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Differential expression of glucose
metabolism and circadian rhythm-
related genes in patients with
acute myocardial infarction and
their clinical significance
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Acute myocardial infarction (AMI) is a leading cause of mortality worldwide, with about 7 million
deaths annually from cardiovascular disease. Current diagnostic and therapeutic approaches face
challenges, highlighting the need for new biomarkers and diagnostic methods. Abnormalities

in glucose metabolism and circadian rhythm genes are linked to cardiovascular conditions, and
understanding these mechanisms may reveal new therapeutic targets. This study aimed to identify
differentially expressed genes related to glucose metabolism and circadian rhythms (GMCRRDEGs)
in AMI. Bioinformatics techniques, including differential expression analysis, enrichment analysis,
and machine learning models, were used to find prospective biomarkers for early diagnosis and
therapeutic intervention. Twelve GMCRRDEGs were found, with six key genes (JUN, EPAS1, IL1B,
ADRB2, FOS, CD36) incorporated into the diagnostic model, showing high accuracy in both the
training set (AUC=0.93) and validation set (AUC=0.91). Enrichment analysis linked GMCRRDEGs to
biological processes related to NO synthesis and tumor necrosis factor signaling pathways. Immune
infiltration analysis showed significant changes in immune cell abundance, especially in mast cells
and neutrophils, among high-risk patients. This study highlights GMCRRDEGs as AMI biomarkers,
emphasizing their role in disease mechanisms and immune responses. Further research should validate
these findings in larger cohorts to enhance early detection for AMI.

Keywords Acute myocardial infarction, Glucose metabolism abnormalities, Circadian rhythm, Biomarkers,
Immune response

Acute myocardial infarction (AMI) is the predominant factor contributing to global mortality rates!. By 2030,
the incidence of AMI is expected to reach 75 million cases®. The epidemiology of AMI highlights its high
prevalence and mortality rates, necessitating improved strategies for early diagnosis and effective treatment™*.
Current therapeutic approaches include pharmacological interventions and interventional strategies. However,
challenges such as diagnostic difficulties and suboptimal treatment outcomes persist, emphasizing the critical
need for innovative biomarkers and diagnostic techniques®°.

The molecular mechanisms underlying AMI involve several pathological processes including myocardial
ischemia, apoptosis, and inflammatory responses!=. Ischemic conditions trigger a series of cellular processes
that ultimately culminate in cardiomyocyte death and contribute to the overall damage observed in AMI. The
initiation of pro-inflammatory signaling cascades, especially the NF-kB, MAPK, and PI3K/Akt pathways, is
essential for orchestrating these biological responses*®. These pathways are implicated in the regulation
of apoptosis and inflammation, further complicating the disease process, and present potential targets for
therapeutic interventions.

Abnormalities in glucose metabolism are intricately linked to several diseases including diabetes, metabolic
syndrome, and cardiovascular disease. These conditions often coexist and exacerbate patient morbidity and
mortality’. Diabetes significantly increases the risk of cardiovascular complications®. Metabolic syndrome,
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another closely related condition, encompasses a cluster of metabolic disorders, including obesity, dyslipidemia,
and hypertension, which further contribute to cardiovascular diseases!?. The aforementioned research
underscores the need to understand the fundamental mechanisms associated with AML

Under normal conditions, the circadian rhythm can coordinate the physiological functions of the
cardiovascular system, maintaining the dynamic balance of various indicators such as blood pressure, heart rate,
vascular tension, and blood coagulability“‘”. However, when the circadian rhythm is disrupted, the tolerance
of the cardiovascular system to ischemia and hypoxia is significantly reduced, and the risk of AMI is markedly
increased!*!°. Consequently, a more comprehensive exploration of the interplay between the blood-brain barrier,
circadian rhythm, and AMI not only aids in clarifying the underlying mechanisms of myocardial infarction, but
also has the potential to generate novel concepts and therapeutic targets for the formulation of prevention and
treatment strategies that are grounded in the understanding of circadian rhythms.

This study employed a comprehensive approach that integrates batch effect removal, differential expression
analysis, enrichment analysis, and machine learning model construction to investigate AMI. The advantage
of this methodology lies in its ability to consolidate information from multiple datasets, thereby enhancing
the reliability of the results, whereas the incorporation of machine learning techniques significantly improves
the accuracy of the diagnostic models. The main goal of this study was to identify the essential genes linked to
AMI and develop a robust diagnostic framework that can enhance early identification and tailored therapeutic
approaches.

Results
Technology roadmap
The technology roadmap is illustrated in Fig. 1.

Merging of AMI data sets

We downloaded two datasets, GSE66360'° (49 AMI vs. 50 control samples, blood tissue, GPL570 microarray,
Homo sapiens, PMID: 21737128) and GSE48060'7 (31 AMI vs. 21 control samples, blood tissue, GPL570
microarray, Homo sapiens, PMID: 25684211), from the GEO database(https://www.ncbi.nlm.nih.gov/geo/)'8
Initially, the GSE66360 and GSE48060 datasets were integrated into a single dataset using the R package, sva,
to mitigate batch effects. Following this integration, distribution boxplots (Fig. 2A,B) were used to assess and
compare the expression values of the combined datasets before and after removing the batch effect. Second,
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Fig. 1. Technology roadmap. DEGs, Differentially Expressed Genes; GMRGs, Glucose Metabolism-Related
Genes; CRRGs, Circadian Rhythm-Related Genes; GMCRRDEGsS, Glucose Metabolism and Circadian
Rhythm-Related Differentially Expressed Genes; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes
and Genomes; LASSO, Least Absolute Shrinkage and Selection Operator; ssGSEA, Single-Sample Gene Set
Enrichment Analysis.
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Fig. 2. Batch effects removal. (A) Box plot of the combined GEO datasets distribution before batch removal.
(B) Post-batch integrated GEO datasets (combined datasets) distribution boxplots. (C) PCA plot of the
datasets before debatching. (D) PCA map of the combined GEO datasets after batch processing. PCA,
Principal Component Analysis; AMI, AMI. The AMI (AMI) datasets GSE66360 and GSE48060 are shown in
blue and yellow, respectively.

a principal component analysis (PCA) plot (Fig. 2C,D) was employed to evaluate the distribution of low-
dimensional features within the datasets, both before and after the removal of batch effects. The outcomes of the
distribution boxplot and the PCA plot indicate that the batch effects present in the samples of the AMI dataset
were effectively minimized following the batch removal process.

AMI related glucose metabolism and circadian rhythm-related differentially expressed genes
(GMCRRDEGS)

This analysis revealed a total of 689 differentially expressed genes (DEGs) that satisfied the criteria of [logFC| >
0.5 and a p-value <0.05, within the Combined Datasets. Under this threshold, 256 genes exhibited upregulation
(logFC>0.5 and p <0.05), while 433 genes showed down-regulation (logFC < -0.5 and p <0.05). A volcano plot
was constructed using the results obtained from differential analysis of this dataset (Fig. 3A).

To identify Glucose Metabolism and Circadian Rhythm-Related Differentially Expressed
Genes(GMCRRDEGs), all DEGs were intermingled with glucose metabolism related-genes (GMRGs) and
circadian rhythm-related genes (CRRGs) to create a Venn diagram (Fig. 3B). Twelve GMCRRDEGs were
identified, including NAMPT, JUN, IL1B, PHACTRI, TKT, ADRB2, CD36, EPAS1, EDN1, TNF, FOS and HP.
Based on the results obtained from the intersection analysis, we assessed the differences in GMCRRDEGs
expression across diverse sample groups within the combined datasets. The R package pheatmap was used to
create a heatmap that effectively illustrates the analytical outcomes (Fig. 3C).

Through analysis using the R package, RCircos, 12 GMCRRDEGs were found to be located on the human
chromosome (Fig. 3D). Chromosome mapping analysis revealed that the majority of candidate chromosomal
regions (GMCRRDEGs) were located on chromosome 6, which encompassed genes such as EDNI, PHACTRI,
and TNF.

Expression differences and correlation analysis of glucose metabolism and circadian rhythm-
related differentially expressed genes (GMCRRDEGs) among the groups of the integrated
GEO dataset

A comparative analysis of 12 critical candidate compounds (GMCRRDEGs) across cohorts within the
combined datasets revealed distinct expression patterns through intergroup visualization (Fig. 4A). The analysis
demonstrated significant differential expression (p<0.001) of multiple biochemical markers, including HP,
FOS, TNF, EDNI, EPAS1, CD36, ADRB2, TKT, PHACTRI, IL1B, JUN, and NAMPT between comparative
groups. Extreme statistical significance thresholds (indicated by triple asterisks) highlight the strong molecular
separation characteristics among these targets.
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Fig. 3. Differential gene expression analysis. (A) Volcano plot of differentially expressed gene analysis between
AMI group and Control group in combined GEO datasets. (B) Venn diagram of genes associated with GMRGs
and CRRGs in all AMI samples from DEGs in the integrated GEO datasets. (C) Heat map of GMCRRDEGs

in the integrated GEO dataset. (D) Chromosomal mapping of GMCRRDEGs. DEGs, differentially expressed
genes; GMRGs, glucose metabolism-related genes; CRRGs, circadian rhythm-related genes; GMCRRDEGs,
glucose metabolism and circadian rhythm-related differentially expressed genes. Blue is the Control group and
yellow is the AMI group. In the heat map, red represents high expression and blue represents low expression.

The ROC curve (Fig. 4B-E) illustrated that the accuracy of FOS expression values for diagnosing the Control
and AMI groups was low, as shown by an area under the curve(AUC) between 0.5 and 0.7. The expression values
of HP, TNF, EDN1, EPASI1, CD36, ADRB2, TKT, PHACTRI, IL1B, JUN, NAMPT had a certain accuracy in the
diagnosis of the Control and AMI groups (0.7 <AUC<0.9).

We also calculated the pairwise correlation of the 12 GMCRRDEGs in the combined datasets using a
correlation heat map was used for display (Fig. 4F). The results showed that most of the GMCRRDEGs were
positively correlated, and the genes NAMPT and IL1B were significantly positively correlated (r=0.774). Finally,
ggplot2 in R was used to produce a scatter plot of the four most strongly correlated gene pairs (Fig. 4G-J).

Functional and pathway enrichment analysis

Functional annotation of the 12 GMCRRDEG-related genes using gene ontology(GO)/Kyoto Encyclopedia of
Genes and Genomes(KEGG) enrichment methodologies revealed significant pathway clustering, as shown in
Supplementary Table S1. These differentially expressed targets demonstrated pronounced involvement in nitric
oxide homeostasis mechanisms, particularly manifesting in three-tiered regulatory hierarchies: (1) activation
control of nitric oxide biosynthesis, (2) modulation of nitric oxide metabolic flux, and (3) peptide-responsive
cellular signaling dynamics. Additionally, biological specificity has emerged in redox-sensitive macromolecular
interaction networks. Several cellular components (CC) were enriched, including endocytic vesicles, specific
granules, endocytic vesicle membranes, haptoglobin-hemoglobin complexes, and clathrin-coated vesicles.
In the context of MF, the identified enrichment encompassed activities included cytokine activity, R-SMAD
binding, SMAD binding, binding of transcription factors specific to RNA polymerase II, and amyloid-beta
binding. Furthermore, these genes exhibited significant enrichment within pathways, including the TNF
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Fig. 4. Differential expression and correlation analysis. (A) Group comparison of GMCRRDEGs in the AMI
group and the Control group in the combined GEO datasets. (B-E). ROC curves of HP, FOS and TNF (B);
EDN1, EPASI and CD36 (C); ADRB2, TKT and PHACTRI (D); IL1B, JUN, and NAMPT (E) in the combined
GEO datasets. (F) Heat map of GMCRRDEGs in the AMI group and Control group in the integrated GEO
datasets. (G) Scatter plot of the association between NAMPT and IL1B in GMCRRDEGs. (H) Scatter plot

of the correlation between NAMPT and FOS in GMCRRDEGs. (I) Scatter plot of the correlation between
NAMPT and PHACTRI in GMCRRDEG:s. (J) Scatter plot of the correlation between IL1B and FOS in
GMCRRDEGs. AMI, AMI; GMCRRDEGsS, Glucose Metabolism and Circadian Rhythm-Related Differentially
Expressed Genes. In the correlation heat map, red is a positive correlation, blue is a negative correlation, and
the depth of color represents the strength of the correlation.

signaling pathway, fluid shear stress, atherosclerosis, pertussis, and leishmaniasis, as well as lipid metabolism
and atherosclerosis pathways, as determined by KEGG analysis. Enrichment analysis results are displayed as
bubble plots (Fig. 5A).

Network maps of the enrichment analysis were drawn (Fig. 5B-E). The lines illustrate the associated molecules
along with the descriptions of the entries. Nodes of larger size signify entries that encompass a higher quantity
of molecules.

Establishment of diagnostic model for AMI

To evaluate the diagnostic significance of the 12 GMCRRDEGs in AMI, logistic regression analysis was conducted
using the 12 GMCRRDEGs variables. Subsequently, a logistic regression model was developed, and the results
were illustrated using a Forest Plot (Fig. 6A). The analysis demonstrated that all 12 GMCRRDEGs exhibited
statistical significance within the logistic regression model, as indicated by p-values that were less than 0.05,
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Fig. 5. GO and KEGG enrichment analysis. (A) Bubble diagram showing the results of GO and KEGG
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GO and KEGG network diagram showing: BP (B), CC (C), MF (D) and KEGG (E). The light-yellow nodes

represent items, the light blue nodes represent molecules, and the lines represent the relationship between

items and molecules. GMCRRDEGs, glucose metabolism and circadian rhythm-related differentially expressed

genes; GO, gene ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; BP, biological process; CC,

cellular component; ME, molecular function. In the bubble plot, bubble size and color represent the number

of genes and size of the p-value value, respectively. The redder the color, the smaller the p-value value, and

the bluer the larger the p-value value. The screening criteria for GO and KEGG enrichment analysis were p

value <0.05 and FDR value (q value) <0.25.

namely NAMPT, EDNI, EPASI, JUN, IL1B, ADRB2, CD36, HP, TNF, TKT, FOS, PHACTRI. Second, the SVM-
RFE algorithm was used based on the 12 GMCRRDEGs. 5-fold cross-validation was set up, and the average rank
of the genes was calculated to obtain the number of genes with the lowest error rate (Fig. 6B) and highest accuracy
rate (Fig. 6C) of the model. When the number of genes was 6, the SVM model had the highest accuracy, and the
top 6 average-ranked genes were screened for subsequent analyses (Fig. 6D). The 6 GMCRRDEGss identified
were JUN, EPASI, IL1B, ADRB2, FOS, and CD36. Subsequently, they were incorporated into the support
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Fig. 6. Diagnostic model of AMI. (A) Forest plot of 12 GMCRRDEGs included in the logistic regression
model in the diagnosis model of AMI. (B, C). The number of genes with the lowest error rate (B) and the
number of genes with the highest accuracy (C) obtained by SVM-RFE algorithm are visualized. (D) The
average importance ranking lollipop plot of the six genes with the lowest error rate obtained by the SVM-RFE
algorithm. (E-F). Diagnostic model plot (E) and variable trajectory plot (F) of LASSO regression model. AMI,
AMI; SVM, support vector machine; LASSO, least absolute shrinkage and selection operator.
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vector machine (SVM) model following their selection through least absolute shrinkage and selection operator
(LASSO) regression analysis to develop a diagnostic model for AMI. Visualization was accomplished using the
LASSO regression model diagram (Fig. 6E) along with the LASSO variable trajectory diagram (Fig. 6F). The
analysis indicated that six GMCRRDEGss recognized as key genes were used in the LASSO regression model.
The key genes were JUN, EPAS1, IL1B, ADRB2, FOS, and CD36.

Validation of the diagnostic model for AMI

To further verify the effectiveness of the AMI diagnostic models, a nomogram was constructed based on key
genes to illustrate their interrelationships (Fig. 7A). The analysis revealed that the expression levels of the pivotal
gene IL1B exhibited markedly higher significance than other variables included in the diagnostic model of AMI.
The expression level of CD36 was less significant in the AMI diagnostic model than other variables.

The accuracy and resolution of the AMI diagnostic model were assessed by constructing a calibration curve
based on our analysis. The predictive performance of the model was evaluated by comparing the actual and
predicted probabilities under various conditions, as illustrated in Fig. 7B. The calibration curve pertaining to the
diagnostic model for AMI indicated that the calibration line, represented by the dotted line, displayed a slight
divergence from the diagonal line that signified the optimal model; however, it maintained proximity to the fitted
line. Decision curve analysis (DCA) was used to assess and demonstrate the clinical utility of the AMI diagnostic
models developed using key genes in the combined datasets (Fig. 7C). The examination indicated that, within a
specific interval, the model’s trajectory consistently surpassed the lines representing both positive and negative
outcomes. This indicates the greater net benefit and superior performance of the model. Additionally, the ROC
curve (Fig. 7D) demonstrated that RiskScore expression levels in the combined datasets achieved high accuracy
(AUC>0.9) across different groups.

Patients diagnosed with AMI were classified into two distinct groups, High-Risk and Low-Risk, using the
median risk score derived from the diagnostic model as the classification criterion. The risk score was calculated
using the following formula:

RiskScore = JUN x (0.7828) + EPAS1 * (0.9825) + IL1B x (0.5379) + ADRB2 x (—0.7919) + FOS % (—0.1603) + CD36 * (0.4531)

Risk-stratified expression profiling of six pivotal biomarkers in the AMI cohort ( Fig. 7E) revealed distinct
transcriptional patterns between the high-risk and low-risk subpopulations. The analysis demonstrated tiered
statistical significance across biomarkers:ADRB2 demonstrated nominal statistical significance (p <0.05), EPASI
exhibited robust statistical significance (p <0.01), and JUN, ILIB, FOS, and CD36 reached stringent significance
thresholds (p<0.001). Notably, the overexpression trends of JUN, ILIB, FOS, and CD36 in high-risk subjects
suggested a potential mechanistic convergence in AMI pathogenesis. These transcriptional disparities were
quantified through risk-group comparative analysis, with effect sizes proportional to the significance levels.

The results obtained from the functional similarity (Friends) analysis were used to identify genes that have a
substantial influence on the biological process of AMI ( Fig. 7F). The analysis revealed that FOS serves as a vital
gene in AMI, being closest to the established critical threshold (cutoff value=0.7).

Immune infiltration analysis of SSGSEA algorithm based on high and low logistic risk
scores

The group comparison diagram (Fig. 8A) revealed that all 17 immune cell types showed statistically significant
differences (p <0.05), including Activated CD8 T cells, activated dendritic cells, central memory CD8 T cells,
eosinophils, gamma delta T cells, immature dendritic cells, macrophages, mast cells, MDSC, memory B cells,
monocytes, natural killer cells, natural killer T cells, neutrophils, plasmacytoid dendritic cells, regulatory T
cells, and T follicular helper cells. Subsequently, correlation analysis regarding the abundance of 17 immune cell
infiltrations within the AMI samples was graphically represented using a correlation heatmap (Fig. 8B-C). The
analysis revealed that in the low-risk AMI samples, most immune cells exhibited strong positive correlations, with
mast cells and neutrophils showing the strongest significant positive correlations (r=0.726, P<0.05) (Fig. 8B).
Within the high-risk cohort, the majority of immune cell types exhibited pronounced positive correlations.
Notably, activated dendritic cells and macrophages demonstrated the most significant positive correlation,
characterized by an r value of 0.836 and a p-value of less than 0.05(Fig. 8C). Finally, the association between
essential genes and the density of immune cell infiltration was depicted using a correlation bubble plot (Fig. 8D-
E). These results indicate that many immune cells were strongly correlated in the low-risk group. Specifically,
CD36 and Gamma delta T cells exhibited the strongest significant positive correlation, with an r value of 0.672
(p<0.05). In the high-risk group, many immune cells showed strong positive correlations, the most notable
being between FOS and mast cells (r=0.77, p <0.05) (Fig. 8E).

Discussion

During the study design phase, we conducted a systematic search of major public databases such as GEO and
ArrayExpress, applying strict selection criteria aligned with the core objectives of our research. We chose to
include two GEO datasets, GSE66360 and GSE48060, which both originate from the GPL570 platform. These
datasets meet the following criteria: they are derived from human samples, specifically from blood tissues, and
they are all based on the GPL570 platform. Combined, they provide a sample size of over 150 cases. Furthermore,
we implemented rigorous batch effect removal and normalization steps. As shown in Fig. 2, the batch effects have
been nearly completely eliminated, which enhances the overall statistical power and reliability of our results.
Finally, the combined datasets were annotated and subjected to standardization and normalization using the R
package limma.
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Fig. 7. Diagnostic and validation analysis of AMI. (A) Nomogram of key genes in diagnostic models for
diagnosing AMI based on combined GEO datasets. (B,C). Calibration curve plot (B) and decision curve
analysis (DCA) plot (C) of the AMI diagnostic model based on the key genes in the integrated GEO datasets.
(D) ROC curve of RiskScore in the combined GEO datasets. (E) Group comparison plots of Key Genes in the
High-Risk and Low-Risk groups of AMI group. (F) Cloud rain diagram of the results of Friends analysis of
key genes. DCA: Decision Curve Analysis; AMI, AMI. * represents p value < 0.05, statistically significant; ***
represents p value <0.001, highly statistically significant. In the group comparison graph, blue represents the
Low-Risk group and yellow represents the High-Risk group.

Through a comprehensive analysis of the combined datasets, we identified 12 DEGs linked to glucose
metabolism and circadian rhythms, including notable genes such as NAMPT and IL1B. These results underscore
the intricate interactions between metabolic mechanisms and circadian regulation in AMI. Moreover, our study
employed robust methodologies, including batch-effect removal and differential gene expression analysis, which
enhanced the reliability of our results.

During an AMI, cardiac myocytes undergo ischemia and hypoxia, causing a drastic shift in energy metabolism
from aerobic oxidation to anaerobic glycolysis. This transition leads to reduced glucose utilization efficiency and
the accumulation of lactate, which significantly impairs myocardial contractile function. Numerous clinical and
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Fig. 8. Immune infiltration analysis by ssGSEA algorithm. (A) Group comparison diagram of immune cells in
the Low and High Risk groups in the combined GEO datasets. (B,C) Results of correlation analysis of immune
cell infiltration abundance in the Low-Risk (B) and High-Risk (C) groups of AMI samples are presented. (D,E)
Bubble plot of correlation between immune cell infiltration abundance and key genes in the Low-Risk (D)

and High-Risk (E) groups of AMI samples. ssGSEA, single-sample gene set enrichment analysis; AMI, AML
ns stands for p value>0.05, no statistical significance; * represents p value <0.05, statistically significant; **
represents p value <0.01, highly statistically significant; *** represents p value < 0.001 extremely statistically
significant. The absolute value of the correlation coefficient (r value) ranged from 0.5 to 0.8, indicating a
moderate correlation. Low-Risk group (blue) and High-Risk group (yellow). Red is a positive correlation, blue
is a negative correlation, and the depth of the color represents the strength of the correlation.
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preclinical studies have shown that patients with acute myocardial infarction often experience stress-induced
hyperglycemia, and elevated blood glucose levels are closely linked to worse prognoses'®.In the pathological
context of AMI, the interplay between glucose metabolism and circadian rhythm genes holds significant
biological relevance. For example, EPAS1, a hypoxia-inducible factor, enhances the conversion of glucose to
lactate in ischemic cardiac tissue by binding to the promoter regions of critical glycolytic enzymes, thereby
sustaining energy production. Meanwhile, IL1B promotes apoptosis in pancreatic B-cells through activation
of the NF-kB pathway, while concurrently inhibiting the phosphorylation of insulin receptor substrates, which
diminishes the ability of myocardial cells to uptake glucose?.

Analysis of the key genes associated with AMI revealed significant findings regarding JUN, IL1B, and FOS,
which were notably upregulated in the AMI group. JUN is a widely recognized transcription factor that plays an
essential role in cellular responses to stress and inflammation?!, and its elevated expression suggests its potential
involvement in the pathological processes of myocardial injury and repair following AMI. Upregulation of
JUN may indicate an adaptive response to ischemic stress, contributing to the regulation of genes involved
in cell survival and inflammation. ILIB, which encodes interleukin-1 beta, is a pro-inflammatory cytokine
implicated in various cardiovascular diseases??. The significant increase in the AMI cohort underscores its role
in mediating inflammatory responses that can exacerbate myocardial damage and influence healing process?.
These findings align with existing literature that highlights ILIB’s contribution to myocardial ischemia and
subsequent remodeling?, suggesting that targeting IL1B could be a therapeutic strategy for managing AMI.
FOS is another critical component of the AP-1 transcription factor complex?, is involved in cell proliferation
and differentiation. The observed upregulation of FOS in patients with AMI indicates its potential role in the
inflammatory response and cellular signaling pathways activated during myocardial infarction. The significant
upregulation of these genes in AMI highlights their potential as therapeutic targets and biomarkers for disease
progression and underscores the need for further investigation into their roles in myocardial ischemia and
recovery processes.

GO and KEGG enrichment analyses indicated that nitric oxide (NO) synthesis, cellular stress response,
and TNF signaling pathway play crucial roles in AMI. NO is vital in various physiological processes, including
vasodilation and the immune response, and its dysregulation is linked to the pathogenesis of cardiovascular
diseases?®. NO significantly contributes to inflammatory responses and vascular function during AMI%’;
excessive production can lead to oxidative stress and myocardial damage, whereas insufficient levels may affect
vasodilation and blood flow restoration?®. The involvement of the TNF signaling pathway in inflammation and
apoptosis further emphasizes its importance in AMI, as elevated TNF levels can exacerbate myocardial injury
and influence the healing process®. Our findings suggest that the interplay between glucose metabolism and
circadian rhythms may contribute to the inflammatory response and cellular stress mechanisms observed in
AMI. Understanding the molecular mechanisms underlying these pathways can provide insights into developing
novel intervention strategies aimed at enhancing cardiac protection during ischemic events, thereby addressing
critical issues in cardiovascular research and clinical practice3®3!.

The immune infiltration analysis results from this study revealed significant alterations in the abundance of
17 immune cell types in the AMI group, highlighting the strong correlation between mast cells and neutrophils in
the high-risk cohort. The observed increase in mast cell and neutrophil infiltration aligns with previous research,
indicating that these cells are crucial mediators of inflammation and tissue repair during cardiac events®. These
data indicate that the presence of these immune cells is not merely a byproduct of myocardial injury but may
actively participate in disease progression, potentially influencing outcomes and recovery. By elucidating the
relationship between immune cell infiltration and AMI severity, this study contributes to the growing body of
literature emphasizing the importance of the immune system in cardiovascular diseases, paving the way for
novel interventions that target immune pathways to mitigate myocardial damage and enhance recovery™.

In this study, a risk-scoring system based on GMCRRDEGs demonstrated excellent performance in the
diagnosis of AMI. The ROC curve showed that the area under the curve (AUC) of the risk score (RiskScore) was
greater than 0.9, indicating a high diagnostic accuracy. This provides a rapid and effective method for assessing
patient risk levels in clinical practice and helps optimize individualized management strategies. The risk scoring
system can be further expanded and optimized in the following ways in practical applications. First, combining
the risk scoring system with traditional clinical indicators (such as electrocardiograms and troponin levels) may
further improve prediction accuracy. Although traditional clinical indicators are valuable for the diagnosis of
AML, they often reflect only the local characteristics of the disease®. In contrast, gene expression data can reveal
the underlying mechanisms of a disease at the molecular level. Combining these approaches may provide a
more comprehensive risk assessment. Future studies can conduct multicenter clinical trials to verify the efficacy
of the risk-scoring system in combination with traditional clinical indicators to provide a more precise tool for
clinical diagnosis. Second, further optimization of the algorithms to enhance model robustness is an important
direction for future research. The current risk-scoring system is based on the LASSO regression and SVM-RFE
algorithms, which showed good performance in this study. However, there may still be some limitations in
dealing with complex and variable clinical data. For example, the introduction of deep learning algorithms,
such as neural networks or convolutional neural networks, can better capture nonlinear features and complex
relationships in gene expression data. Additionally, increasing the sample size and data diversity to train and
validate the model further is a key step in enhancing its robustness.

In this study, six key genes (JUN, EPASI, IL1B, ADRB2, FOS, and CD36) were identified using the SVM-
RFE algorithm, and the LASSO regression model based on these genes performed well. This model provides an
efficient method for the precise prediction of AMI risk and lays the foundation for the development of future
clinical decision-support systems. However, to further enhance the practicality and reliability of the model,
several aspects need to be explored and optimized. First, validating the model’s stability in a larger independent
cohort is a crucial step for future research. Although the current study achieved good results with an integrated
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GSE66360 GSE48060
Platform GPL570 GPL570
Species Homo sapiens Homo sapiens
Tissue Blood Tissue Blood Tissue
Samples in AMI group 49 31
Samples in Control group | 50 21
Reference PMID: 21,737,128 | PMID: 25,684,211

Table 1. GEO microarray chip Information.

dataset, the limitations of the sample size and data sources may have affected the generalizability of the model.
Therefore, this model must be validated in multiple independent clinical cohorts to assess its stability and
accuracy in different populations and settings. Moreover, through multicenter collaboration, collecting more
gene expression data from patients with AMI can further optimize model parameters and improve prediction
performance. Second, combining other molecular markers or imaging features to enhance the predictive power
is also an important direction for future research. In addition to gene expression data, proteomic, metabolomic,
and imaging examinations (such as coronary angiography and echocardiography) provide important information
for the diagnosis and risk assessment of AMI. Integrating these multi-omics data and imaging features with
the current gene-based model may help to construct a more comprehensive and accurate predictive model,
providing stronger support for clinical decision-making.

Limitations.

This study has several limitations. The study primarily relied on publicly available databases, which may not
entirely encompass the intricacy of MI. The lack of wet lab experiments hinders the verification of our findings,
and the comparatively limited sample sizes may have influenced the strength of the results. Additionally, the
potential batch effects of integrating multiple datasets could introduce variability, which could confound the
analysis. Future studies should incorporate clinical samples to validate these results. We plan to conduct wet
lab experiments to further confirm our findings. Ultimately, this research opens new avenues for innovative
diagnostic and therapeutic approaches aimed at treating these alterations in patients with AMI.

Conclusion

This study identified 12 differentially expressed genes related to glucose metabolism and circadian rhythms by
integrating GEO datasets and applying various bioinformatic methods to successfully construct an efficient and
highly accurate (AUC>0.9) diagnostic model for AMI. These findings not only provide new insights into the
pathogenesis of AMI but also lay the foundation for the future development of novel diagnostic and therapeutic
strategies. Future work will focus on expanding the sample size, multi-center validation, and exploring more
potential molecular markers to achieve broader clinical applications.

Materials and methods

Data download

The two datasets (GSE66360 and GSE48060) were downloaded from the NCBI GEO database using the R package
GEOquery®. As detailed in the Introduction (line 84) and summarized in Table 1, both datasets were generated
on the GPL570 platform and derived from whole-blood samples of Homo sapiens.GSE66360 comprises 49 AMI
cases and 50 controls; GSE48060 comprises 31 AMI cases and 21 controls. All available AMI and control samples
were included in the present study.

GEO, gene expression omnibus; AMI, AMI

The GeneCards database®® offers extensive insight into human genes. The search term utilized was “Glucose
Metabolism,” and we selected only those genes associated with glucose metabolism that are classified as “Protein
Coding” and “Relevace score” > 2. In total, 955 GMRGs were identified. Additionally, a total of 26 GMRGs
in the published literature’”*® were obtained from PubMed using “Glucose Metabolism” as the key word. A
comprehensive total of 973 GMRGs were identified through the processes of consolidation and removal of
duplicates from the previously acquired GMRGs. Comprehensive information on these results is provided in
supplementary Table $2%.

Similarly, We employed the keyword “circadian rhythm” for our search, subsequently filtering the genes to
include only those classified as “Protein Coding” and possessing a relevance score exceeding 2. A total of 701
CRRGs were obtained. Additionally, using “circadian rhythm” as the key word, we obtained a total of 300 CRRGs
in the published literature*® in PubMed. A total of 836 CRRGs were obtained after combining the CRRGs
obtained using the above methods. Comprehensive details can be found in supplementary Table S3.

The R package sva*! was utilized to remove batch effects from the GSE66360 and GSE48060 datasets, resulting
in the formation of integrated datasets. The aggregated datasets included 80 samples originating from the AMI
group and 71 samples from the Control group. Subsequently, the combined datasets were normalized using
the R package limma*?, which involved the annotation of probes and various standardization processes. The
expression matrices, both before and after eliminating batch effects, underwent PCA*®3. This analytical approach
was employed to convert the data into a reduced-dimensional format, thereby enabling the visualization of
these characteristics in either two- or three-dimensional graphical representations. In the subsequent analysis,
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the samples from the combined datasets served as the test set and the samples from the GSE48060 dataset
functioned as the validation set.

Differentially expressed gene analysis

Based on the sample grouping of the combined datasets, the samples were categorized into AMI and Control
groups. Differential analysis was performed on the combined datasets using the limma package in R to examine
differences in gene expression levels between the two groups.The R package limma (Version 3.58.1) was
used to perform a differential analysis of gene expression between the two groups, and the criteria set for the
identification of DEGs comprised a log fold change (|logFC]|) threshold exceeding 0.5 and a p-value below 0.05.
Genes with logFC > 0.5 and p <0.05, were classified as upregulated DEGs, while those with logFC < -0.5, and
p<0.05, were considered downregulated DEGs, and the results of differential analysis were used to draw the
volcano plot using the R package ggplot2 (Version 3.4.4).

To obtain GMCRRDEGs associated with AMI, all DEGs were interleaved with GMRGs and CRRGs, and
Venn diagrams were drawn to obtain GMCRRDEGS. A heat map was generated for visualization using the R
package pheatmap (version 1.0.12). Finally, the chromosomal locations of the GMCRRDEGs were visualized by
chromosome mapping using the R package RCircos!(Version 1.2.2).

Differential expression of glucose metabolism and circadian rhythm-related genes
(GMCRRDEGS) in the integrated GEO dataset, correlation analysis and ROC curve analysis

To explore variations in GMCRRDEGs expression between the two groups in the combined datasets, a
comparative analysis chart was created based on GMCRRDEGs expression levels. The ROC curve for
GMCRRDEGs was plotted using the R package pROC (Version 1.18.5), which also facilitated computation of
the AUC associated with the ROC analysis. The AUC was employed to evaluate the diagnostic effectiveness of
GMCRRDEGs expression for the occurrence of AMI. The AUC values for the ROC curve typically range from
0.5 to 1. An AUC value of 1 indicated a superior diagnostic ability. Particularly, an AUC in the range of 0.5 to
0.7 indicates a low level of accuracy. Conversely, an AUC falling between 0.7 and 0.9 denotes moderate accuracy,
while an AUC greater than 0.9 reflects a high degree of accuracy.

To investigate the relationship between GMCRRDEGs, Spearman’s algorithm was used to assess the
correlation between GMCRRDEGs expression levels within the combined datasets. The results obtained from
the correlation analysis were illustrated using the R package pheatmap (version 1.0.12), which facilitated the
generation of correlation heat maps. The most relevant Top4 GMCRRDEGs were screened, identified, and a
correlation scatter plot was generated using the R package ggplot2 (Version 3.4.4). Correlation coefficients (r
values) with absolute values below 0.3 indicated weak or no correlation, those between 0.3 and 0.5 suggested
a weak correlation, values ranging from 0.5 to 0.8 denoted a moderate correlation, and coefficients above 0.8
represented a strong correlation.

Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment
analysis

GO analysis®® serves as a prevalent approach for conducting large-scale functional enrichment studies,
encompassing three main categories: Biological Process (BP), Cellular Component (CC), and Molecular
Function (MF). KEGG*%47 serves as a prominent database that compiles data related to genomes, biological
pathways, various diseases, and pharmaceutical agents. We conducted GO and KEGG enrichment analyses
of GMCRRDEGs using the R package clusterProfiler®®. Statistical significance was determined for items that
presented a p-value of less than 0.05, alongside a false discovery rate (FDR), commonly known as the q-value,
below 0.25.

Construction of diagnostic model for AMI

To develop AMI diagnostic models using the combined datasets, GMCRRDEGs were analyzed using logistic
regression. Logistic regression was employed to investigate the relationship between independent and dependent
variables when the latter was categorized as a binary variable. The GMCRRDEGs were evaluated using a
significance threshold of p<0.05, which led to the development of a logistic regression model. Subsequently,
the collective expression of the GMCRRDEGs included in the logistic regression analysis was illustrated using
a forest plot.

Subsequently, utilizing the GMCRRDEGs incorporated within the logistic regression model, the support
vector machine recursive feature elimination (SVM-RFE)* algorithm was employed, as facilitated by the e1071
package (Version 1.7-14) in R, to identify prospective biomarkers. SVM-RFE relies on the feature selection
algorithm of support vector machine (SVM) to select the most important features by recursively eliminating
those that contribute the least to the classification.

In conclusion, a LASSO regression analysis was performed using the R package glmnet®® (Version 4.1-8).
The analysis was configured with parameters including set.seed(500) and family="binomial,” in accordance
with the characteristics identified through the SVM-RFE algorithm. The LASSO regression technique, which
is an extension of linear regression, addresses the issue of model overfitting and improves its capacity for
generalization by incorporating a penalty term, which is the product of a parameter (lambda) and the absolute
value of the coefficient. Diagnostic model diagrams and variable trajectory diagrams were used to depict the
outcomes of the LASSO regression analysis. These outcomes constituted the diagnostic model for AMI, with
GMCRRDEGs incorporated into the model and identified as key genes. Subsequently, the LASSO RiskScore
was determined using the risk coefficients obtained from the LASSO regression analysis. The risk scores were
calculated using the following formula:
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RiskScore = Z ;Cof ficient (gene;) * mRN AExpressiont (gene;)

Validation of the diagnostic model for AMI

A Logistic Nomogram® is a graphical representation situated within a Cartesian coordinate system that employs
a collection of nonintersecting line segments to illustrate the functional associations among several independent
variables. To create a nomogram that visually represented the relationships among the critical genes, the
R package rms (Version 6.7-1) was employed, leveraging the outcomes derived from the logistic regression
analysis. The R package ggDCA>? (version 1.1) was used to generate DCA maps based on the key genes identified
in the combined datasets.

Moreover, the AMI group was classified into two categories, high- and low-risk, according to the median risk
score derived from the AMI diagnostic model. A comparison map was generated to explore the differences in
key gene expression between high- and low-risk AMI groups. Finally, the R package pROC>? (Version 1.18.5)
was used to plot the ROC curve of the model genes and calculate the AUC value. We evaluated the diagnostic
effect of the expression levels of key genes on the occurrence of AMI. The AUC derived from the ROC curve
were generally within the range of 0.5 1. An AUC value approaching one reflects superior diagnostic efficacy.
Particularly, AUC values ranging from 0.5 to 0.7 are indicative of low diagnostic accuracy, those between 0.7 and
0.9 suggest moderate diagnostic accuracy, and values exceeding 0.9 denote high diagnostic accuracy.

The semantic assessment of GO annotations provides a quantitative framework for evaluating the similarities
between genes and genomes, thereby positioning it as an essential element in numerous bioinformatics analytical
methodologies. The R package GOSemSim>* (Version 2.28.0) was used to assess the functional correlations
among key genes. Additionally, functional correlations among these key genes were analyzed by evaluating their
functional similarities (friends).

Immune infiltration analysis of the high and low-risk groups of key genes by SSGSEA
algorithm

Single-sample gene set enrichment analysis (ssGSEA)is used to evaluate the presence of specific gene sets in
individual biological samples. This method assesses the extent to which various immune cell populations are
present in a sample. Different immune cell populations are identified and categorized, including activated CD8
T cells, activated dendritic cells, gamma delta T cells, natural killer cells, and regulatory T cells. Subsequently,
ssGSEA generated enrichment scores that reflected the proportional representation of each type of immune
cell infiltration across samples. These scores are then compiled into an immune cell infiltration matrix that
encompassed data from AMI samples derived from various combined datasets. This approach allows a detailed
analysis of immune cell distribution and activity within individual samples, providing insights into the immune
landscape of the studied tissues or conditions. We used the R package ggplot2 (Version 3.4.4) map grouping
comparison to show the difference in low and high-risk expression by immune cells in the combined datasets of
AMI samples between the groups. Subsequently, immune cells that demonstrated significant variance between
the two cohorts were selected for in-depth analysis. The Spearman correlation coeflicient was used to evaluate
the interrelationships among these immune cell types, and the R package pheatmap was used to construct a
heatmap that visually depicted the outcomes of the correlation analysis. The AMI cohort was divided into two
distinct classifications, namely high- and low-risk, based on the median risk score obtained from the AMI
diagnostic framework. To effectively illustrate the correlation analysis results linking key genes with immune
cells, a correlation bubble plot was generated using the R package ggplot2 (version 3.4.4).

Statistical analysis

Statistical analyses were performed using R programming language (v4.2.2). Continuous variables exhibiting
normal distribution were evaluated for intergroup differences using the independent Student’s t-test, whereas
non-normally distributed data were subjected to nonparametric analysis using the Mann-Whitney U test
(Wilcoxon rank-sum test). Multigroup comparisons were conducted using the Kruskal-Wallis rank-sum method.
The correlation patterns between molecular markers were quantified using Spearman’s rank-order correlation
coefficients. All statistical tests followed two-tailed verification principles, with significance thresholds set at
p<0.05, unless stated otherwise.

Data availability
The dataset GSE66360 and GSE48060 for this study can be found in the GEO database (https://www.ncbi.nlm.n
ih.gov/ geo). All data generated or analysed during this study are included in this published article.
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