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In the evolving landscape of the Internet of Things (IoT), optimizing power efficiency in Narrowband 
IoT (NB-IoT) networks is crucial for extending device lifetimes while maintaining performance. This 
research leverages the Soft Actor-Critic (SAC) reinforcement learning algorithm to intelligently manage 
power-saving modes in NB-IoT devices. The study compares SAC with Proximal Policy Optimization, 
and Deep Q-Network. The methodology involves simulating an NB-IoT environment and evaluating 
performance using metrics such as total reward, overall energy efficiency, power consumption, mode 
count and duration, and duty cycle percentage. The SAC-based approach demonstrated significant 
improvements in power efficiency, achieving balanced enhancements in power conservation and 
network performance. These findings suggest that reinforcement learning techniques like SAC can play 
a pivotal role in advancing the efficiency and sustainability of NB-IoT networks, leading to prolonged 
device operation, reduced costs, and enhanced overall performance, thus paving the way for more 
resilient and scalable IoT deployments.
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Introdution
The rapid expansion of the Internet of Things (IoT) has ushered in a multitude of applications, from smart homes 
and industrial automation to healthcare and environmental monitoring. These diverse applications generally 
require low data rates, prolonged battery life, and low power consumption. Simultaneously, they necessitate 
extensive coverage and the capacity to support a vast number of devices1. As the number of connected devices 
continues to surge, there is an urgent need for communication technologies that are both robust and scalable 
to handle this growth. Low Power Wide Area (LPWA) networks have emerged as a promising solution to meet 
these requirements. LPWA networks are engineered to deliver widespread connectivity with minimal data 
rates and power consumption. They can operate on either licensed or unlicensed spectrum and are powered by 
both cellular and non-cellular technologies2. Among the various LPWA technologies, Narrowband Internet of 
Things (NB-IoT) stands out as a leading solution. NB-IoT, standardized by the Third Generation Partnership 
Project (3GPP) in Release 13, operates in a narrow bandwidth of 180 kHz. It can be integrated into existing 
LTE networks, deployed in a re-farmed GSM spectrum, or established as a standalone network3. This versatility 
makes NB-IoT an attractive option for a broad array of IoT applications that demand wide coverage and low 
data rates. NB-IoT is particularly suitable for applications such as e-health, smart agriculture, smart cities, 
smart parking, logistics, and waste management. These applications typically involve the transmission of small, 
infrequent, and delay-tolerant data, making NB-IoT an optimal choice. The technology facilitates quick and 
efficient deployment, as it can coexist with existing LTE infrastructure4. Additionally, NB-IoT offers advanced 
features like mass communication, restricted mobility support, and accurate positioning, broadening its range 
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of applications. By operating in licensed frequency bands, NB-IoT minimizes interference, ensuring reliable 
communication for critical use cases5.

Primary goals of NB-IoT
Extended coverage
NB-IoT is engineered to deliver enhanced coverage, especially in challenging environments such as deep 
indoors or underground locations. This capability is crucial for applications like smart metering, environmental 
monitoring, and infrastructure management, where devices may be situated in areas with poor signal penetration. 
With support for a Maximum Coupling Loss (MCL) of 164 dB, NB-IoT offers over 20 dB deeper coverage 
compared to legacy LTE, ensuring connectivity in remote or densely built environments. This extended reach 
significantly expands the potential use cases of IoT technologies, enabling reliable operation in scenarios that 
were previously difficult to service6.

Low power consumption
A hallmark feature of NB-IoT is its ability to support devices with extended battery life, potentially lasting 
up to 10 years on a single battery. This is achieved through various power-saving techniques and optimized 
communication protocols that minimize energy usage. NB-IoT supports ultra-low complexity by simplifying 
the device structure and reducing the network protocol volume, resulting in lower energy consumption and 
decreased device cost. Low power consumption is particularly important for devices deployed in locations where 
frequent battery replacement is impractical or costly, such as remote sensors or asset tracking devices7.

High device density
NB-IoT can support a high density of devices per cell, often accommodating thousands of devices within a single 
network cell. It supports more than 52,500 connections per cell, making it essential for urban and industrial 
environments where a large number of IoT devices need to communicate simultaneously. This high capacity 
ensures that NB-IoT can handle a significant number of devices without substantial interference or congestion, 
making it suitable for applications in smart cities, industrial automation, and agricultural monitoring8.

Cost efficiency
The cost of NB-IoT modules is relatively low compared to other cellular IoT technologies, and the ability to 
leverage existing cellular infrastructure reduces deployment costs. This cost efficiency makes NB-IoT an attractive 
option for widespread IoT deployments across various sectors. Lower costs not only facilitate the adoption of IoT 
technologies by businesses and governments but also enable innovative applications in areas such as healthcare, 
transportation, and public safety. By supporting ultra-low complexity and simplifying the device structure, NB-
IoT further reduces the cost of devices, making it accessible for a broad range of applications9.

Interoperability and coexistence
NB-IoT is designed to coexist seamlessly with existing LTE networks, allowing operators to deploy NB-IoT 
alongside their current cellular infrastructure without the need for significant modifications. This coexistence 
ensures that NB-IoT can be implemented rapidly and cost-effectively. Furthermore, NB-IoT supports 
interoperability with other IoT technologies, facilitating smooth integration into a wide range of applications 
and systems. This interoperability is crucial for developing a unified IoT ecosystem where various devices and 
platforms can communicate and operate together efficiently.

These features collectively make NB-IoT a robust, efficient, and cost-effective solution for a wide range of IoT 
applications, addressing the critical needs of connectivity, power efficiency, and scalability10.

Importance of NB-IoT in the IoT ecosystem
NB-IoT is poised to play a transformative role in the IoT ecosystem due to its unique combination of features. It 
addresses several critical requirements for IoT deployments, including extensive coverage, long battery life, high 
device density, and cost efficiency. These attributes make NB-IoT particularly suitable for a range of applications, 
from smart cities and agriculture to industrial automation and environmental monitoring11.

Smart cities
In smart city initiatives, NB-IoT can be used for a multitude of applications, including smart parking, waste 
management, and street lighting. Its ability to provide reliable connectivity in dense urban environments and 
its low power requirements make it an ideal choice for city-wide sensor networks. For instance, NB-IoT can 
facilitate efficient traffic management by monitoring and controlling parking spaces, reducing congestion, and 
improving urban mobility. Additionally, smart street lighting systems can leverage NB-IoT to reduce energy 
consumption by adjusting lighting based on real-time data, enhancing both safety and sustainability12.

Industrial IoT
In industrial settings, NB-IoT enables applications such as asset tracking, predictive maintenance, and remote 
monitoring of machinery. Its robust connectivity and long battery life are essential for monitoring equipment in 
large factories or remote sites. By providing real-time data on machine performance and potential faults, NB-
IoT supports predictive maintenance strategies, reducing downtime and maintenance costs. Furthermore, NB-
IoT’s ability to support a high density of devices per cell is crucial for managing extensive industrial operations, 
ensuring seamless communication across various equipment and systems13.
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Agriculture
NB-IoT can enhance agricultural productivity through applications like soil moisture monitoring, livestock 
tracking, and precision farming. Its extensive coverage ensures that sensors can communicate effectively even 
in vast, rural areas. Farmers can utilize NB-IoT to monitor soil conditions in real-time, optimizing irrigation 
and fertilization practices to improve crop yields and conserve resources. Livestock tracking systems enabled by 
NB-IoT provide valuable insights into animal health and behavior, facilitating better management and reducing 
losses. Precision farming techniques, supported by NB-IoT, allow for targeted interventions, increasing efficiency 
and sustainability in agriculture14.

Healthcare
In the healthcare sector, NB-IoT supports applications like remote patient monitoring, wearable health devices, 
and emergency response systems. Its low power consumption extends the operational life of health monitoring 
devices, reducing the need for frequent recharging or battery replacement. This is particularly beneficial for 
elderly or chronically ill patients who require continuous monitoring. NB-IoT enables the transmission of critical 
health data to medical professionals in real-time, enhancing patient care and enabling timely interventions. 
Additionally, wearable health devices powered by NB-IoT can track vital signs and activity levels, promoting 
proactive health management and early detection of potential issues15.

Environmental monitoring
NB-IoT is well-suited for environmental monitoring applications, including air quality monitoring, water 
quality assessment, and disaster detection. Its ability to provide reliable connectivity in remote and challenging 
environments makes it ideal for deploying sensors in forests, rivers, and coastal areas. Environmental monitoring 
systems utilizing NB-IoT can deliver real-time data on pollution levels, helping authorities take timely action to 
protect public health and the environment. In disaster detection and management, NB-IoT can play a critical 
role by providing early warnings for events such as floods, landslides, and wildfires, enabling swift responses to 
mitigate damage and ensure safety16.

Logistics and supply chain management
In logistics and supply chain management, NB-IoT enhances the tracking and management of goods throughout 
their journey. Its long battery life and extensive coverage make it possible to monitor the condition and location 
of shipments in real-time, even in remote areas. NB-IoT enables better inventory management, reduces the risk 
of loss or theft, and ensures that goods are transported under optimal conditions. This is particularly important 
for perishable goods, pharmaceuticals, and high-value items, where maintaining the integrity and security of the 
shipment is critical17.

Smart homes and buildings
NB-IoT contributes to the development of smart homes and buildings by enabling various automation and 
monitoring applications. From smart thermostats and security systems to energy management and appliance 
control, NB-IoT provides the connectivity needed to create efficient, secure, and comfortable living environments. 
Smart home devices powered by NB-IoT can communicate seamlessly, allowing residents to control and monitor 
their homes remotely. In commercial buildings, NB-IoT supports energy management systems that optimize 
heating, cooling, and lighting, reducing operational costs and environmental impact18.

NB-IoT’s extensive coverage, low power consumption, high device density, cost efficiency, interoperability, 
and coexistence with existing cellular networks make it a cornerstone of the IoT ecosystem. Its versatility and 
robust performance across various applications from smart cities and industrial automation to agriculture, 
healthcare, environmental monitoring, logistics, and smart homes highlight its transformative potential. As the 
IoT landscape continues to evolve, NB-IoT will play an increasingly vital role in enabling innovative solutions 
and driving the adoption of IoT technologies worldwide19.

Challenges in power management for NB-IoT devices
Despite its many advantages, NB-IoT faces significant challenges, particularly in the area of power management. 
IoT devices are often deployed in remote or hard-to-reach locations where frequent battery replacement is 
impractical. As such, extending the battery life of these devices is crucial. Traditional power management methods 
often fail to adapt to the dynamic nature of IoT environments, resulting in suboptimal power consumption. These 
methods do not account for the varying network conditions, data transmission requirements, and operational 
contexts that can significantly impact the energy efficiency of NB-IoT devices.

Power-saving modes in NB-IoT, such as extended discontinuous reception (eDRX) and power-saving mode 
(PSM), are designed to reduce energy consumption by allowing devices to enter low-power states when not 
actively transmitting or receiving data. However, the effectiveness of these modes depends on the ability to 
dynamically and intelligently manage their activation and deactivation based on real-time network conditions 
and device states. Achieving this dynamic management is a complex task that requires advanced optimization 
techniques20.

Importance of optimizing power-saving modes
Optimizing power-saving modes in NB-IoT devices is essential for several reasons. First, it directly impacts the 
operational lifetime of IoT devices, reducing the need for frequent battery replacements and maintenance, which 
can be costly and logistically challenging. Second, improved power efficiency enhances the overall sustainability 
of IoT deployments, contributing to lower energy consumption and reduced environmental impact. Third, 
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optimizing power-saving modes ensures that devices maintain an acceptable level of performance, balancing 
energy savings with the need for reliable and timely data transmission21.

In this context, leveraging advanced machine learning techniques, such as reinforcement learning, offers a 
promising approach to optimize power management in NB-IoT networks. By using algorithms like Soft Actor-
Critic (SAC), it is possible to develop intelligent power management strategies that dynamically adjust power-
saving modes in response to changing network conditions and device states. This research aims to explore the 
potential of SAC-based reinforcement learning to enhance power efficiency in NB-IoT networks, demonstrating 
significant improvements over traditional methods and other reinforcement learning algorithms such as 
Proximal Policy Optimization (PPO), and Deep Q-Networks (DQN).

Problem statement
In NB-IoT networks, the efficient management of power consumption poses a critical challenge due to several 
inherent factors. Firstly, these networks often rely on battery-powered IoT devices, which inherently have limited 
energy reserves. Consequently, prolonging the operational lifespan of these devices while maintaining their 
functionality becomes imperative. Secondly, NB-IoT devices operate in diverse and dynamic environments, 
where network conditions can fluctuate significantly. These conditions include variations in signal strength, 
interference levels, and traffic load, all of which impact power consumption. As a result, devising strategies to 
adapt to these changing conditions while optimizing power usage presents a complex problem. Moreover, NB-
IoT networks typically consist of heterogeneous devices with diverse characteristics and requirements. Some 
devices may prioritize low latency for real-time applications, while others may prioritize energy efficiency for 
prolonged battery life. Balancing the needs of these diverse devices to achieve optimal power efficiency without 
sacrificing individual performance further complicates the issue.

Need for intelligent power-saving mode selection
The need for intelligent power-saving mode selection in NB-IoT networks arises from several key considerations. 
Firstly, maximizing device uptime is paramount to ensure continuous operation and minimize disruptions. 
By dynamically selecting appropriate power-saving modes based on real-time network conditions and device 
requirements, NB-IoT devices can remain operational for extended periods without manual intervention. This 
is particularly crucial in applications where devices are deployed in remote or inaccessible locations, where 
frequent battery replacements or recharging may not be feasible. Secondly, intelligent power-saving mode 
selection plays a vital role in optimizing energy consumption across the network. By leveraging adaptive 
algorithms and predictive analytics, NB-IoT devices can intelligently adjust their power-saving modes to match 
the current workload and environmental conditions. For example, during periods of low activity or low network 
demand, devices can switch to energy-saving modes to conserve power. Conversely, when network traffic 
increases or latency-sensitive tasks are required, devices can seamlessly transition to higher-power modes to 
meet performance requirements22.

Furthermore, intelligent power-saving mode selection enhances the overall reliability and resilience of 
NB-IoT networks. By strategically managing power consumption, devices can ensure consistent connectivity 
and data transmission even in challenging environments. For instance, devices can prioritize power-intensive 
operations during periods of optimal signal strength and conserve power during times of interference or 
congestion. This adaptive approach not only improves network reliability but also reduces the risk of service 
disruptions due to battery depletion or network congestion. In essence, intelligent power-saving mode selection 
is essential for optimizing the performance, efficiency, and reliability of NB-IoT networks in dynamic and 
heterogeneous environments. By leveraging advanced algorithms and adaptive strategies, these networks can 
achieve the delicate balance between power conservation and operational effectiveness, ultimately driving the 
widespread adoption and success of NB-IoT technologies23.

Objectives
This research sets out to address the challenge of optimizing power efficiency in NB-IoT networks through 
intelligent power management. Utilizing advanced machine learning techniques, particularly reinforcement 
learning, such as Soft Actor-Critic (SAC), the aim is to develop adaptive strategies for selecting and adjusting 
power-saving modes in real-time. By dynamically responding to changing network conditions and device states, 
the overarching objective is to maximize energy conservation while ensuring optimal network performance. 
Moreover, the research seeks to conduct a comprehensive comparative analysis of various reinforcement 
learning algorithms in the context of power management in NB-IoT networks. Algorithms such as Proximal 
Policy Optimization (PPO), and Deep Q-Networks (DQN). will be evaluated to identify the most effective 
approach for achieving the desired objectives.

A key goal of the study is to demonstrate the superiority of Soft Actor-Critic (SAC) over traditional methods 
and other reinforcement learning algorithms. Through empirical evaluation and performance comparison, 
the aim is to showcase SAC’s capabilities in adapting to dynamic environments, handling continuous action 
spaces, and achieving higher levels of power efficiency and network reliability. Furthermore, the research aims 
to validate the effectiveness of the proposed SAC-based approach through simulation and experimentation. By 
implementing the developed algorithms in realistic NB-IoT network scenarios and conducting extensive testing, 
the objective is to provide empirical evidence of their efficacy in real-world deployment. Ultimately, the research 
aims to contribute to the advancement of intelligent power management techniques in NB-IoT networks. By 
offering novel insights, practical methodologies, and empirical evidence, the objective is to facilitate the adoption 
of SAC-based reinforcement learning and pave the way for more energy-efficient and reliable IoT deployments.
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Research findings
This study employs the Soft Actor-Critic (SAC) reinforcement learning algorithm to intelligently manage power-
saving modes in NB-IoT devices. Comparative analysis is conducted with other algorithms including Proximal 
Policy Optimization (PPO), and Deep Q-Network (DQN). The methodology involves simulating an NB-IoT 
environment and evaluating performance using metrics such as total reward, overall energy efficiency, power 
consumption, mode count and duration, and duty cycle percentage.

The SAC-based approach demonstrated significant improvements in power efficiency, achieving balanced 
enhancements in power conservation and network performance. These findings suggest that reinforcement 
learning techniques like SAC can play a pivotal role in advancing the efficiency and sustainability of NB-IoT 
networks, leading to prolonged device operation, reduced costs, and enhanced overall performance, thus paving 
the way for more resilient and scalable IoT deployments.

NB-IOT: key technology and its significance
As illustrated in Fig. 1 architecture of Narrowband IoT (NB-IoT) is designed for the efficient connection of low-
power devices across wide areas, utilizing existing cellular networks. At its core, NB-IoT includes User Equipment 
(UE), which are devices optimized for intermittent, low-power data transmission. The Radio Access Network 
(RAN) manages the communication between UE and the core network, supporting three deployment modes: 
Standalone (using dedicated spectrum), Guardband (using unused resource blocks within an LTE carriers guard 
band), and In-band (sharing spectrum with LTE carriers). The core network features several crucial components: 
the Mobility Management Entity (MME) handles signaling and control, the Serving Gateway (S-GW) routes and 
forwards user data packets, and the Packet Data Network Gateway (P-GW) connects the NB-IoT network to 
external IP networks. The Home Subscriber Server (HSS) stores user profiles and manages authentication and 
access, while the Service Capability Exposure Function (SCEF) optimizes IoT data transmissions and exposes 
services securely. Additionally, the IP Short Message Gateway (IP-SM-GW) supports SMS over IP networks24.

NB-IoT can optimize data transmission through Control Plane CIoT EPS Optimization, which reduces 
overhead for small, infrequent data transfers, or User Plane CIoT EPS Optimization for higher throughput 
requirements. Its roaming architecture supports seamless operation across different network operators via 
direct, indirect, and hybrid models that involve the SCEF for secure communication. The attached procedures 
offer options to establish or forego a Packet Data Network (PDN) connection during the attach process, catering 
to various device connectivity needs. Key features like Power Saving Mode (PSM), Extended Discontinuous 
Reception (eDRX), and Non-IP Data Delivery (NIDD) are integral to NB-IoT. PSM and eDRX enable devices 
to enter deep sleep states to save power, waking periodically to check for data. NIDD facilitates efficient data 
transmission without IP encapsulation, reducing overhead25.

The architecture also involves several key interfaces that ensure seamless communication and data transfer 
across the network. These include Um / Uu / LTE-Uu interfaces for connecting UE to the RAN, S1-MME, and 
S1-U interfaces for linking the RAN to the MME and S-GW respectively, and the S6a interface for connecting 
the MME to the HSS. The S11 interface connects the MME to the S-GW, while S5/S8 interfaces link the S-GW 
to the P-GW, with S5 used within a single network and S8 for roaming scenarios. The SGi interface connects 
the P-GW to external packet data networks, enabling broader communication. Interfaces like T6a/T6b/T6ai/

Fig. 1.  Architecture of the NB-IoT system showing core components, interfaces, and deployment modes for 
low-power IoT.
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T6bi support interactions between the SCEF and the P-GW or S-GW, enhancing non-IP data delivery and 
control plane optimization. The T7 interface facilitates communication between the home network’s SCEF 
and the visited network’s Interworking Function (IWF)-SCEF during roaming. SGd and Gd interfaces handle 
SMS delivery over the IP-SM-GW, supporting messaging services, while APIs enable standardized interactions 
between the SCEF and external application servers. These components and interfaces collectively ensure that 
NB-IoT is scalable and efficient, enabling massive device connectivity with minimal power consumption and 
operational costs26.

NB-IoT standard is tailored for the Internet of Things (IoT), offering robust technical specifications and 
features. It supports three deployment modes in-band, guard-band, and standalone allowing flexibility in 
utilizing existing LTE carriers and dedicated spectrum. NB-IoT operates across various global frequency bands, 
such as Bands 3, 8, and 20 in Europe and Bands 2, 4, 5, and others in North America and the Asia Pacific. With a 
narrow bandwidth of 180 kHz, NB-IoT excels in providing extensive indoor and long-range coverage, potentially 
up to 120 km, by employing enhanced NPRACH formats and small-cell support. The technology emphasizes 
low power consumption, featuring Power Saving Mode (PSM) and extended Discontinuous Reception (eDRX), 
which enhance battery life. NB-IoT devices, categorized under NB1 and NB2, support low data rates and efficient 
communication with maximum transport block sizes of 2536 bits for uplink and downlink, optimized for low 
latency applications. It uses Orthogonal Frequency Division Multiplexing (OFDM) for downlink and Single 
Carrier Frequency Division Multiple Access (SC-FDMA) for uplink, balancing efficiency and power usage. 
Mobility and positioning are enhanced through features like RRC Connection Re-establishment and observed 
time difference of arrival (OTDOA), ensuring stable connections and accurate device positioning. Additionally, 
NB-IoT supports multicast transmission and group messaging, beneficial for applications requiring firmware 
updates and group commands. These features make NB-IoT a versatile and efficient solution for various IoT 
applications, from smart metering and environmental monitoring to industrial automation and asset tracking27.

3GPP releases and the evolution of NB-IoT
The development of NB-IoT features across different 3GPP releases has significantly enhanced its capabilities, 
transforming it into a robust and versatile technology for IoT applications. Release 13 laid the foundation by 
introducing essential features such as coverage enhancement techniques for deeper indoor and rural areas, 
Power Saving Mode (PSM) for deep sleep states to conserve battery, and Extended Discontinuous Reception 
(eDRX) for balanced power savings and periodic communication. It also emphasized low device complexity and 
efficient signaling to reduce cost and power consumption. Release 14 built upon this framework by introducing 
several new functions designed to broaden NB-IoT’s scope and enhance its functionality. These included support 
for higher data rates, advanced positioning capabilities such as Observed Time Difference of Arrival (OTDOA) 
and enhanced Cell ID (eCID), and multicast functionality via Single-Cell Point-To-Multipoint (SC-PTM). This 
release also introduced the CAT NB-2 device category, which supports a higher Transport Block Size (TBS) of 
2536 bits and a second HARQ process, as well as low-power user support with a maximum uplink transmission 
power of 14 dBm. These enhancements aimed to improve system capacity, flexibility, and energy efficiency, 
making NB-IoT suitable for a wider range of use cases, including mobile applications like smart parking and 
safety monitoring28.

Release 15 continued the evolution of NB-IoT, focusing on further performance enhancements and new 
features aimed at improving latency, power consumption, and network efficiency. Key additions included 
support for mobile-originated Early Data Transmission (EDT), which reduces latency and power usage by 
allowing small data transmissions during the random access procedure, and the Wake-Up Signal (WUS), which 
further lowers power consumption by reducing the need for devices to frequently check for network signals. 
Time Division Duplexing (TDD) was also introduced to optimize spectrum utilization for both uplink and 
downlink data29. Release 16 aimed to enhance NB-IoT features to support the growing number of devices and 
improve network operation efficiency. This included mobile-terminated EDT and group-specific WUS to reduce 
unnecessary wake-ups, and the Self-Organizing Network (SON) function to facilitate performance reporting 
and fault management. Additionally, Release 16 addressed issues related to NB-IoT’s coexistence with 5G NR, 
such as resource reservation, carrier placement, and synchronization30.

Releases 17 and 18 aim to further expand NB-IoT’s capabilities, supporting more complex use cases and 
improving efficiency. Planned enhancements include uplink and downlink support for 16-QAM, a new 
carrier selection scheme based on various factors, and the potential integration of NB-IoT with non-terrestrial 
networks. Other expected improvements include frequency hopping between carriers, cross-carrier scheduling, 
fine-grained channel quality reporting, escalated paging, very low user power class, and early termination of 
NPUSCH. These features across different 3GPP releases have collectively made NB-IoT a robust and versatile 
technology, capable of supporting a wide range of IoT applications with improved coverage, efficiency, and 
performance31,32.

NB-IoT device operational modes and connection procedures
To achieve optimal performance and energy efficiency, NB-IoT employs a variety of operational modes and 
connection procedures tailored to different usage scenarios. These modes include Idle Mode, Connected Mode, 
Discontinuous Reception (DRX), Extended Discontinuous Reception (eDRX), and Power Saving Mode (PSM), 
each with distinct power consumption characteristics and network interaction protocols. The connection 
procedures in NB-IoT ensure that devices can efficiently transition between these modes, maintaining 
connectivity while minimizing energy use. These operational modes and connection procedures are crucial 
for developers and network operators aiming to maximize the efficiency and longevity of IoT devices deployed 
in diverse environments, from smart cities to remote agricultural fields. This section provides an in-depth 
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exploration of the various NB-IoT device operational modes and the corresponding connection procedures, 
highlighting their significance in the broader context of IoT deployments.

Operational modes of NB-IoT
Idle mode  Idle Mode in NB-IoT represents a state where the device remains registered with the cellular net-
work but is not actively involved in data transmission. Instead, it periodically listens to the paging channel, wait-
ing for incoming data or signaling messages from the network. This intermittent monitoring allows the device 
to conserve battery power by minimizing active communication sessions. During Idle Mode, the NB-IoT device 
maintains its registration with the network, ensuring that it can quickly establish a connection when necessary. 
However, the device remains in a low-power state for the majority of the time, waking up only at predetermined 
intervals to check for any network activity. This approach is particularly beneficial for devices that do not require 
constant communication but need to remain reachable for occasional updates or commands.

Connected mode  Connected Mode is the active state of communication in NB-IoT, where the device establish-
es a continuous connection with the cellular network. In this mode, the device can send and receive real-time 
data, enabling applications requiring immediate responsiveness or continuous monitoring. During Connected 
Mode, the NB-IoT device maintains an open channel with the network, allowing for bidirectional communica-
tion. This mode is typically used to transmit sensor data, receive control commands, or engage in other interac-
tive tasks. However, maintaining a constant connection requires higher power consumption compared to Idle 
Mode, as the device needs to remain fully powered and actively engaged in network activities.

Discontinuous reception (DRX) states
DRX is a power-saving mechanism employed by NB-IoT devices to reduce energy consumption while 
maintaining network connectivity. It consists of two primary states: DRX Active and DRX Inactive. 

	1.	 DRX active state: During DRX Active State, the device periodically wakes up from its low-power state to 
check for incoming data or signaling messages from the network. The device remains ready to receive in-
formation, ensuring timely responsiveness while conserving power by minimizing the duration of active 
network monitoring.

	2.	 DRX inactive state: In contrast, DRX Inactive State allows the device to enter a deeper sleep mode, where 
network monitoring activities are suspended for an extended period. During this state, the device consumes 
minimal power, significantly extending battery life by reducing energy expenditure during idle periods.

Extended discontinuous reception (eDRX)  Extended Discontinuous Reception (eDRX) enhances the tradi-
tional DRX mechanism by allowing devices to remain in the inactive state for longer durations. This extended 
sleep cycle further reduces power consumption by prolonged periods of network inactivity, making it particu-
larly beneficial for applications that demand infrequent data transmissions. eDRX enables NB-IoT devices to op-
timize energy usage by extending the intervals between network wake-ups, thereby maximizing the time spent 
in the low-power sleep state. This approach offers substantial energy savings without sacrificing connectivity, 
making it ideal for devices deployed in scenarios where frequent data transmission is not required.

Power saving mode (PSM)  Power Saving Mode (PSM) represents the deepest sleep state available to NB-IoT 
devices, where most components, including the radio module, are powered down to minimize power consump-
tion. In this state, the device becomes unreachable by the network, effectively suspending all communication 
activities until a predefined wake-up event occurs. PSM is suitable for devices with sporadic data transmission 
requirements, such as smart meters or environmental sensors, where maintaining constant network connectiv-
ity is unnecessary. By entering a deep sleep state, NB-IoT devices can conserve energy over extended periods, 
significantly prolonging battery life and reducing the need for frequent recharging or battery replacement. By 
leveraging these operational modes effectively, NB-IoT devices can optimize power consumption while main-
taining essential connectivity, ensuring efficient and sustainable IoT deployments across various applications 
and industries33.

Connection procedures of NB-IoT
In the operational architecture of the Narrowband Internet of Things (NB-IoT), devices traverse through various 
operational modes, each intricately designed to balance connectivity and power efficiency. The journey typically 
begins in Idle Mode, where the device remains in a low-power state, periodically listening to the network’s 
paging channel. This mode serves as a power-saving mechanism, allowing the device to conserve energy while 
still staying registered on the network. Upon receiving a signaling message or triggering a network activity, the 
device transitions into Connected Mode, establishing an active connection with the network. In Connected 
Mode, the device engages in bidirectional communication, exchanging data packets with the network server. 
This mode ensures real-time data transmission and reception, vital for IoT applications requiring immediate 
responsiveness.

To further optimize power consumption, NB-IoT devices implement Discontinuous Reception (DRX) and 
Extended DRX (eDRX) states. DRX allows the device to alternate between active and inactive periods, waking 
up periodically to check for incoming data while spending the rest of the time in a low-power sleep mode. eDRX 
extends this concept by enabling longer sleep periods, reducing the frequency of wake-ups, and conserving more 
energy over extended durations. For scenarios where sporadic data transmission is acceptable, Power Saving 
Mode (PSM) offers the deepest sleep state. In PSM, the device powers down most of its components, including 
the radio module, to minimize energy consumption drastically. The device remains unreachable by the network 
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until a pre-configured timer triggers a wake-up event, allowing it to re-establish connectivity and resume data 
transmission. Figure 2 illustrates the state diagram of the various operational modes of NB-IoT.

Through these meticulously crafted operational modes and states, NB-IoT devices achieve a delicate balance 
between connectivity and power efficiency, enabling prolonged battery life and uninterrupted operation for a 
diverse array of IoT applications34.

Related work
In recent years, extensive research has been conducted to enhance energy efficiency and power-saving mechanisms 
in NB-IoT networks. Several studies have explored optimization techniques, reinforcement learning approaches, 
and energy-efficient scheduling mechanisms to improve network performance.

Hadjadj-Aoul and Ait-Chellouche proposed a deep reinforcement learning-based access control mechanism 
to mitigate congestion in NB-IoT networks. They modeled the access problem as a Markov decision process 
and used the Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithm to optimize the Access Class 
Barring (ACB) mechanism. Unlike heuristic-based methods, their approach dynamically adjusted to network 
variations, even with incomplete system state information. Simulations showed superior performance over 
adaptive and PID-based techniques, maintaining optimal access attempts. Their study highlights reinforcement 
learning as a promising alternative for NB-IoT access control35.

Al Rabee et al. introduced an actor-critic reinforcement learning-based power allocation framework 
for energy harvesting (EH) NOMA relay-assisted mmWave networks to enhance energy efficiency and data 
throughput. Their two-phase approach first optimizes power allocation at an EH-capable source node using 
an actor-critic RL method, adapting to unpredictable EH and channel conditions. In the second phase, a 
NOMA-based mechanism assigns power levels to users for efficient relay transmission. Unlike conventional 
techniques that struggle with non-convex optimization, their method uses sequential convex approximation for 
better convergence. Simulations showed superior performance in maximizing data rates and improving energy 
efficiency, highlighting RL’s potential for resource allocation in next-generation networks36.

Lauridsen et al. conducted empirical power consumption measurements on early-generation NB-IoT devices 
to develop a battery lifetime estimation model. Their study provided the first publicly available dataset on real-
world NB-IoT power usage across different operational states. Results showed that uplink transmissions at 23 
dBm consumed 716 mW due to low power amplifier efficiency (37%), while receiving control/data channels used 
213 mW. Idle-mode eDRX and PSM consumed 21 mW and 13 µW, respectively. Real-world power consumption 
exceeded 3GPP estimates, reducing battery life by 5.10% when PSM was applied. The study suggested firmware 
and hardware improvements to enhance future NB-IoT energy efficiency37.

Migabo et al. introduced the Energy-Efficient Adaptive Channel Coding (EEACC) scheme for NB-IoT to 
improve energy efficiency while maintaining network reliability. This two-dimensional approach dynamically 
selects the optimal channel coding scheme based on real-time channel conditions classified as bad, medium, 
or good, using periodic Block Error Rate (BLER) assessments. EEACC also reduces transmission repetitions 
by leveraging successful transmission probabilities, ensuring efficient resource use. Simulations showed that 
EEACC outperforms existing Narrowband Link Adaptation (NBLA) techniques in energy efficiency, reliability, 
scalability, and latency. Its resilience to channel impairments makes it ideal for energy-constrained IoT 
applications, with future validation planned for smart water metering and further theoretical optimization38.

Barbauzx et al. developed an analytical model to evaluate the balance between capacity and energy efficiency 
in NB-IoT systems, with a focus on battery life. Using M/D/H/K queues, their model assessed energy performance 
across different coverage distributions, payload sizes, and communication rates. Comparison with 3GPP results 
confirmed the models accuracy for single-terminal cells. Their analysis revealed that Early Data Transmission 
(EDT) not only improves latency and connection density but also enhances energy efficiency. However, higher 

Fig. 2.  State transition diagram of NB-IoT device modes including Idle, Connected, DRX, eDRX, and PSM.
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loads in multi-terminal cells negatively impact battery life due to control channel demodulation. The authors 
proposed an efficient solution that extends battery life without modifying standard communication modules, 
making their model a valuable tool for optimizing NB-IoT energy efficiency39.

Khan and Alam developed an empirical model to evaluate the baseline energy consumption of NB-IoT radio 
transceivers, focusing on the Radio Resource Control (RRC) protocol. Using two commercial NB-IoT boards 
and test networks from two mobile operators, they collected data to create an accurate energy consumption 
model. Their profiling of the BG96 NB-IoT module showed evaluation errors between 0.33 and 15.38%, 
confirming the models reliability. This work fills a gap in energy profiling literature and serves as a benchmark 
for optimizing NB-IoT battery life. Future research will explore energy-saving strategies tailored to specific 
application requirements using this model40.

Manzar et al. investigated downlink (DL) packet reception energy consumption in NB-IoT and proposed a 
Particle Swarm Optimization (PSO)-based strategy to enhance energy efficiency. They analyzed key parameters 
such as transport block size, repetition count, and segmentation, optimizing factors like received power, sub-
frames, and MAC header length. Their results showed an 84.98% energy reduction when optimizing PRX and 
HRLCMAC together and 61.07% when optimizing PRX and NSF. The study demonstrated PSOs potential for 
improving NB-IoT energy efficiency, with applications in smart homes, vehicles, and grids. Further enhancements 
could be achieved by integrating low-energy modulation and optimized MAC protocols41.

Andres-Maldonado et al. developed and validated an analytical energy consumption model for NB-IoT 
devices, aimed at improving energy management in Low-Power Wide-Area (LPWA) networks. Using a six-state 
Markov chain, their model estimated average energy consumption and latency for periodic uplink reporting. 
Experiments with two commercial NB-IoT devices connected to a base station emulator validated the model 
across scheduling, coverage extension, and single subcarrier configurations, with a maximum error of 21%. 
Their findings showed that NB-IoT UEs can achieve a 10 years battery life and 10-second latency under optimal 
conditions. This study contributes to energy-efficient strategies for future LPWA applications42.

Di Lecce et al. investigated cooperative relaying techniques to enhance energy efficiency in NB-IoT networks, 
aiming for further optimization despite its low power consumption. They proposed an optimal relay selection 
algorithm to minimize energy use within a cell and introduced a greedy algorithm that achieved near-optimal 
performance with lower computational complexity. Simulations showed that cooperative relaying reduced 
energy consumption by up to 30%, with the greedy algorithm consuming only 10% more than the optimal 
strategy. Their findings highlight cooperative relaying as an effective energy-saving approach. Future research 
will explore throughput, delays, and advanced power control mechanisms for further optimization43.

Jiang et al. proposed a Cooperative Multi-Agent Deep Q-Learning (CMA-DQN) approach to optimize multi-
group NB-IoT networks, addressing configuration challenges without prior traffic statistics. In this model, Deep 
Q-Network (DQN) agents independently control configuration variables and are cooperatively trained based 
on transmission feedback. Compared to heuristic-based load estimation (LE-URC), CMA-DQN significantly 
outperformed it, especially in heavy traffic, by dynamically adjusting repetition values to optimize resource 
allocation. This improved Random Access Opportunities (RAOs) and reduced collisions. Their results highlight 
CMA-DQN as an effective solution for managing scarce resources and enhancing NB-IoT performance under 
varying traffic conditions44.

Jiang et al. developed Q-learning-based methods to optimize uplink resource configurations in NB-
IoT networks, maximizing served IoT devices per Transmission Time Interval (TTI). They introduced 
tabular Q-learning (tabular-Q), Linear Approximation Q-learning (LA-Q), and Deep Q-learning (DQN), 
all of which outperformed heuristic-based load estimation (LE-URC) approaches. LA-Q and DQN achieved 
similar performance to tabular-Q but required less training time. To handle high-dimensional configurations, 
they extended LA-Q and DQN with Action Aggregation (AA-LA-Q, AA-DQN), improving convergence. 
Additionally, Cooperative Multi-Agent DQN (CMA-DQN) was introduced for parallel sub-task optimization, 
showing superior efficiency. Their findings highlight Q-learning as a robust solution for real-time NB-IoT 
resource allocation45.

Michelinakis et al. conducted an empirical study on NB-IoT energy consumption, analyzing the impact 
of configuration parameters on efficiency. Using measurements from two NB-IoT boards and two European 
operators, they found that while NB-IoT is marketed as plug-and-play, energy efficiency depends on proper 
configuration. Paging intervals in the connected state significantly affected power use, with some operators 
misconfiguring these settings. Packet size and signal quality had minimal impact unless signal strength was very 
poor. Adjustments like enabling RAI and eDRX led to major energy savings. Their findings emphasize the role 
of module settings, operator configurations, and energy-saving mechanisms in battery life, suggesting further 
research on protocol tuning for improved efficiency46.

Rastogi et al. proposed a semi-Markov-based energy-saving model for NB-IoT devices, introducing an 
Auxiliary State in the DRX mechanism to reduce power consumption, especially for small data transmissions. 
Unlike traditional approaches, this method optimizes energy use by minimizing unnecessary activity when data 
packets are minimal. Evaluations showed power-saving improvements of up to 97.1 and 98.25% by adjusting 
eDRX and PSM timers. The model effectively conserved energy without significant delay increases across various 
data arrival rates. Their findings highlight the potential of integrating additional states into NB-IoT mechanisms 
for better energy efficiency, with future research focusing on further parameter optimization47.

Zhang et al. proposed a power control scheme to enhance energy efficiency (EE) in the Narrowband Physical 
Uplink Shared Channel (NPUSCH) of NB-IoT, addressing interference from its non-orthogonality with 
NPRACH. They introduced guard bands to mitigate interference and formulated an EE optimization problem 
considering circuit power consumption and minimum data rates. Using fractional programming, they developed 
an iterative power control algorithm that quickly converged to near-optimal solutions. Simulations showed 
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significant EE improvements with guard bands, especially for low data rate communications. However, the 
trade-off between EE and spectral efficiency (SE) requires further exploration for high-data-rate applications48.

Sultania et al. developed an energy consumption model for NB-IoT devices using Power Saving Mode (PSM) 
and Extended Discontinuous Reception (eDRX) to evaluate energy efficiency in large-scale IoT deployments. 
Based on a Poisson arrival process, their model showed an average error of 11.82% compared to NS-3 simulations. 
Results indicated that with a 5 Wh battery and optimized PSM/eDRX settings, NB-IoT devices could last over 12 
years with one packet transmission per day. However, small Idle state timers increased energy consumption by 3 
to 7 times. Their findings emphasize the importance of proper power-saving configurations for extended battery 
life in IoT applications like shared bicycle tracking49.

Navarro et al. conducted a comparative study on the energy consumption of various communication 
protocols MQTT, TCP, UDP, and LwM2M used in NB-IoT applications with the BG96 module. They found 
that UDP had the lowest energy consumption, especially with frequent transmissions, while MQTT was the 
most cost-effective for feature-rich IoT applications. Payload size (10100 bytes) had minimal impact on energy 
use, allowing flexible data transmission. Their results emphasize that protocol choice should align with system 
requirements, with UDP suited for low-power needs and MQTT for cost-efficient solutions. Their methodology 
provides a foundation for further optimizing energy consumption in IoT communication protocols50.

Elhaddad et al. evaluated the energy consumption of three NB-IoT modules under simulated LTE network 
conditions, analyzing factors such as T3324, T3412, uplink transmit power, and SIB message parameters. They 
developed a data traffic-dependent energy model to estimate battery lifetime under different communication 
scenarios, including periodic UDP uplink transmissions. Their findings showed that energy consumption per bit 
varied with NPUSCH repetitions, highlighting the impact of transmission periods on power usage. Optimizing 
power amplifier (PA) design and hardware architecture could further improve energy efficiency. The study 
suggests that firmware, hardware, and network optimizations will enhance future NB-IoT device battery life51.

Abbas et al. studied NB-IoT energy consumption, analyzing the impact of tunable and non-tunable 
parameters on efficiency. They found that enabling full Discontinuous Reception (DRX), especially connected-
mode DRX (cDRX), could cut energy use by up to 50% over 10 years. The RRC inactivity timer played a crucial 
role, while CoAP retransmission timers and eDRX cycles had minimal impact. Traffic intensity and burstiness 
significantly influenced energy usage, with lower-intensity data bursts reducing power consumption. Their study 
provided guidelines for optimizing the NB-IoT protocol stack to meet the 3GPP 10-year battery life target. 
Future research will compare full vs. partial DRX support and validate findings through real-world NB-IoT 
testbed measurements52.

Chen et al. proposed an energy-efficient multi-hop LoRa broadcasting scheme (FLBS) for IoT networks, 
optimizing transmission energy consumption and large-scale data distribution. Using reinforcement learning 
for optimal relay selection, FLBS reduced communication time by 87.4% and saved 12.61% more energy than 
traditional methods. It proved highly effective for small-scale IoT applications like remote upgrades in circular 
areas but faced challenges in large regions with limited channels. Future work will extend FLBS to larger areas, 
integrate caching, explore device-to-device (D2D) communication, and apply it to smart city and power delivery 
systems to further enhance energy efficiency53.

Yu and Lo studied energy-efficient non-anchor channel allocation in NB-IoT cellular networks, identifying 
that increasing non-anchor channels can sometimes raise device energy consumption. Unlike traditional 
allocation problems, this exhibits a non-convex property. To address this, they developed a dynamic 
programming algorithm to determine the optimal number of non-anchor channels per base station, minimizing 
energy use. They also proposed an energy-efficient channel reuse algorithm, reducing energy consumption by 
66% compared to baseline methods. Their findings highlight the need for careful channel allocation to prevent 
unnecessary power consumption in NB-IoT transmissions54.

Yu and Wu investigated energy-efficient scheduling for search-space periods in NB-IoT, aiming to reduce 
blind decoding (BD) and idle time. Since base stations can only schedule devices with the same search-space 
period per subframe, resource allocation is limited. They proposed an algorithm to optimize search-space 
periods and a scheduling method that reduces BD and idle time while meeting data demands. Their approach 
lowered energy consumption by 77% compared to baseline methods. Findings showed that reducing search-
space periods and DCI repetitions had a greater impact on base station energy use than on devices. Future work 
will explore multiple non-anchor channels and base stations for further optimization55.

Liang et al. tackled energy-efficient uplink resource unit (RU) scheduling for ultra-reliable NB-IoT 
communications, modeling it as an NP-complete optimization problem. They proposed a two-phase scheduling 
scheme: the first phase optimizes default transmission settings to minimize energy use while meeting QoS 
requirements, while the second phase balances transmission urgency and flexibility to ensure delay constraints. 
Simulations showed that their method effectively reduced energy consumption while serving more devices with 
guaranteed QoS. Their findings demonstrate NB-IoT’s capability to support large-scale IoT applications with 
minimal energy usage, making it a strong candidate for energy-efficient 5G communications56.

Zholamanov et al. proposed an enhanced reinforcement learning algorithm, Double Deep Q-Network with 
Prioritized Experience Replay (DDQN-PER), to optimize energy consumption (EC) and packet delivery ratio 
(PDR) in LoRa wireless networks. Their method selects optimal transmission parameters, such as spreading 
factor (SF) and transmission power (TP), to minimize energy use while maximizing PDR. Simulations showed 
a 17.2% PDR improvement over Adaptive Data Rate (ADR) and a 6.2 to 8.11% boost over other RL-based 
methods. DDQN-PER excelled in large-scale networks (1000 devices) and maintained performance in obstacle-
prone environments. Future research will validate the algorithm in real LoRaWAN networks, explore mobile 
node adaptation, and integrate it with other communication protocols for greater efficiency57.

Bortnik et al. developed a machine learning (ML)-based method to estimate NB-IoT device energy 
consumption using statistical modem data instead of additional circuitry. They created a labeled dataset using 
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an NB-IoT module with an onboard current measurement circuit, analyzing parameters like radio channel 
quality, transmission power, and TX/RX time. Feature selection showed strong correlations between energy 
consumption and temporal parameters. Among 11 ML models evaluated, Decision Tree Regression (DTR), 
Gradient Boosting (GBR), XGBoost (XGBR), and Polynomial Regression (PR) achieved up to 93.8% accuracy 
with minimal memory use (as low as 3 KB). Future research will explore advanced ML models, improved feature 
selection, and on-device self-estimation for energy efficiency58.

Lingala et al. compared Power Saving Mode (PSM) and Power Down Mode (PDM) in NB-IoT modems 
using a Quectel modem. While PDM had lower current consumption for over 95% of the time, PSM proved 
more energy-efficient overall, considering active, idle, and sleep periods. PDM introduced additional signaling 
overhead and delays in uplink/downlink transmissions, reducing its advantages. PSM consistently outperformed 
PDM in most scenarios, except when base stations provided lower-than-required T3412 timer values. The study 
concluded that PSM is the preferred mode for NB-IoT, offering a better balance between power savings and 
communication efficiency59.

Caso et al. conducted a large-scale data-driven analysis of the Random Access (RA) procedure in NB-IoT 
networks, examining the impact of deployment, radio coverage, and operator configurations. While RA generally 
met performance requirements, increasing connectivity and scenario variability posed optimization challenges. 
They proposed a Machine Learning (ML)-based enhancement, using radio conditions like RSRP, SINR, and 
RSRQ to predict RA success and delay with high accuracy. Their approach optimized RA configurations, reducing 
power consumption by at least 50%. Future work will explore implementation in dynamic environments and 
advanced system scenarios for further optimization60.

Lukic et al. conducted a real-world evaluation of NB-IoT module energy consumption using a custom-designed 
high-resolution data collection platform. Their study analyzed energy usage across different transmission phases, 
highlighting the impact of both device and network-side configurations. Experiments with a mobile operator 
revealed significant variations in energy consumption depending on UE and eNB settings. Future plans include 
scaling the study to 100 NB-IoT nodes to gather extensive data under various configurations. Their findings 
provide valuable insights into real-world NB-IoT energy efficiency, crucial for maximizing battery life in large-
scale deployments61.

Zhao et al. proposed an intelligent NB-IoT-based street lighting system with an energy-saving algorithm 
to reduce energy consumption, maintenance costs, and operational complexity. The system integrates a cloud 
server, remote monitoring, and streetlight control terminals, using NB-IoT and Power Line Carrier (PLC) 
communication for intelligent local and remote control. It adjusts brightness based on ambient light and vehicle 
speeds, enabling on-demand lighting to save energy. Additionally, it supports environmental monitoring, fault 
alarms, and abnormal protection. The system improves adaptability, cost efficiency, and real-time responsiveness, 
making it a promising solution for future smart city infrastructure62.

Kim et al. proposed a multi-agent reinforcement learning (MARL) framework, MAQ-OCB, to optimize energy 
efficiency (EE) and minimize user outages in ultra-dense small cell networks. Using distributed Q-learning for 
outage-aware cell breathing, the framework reduces network energy consumption while maintaining QoS in 6G 
wireless networks. Simulations showed MAQ-OCB outperformed traditional algorithms like No TPC, On-Off, 
and centralized Q-learning (C-OCB). Two variations were tested: one using neighboring small cell base station 
(SBS) state information and another relying only on its own state. Results confirmed MAQ-OCB’s effectiveness 
in improving EE and reducing outages, demonstrating its potential for energy-efficient 6G networks63.

Alamu et al. reviewed machine learning (ML) applications in energy harvesting (EH) IoT networks, focusing 
on challenges from stochastic energy sources and wireless fading channels. They explored ML techniques such as 
reinforcement learning (RL), deep learning (DL), and deep reinforcement learning (DRL) for optimizing energy 
usage. While RL adapts well to environmental changes, it struggles with large state-action spaces in massive IoT 
deployments. DRL offers better data processing but requires energy-efficient optimization for practical use. The 
study highlighted the need for lightweight DRL models to support EH in large-scale IoT networks, particularly 
for future 6G applications64.

Guo and Xiang proposed a multi-agent reinforcement learning (MARL) framework to optimize energy 
efficiency in NB-IoT networks by improving power ramping and preamble allocation. Traditional random 
preamble allocation in LTE lacks efficiency for large-scale IoT deployments. Their joint optimization approach 
integrates power ramping and preamble selection, enhancing energy efficiency and random access (RA) success 
probability. Using a Win-or-Learn-Fast Policy Hill-Climbing (WoLF-PHC) algorithm with a simplified “stateless” 
modification, simulations demonstrated significant energy savings. Future work will incorporate Power Saving 
Mode (PSM), coverage enhancement (CE) classes, and state variables like RSRP to further refine optimization65.

Chen et al. proposed an energy-efficient LoRa broadcasting scheme, FLBS, for IoT applications like remote 
upgrades in circular areas. By combining LoRa protocols with multi-hop technology, the scheme optimizes 
relay selection and transmission power to reduce energy consumption. Using a reinforcement learning-based 
algorithm, FLBS outperformed traditional methods in energy savings. The study emphasized the importance of 
considering actual LoRa hardware parameters and environmental factors. Future research will explore caching, 
device-to-device (D2D) communication, and integrating LoRa mesh to enhance scalability and applicability in 
complex IoT scenarios66.

Haridas et al. examined the use of energy-harvesting technologies to extend NB-IoT device battery life in 
smart home applications. Their analysis of energy consumption across coverage classes revealed discrepancies 
between actual and expected 10-year lifespans. They explored ambient energy sources for harvesting, showing 
that, in ideal conditions, perpetual operation was possible but highly dependent on energy availability. Key 
challenges included managing unpredictable energy sources and optimizing long-term sustainability. Their 
findings highlight the potential of energy harvesting for improving NB-IoT efficiency, with future work focusing 
on overcoming integration challenges for reliable IoT applications67.
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Chang et al. optimized NB-IoT power consumption using adaptive radio access (RA) strategies, focusing on 
enhanced coverage levels (ECLs). Through field measurements on two testbeds, they identified inefficiencies in 
ECL selection and proposed an adaptive RA approach incorporating predictive ECL selection and opportunistic 
packet transmission. Their method reduced UE power consumption by up to 36% while maintaining block error 
rate (BLER) performance. The study emphasized ECL selection’s role in improving energy efficiency without 
compromising reliability. Future work will refine uplink quality predictions and optimize ECL selection from 
both UE and eNodeB perspectives68.

Sultania et al. developed an analytical model to evaluate NB-IoT power consumption and downlink (DL) 
latency using Power Saving Mode (PSM) and extended Discontinuous Reception (eDRX). Based on a Markov 
chain, the model accurately predicted energy consumption and latency, achieving over 91% accuracy compared 
to ns-3 simulations. Their multi-objective Pareto analysis identified optimal parameter configurations, favoring 
smaller timer values for low-latency or infrequent uplink (UL) traffic scenarios. Future research will explore 
additional power-saving techniques, such as Release Assistance Indication (RAI), Wake-up signals, and Early 
Data Transmission, to further enhance NB-IoT energy efficiency69.

Jorke et al. analyzed the power consumption of NB-IoT and eMTC in smart city environments, comparing 
data rate, battery life, latency, and spectral efficiency under different coverage conditions. Their study found 
that eMTC outperformed NB-IoT in moderate conditions (144 dB coupling loss) with a 4% longer battery life 
and higher data rates. However, in extreme conditions (164 dB coupling loss), NB-IoT provided an 18% longer 
battery life due to reduced transmission repetitions. While eMTC performed better at 155 dB or lower, NB-IoT’s 
superior spectral efficiency and lower bandwidth needs make it ideal for large-scale IoT deployments70.

Duhovnikov et al. evaluated the feasibility of NB-IoT for low-power aircraft applications, conducting 
experiments with a Sodaq NB-IoT module on private and commercial networks. Their findings showed that 
optimizing Power Saving Mode (PSM) could extend battery life for several years, but configuration and hardware 
design play a crucial role in aviation use cases. While NB-IoT demonstrated promise for certain applications, 5G 
was deemed necessary for more demanding aviation needs. The study emphasized optimizing peripheral energy 
consumption and extending transmission cycles to improve battery life, with future research focusing on further 
enhancements for aviation scenarios71.

Lee and Lee proposed a Prediction-Based Energy Saving Mechanism (PBESM) to enhance NB-IoT uplink 
transmission efficiency by reducing energy consumption. PBESM includes a deep packet inspection-based 
network architecture to predict uplink packet occurrences and an algorithm that optimizes scheduling requests 
by pre-assigning radio resources. This reduces random access attempts, lowering transmission energy use by up 
to 34%. Additionally, PBESM improved session active time by 16% without requiring hardware modifications on 
IoT devices. Future research will integrate software-defined networking for better packet inspection and explore 
contention resolution in multi-user scenarios to enhance efficiency21.

Alobaidy and Singh conducted a real-world evaluation of NB-IoT performance in Malaysia, analyzing 
coverage, path loss, packet delivery rate (PDR), latency, and power consumption. NB-IoT achieved a 91.76% 
PDR, supporting high data rates even with low signal quality, but latency variations significantly impacted 
battery efficiency. Compared to LoRaWAN and Sigfox, NB-IoT had a much shorter battery life 344.9 days versus 
1608.9 and 1527.6 days, respectively. While NB-IoT excelled in data rate and coverage, its power consumption 
was higher than expected. The study emphasized optimizing power management and deployment strategies for 
better efficiency and highlighted their measurement platform as a useful tool for IoT network tracking72.

Alkhayyal and Mostafa conducted a systematic literature review on the role of machine learning (ML) and 
artificial intelligence (AI) in enhancing LoRaWAN energy efficiency and performance for IoT applications. 
Their review highlighted the effectiveness of deep reinforcement learning (DRL) and supervised learning in 
optimizing resource allocation, network stability, and energy consumption. Key factors such as Spreading 
Factor (SF), bandwidth (BW), and coding rate (CR) were identified as crucial for balancing communication 
range, data rate, and power efficiency. The study emphasized the need for adaptive ML-based algorithms to 
dynamically adjust network parameters. Future research will focus on real-time adaptive systems and cross-layer 
optimization for improved network performance73.

Nauman et al. investigated Intelligent Device-to-Device (I-D2D) communication to optimize data delivery 
and energy efficiency in NB-IoT, particularly for delay-sensitive applications like healthcare IoT. They addressed 
the high power consumption caused by repeated control and data transmissions between NB-IoT User 
Equipment (UE) and base stations. Their proposed two-hop D2D communication model reduced transmission 
repetitions, improving efficiency. Relay selection was formulated as a Multi-Armed Bandit (MAB) problem 
and solved using a Reinforcement Learning (RL) approach. Simulations showed that I-D2D improved Packet 
Delivery Ratio (PDR) and reduced End-to-End Delay (EED). Future work will focus on large-scale deployment 
and real-world integration into IoT networks74.

Pei, Zhang, and Li proposed an energy-saving mechanism for NB-IoT based on extended discontinuous 
reception (eDRX), focusing on power consumption and access delay. They developed a Markov model to analyze 
NB-IoT device states, incorporating the random access process often overlooked in energy calculations. Their 
findings showed that backoff time after access failures significantly impacts energy consumption and delay. By 
linearly increasing backoff time, they reduced variations in access delays and improved energy efficiency. This 
study provides valuable insights into optimizing NB-IoT power management, particularly in scenarios with 
frequent network access attempts75.

Bali et al. explored the energy efficiency of NB-IoT in smart applications, emphasizing its role in reducing 
IoT energy consumption and carbon footprints. They highlighted the integration of Green IoT with NB-IoT 
as a promising approach, particularly for large-scale applications like smart agriculture. NB-IoT’s low power 
usage, massive connectivity, and strong indoor coverage make it well-suited for sustainable IoT solutions. They 
proposed a green NB-IoT model for agriculture to promote energy-efficient technologies. While NB-IoT is cost-
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effective and reliable, challenges remain in further optimizing energy efficiency for large-scale deployments, 
necessitating continued research18.

Anbazhagan and Mugelan proposed an energy-saving technique for NB-IoT, integrating a Proxy state and 
enhanced Release Assistance Indication (ERAI) within a semi-Markov framework. This approach optimizes the 
Discontinuous Reception (DRX) mechanism by reducing unnecessary wake-ups, significantly improving the 
Power Saving Factor (PSF). Their method achieved up to 99.4% energy savings with optimized eDRX durations 
and 99.9% with optimized PSM settings, extending device battery life for low-data applications. Future work 
will refine the semi-Markov model, validate it in real-world scenarios, and explore trade-offs between energy 
efficiency and communication delays, with potential adaptation for other LPWAN technologies76.

Anbazhagan and Mugelan introduced a Soft Actor-Critic (SAC) reinforcement learning algorithm to 
optimize resource allocation in NB-IoT networks, tackling challenges like dynamic user demands and variable 
channel conditions. SAC outperformed traditional methods like DQN and PPO, improving energy efficiency 
by 10.25%, throughput by 214.98%, and fairness (Jain’s index) by 614.46%. It also enhanced recovery time and 
marginally improved latency, making it ideal for energy-efficient, low-latency applications. SAC demonstrated 
scalability across urban, industrial, and rural IoT deployments, proving to be a robust solution for optimizing 
NB-IoT resource allocation and network performance77.

Technical gaps and research motivation
Despite significant advancements in energy-efficient NB-IoT systems, several challenges remain. Most 
existing studies focus on either static optimization techniques or isolated power-saving mechanisms, lacking a 
comprehensive and adaptive approach. While considerable attention has been given to downlink optimization, 
uplink energy efficiency essential for prolonged device operation has been largely neglected. Additionally, while 
reinforcement learning has been explored for resource allocation, its integration with power-saving mechanisms 
and intelligent decision-making models is still in its early stages. Empirical studies also reveal inconsistencies 
between theoretical models and real-world energy consumption, highlighting the need for adaptive power 
control strategies. A major limitation of current approaches is the lack of dynamic power-saving mode switching 
based on real-time network conditions. Most existing mechanisms operate under fixed configurations, resulting 
in inefficient energy utilization. Furthermore, although cooperative relaying and multi-hop strategies have been 
investigated in other domains, their potential for enhancing power-saving in NB-IoT remains largely unexplored.

To address these challenges, this research introduces an adaptive power-saving mode control framework 
based on Soft Actor-Critic (SAC) reinforcement learning. Unlike conventional methods, this approach 
dynamically adjusts power-saving modes in response to changing network conditions, ensuring optimal energy 
efficiency while maintaining Quality of Service (QoS). By bridging the gap between theoretical energy models 
and practical deployment constraints, this framework offers a more effective and scalable solution. By integrating 
reinforcement learning with established power-saving modes such as Power Saving Mode (PSM) and extended 
Discontinuous Reception (eDRX), this research provides a flexible and adaptive power management strategy. 
Unlike traditional methods the proposed approach ensures a real-time balance between energy efficiency and 
service quality, making it particularly well-suited for large-scale NB-IoT deployments.

Traditional static power-saving strategies in NB-IoT, such as fixed DRX (Discontinuous Reception) or PSM 
(Power Saving Mode) configurations, rely on pre-defined timers and thresholds or deterministic scheduling 
rules that do not respond to dynamic changes in network traffic, signal quality, or application requirements. 
While such rule-based approaches are simple to implement and computationally inexpensive, they lack the 
flexibility to adapt in real time. As a result, they often lead to suboptimal energy consumption, increased latency, 
or reduced reliability under fluctuating conditions.

In contrast, the proposed Soft Actor-Critic (SAC)-based power management approach continuously interacts 
with the environment and learns to adapt its mode-switching policy based on evolving system states. This 
adaptability allows the SAC agent to balance energy efficiency and transmission reliability more effectively than 
static methods. Given the inherently time-varying and device-specific nature of NB-IoT deployments, static 
models were deemed unsuitable for simulation in this context. Instead, our focus was on benchmarking against 
dynamic deep reinforcement learning algorithms (DQN and PPO), which offer a more realistic performance 
baseline for intelligent control in heterogeneous and uncertain IoT environments.

This research leverages the Soft Actor-Critic (SAC) algorithm to improve power management in NB-
IoT networks, offering significant advancements over existing methods. Unlike traditional approaches, SAC 
dynamically adjusts power-saving modes based on real-time network conditions, enhancing adaptability and 
efficiency. SAC stands out from other reinforcement learning algorithms like Proximal Policy Optimization 
(PPO), and Deep Q-Networks (DQN), through its handling of continuous action spaces and entropy 
regularization, ensuring robust exploration and preventing premature convergence to suboptimal policies. 
Additionally, SAC’s off-policy learning and stochastic policy capabilities allow for efficient data utilization 
and adaptability to fluctuating network conditions, leading to more reliable and context-aware power-saving 
decisions. By addressing the limitations of existing solutions, the SAC-based approach significantly enhances 
power efficiency, network performance, and overall sustainability in NB-IoT networks, paving the way for more 
resilient and scalable IoT deployments.

Methodology
NB-IoT environment simulation
We implement a reinforcement learning framework for optimizing power-saving modes in a Narrowband 
Internet of Things (NB-IoT) network. This framework comprises several key components, each contributing to 
the simulation and optimization process.
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Firstly, the NB-IoT Environment class encapsulates the environment in which the devices operate. It defines 
a state space with 17 dimensions, encompassing parameters such as signal strength, battery level, data rate, 
spectral efficiency, power consumption, resource utilization, energy efficiency, retransmission rate, latency, 
channel quality indicator (CQI), packet loss, queuing delay, mobility, and temperature. The action space consists 
of six distinct power-saving modes: Mode 0 (Idle Mode), Mode 1 (Connected Mode), Mode 2 (DRX Active 
State), Mode 3 (DRX Inactive State), Mode 4 (Extended DRX - eDRX), and Mode 5 (Power Saving Mode - 
PSM). The reset method initializes the state of each device with random values within standard ranges. The step 
method applies the selected action, updates the state, and computes a reward based on a weighted combination 
of the mentioned parameters, ensuring non-negative rewards and penalizing undesirable conditions like high 
retransmission rates, latency, packet loss, and queuing delay.

The SAC Agent class implements the Soft Actor-Critic (SAC) algorithm, a reinforcement learning technique. 
This agent includes Q-value networks (critics) and a policy network (actor). The critics evaluate state-action 
pairs, while the actor samples actions based on the current policy, providing a mean and log standard deviation 
for the actions. The SAC Agent undergoes training using experiences stored in a replay buffer, which consists of 
state transitions recorded during the simulation. Training involves updating the Q-value networks to minimize 
the loss between predicted and target Q-values and adjusting the policy network to maximize expected rewards. 
The agent also offers methods for saving and loading model weights, facilitating model persistence.

The Centralized Controller class utilizes the SAC Agent to select actions for multiple devices in a centralized 
manner. It prioritizes specific power-saving modes, including Mode 4 (eDRX) and Mode 5 (PSM), by adjusting 
action probabilities to favor these modes for improved power efficiency. During each training episode, the 
controller aggregates experiences from all devices, store them in a replay buffer, and trains the SAC Agent using 
this buffer. This centralized approach ensures coordinated optimization across all devices in the network.

The simulation and training loop initialize an environment with 10 devices and set up the SAC Agent and 
Centralized Controller. Over 1000 episodes, the environment is reset at the start of each episode, and actions are 
selected for all devices using the centralized controller. The resulting states, rewards, and done signals are recorded, 
and various metrics, including power consumption, signal strength, battery level, data rate, spectral efficiency, 
packet loss, queuing delay, CQI, latency, and energy efficiency, are monitored. The collected experiences are 
utilized to train the SAC Agent, and episode-wise metrics are aggregated and saved to an Excel file for detailed 
analysis. Additionally, the total rewards per episode are plotted to visualize the learning progress of the agent. 
Tables 1 and 2 presents the simulation parameters for the NB-IoT environment and the SAC algorithm, detailing 
the key values and configurations for network, environment, and algorithm settings. These parameters define the 
operation of both the NB-IoT device modes and the reinforcement learning setup.

To evaluate the performance of the proposed Soft Actor-Critic (SAC)-based power management strategy, we 
compare it against two standard deep reinforcement learning algorithms: Deep Q-Network (DQN) and Proximal 
Policy Optimization (PPO). DQN represents value-based learning, where Q-values guide action selection, while 
PPO is a state-of-the-art policy gradient method that balances exploration and stability. These models are not 
static or rule-based, but serve as dynamic, learning-based baselines to measure how SAC’s entropy-regularized 
learning improves long-term energy efficiency and reward optimization in NB-IoT environments.

Soft actor-critic (SAC) algorithm
Soft Actor-Critic (SAC) is a sophisticated off-policy reinforcement learning algorithm tailored for continuous 
action spaces, aiming to develop a stochastic policy that maximizes cumulative rewards while ensuring policy 
entropy regularization to foster exploration and robustness. In the context of Intelligent Power Management 
in NB-IoT networks, SAC dynamically selects power-saving modes for devices based on observed states and 

Parameter Description Value/Configuration

Network type Type of IoT network used for simulation NB-IoT

Channel model Channel model applied during simulation Rayleigh Fading, Free-Space

Environment Simulation environment Python (Gym), MATLAB

Training episodes Number of training episodes 1000

Time slots Time slots for communication 10ms per slot

Frequency band The frequency range used for NB-IoT 800 MHz

Data rate The communication data rate for the simulation 250 kbps

Transmission power Transmission power for devices 14 dBm

Noise power Noise level in the environment -104 dBm

Channel bandwidth Channel bandwidth for communication 200 kHz

Idle mode timer The device remains registered with the network, periodically waking up to check for activity. 10 s

Connected mode timer The device maintains continuous communication with the network for active data transmission. 30 s

DRX active state timer The device wakes up periodically to check for incoming data while conserving power. 10 s

DRX inactive state timer The device enters a deeper sleep state, minimizing power consumption by suspending network monitoring. 180 s

Extended DRX (eDRX) timer The device stays inactive for longer intervals, saving power while maintaining low connectivity. 180 s

Power saving mode (PSM) timer The device enters deep sleep, suspending all communication until a wake-up event occurs. 3600 s

Table 1.  NB-IoT environment parameters.
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rewards. The SAC algorithm encompasses a soft Q-learning framework, comprising two crucial components: 
the actor network and the critic network.

The actor network approximates the policy function π(s), generating a Gaussian distribution with mean 
µ(s) and standard deviation σ(s), dictating the probability distribution over actions given states:

	 π(a | s) = N (a | µ(s), σ(s))� (1)

Meanwhile, the critic network estimates the state-action value function Q(s, a), denoted as Qϕ(s, a), evaluating 
the quality of taking action a in state s :

	 Q(s, a) ≈ Qϕ(s, a)� (2)

To delve into the mathematical underpinnings, the soft Bellman backup is employed to update the critic network. 
It calculates the target value yt as the sum of the immediate reward rt and the expected future reward, balancing 
exploration and exploitation through entropy regularization:

	 yt = rt + γEs′∼p

[
Q target (

s′, πθ

(
s′))

− α log πθ

(
a | s′)]

� (3)

where:

•	 yt is the target value.
•	 rt is the reward at time step t.
•	 s′ is the next state sampled from the environment.
•	 Q target  denotes the parameters of the target critic network.
•	 πθ  denotes the parameters of the actor network.
•	 α is the temperature parameter for entropy regularization.

The actor’s objective is to maximize the expected reward under the current policy while simultaneously 
maximizing policy entropy. This involves optimizing the parameters θ of the actor network by ascending the 
gradient of the actor objective function, J(θ), computed as the expectation over states and actions:

	 J(θ) = Es∼ρπ [Ea∼πθ [Qϕ(s, a) − α log πθ(a | s)]]� (4)

During training, SAC utilizes off-policy data stored in an experience replay buffer, updating the actor and 
critic networks iteratively using stochastic gradient descent. The critic network parameters ϕ are updated to 
minimize the soft Bellman backup loss, while the temperature parameter α for entropy regularization is adjusted 
to maintain a balance between exploration and exploitation. In the context of NB-IoT power management, a 
centralized controller facilitates coordinated power-saving mode selection for multiple devices, leveraging the 
learned policy from SAC to ensure optimized network behavior.

Soft Actor-Critic (SAC) offers a comprehensive framework for intelligent power management in NB-IoT 
networks, integrating entropy regularization to encourage exploration while efficiently learning from off-policy 
data. By incorporating sophisticated algorithms and iterative updates, SAC enables sustainable and energy-
efficient operation of NB-IoT networks in real-world scenarios, paving the way for adaptive and responsive 
power management solutions.

Parameter Description Value/Configuration

Learning rate Learning rate for the SAC agent 0.0003

Discount factor (γ) Discount factor used for future rewards 0.99

Batch size Number of experiences in each batch 128

Replay buffer size Size of the experience replay buffer 1,000,000

Update frequency Frequency of updating the policy 50 steps

Hidden layer sizes Number of units in each hidden layer of the neural network [256, 256]

Policy network type Architecture of the policy network MLP (Multilayer Perceptron)

Q-Network type Architecture of the Q-network MLP

Action space Type of action space Continuous

State space Type of state space Continuous

Entropy coefficient (α) Weight of the entropy term in the objective function 0.2

Target network update rate The rate at which target networks are updated 0.005

Exploration strategy The method used to encourage exploration Gaussian Noise

Number of actors Number of parallel actors used in training 16

Table 2.  SAC algorithm parameters.
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Reward function
In the Soft Actor-Critic (SAC) algorithm for NB-loT power management, the reward function is designed 
to optimize a comprehensive set of performance metrics while balancing power consumption. Key metrics 
considered in the reward function include signal strength (RSSI), battery level, data rate, energy consumption, 
latency, packet error rate, and throughput, among others. The reward function Rt is formulated to ensure the 
device operates efficiently across various dimensions critical to its performance. Signal strength, measured 
by RSSI, is crucial for maintaining reliable communication and reducing retransmissions. Battery level is 
monitored to prolong the operational life of NB-loT devices, essential for deployments in remote locations. The 
data rate ensures efficient and timely data transmission, vital for applications requiring real-time data. Energy 
consumption is minimized to promote the use of power-saving modes, thereby extending battery life, and hence, 
it is included with a negative sign in the reward function to incentivize lower energy usage. Latency is considered 
to ensure quick response times, critical for time-sensitive applications. Additionally, metrics such as packet error 
rate and throughput are included to maintain communication reliability and optimize data flow. The packet 
error rate is also included with a negative sign to encourage minimizing errors. The reward function Rt is 
expressed as a weighted sum of these metrics:

	

Rt = wRSSI · RSSIt + wBattery · Batteryt + wDataRate · DataRatet

+ wEnergy · (−Energyt) + wLatency · (−Latencyt)
+ wPacketErrorRate · (−PacketErrorRatet) + wThroughput · Throughputt + . . .

� (5)

Each weight ( wRSSI , wBattery , ...) is assigned based on the priorities of the specific NB-loT application. 
For instance, if battery life is a critical factor, a higher weight is given to the battery level metric. Conversely, 
for applications demanding real-time data transmission, higher weights are assigned to data rate and latency 
metrics. The specific values of these weights are determined through empirical tuning to achieve an optimal 
balance that meets the operational constraints and performance goals of the NB-IoT deployment. This approach 
ensures a holistic optimization strategy, addressing multiple facets of device performance and energy efficiency.
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Algorithm 1.  Soft actor-critic (SAC) for intelligent power management in NB-IoT

Experimental parameters and threshold settings
To ensure reproducibility and transparency, we provide the following details of the experimental environment, 
feature representations, and design thresholds used during the SAC-based training and evaluation process. The 
overall workflow is illustrated in Fig. 3, where the SAC-based power management framework demonstrates the 
interaction between the agent and the environment in the NB-IoT system.
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State space and feature descriptions
Each NB-IoT device in the environment is modelled with a 17-dimensional state vector, capturing critical real-
time network and device-level characteristics (Table 3). All state features were normalized to the [0, 1] range 
prior to being input into the SAC agent to ensure stable convergence during training.

Action space
The action space consists of 6 discrete power-saving modes, each corresponding to a specific NB-IoT operational 
state (Table 4). Modes 4 (eDRX) and 5 (PSM) were prioritized during training using higher action sampling 
probabilities (0.7 and 0.3, respectively) when the data rate was negligible.

Fig. 3.  Flowchart of the SAC-based power management framework in NB-IoT showing agent-environment 
interaction.
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Reward function and feature weights
The total reward for each device is computed as a weighted sum of positive and negative performance indicators:

	
R =

14∑
i=1

wi · fi� (6)

where:

•	 wi is the weight for feature i.
•	 fi is the normalized feature value (e.g., signal strength, battery level).
•	 Rewards were shaped to favor low power usage, high energy efficiency, and lower latency, loss, and retrans-

mission.

All weights were uniformly assigned as wi = 0.1 for simplicity and to avoid bias across features. Key 
positive contributors include low latency, low packet loss, and high spectral efficiency. Negative features (e.g., 
retransmission, temperature) are penalized proportionally.

Parameter Purpose Value

DRX timeout Time in inactivity before DRX mode 2 s

PSM entry delay Minimum idle duration to enter PSM 10 s

Learning rate Actor/Critic optimizer learning rate 0.0003

Discount factor (γ) Future reward decay 0.99

Batch size Number of transitions per training update 256

Max episodes Training duration 1000 episodes

Sleep mode preference Biasing probability toward eDRX and PSM eDRX: 0.7, PSM: 0.3

Table 5.  Key experimental parameters used in SAC-based power management.

 

Action Index Power-Saving Mode Description

0 Idle Mode

1 Connected Mode

2 DRX Active State

3 DRX Inactive State

4 Extended DRX (eDRX)

5 Power Saving Mode (PSM)

Table 4.  Mapping of action indices to NB-IoT power-saving modes.

 

State Feature Description Value Range

Signal strength Received signal power in dBm [− 120, − 80] dBm

Battery level Remaining energy capacity [20, 100] %

Data rate Device transmission throughput [50, 200] kbps

Spectral efficiency Efficiency in spectrum usage [0.5, 2.5] bps/Hz

Power consumption Energy consumed per transmission [0.1, 0.5] W

Resource utilization Radio resource usage [0, 1]

Energy efficiency param Proxy variable for current energy efficiency [0, 1]

Retransmission rate Ratio of retransmitted packets [0, 0.5]

Latency End-to-end communication delay [10, 500] ms

Channel quality indicator Link reliability indicator [1, 15]

Packet loss rate Ratio of dropped packets [0, 0.2]

Queuing delay Buffer-induced latency [0, 100] ms

Mobility Relative movement speed [0, 10]

Temperature Operational temperature of the device [10, 40] ◦C

Table 3.  Description of state features used in the SAC-Based NB-IoT environment.

 

Scientific Reports |        (2025) 15:34618 19| https://doi.org/10.1038/s41598-025-18214-4

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Thresholds and system rules
Table 5 provides all necessary parameter details and design choices for understanding and replicating the 
adaptive control behavior learned by the SAC agent in the NB-IoT power-saving context.

Soft actor-critic algorithmic approach for energy-efficient power management in NB-IoT 
networks
Initialization (lines 1-8)
Algorithm 1 outlines the implementation of the Soft Actor-Critic (SAC) algorithm tailored for energy-efficient 
power management in NB-IoT networks. The algorithm begins with an initialization phase, where the Soft 
Actor-Critic (SAC) model is set up along with its key components. These include the policy network (Actor), 
responsible for selecting actions based on observed states, and the value network (Critic), which evaluates the 
quality of state-action pairs. Additionally, a target value network (line 3) is introduced to stabilize training by 
providing a slowly updated version of the critic.

A Replay Buffer (line 3) is initialized to store past experiences, ensuring training stability by allowing the 
model to sample a diverse set of past state-action transitions. The state space S (line 6) consists of NB-IoT device 
parameters such as power consumption, signal strength, and data traffic, while the action spaceA (line 7) includes 
different power-saving modes that devices can adopt. The reward function R (line 8) is defined to optimize 
energy efficiency while maintaining network performance. This initialization ensures that the learning agent has 
all necessary components in place before training begins.

Data collection (lines 9-12)
Once initialization is complete, the algorithm enters the data collection phase. At the start of each training 
episode, the environment provides an initial state s0 (line 10), representing the current conditions of the NB-IoT 
network, including factors like power level, signal quality, network congestion, and battery status. This state is 
stored in the Replay Buffer (line 12) to be used for training.

The Replay Buffer plays a crucial role in reinforcement learning by allowing the agent to learn from past 
experiences rather than relying solely on real-time interactions. This stored data enhances the training stability 
by enabling the SAC model to sample a diverse set of past state-action transitions, reducing the likelihood of 
over-fitting to recent experiences.

Policy execution (lines 13-19)
During the policy execution phase, the Actor (policy network) (line 17) determines the best power-saving mode 
for each NB-IoT device. The training loop follows a standard reinforcement learning process, where the current 
state st (line 15) is observed, and an action at (line 16) is sampled from the policy.

The selected action modifies the device’s operational parameters, and the environment responds by 
transitioning to a new statest+1 (line 18) while providing a reward  rt (line 18) based on energy efficiency and 
network performance. The experience tuple  (st, at, rt, st+1) is then stored in the Replay Buffer (line 19). This 
iterative process allows the SAC agent to refine its policy by exploring different power-saving strategies and 
learning which ones yield the best long-term rewards.

Training phase (lines 20-27)
The training phase involves updating the models parameters using the collected experience data. A mini-batch 
of past experiences is sampled from the Replay Buffer (line 22), consisting of state-action-reward-next-state 
tuples (s, a, r, s′).

The target value y (line 23) is computed using the target network, following the equation:

	 y = r + γ(1 − done)Q′(s′, π′(s′))� (7)

where γ is the discount factor, and Q′ is the target Q-value computed from the target network.
Next, the value network (Critic) is updated by minimizing the loss function (line 24):

	
Lcritic = Es,a,r,s′

[1
2 (Q(s, a) − y)2

]
� (8)

This ensures that the Critic accurately estimates the expected future return for each state-action pair. The policy 
network (Actor) is updated using entropy-regularized policy gradients (line 25), with the loss function:

	 Lactor = Es [α log π(a | s) − Q(s, a)]� (9)

where α is the temperature parameter controlling exploration and exploitation.
To ensure stable learning, the target value network is updated using Polyak averaging (line 26):

	 θ′ ← τθ + (1 − τ)θ′� (10)

where τ  determines how gradually the target network updates. This prevents drastic fluctuations in the value 
function, leading to more stable learning. Additionally, α is dynamically adjusted during training (line 27) to 
optimize the trade-off between exploration and exploitation.

	 α ← α + αLR(entropy_target − entropy)� (11)
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Centralized controller for NB-IoT power allocation (lines 28-34)
A Centralized Controller (line 29) manages power allocation across multiple NB-IoT devices in a coordinated 
manner. It initializes a shared policy (line 32) that simultaneously accommodates multiple devices. At each time 
step, the Controller selects actions (line 31) for all devices, ensuring optimal power-saving decisions are made 
collectively.

The centralized SAC agent is trained using experiences stored in a shared Replay Buffer (line 34), allowing it 
to learn a policy that balances energy efficiency with network performance. The controller enhances system-wide 
efficiency by reducing unnecessary power consumption while maintaining reliable connectivity.

Training loop and performance evaluation (lines 35-52)
The overall training loop runs for multiple episodes, allowing the SAC agent to refine its policy. At the beginning 
of each episode, training parameters (line 37) are initialized, including the number of devices, state and action 
space dimensions, batch size, and maximum training episodes. The environment resets (line 40), and the Replay 
Buffer is cleared (line 41).

As the episode progresses, the Centralized Controller selects optimal power-saving modes (line 43) for devices, 
executes actions, receives rewards, and stores experiences (line 44) for learning. The SAC policy updates occur at 
regular intervals (line 46), improving the efficiency of power allocation.

Performance is evaluated by tracking key metrics, including total rewards, power consumption, and energy 
efficiency trends (line 51). Graphs are generated to analyze training performance, showcasing how energy 
efficiency evolves over time (line 52).

Conclusion
This algorithm applies Soft Actor-Critic (SAC) reinforcement learning for intelligent power management in 
NB-IoT networks. The SAC agent learns policies that balance energy savings and network performance by 
incorporating entropy regularization. The Centralized Controller further enhances coordination among devices, 
ensuring energy efficiency.

The algorithm significantly reduces power consumption through continuous learning while maintaining 
reliable connectivity, making it ideal for large-scale NB-IoT deployments.

Results and discussion
Experimental setup
The proposed Adaptive Power-Saving Mode Control in NB-IoT Networks was implemented using a simulation 
framework designed to evaluate the effectiveness of Soft Actor-Critic (SAC) reinforcement learning for optimal 
power management. The simulation environment consists of multiple NB-IoT devices communicating with a 
base station, where each device transitions between different power-saving modes based on network activity and 
predefined traffic patterns.

The SAC algorithm was implemented using Python with deep reinforcement learning libraries such 
as TensorFlow/PyTorch. The environment state includes parameters such as device activity level, power 
consumption, and sleep mode duration, while the agent’s actions involve selecting the most energy-efficient 
power-saving mode for each device. The reward function was designed to maximize energy efficiency while 
maintaining network responsiveness.

The evaluation was conducted over multiple training episodes to ensure convergence, with performance 
measured using key metrics, including total reward, overall power consumption, energy efficiency, active and 
sleep mode timing, and duty cycle percentage. The simulation dynamically adjusted device behavior to reflect 
real-world NB-IoT scenarios, ensuring adaptability to varying traffic loads and power-saving requirements. 
The obtained results validate the effectiveness of SAC in optimizing power management strategies for NB-IoT 
networks.

Total reward
Total Reward is a key metric used to evaluate the effectiveness of the proposed Adaptive Power-Saving Mode 
Control in NB-IoT networks. It quantifies the accumulated performance of the learned policy during the 
evaluation phase, measuring the system’s ability to optimize power-saving mode transitions while ensuring 
network efficiency.

The total reward obtained during each episode is calculated by summing the individual rewards collected by 
all devices over time:

	
R

(e)
episode =

D∑
d=1

T∑
t=1

r
(e)
d,t � (12)

where:

•	 R
(e)
episode  : total reward obtained during episode e.

•	 D : number of NB-IoT devices.
•	 T : total number of time steps in episode e.
•	 r

(e)
d,t  : reward obtained by device d at time step t in episode e.
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Figure 4 presents the total reward obtained for different algorithms DQN, PPO, and SAC across multiple 
evaluation episodes. SAC consistently outperforms DQN and PPO, achieving a peak reward of 146.15 bits in 
the episode range 601-650, while DQN and PPO exhibit comparatively lower maximum values. The higher total 
reward attained by SAC highlights its ability to learn an optimal power-saving policy that minimizes unnecessary 
active mode duration while maintaining network performance.

Throughout the evaluation phase, SAC demonstrates stable and high reward values, reinforcing its capability 
to generalize effectively across different network conditions. In contrast, DQN and PPO show more fluctuations, 
indicating their limited ability to adapt to dynamic power-saving requirements. The superior performance of 
SAC validates its effectiveness in intelligently managing power-saving mode transitions, making it a robust 
solution for optimizing NB-IoT power consumption.

Overall power consumption
Power consumption is a critical metric for evaluating the efficiency of Adaptive Power-Saving Mode Control 
in NB-IoT networks. It reflects the total energy expenditure across different evaluation episodes, directly 
influencing battery life and operational sustainability.

The overall power consumption is computed as the sum of instantaneous power readings from all devices 
throughout each episode:

	
P

(e)
episode =

D∑
d=1

T∑
t=1

p
(e)
d,t � (13)

where:

•	 P
(e)
episode  : total power consumption in episode e.

•	 p
(e)
d,t  : instantaneous power consumed by device d at time step t.

Figure 5 illustrates the overall power consumption of DQN, PPO, and SAC across evaluation episodes. SAC 
consistently demonstrates lower power consumption compared to DQN and PPO, achieving a minimum of 2.60 
W in the episode range 151-200, while DQN and PPO consume higher power in the same range. The reduction 
in power consumption with SAC highlights its ability to effectively regulate power-saving mode transitions, 
minimizing unnecessary active mode durations while maintaining network efficiency.

Across all evaluation phases, SAC exhibits stable and reduced power consumption values, signifying its 
superior policy learning for energy-efficient operation. In contrast, DQN and PPO show fluctuations in power 
usage, indicating suboptimal power-saving strategies. The results reinforce the capability of SAC to intelligently 
manage power consumption, making it a robust approach for enhancing energy efficiency in NB-IoT networks.

Fig. 4.  Total reward versus episode for SAC, PPO, and DQN algorithms showing learning progression in NB-
IoT.

 

Scientific Reports |        (2025) 15:34618 22| https://doi.org/10.1038/s41598-025-18214-4

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Overall energy efficiency
Energy efficiency, measured in bits per Joule, is a key performance indicator for evaluating the trade-off between 
energy consumption and data transmission in NB-IoT networks. A higher energy efficiency value indicates 
better power management while maintaining data throughput.

The overall energy efficiency is defined as the ratio of total data transmitted to the total power consumed 
within an episode:

	
η(e) =

∑D

d=1

∑T

t=1 Data(e)
d,t∑D

d=1

∑T

t=1 p
(e)
d,t

� (14)

where:

•	 η(e) : energy efficiency in episode e, in bits per Joule.
•	 Data(e)

d,t  : data transmitted by device d at time step t.

•	 p
(e)
d,t  : power consumed by device d at time step t.

Figure 6 presents the energy efficiency trends for DQN, PPO, and SAC across different evaluation episodes. The 
SAC-based adaptive power-saving mode consistently achieves superior energy efficiency compared to DQN and 
PPO, peaking at 604.19 bits/Joule in episodes 301-350. This improvement demonstrates SAC’s ability to optimize 
power-saving transitions without compromising network performance.

Compared to DQN and PPO, SAC maintains a stable and higher energy efficiency across most evaluation 
phases, confirming its capability to dynamically adjust power modes while maximizing data transmission per 
unit energy consumed. In contrast, DQN and PPO exhibit fluctuations, indicating suboptimal power-saving 
decisions. The results reinforce SAC’s effectiveness in enhancing NB-IoT energy efficiency, making it a promising 
approach for energy-constrained IoT applications.

Duty cycle percentage
The Duty Cycle refers to the proportion of time the device remains active during a given period, indicating the 
efficiency of power-saving mechanisms employed. A lower duty cycle suggests that the device is spending more 
time in low-power modes, leading to significant energy savings.

The duty cycle reflects the proportion of time devices spend in active (connected) mode relative to total 
episode time:

Fig. 5.  Overall power consumption versus episode for SAC, PPO, and DQN, highlighting energy-saving 
performance.
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DutyCycle (e) =

(
T

(e)
active

T
(e)
active + T

(e)
sleep

)
× 100� (15)

where:

•	 DutyCycle (e) : duty cycle percentage for episode e.
•	 T

(e)
active  : total time in active (Connected) mode during episode e.

•	 T
(e)
sleep  : total time in low-power modes (Idle, DRX, eDRX, PSM) during episode e.

Figure 7 illustrates the duty cycle percentages for DQN, PPO, and SAC across different evaluation phases. SAC 
consistently maintains the lowest duty cycle compared to both DQN and PPO, reflecting its ability to optimize 
the device’s active and sleep periods efficiently. For instance, in episodes 1-50, SAC achieves a duty cycle of 
2.55%, substantially lower than DQN (13.36%) and PPO (3.57%).

This significant reduction in the duty cycle is particularly beneficial for power-constrained NB-IoT devices, 
as it translates to enhanced energy savings without sacrificing communication performance. DQN and PPO, 
in contrast, exhibit higher duty cycles across most evaluation phases, which could result in unnecessary power 
consumption during periods of inactivity. The consistently low-duty cycle achieved by SAC throughout the 
evaluation highlights its proficiency in balancing device activity with power-saving operations, making it a 
promising approach for IoT applications where battery life and energy efficiency are paramount.

Overall count and timing for each mode
The Overall Count and Timing for Each Mode offer a comprehensive analysis of how the device behaves 
across different operational states, such as idle and active modes, and power-saving mechanisms like DRX 
(Discontinuous Reception) and PSM (Power Saving Mode). These metrics are crucial for understanding power 
consumption and efficiency across the various operational modes and for optimizing the balance between energy 
consumption and communication performance. Figure 8 presents the overall counts and timings for each mode 
across three algorithms: SAC, PPO, and DQN.

The total time spent in each power-saving mode is computed based on action counts and their respective 
standardized duration (per 3GPP specs):

	 T mode i = Ci · τi� (16)

where:

•	 T mode i  : total time spent in mode i.

Fig. 6.  Overall energy efficiency versus episode for SAC, PPO, and DQN during NB-IoT power optimization 
training.
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•	 Ci : total count of selections for mode i.
•	 τi : fixed duration assigned to mode i based on 3GPP standards.

In Idle Mode, SAC leads with the highest count of 1772, achieving a total timing of 17,720 s. This slightly 
surpasses PPO, which recorded 1727 counts and 17,270 s, as well as DQN, which reached 1682 counts and 

Fig. 8.  Overall count and timing for each mode by SAC during NB-IoT training.

 

Fig. 7.  Duty cycle percentage versus episode for SAC, PPO, and DQN showing mode-switching efficiency.
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16,820 s. The results suggest that SAC operates more efficiently in minimizing idle time, contributing positively 
to overall energy savings.

In Connected Mode, SAC shows a count of 1690 and a timing of 50,700 s, slightly lower than PPO (1735 
counts, 52,050 s) and DQN (1746 counts, 52,380 s). Connected mode, being the highest energy-consuming state, 
highlights SAC’s ability to optimize connection durations while maintaining communication performance with 
lower energy consumption.

When evaluating the DRX Active State, SAC demonstrates efficiency with a count of 1672 and a timing of 
16,720 s, performing better than both PPO (1700 counts, 17,000 s) and DQN (1805 counts, 18,050 s). DRX 
Active State is essential for balancing power conservation and connectivity, and SAC effectively reduces the time 
spent in this state, enhancing energy efficiency.

In the DRX Inactive State, SAC achieves a count of 1764 with a substantial timing of 317,520 s, which exceeds 
both PPO (1681 counts, 302,580 s) and DQN (1597 counts, 287,460 s). This mode is vital for reducing active 
communication times and extending battery life, and SAC’s higher count and timing suggest it is more efficient 
in utilizing this low-power state.

For the Extended DRX (eDRX) mode, SAC stands out with 1663 counts and 299,340 s of timing, 
outperforming PPO (1535 counts, 276,300 s) and DQN (1409 counts, 253,620 s). eDRX is an important low-
power state, and SAC’s longer time spent in this mode highlights its ability to conserve energy while maintaining 
adequate connectivity.

Lastly, in Power Saving Mode (PSM), SAC excels with 1696 counts and 6,105,600 s of timing, outperforming 
both PPO (1598 counts, 5,752,800 s) and DQN (1504 counts, 5,414,400 s). PSM is crucial for significant energy 
conservation, and SAC’s higher count and extended timing here reflect its optimal use of this power-saving 
mechanism, ensuring longer battery life.

These results underscore SAC’s proficiency in managing various operational modes, focusing on power-
saving strategies that contribute to improved energy efficiency while ensuring that communication performance 
is maintained across different network states.

Overall active and sleep mode timing
Figure 9 illustrates the Overall Active and Sleep Mode Timing for SAC, PPO, and DQN across various operational 
modes such as Connected Mode, DRX Active State, and Power Saving Mode (PSM). This figure provides an 
in-depth comparison of how each algorithm manages its active and sleep times during network operations, 
highlighting their energy efficiency.

The overall active and sleep mode timing quantifies the cumulative time spent by all NB-IoT devices in active 
and low-power (sleep) modes across the entire training process. It provides insight into the long-term mode 
selection behavior of the reinforcement learning agent.

	
T active =

E∑
e=1

T
(e)
active , T sleep =

E∑
e=1

T
(e)
sleep � (17)

where:

Fig. 9.  Overall active and sleep mode timing under SAC-based control in NB-IoT devices.
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•	 T active  : total active time across all episodes.
•	 T sleep  : total sleep time across all episodes.
•	 E : total number of training episodes.
•	 T

(e)
active  : active time in episode e, calculated by multiplying the count of “Connected Mode” selections by its 

timer value.
•	 T

(e)
sleep  : sleep time in episode e, derived from the time spent in modes such as Idle, DRX, eDRX, and PSM.

In terms of active time, Connected Mode and DRX Active State are the primary modes where the algorithms 
are active. SAC shows the lowest active time in both of these modes, followed by PPO and DQN, which have 
slightly higher active times. Specifically, SAC records 50,700 s in Connected Mode and 16,720 s in DRX Active 
State, totaling 67,420 s of active time. PPO’s active time is higher, with 52,050 s in Connected Mode and 17,000 s 
in DRX Active State, resulting in 69,050 s of active time. DQN exhibits the highest active time, with 52,380 s in 
Connected Mode and 18,050 s in DRX Active State, bringing its total active time to 70,430 s.

The remaining time is spent in various sleep modes, including Idle Mode, DRX Inactive State, Extended DRX 
(eDRX), and PSM, where the algorithms reduce energy consumption during periods of inactivity. SAC spends 
the most time in these sleep states, totaling 6,740,180 s of sleep time, consisting of 17,720 s in Idle Mode, 317,520 
s in DRX Inactive State, 299,340 s in Extended DRX, and 6,105,600 s in PSM. PPO has 6,348,950 s of sleep time, 
with 17,270 s in Idle Mode, 302,580 s in DRX Inactive State, 276,300 s in Extended DRX, and 5,752,800 s in PSM. 
DQN’s sleep time is 5,972,300 s, which includes 16,820 s in Idle Mode, 287,460 s in DRX Inactive State, 253,620 
s in Extended DRX, and 5,414,400 s in PSM.

This figure underscores the energy management strategies of each algorithm. SAC stands out by dedicating 
more time to sleep modes, making it particularly efficient in terms of energy savings. PPO and DQN, with more 
time spent in active states, may prioritize responsiveness but at the cost of slightly higher energy consumption 
compared to SAC. The figure highlights how the balance between active and sleep modes plays a critical role in 
optimizing energy efficiency.

Error analysis and failure case discussion
Failure scenarios identified
We observed that the SAC agent occasionally selected suboptimal modes (e.g., transitioning into DRX Active 
when eDRX or PSM would be more efficient) during high-mobility or poor channel quality conditions. 
These cases typically occurred during early training episodes or when the state features deviated sharply from 
previously learned patterns.

Root causes
The observed failure cases primarily stemmed from the exploration-exploitation tradeoff inherent in the SAC 
framework, which occasionally resulted in suboptimal energy decisions during the early stages of training. 
Additionally, abrupt environmental variations, such as sudden drops in signal strength caused by simulated 
mobility, posed challenges to the model’s ability to generalize its learned policy across diverse scenarios. Another 
contributing factor was the uniform weighting assigned to all state features in the reward function, which may 
have diluted the influence of highly sensitive parameters like packet loss rate and latency, thereby affecting the 
precision of power-saving decisions in critical conditions.

Impact on metrics
These failures led to small dips (2–5%) in energy efficiency or higher power consumption in a few episodes, 
which were visible as minor fluctuations in the result curves.

Mitigation and future directions
To address the identified challenges, several enhancements are proposed for future iterations of the model. 
First, introducing adaptive or dynamic reward weights can help emphasize context-relevant metrics, such as 
assigning greater weight to battery level when devices approach depletion, to improve decision sensitivity. 
Second, the application of transfer learning or curriculum learning techniques could enhance the model’s ability 
to adapt to rare or harsh conditions by progressively training it across increasingly complex scenarios. Finally, 
integrating semantic state awareness, including parameters like device intent or application-specific priorities, 
may offer more precise and intelligent control over power-saving decisions under uncertain or dynamic network 
conditions.

This analysis not only adds transparency but also provides valuable direction for further enhancement of the 
SAC-based model in real-world dynamic NB-IoT environments.

Conclusion & future work
Conclusion
This research presented a comprehensive evaluation of the proposed Adaptive Power-Saving Mode Control in 
NB-IoT networks, utilizing the Soft Actor-Critic (SAC) reinforcement learning algorithm for optimal power 
management. The results highlight SAC’s significant superiority over traditional reinforcement learning 
algorithms such as DQN and PPO, especially in terms of energy efficiency, power consumption, and network 
responsiveness.

The evaluation metrics, including total reward, overall power consumption, energy efficiency, duty cycle 
percentage, and operational mode timing, all indicate that SAC offers a robust solution for managing power 
transitions in energy-constrained NB-IoT devices. . Over 1,000 training episodes, SAC achieved an average 
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total reward improvement of 7.8% over DQN and 8.3% over PPO, reflecting more effective long-term policy 
optimization. It also reduced overall power consumption by 8.1% and 9.2%, respectively, highlighting its energy-
aware decision-making capabilities.

SAC further improved energy efficiency by 12.7% over DQN and 10.4% over PPO, measured in bits per Joule. 
Regarding device duty cycling, SAC maintained a 76.2% lower duty cycle than DQN and 24.8% lower than PPO, 
enabling deeper and more frequent transitions to sleep modes. This resulted in a total sleep time of 6,740,180 s, 
which is 12.9% higher than DQN and 6.2% higher than PPO.

In comparison to DQN and PPO, SAC demonstrates more stable and higher performance across various 
evaluation episodes, indicating its adaptability to varying traffic loads and power-saving requirements. SAC’s 
ability to balance active and sleep modes with minimal fluctuations provides a promising framework for future 
NB-IoT applications, especially those reliant on battery-powered devices that require extended operational 
lifespans.

Overall, SAC has proven to be a highly effective solution for adaptive power-saving mode control in NB-IoT 
networks, offering significant improvements in energy efficiency, power consumption, and device longevity.

Future work
While this study demonstrates the effectiveness of the Soft Actor-Critic (SAC) algorithm for optimizing power-
saving modes in NB-IoT networks, several areas for future research could further enhance the approach and 
expand its applicability in real-world scenarios.

Integration with real-world NB-IoT networks
Future research will focus on integrating the SAC-based power-saving mode control with real-world NB-IoT 
deployments. This will involve bridging the gap between simulation-based results and live NB-IoT environments, 
where network conditions are unpredictable, and system behaviors may vary. Specifically, the study will explore 
the deployment of SAC on actual devices and base stations in an NB-IoT network to assess its adaptability 
under dynamic conditions such as fluctuating traffic loads, device mobility, and network failures. Evaluating 
SAC in real-world environments will enable a more accurate performance assessment, ensuring the algorithm’s 
robustness in mitigating power consumption and optimizing network efficiency across a variety of operational 
scenarios.

Optimization for network heterogeneity
As the NB-IoT ecosystem expands, it will encompass a wide range of devices with differing power, communication 
capabilities, and traffic requirements. Future work will investigate how SAC can scale and adapt to heterogeneous 
networks, considering devices with varying energy constraints and priorities. This research will focus on fine-
tuning power-saving strategies to cater to different types of IoT devices, such as wearable sensors, smart meters, 
environmental monitoring devices, and industrial IoT components. The goal will be to evaluate SAC’s ability 
to optimize energy efficiency across diverse use cases, considering factors such as device class, power capacity, 
communication frequency, and data traffic patterns.

Hybrid reinforcement learning approaches
While SAC has shown considerable promise, exploring hybrid reinforcement learning (RL) methods could 
enhance its performance even further. Future work will consider combining SAC with other RL algorithms like 
Deep Q-Networks (DQN) or Proximal Policy Optimization (PPO) to create a more robust, versatile power-
saving approach. Additionally, multi-agent reinforcement learning could be incorporated, where multiple SAC 
agents collaborate to optimize the power-saving strategies across various devices and network segments. This 
collaborative, distributed approach could be particularly beneficial for large-scale NB-IoT deployments, where 
decentralized control could help mitigate network congestion and improve overall energy efficiency.

Enhanced reward function design
The reward function is a critical component of any reinforcement learning system, directly influencing the 
agent’s learning process. Future research will explore more sophisticated reward functions that better align 
with the goals of NB-IoT networks, taking into account factors such as Quality of Service (QoS), signal quality, 
network congestion, and user experience. By introducing multi-objective reward functions that balance power 
efficiency with network performance and service reliability, SAC’s ability to optimize the trade-off between 
energy conservation and performance can be significantly enhanced. This will also allow for more fine-grained 
control over how power-saving decisions are made, ensuring that the network remains efficient and responsive 
under varying conditions.

Real-time adaptation to network traffic changes
In dynamic real-world environments, network traffic and device behavior can change rapidly, which requires 
adaptive learning mechanisms. Future research will investigate how SAC can continuously adapt its policies to 
such dynamic changes in network conditions. This will involve developing techniques for real-time learning, 
where SAC can update its policy in response to fluctuations in traffic patterns, environmental changes, or shifts 
in device behavior. Enabling SAC to learn and adapt on the fly to real-time network conditions will improve its 
long-term performance, robustness, and ability to provide energy-efficient solutions even in volatile network 
environments.
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Application to smart city and industrial IoT
A promising direction for future work is the application of SAC-based power-saving strategies to specific 
sectors such as Smart Cities and Industrial IoT. These domains present unique challenges due to the high 
density of devices, stringent power consumption constraints, and the need for consistent network performance. 
Implementing SAC for applications like smart metering, environmental monitoring, and industrial asset tracking 
can lead to significant energy savings while enhancing operational efficiency. Future studies will focus on the 
specific needs of these applications, optimizing SAC for large-scale, geographically distributed IoT networks, 
and evaluating the approach’s impact on both power consumption and system reliability. The goal is to improve 
sustainability and operational performance across diverse IoT use cases, contributing to smarter, more energy-
efficient cities and industries.

Integration with semantic-aware models
Recent developments in semantic-aware deep learning approaches focus on reducing communication overhead 
by transmitting the meaning of information rather than raw data. These models, often based on attention 
mechanisms or transformer architectures, are gaining traction in IoT communication for their efficiency in 
semantic fidelity and content-level optimization.

While valuable, such models primarily target data transmission layers and are not explicitly designed for 
real-time power-saving decision-making. In contrast, the proposed SAC framework operates at the device-level 
control layer, focusing on adaptive selection of operational modes (e.g., DRX, eDRX, PSM) to optimize power 
consumption in dynamically changing NB-IoT environments.

Future work will explore the integration of semantic inference with reinforcement learning-based power 
management. This hybrid strategy may enhance the system’s ability to make intelligent, context-aware power-
saving decisions, especially in use cases where event-driven semantic data plays a key role in communication 
efficiency and energy usage.

Decentralized multi-agent reinforcement learning (MARL) for large-scale NB-IoT networks
While the current study employs a centralized Soft Actor-Critic (SAC) agent for controlling multiple NB-IoT 
devices, scalability becomes a critical challenge as the number of devices increases. In large-scale IoT networks, 
centralized architectures may introduce communication delays, bandwidth overhead, and processing bottlenecks 
at the controller.

To address these limitations, future research will explore decentralized or distributed Multi-Agent 
Reinforcement Learning (MARL) architectures, where each device operates with its local agent. These agents can 
learn localized policies tailored to their specific environmental conditions, thereby reducing their dependency 
on a central decision-maker. Such a distributed learning framework not only improves scalability and robustness 
but also enhances adaptability to heterogeneous device capabilities and network traffic profiles.

Moreover, coordinated MARL frameworks may incorporate inter-agent communication or shared reward 
mechanisms to ensure that local actions align with global energy efficiency goals. This decentralized approach is 
expected to significantly improve system responsiveness and make the power-saving strategy more feasible for 
real-world, large-scale NB-IoT deployments.

Dimensionality reduction and complexity management
The proposed SAC-based framework currently utilizes a 17-dimensional state space to capture a wide range 
of environmental and device-specific parameters (e.g., signal strength, battery level, CQI, latency, packet loss). 
While this rich state representation enhances learning precision, it can also introduce complexity, particularly 
as the number of devices scales, potentially leading to increased training time and suboptimal convergence due 
to the curse of dimensionality.

To address this, future work will explore dimensionality reduction techniques such as Principal Component 
Analysis (PCA) and unsupervised clustering to project the high-dimensional state into a lower-dimensional 
latent space while retaining its essential characteristics. Additionally, feature selection methods (e.g., mutual 
information, recursive feature elimination) will be used to identify and retain only the most influential features 
contributing to the reward function.

These strategies aim to improve training efficiency, reduce computational overhead, and enhance model 
generalization. A dedicated complexity analysis will also be conducted to evaluate the trade-off between 
representational richness and computational cost, thereby guiding the optimal design of the state space for 
scalable NB-IoT implementations.

Dynamic reward structuring
While the current implementation of the SAC-based framework uses fixed weights for the reward function, 
this approach may not fully reflect the dynamic trade-offs encountered in real-world NB-IoT scenarios. In 
practice, the relative importance of metrics such as battery life, latency, packet loss, or spectral efficiency can 
vary depending on application priorities, network congestion, or device context.

To improve the adaptability of the reinforcement learning agent, future work will explore dynamic reward 
weight adaptation based on real-time environmental and operational feedback. This includes integrating meta-
learning mechanisms or adaptive weighting schemes that allow the system to automatically adjust reward 
contributions of individual features based on evolving network goals. For instance, the algorithm could increase 
the emphasis on battery conservation when a device reaches critical energy levels or prioritize latency during 
delay-sensitive transmissions.
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Such dynamic structuring is expected to enhance decision-making precision, improve convergence in 
fluctuating environments, and ensure that the agent aligns more closely with varying QoS requirements and 
energy constraints across diverse deployment scenarios.

Realistic initialization and state warm-up phase
In the current implementation, device states are initialized randomly within standard parameter ranges at the 
beginning of each episode. While this provides a diverse training distribution, it may not accurately represent 
real-world NB-IoT deployments, where devices typically operate with persistent historical states and contextual 
network conditions.

To improve the model’s practical relevance and convergence speed, future work will focus on realistic state 
initialization strategies. This includes leveraging real-world datasets to seed initial conditions or incorporating 
a warm-up phase, during which devices gradually transition from realistic preconditions. Such an approach 
can simulate operational continuity and allow the agent to adapt its policy based on historically relevant state 
distributions.

Adopting realistic starting conditions is expected to enhance training stability, reduce convergence time, and 
yield policies better suited for deployment in actual NB-IoT environments with temporal dependencies and 
device heterogeneity.

In conclusion, the proposed SAC-based adaptive power-saving control framework demonstrates strong 
potential in enhancing energy efficiency and operational longevity in NB-IoT networks. While the centralized 
approach proved effective for the scale simulated, future deployment in large-scale, real-world scenarios may 
require addressing key challenges such as scalability and environmental unpredictability. The high-dimensional 
state space, though comprehensive, could benefit from dimensionality reduction techniques to streamline 
learning. Moreover, the fixed reward weights, while functional, limit responsiveness to context-aware priorities 
such as battery-critical states or latency-sensitive applications. Realistic state initialization and exploration-
exploitation balancing strategies will also be critical for improving training stability and convergence. These 
considerations form the basis for future enhancements, which include distributed multi-agent reinforcement 
learning, adaptive reward mechanisms, real-world deployment validation, and expanded applications across 
heterogeneous IoT landscapes. Such improvements will further strengthen the adaptability, scalability, and real-
world viability of the SAC-based approach in diverse NB-IoT environments.

Data availability
Sequence data that support the findings of this study have been deposited in Zenodo to provide a direct and 
permanent link. The datasets generated and/or analyzed during the current study are available in the Zenodo 
repository at https://doi.org/10.5281/zenodo.16937115
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