.Sobel) was applied to detect changes in
pixel intensity (edges) as a proxy for texture®>3¢. In-focus areas exhibit sharp intensity changes (strong edges),
whereas out-of-focus or background areas exhibit smoother transitions (weak or no edges)*!. Sobel’s output was
then processed using Otsu’s method (cv2.THRESH_OTSU) to determine the optimal threshold between the
in-focus and out-of-focus areas”. Morphological operations (cv2.MORPH_CLOSE, cv2.MORPH_OPEN) and
watershed segmentation (cv2.watershed) were applied to remove noise and refine the final mask used to exclude
unwanted areas (ibid.) (see Supplementary Fig. S3). The resulting masks and excluded areas were visually
inspected by use-wear specialists to ensure accuracy, thereby incorporating expert knowledge into the workflow.
For the majority of images, between 30% and 60% of the surface area was cropped (i.e., removed regions), while
images with more than 80% cropped area were excluded from further analysis.

Image enhancement and feature extraction

Data preprocessing was performed to mitigate artifacts introduced during image acquisition, such as blurring
from light diffraction and reduced contrast in in-focus objects due to out-of-focus light, and to enhance key
features, specifically the polished areas?’. Contrast-limited adaptive histogram equalization (CLAHE) was
applied to improve and standardize the image contrast. Since pixel values are constrained within a specific
range, CLAHE segments the image into small tiles and redistributes their intensity values more uniformly®*. To
minimize outliers, extreme intensity values were clipped and reassigned before applying histogram equalization®’.
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Image division and standardization

To investigate the effect of patch size on CNN performance, the images were divided into equally sized, non-
overlapping patches (resampled) using either a 4x 4 grid (resulting in 16 patches, 514 x 616 pixels) or a 3x3
grid (resulting in nine patches, 685x 821 pixels). The pixel values of each patch were normalized to the range
of 0 to 1 and resized to 224 x 224 pixels to ensure homogeneity and to meet the input size requirements of
ResNet50%%. The subsampling of the dataset increased the number of images available for analysis, with the 3x 3
grid yielding 237 images for bone, 155 for wood, and 67 for hide, and the 4 x 4 grid yielding 337 images for bone,
273 for wood, and 117 for hide. Despite this improvement, we acknowledge that the dataset remains relatively
small, particularly considering that convolutional neural networks (CNNs) typically require large amounts of
data to train eﬁectively“, however, this limitation is addressed through several considerations. First, the dataset
was created independently of the present study and made available only after its collection, which precluded
any control over its initial design or class distribution. Future work will aim to integrate data collection and
computational design from the outset to better align with ML requirements. Second, the dataset was acquired
using a standardized and consistent protocol (see Data Acquisition and Organization), with all experimental and
imaging procedures conducted by a single individual. Although this approach naturally restricted the volume
of data, it minimized technical and operator-related variability, thereby improving the internal consistency and
quality of the dataset. Finally, it is important to emphasize that this study is exploratory in scope. Rather than
presenting a fully developed classification tool, the objective was to assess the feasibility of applying CNNs to
use-wear classification using a carefully controlled, albeit limited, dataset. In this context, working with a limited
but high-quality dataset was considered appropriate for an initial evaluation of the method’s potential and to
inform future research using larger and more diverse data.

Dataset splitting

The dataset was split into train (70%), test (15%), and validation (15%) sets using the train_test_split function
from sklearn® with stratification to preserve class distribution across all subsets. The training set (X_train, y_
train) was used for data augmentation and model training, the validation set (X_val, y_val) was used to tune the
hyperparameters and evaluate the model during training, and the test set (X_test, y_test) was used to evaluate
the final performance of the model after training.

Handling class imbalance

Due to time constraints, the collection of additional data was not possible. However, several measures were
taken to mitigate the effects of both the small size and unbalanced nature of the dataset on the robustness of
CNN models. During the splitting of the dataset, the ‘stratify’ parameter was set to ensure that the distribution of
classes was preserved in all sets, avoiding bias due to uneven class representation. The sklearn.utils.class_weight
function was also used to assign higher weights to the minority class during training to balance the effect of class
underrepresentation®,

Data augmentation

Data augmentation was used to artificially increase the size of the training dataset by creating modified
versions of existing images. This was achieved using the ImageDataGenerator class from TensorFlow’s Keras
API with augmentations including 30% zoom, horizontal flip, vertical flip, and 30% width and height shifts.
These transformations were deliberately chosen to introduce realistic variations in image scale and orientation
while minimizing distortions that could produce non-representative patterns. Preliminary tests with more
aggressive and diverse augmentations (e.g., brightness adjustments or larger shift percentages) showed that
such transformations introduced visually unrealistic alterations, which corresponded to decreased model
performance. Depending on the model, five to seven augmented versions were generated for each of the
original images. Supplementary Table S2 displays the dataset split sizes for each model before and after the data
augmentation.

Model architecture and development

The dataset was divided into seven unique subsets based on combinations of microscope objectives, stroke
counts, and patch sizes. However, due to the specific parameter combinations (Supplementary Table S4), it was
not feasible to include all three classes (bone, hide, wood) in a single model. As a result, binary classification
was applied for each subset: bone vs. wood, bone vs. hide, and hide vs. wood. For use intensity, the models were
trained exclusively on wood polish images, comparing 1000 strokes against 2000 strokes. Both custom and pre-
trained CNNs were applied to these subsets, resulting in a total of 14 models.

Using a single custom and pre-trained CNN for each set was impractical because the varying preprocessing
and acquisition parameters effectively created distinct datasets, each with unique characteristics that required
different models.

A typical CNN is composed of three types of layers: a convolutional layer, pooling layer, and fully connected
layer (Fig. 8)**.

The convolutional layers slide a grid (called a kernel or filter) of numbers (called weights) over an image and
perform element-wise multiplication with the corresponding region in an image?. The results are summed, and
a given value (called bias) is added and then passed through an activation function to produce a single value
at each position, thus generating a feature map that highlights different features®. Both weights and bias are
parameters that are adjusted during training to minimize the error of the model*’. The activation function enables
the model to capture complex patterns and determine which features are most important®®. Convolutional layers
located earlier in the model typically identify simpler elements, such as edges and textures (low-level features),
whereas later layers identify more complicated patterns, such as faces and objects (high-level features)?. In this
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Fig. 8. Schematic representation of a CNN architecture. The network is composed of multiple convolutional
layers used for feature extraction, each followed by an activation function and pooling layer. The extracted
features are then flattened and passed through fully connected (dense) layers for classification.

study, low-level features correspond to elements such as texture and brightness, while high-level features capture
the spatial distribution and intensity patterns among these elements that define the polish.

The pooling layer reduces the spatial dimensions of the feature maps by downsampling (making an image
smaller by deleting pixels)*!. Pooling is performed by sliding a window over the feature map, and at each
location, either computing the average pixel value (average pooling) or selecting the maximum pixel value (max
pooling)*. The resulting values form a lower-resolution version of the original feature map, while preserving
important spatial information and reducing computational costs*. The fully connected (or dense) layer is a
simple artificial neural network (ANN) where every input unit (i.e., pooling output) is connected to every output
unit (i.e., classification result)**?>3¢. As a comprehensive theoretical discussion of convolutional neural networks
(CNNs) is beyond the scope of this study, further details can be found in?*23363%,

Custom CNN architecture

The model architectures were developed based on empirical performance criteria. Due to computational
constraints, fully systematic hyperparameter optimization was not feasible. Instead, the architecture design was
guided by manual evaluation of multiple performance indicators, including accuracy relative to chance level
(e.g., 50/50 classification), the shape of learning curves to identify under- or overfitting, and confusion matrices
to assess class-specific performance. This approach allowed for a more nuanced interpretation than reliance
on a single evaluation metric. Based on these criteria, the architecture of the seven models was adapted to the
specific characteristics of each dataset, while maintaining a largely consistent overall structure (see Fig. 8). Most
models incorporate three convolutional layers with the number of filters increasing in various combinations of
8, 16, 32, 64, and 128. Each convolutional layer employed 3 x 3 kernels, ReLU activations, and MaxPooling2D
for downsampling. L2 regularization was applied across all models, and approximately half of them included
dropout to mitigate overfitting. Following feature extraction, a Global Average Pooling (GAP) layer was used to
reduce the spatial dimensions of the feature maps. The number of fully connected layers varied, ranging from
two to four dense layers, with a progressively decreasing number of neurons in combinations of 128, 64, 32,
and 16. All dense layers incorporate L2 regularization and batch normalization to enhance the model stability
and generalization. ReLU activation was consistently applied, and the majority of models integrated dropout to
prevent overfitting.

Pre-trained CNN architecture

All pre-trained models were built on the ResNet50 architecture, which was pre-trained on the ImageNet dataset
(3 channel red-green-blue (RGB) images, 224 x 224 pixels)*’. To align our single-channel image dataset with
ResNet50’s expected input shape, we replicated the grayscale channel three times to mimic the shape of an RGB
image. We acknowledge that replicating the same information across three channels introduces redundancies
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and increases the computational cost*’; however, this approach is a common practice in other fields facing
similar challenges and serves as a necessary adaptation to meet the requirements of ResNet50 (e.g*!=%3.

ResNet50 consists of 49 convolutional layers with the number of filters increasing progressively from 64 to 256,
512,1024, and 2048 using 3 x 3 and 1 x 1 kernels, ReLU activations, batch normalization, and skip connections to
enable deep network training’. In this model, all layers retained their pre-trained weights as part of the transfer
learning process, while the final 30 layers were set to update their weights during training (a process known as
unfreezing), enabling the model to fine-tune and adapt to the features specific of our dataset. This configuration
was determined through iterative experimentation, as alternative setups involving the unfreezing of either more
or fewer layers consistently yielded lower classification performance across all datasets (see Supplementary Table
S6 for detailed performance metrics and learning curves). After feature extraction, a Global Average Pooling
layer is used to reduce the spatial dimensions of the feature maps, and a dropout layer with a rate of 0.5 is added
to prevent overfitting. Finally, a dense layer consisting of a single neuron with a sigmoid activation function was
responsible for binary classification.

Optimization techniques

The goal of training is to minimize the error of the model, defined as the difference between its output and
ground truth, quantified by a loss function?. The role of an optimizer in this process is to adjust the weights of
the model after each training iteration such that the error reaches its lowest possible value (referred to as the
global cost minimum)?®. Given that the dataset for each model consists of only two classes (e.g., wood and bone,
hide and bone, 1000 strokes and 2000 strokes), the binary cross-entropy loss function was selected for both the
pre-trained and custom CNNs. The Adam optimizer was employed for all models*.

The learning rate is a user-defined parameter (aka hyperparameter) that controls the magnitude of the
adjustments made by the optimizer to the model’s weights to reach the global cost minimum?. As model training
is a dynamic process, using a fixed learning rate may not be optimal?®. Therefore, a learning rate reduction
algorithm (ReduceLROnPlateau) was used to monitor the validation loss and adaptively decrease the learning
rate if no improvement was observed*. Similarly, to stop training at the point of minimal validation error, early
stopping was applied (EarlyStopping)*®. This procedure helps prevent overfitting, a phenomenon in which the
model memorizes the training data instead of effectively generalizing unseen data, which is typically indicated
by an increase in validation loss and a simultaneous decrease in training loss®.

Model evaluation

The CNN models were evaluated using various metrics to assess both their performance (how well the model
makes predictions) and interpretability (how the model creates its predictions). The evaluation metrics used
were accuracy, loss, precision, recall and the fl-score. These metrics were recorded as reports and visualized
using graphs, including confusion matrices, learning curves, and ROC curves. To gain a deeper insight into the
model’s performance, the filenames of misclassified images (e.g., those with a true label of ‘bone’ but classified
as ‘wood’) were recorded to identify potential patterns associated with specific parameters, such as whether all
misclassifications occurred for a certain model or contact material.

Neural networks are frequently referred to as “black boxes” as they provide limited or no insight into why
and how specific features are important for the model’s decisions*. Given the importance of not only obtaining
the correct predictions but also providing the right explanations for how those predictions are made, researchers
have developed tools to enhance model interpretability, defined as ‘the ability to understand and reason about a
model’s output4”.

Interpretability methods can be categorized into different taxonomic frameworks, depending on the specific
aspects used for classification?’. These frameworks can be grouped into four approaches: the functioning-based
approach (focusing on how a method extracts information from a model), result-based approach (categorizing
methods based on their outcome), conceptual approach (using distinct conceptual dimensions, such as scale and
time of implementation), and mixed approach (a combination of the above)*™. For this study, we followed the
taxonomy by Zhang et al.>! because of its ability to address multiple dimensions. Zhang’s taxonomy combines a
result-based and conceptual approach and consists of three dimensions: (1) local or global, referring to whether
the method explains individual prediction(s) or the overall decision-making process of the model (2) passive or
active, depending on whether the method is applied after training or modifies parts of the model before training;
(3) type of explanation, based on the method’s output.

The interpretability methods used in this study were Score-CAM, Integrated Gradients, and SmoothGrad.
All three fall under the category of “local passive attribution” methods, and their main goal is to create heatmaps
that highlight which input features (e.g., pixels in an image) are most important for the model’s predictions.
Score-weighted visual explanations for convolutional neural networks (Score-CAM) modify the input image
using activation maps and then pass it through the network®2. The change in the predicted class probability was
used to calculate the importance scores, which were combined to generate a heatmap highlighting the most
influential regions®2. Integrated Gradients compare the original input (e.g., an image) to a baseline (e.g., a gray
image), compute gradients (how the model’s output changes) at multiple steps as the input transitions from
the baseline to the original, and aggregate them into a heatmap®. SmoothGrad adds noise to the input image
multiple times, computes gradients for each noisy image, and averages them to create a heatmap*.

Data availability

All materials associated with this paper are openly available in a Zenodo repository (https://zenodo.org/reco
rds/15106760?preview=1&token=eyJhbGciOiJIUzUxMilsImlhdCI6MTcOMzMzNzYwNSwiZXhwljoxNzYON
TQ3MTk5fQ.eyJpZCI6NmNzZkZmM1LTc2NDMtNDc4YyliNmQ3LTIZNkMzk2NW Yy YSIsSimRhdGEiO
nt9LCJyY W5kb20iOiJiYzgOMDVKN2VhZjI1NzgzZGQzM2U4YjBIMjIyO GFmOCJ]9. WermUrWs5dIdw-6gHy

Scientific Reports |

(2025) 15:36834 | https://doi.org/10.1038/s41598-025-18179-4 nature portfolio


https://zenodo.org/records/15106760?preview=1&token=eyJhbGciOiJIUzUxMiIsImlhdCI6MTc0MzMzNzYwNSwiZXhwIjoxNzY0NTQ3MTk5fQ.eyJpZCI6IjNmNzZkZmM1LTc2NDMtNDc4Yy1iNmQ3LTllZjNkMzk2NWYyYSIsImRhdGEiOnt9LCJyYW5kb20iOiJiYzg0MDVkN2VhZjI1NzgzZGQzM2U4YjBlMjIyOGFmOCJ9.WermUrWs5dIdw-6gHycikbXQPalfPYPmICX-9EDyQgh2jYpj0JVCy5kf0cyi3EbgUR6-cRaIvqk9Qy--K6oUTA
https://zenodo.org/records/15106760?preview=1&token=eyJhbGciOiJIUzUxMiIsImlhdCI6MTc0MzMzNzYwNSwiZXhwIjoxNzY0NTQ3MTk5fQ.eyJpZCI6IjNmNzZkZmM1LTc2NDMtNDc4Yy1iNmQ3LTllZjNkMzk2NWYyYSIsImRhdGEiOnt9LCJyYW5kb20iOiJiYzg0MDVkN2VhZjI1NzgzZGQzM2U4YjBlMjIyOGFmOCJ9.WermUrWs5dIdw-6gHycikbXQPalfPYPmICX-9EDyQgh2jYpj0JVCy5kf0cyi3EbgUR6-cRaIvqk9Qy--K6oUTA
https://zenodo.org/records/15106760?preview=1&token=eyJhbGciOiJIUzUxMiIsImlhdCI6MTc0MzMzNzYwNSwiZXhwIjoxNzY0NTQ3MTk5fQ.eyJpZCI6IjNmNzZkZmM1LTc2NDMtNDc4Yy1iNmQ3LTllZjNkMzk2NWYyYSIsImRhdGEiOnt9LCJyYW5kb20iOiJiYzg0MDVkN2VhZjI1NzgzZGQzM2U4YjBlMjIyOGFmOCJ9.WermUrWs5dIdw-6gHycikbXQPalfPYPmICX-9EDyQgh2jYpj0JVCy5kf0cyi3EbgUR6-cRaIvqk9Qy--K6oUTA
https://zenodo.org/records/15106760?preview=1&token=eyJhbGciOiJIUzUxMiIsImlhdCI6MTc0MzMzNzYwNSwiZXhwIjoxNzY0NTQ3MTk5fQ.eyJpZCI6IjNmNzZkZmM1LTc2NDMtNDc4Yy1iNmQ3LTllZjNkMzk2NWYyYSIsImRhdGEiOnt9LCJyYW5kb20iOiJiYzg0MDVkN2VhZjI1NzgzZGQzM2U4YjBlMjIyOGFmOCJ9.WermUrWs5dIdw-6gHycikbXQPalfPYPmICX-9EDyQgh2jYpj0JVCy5kf0cyi3EbgUR6-cRaIvqk9Qy--K6oUTA
http://www.nature.com/scientificreports

www.nature.com/scientificreports/

cikbXQPalfPYPmICX-9EDyQgh2jYpjoJVCy5kfOcyi3EbgUR6-cRalvqgk9Qy--K60UTA). The following files are
available: (a) Python scripts, including links to the GitHub repository containing all models and a CodeOcean
capsule with a sample model and its environment (Dockerfile). (b) Quarto file used for manuscript and figure
generation. (c) Supplementary information. (d) A preprocessed and cropped subset of the dataset to facilitate the
reproducibility of this analysis. The full dataset will be provided in a separate publication.
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