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Sepsis-associated encephalopathy (SAE) is a major complication in intensive care units, characterized 
by diffuse brain dysfunction due to systemic inflammation. Despite advances in critical care 
medicine, SAE remains a key factor in poor patient outcomes, with its pathogenesis closely related to 
mitochondrial damage and the release of mitochondrial DNA (mtDNA). In this study, we integrated 
multiple transcriptomic and single-cell sequencing datasets to comprehensively analyze mitochondrial-
associated differentially expressed genes (MitoDEGs) in SAE brain tissues. Using machine learning 
algorithms, we identified three core biomarkers (ALDH7A1, HOGA1, and AA467197). Functional 
enrichment analysis showed that the upregulated genes in SAE were mainly involved in immune 
and inflammatory responses, while the downregulated genes were associated with mitochondrial 
metabolism and vascular functions. Based on MitoDEGs, clinical subtype analysis shows that changes 
in mitochondrial function can effectively distinguish three sepsis subtypes (Cluster 1–3). Among these, 
Cluster 3 had worse prognosis due to enhanced mitochondrial function and activated inflammatory 
pathways. Immune microenvironment analysis revealed that MitoDEGs were closely associated 
with damage-associated molecular patterns (DAMPs) signaling and the expression of mitochondrial 
respiratory chain complexes. Experimental validation showed that exogenous mtDNA significantly 
increased the levels of inflammatory cytokines (TNF-α, IL-1β, and IL-6), thereby aggravating brain 
tissue pathological damage.
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Sepsis and multiple organ dysfunction syndrome (MODS) are the most prevalent diseases and leading causes 
of mortality in intensive care units (ICUs)1. Despite significant advancements in modern medicine and 
healthcare, which have increased survival rates among critically ill patients with sepsis and MODS, clinicians 
frequently observe a concerning phenomenon: many ICU patients develop disturbances in consciousness or 
cognitive decline unrelated to their primary disease after its control2. This diffuse cerebral dysfunction and 
altered consciousness, induced by sepsis, is termed Sepsis-associated encephalopathy (SAE)3. Notably, SAE can 
manifest even in the absence of bacterial invasion into the central nervous system or bloodstream. It arises from 
systemic inflammatory responses triggered by infection, where severe sepsis releases oxidative products, tumor 
necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6), and other inflammatory mediators that 
act on the brain. These mediators induce cerebral inflammation, brain edema, neuronal degeneration, microglial 
activation, and energy metabolism disorders, ultimately leading to acute, diffuse cerebral dysfunction. Central 
nervous system inflammation plays a pivotal role in this process4.

However, exogenous pathogenic infections are not the sole cause of systemic inflammatory responses5. 
The endosymbiont hypothesis6 posits that mitochondria evolved from aerobic bacteria engulfed by ancestral 
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eukaryotic cells through long-term symbiotic adaptation. mtDNA shares similarities with bacterial DNA, 
containing abundant unmethylated CpG sequences that can induce inflammatory responses akin to those 
triggered by bacterial infections. The mtDNA copy number (mtDNAcn) in each cell reflects mitochondrial 
health, with both decreased and elevated mtDNAcn indicating potential dysfunction7. During sepsis, excessive 
mitochondrial reactive oxygen species (ROS) production6 reduces mitochondrial membrane potential and 
compromises membrane integrity, leading to the release of mtDNA into the circulation8. Circulating mtDNA, 
like bacterial and viral unmethylated CpG-DNA, specifically activates Toll-like receptor 9 (TLR9). TLR9-
mediated neutrophil release of IL-6 and matrix metalloproteinases 8/9 (MMP8/9) synergistically activates 
inflammasomes9generating cascade-amplified inflammatory responses that contribute to neurological 
abnormalities and neuropsychiatric symptoms of excitation or inhibition.

Studies have demonstrated that mitochondrial structural and functional impairments in rat brain tissues 
peak approximately 24  h post-sepsis onset10. Thus, effectively blocking the amplifying effect of circulating 
mtDNA on cerebral inflammation during sepsis represents a critical therapeutic target for SAE. Under pro-
oxidative conditions, abnormal mitochondrial metabolism and respiratory function have been increasingly 
identified as potential distinguishing features of sepsis11,12. Given the mitochondrial activity abnormalities in 
SAE pathogenesis, identifying novel key mitochondrial-related genes is essential to better understand SAE 
mechanisms and develop molecular diagnostics and therapies. The establishment of large-scale sample databases 
and biochip development enables bioinformatics technologies to elucidate disease components at multi-omics 
levels. However, to our knowledge, no studies have identified disease-specific biomarkers for SAE through 
bioinformatics analysis of mitochondrial-related genes.

In this study, we integrated transcriptomic profiling and single-cell technologies to systematically map 
mitochondrial-associated differentially expressed genes (MitoDEGs)13 within the brain transcriptome of 
SAE. We further explored the potential regulatory interactions between key MitoDEGs and the immune 
microenvironment in SAE, as well as their associations with mitochondrial metabolic functions. To bridge 
central mitochondrial dysfunction with systemic biomarkers, circulating cell-free mitochondrial DNA (ccf-
mtDNA) was selected as a peripheral indicator of mitochondrial damage. Ccf-mtDNA represents free-floating, 
non-encapsulated double-stranded DNA fragments released from damaged mitochondria into biological 
fluids14. Functioning as a damage-associated molecular pattern (DAMP), ccf-mtDNA activates innate immune-
inflammatory responses through intercellular signaling15. Given its high detectability in human biofluids (e.g., 
blood, cerebrospinal fluid), ccf-mtDNA has emerged as a promising biomarker for inflammatory disorders, with 
established roles in sepsis-related pathologies16–18. Therefore, we propose ccf-mtDNA as a systemic marker for 
assessing mitochondrial dysfunction, and explore its potential association with the molecular subtypes of sepsis-
associated encephalopathy, aiming to validate the pathophysiological role of mitochondrial functional changes 
in sepsis-associated encephalopathy.

Materials and methods
Reagents
The Hematoxylin and Eosin Staining Kit (cat. no. G1120) and Scott’s Bluing Solution (cat. no. G1865) were 
purchased from Solarbio (USA); Rat Tumor Necrosis Factor-alpha (TNF-α) ELISA Kit (cat. no. EK0526), Rat 
Interleukin-6 (IL-6) ELISA Kit (cat. no. EK0412), and Rat Interleukin-1 beta (IL-1β) ELISA Kit (cat. no. EK0393) 
were obtained from Boster (USA); HRP-conjugated Goat Anti-Rabbit IgG (H + L), Affinity-purified (cat. no. ZB-
2301) was supplied by Beijing Zhongshan Golden Bridge Biotechnology (ZSGB-BIO, China); Rabbit Polyclonal 
Anti-AQP4 (cat. no. bs-0634R) and Rabbit Polyclonal Anti-HPA (cat. no. bs-25726R) were purchased from Bioss 
(China); Rabbit Polyclonal Anti-MMP9 (cat. no. bs-4593R) was obtained from Abcam (UK); and the ONE-4-
ALL Genomic DNA Mini-Extraction Kit (cat. no. B618503) was purchased from Sangon Biotech (Shanghai, 
China).

Data acquisition and preprocessing
The RNA - sequencing datasets used in this study were sourced from the Gene Expression Omnibus (GEO) 
database (https://www.ncbi.nlm.nih.gov/geo)19. Supplementary Table S1 provides a summary of comprehensive 
baseline data. The GSE253438 dataset contains 48 samples of young mouse brain tissue, among which 30 are 
from mice with acute systemic inflammation induced by intraperitoneal injection of lipopolysaccharide (LPS), 
and 18 are from control mice20. The GSE65682 dataset includes 760 blood samples from patients with sepsis21. 
The GSE198861 dataset describes 24 brain tissue samples from mice with and without microglial depletion after 
sepsis induction22. The GSE198862 dataset contains 14 transcriptome data of mouse brain tissue on days 3 and 
20 after sepsis induction22. GSE198871 is a combination of GSE198861 and GSE198862, with data integration 
quality assessment presented in Supplementary Figure S1. All datasets have been normalized through annotated 
probe screening and other data cleaning operations.

Additionally, a single - cell sequencing dataset, GSE10190123, was recruited for this study. Mice of the same age 
and strain underwent hippocampal DropSeq sequencing on day 4. Quality control and analysis were performed 
using the “Seurat” R package24. Cells were filtered according to the following criteria: the number of genes must 
be in the range of 200 to 5000, the proportion of mitochondrial genes should not exceed 5% (pctMT = 5), and 
the proportion of hemoglobin genes should be less than 5% (pctHB = 5). These thresholds are used to exclude 
low-quality cells (such as dying cells, which are characterized by low gene counts or high mitochondrial content) 
and potential double or multiple cells, and can also filter out cells with high hemoglobin gene expression due to 
red blood cell contamination. The cell data that passed the quality screening were sequentially subjected to basic 
standardization steps such as NormalizeData, FindVariableFeatures, ScaleData, RunPCA, FindNeighbors, and 
FindClusters, and cell types were manually annotated based on the CellMarker 2.0 database25.
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Identification of MitoDEGs andfunctional enrichment analysis
Using the R package “DESeq2“26differentially expressed genes (DEGs) between the SAE and HC groups in 
the GSE253438 dataset were analyzed. Statistical significance was determined by |log2FoldChange| > 1 and an 
adjusted p-value < 0.05. The mitochondrial protein database MitoCarta3.0 ​(​​​h​t​t​p​:​/​/​w​w​w​.​b​r​o​a​d​i​n​s​t​i​t​u​t​e​.​o​r​g​/​m​i​t​o​
c​a​r​t​a​​​​​)​​2​7​ was used to screen for genes with high-confidence mitochondrial localization. By overlapping the DEGs 
and mitochondrial-localized genes, SAE-related mitochondrial differentially expressed genes (MitoDEGs) 
were identified. Subsequently, pathway enrichment analysis was performed on the DEGs: Gene Ontology (GO) 
and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses28 were conducted using the R packages 
“clusterProfiler“29 and “org.Hs.eg.db“30 respectively, with a p-value < 0.05 considered statistically significant.

Consensus clustering based on Mitochondria-Related genes and pathway 
enrichment analysis in Severity-Based subtypes
Consensus clustering is a technique employed to identify the potential number and composition of clusters 
within a dataset, such as microarray gene expression data. In this study, we utilized the “ConsensusClusterPlus” 
R package31 to conduct consensus clustering on the GSE65682 dataset, focusing on mitochondria-related genes, 
with the aim of more accurately distinguishing sepsis subtypes. The range of cluster numbers was set from 2 
to 9, and 100 iterations were performed to assess the stability of clustering. Each time, 80% of the total dataset 
was randomly subsampled for analysis. The k-means algorithm was employed as the clustering method, and 
the Euclidean distance was selected as the distance metric (distance = “euclidean”). Then, we used the “Gene 
Set Variation Analysis (GSVA)” and “Limma” R packages32 to analyze the altered pathways in different severity 
subtypes, respectively.

Weighted gene Co-expression network analysis (WGCNA) and machine learning for 
identifying candidate biomarkers
The R package “WGCNA” was utilized to perform Weighted Gene Co - expression Network Analysis33which helps 
in pinpointing co - expression modules and their correlation with diseases. We began by selecting MitoDEGs 
identified in prior studies. The optimal soft - thresholding power β was determined using the “pickSoftThreshold” 
function, with a mean connectivity R2 threshold of 0.9. An adjacency matrix was converted into a Topological 
Overlap Matrix (TOM) to calculate gene connectivity and dissimilarity. Co - expression modules were identified 
via hierarchical clustering and dynamic tree cutting. Modules were associated with diseases by calculating gene 
significance (GS) and module membership (MM), and genes with the strongest correlation were picked out for 
further analysis.

To strengthen the selection process of hub candidate genes, three distinct machine learning algorithms 
were employed. The SVM - RFE method was carried out using the “e1071“34 and “caret“35 packages. The RF 
method was implemented with the support of the “randomForest” package36. Additionally, the Least Absolute 
Shrinkage and Selection Operator (LASSO) regression, known for its ability to perform variable selection and 
regularization, was also applied to help identify key genes. The results from each algorithm were analyzed using 
Venn diagrams to determine the overlapping genes.

Expression analysis and diagnostic evaluation of candidate biomarkers
In this study, the “ggplot2” package37 was used to evaluate and compare the expression levels of potential 
biomarkers between the control and disease groups, with a significance threshold of p < 0.05. Additionally, 
a nomogram was constructed using the “rms“38 package as a visual tool to predict the likelihood of specific 
outcomes based on the individual scores of candidate genes. Here, the “score” refers to the value assigned to each 
candidate gene, while the “total score” represents the cumulative score derived from all relevant genes. To evaluate 
the diagnostic efficacy of the candidate biomarkers, the areas under the receiver operating characteristic (ROC) 
curve and precision-recall (PR) curve (AUC) were calculated using the “pROC”39and “PRROC”40packages.

Immune infiltration analysis
The CIBERSORT algorithm, based on RNA-seq or microarray data, is a deconvolution method that utilizes 
linear support vector regression to determine the infiltration abundance of 22 immune cell types within a 
sample. In this study, the “CIBERSORT” algorithm in R was used to measure the abundance of 22 immune 
cell types in SAE and healthy samples (GSE253438). The correlation between each central MitoDEG and the 
22 immune cells was examined via Spearman’s rank correlation analysis, with results presented in lollipop and 
heatmap plots. R’s “ComplexHeatmap” package41 was used to create heatmaps and cluster analyses for a visual 
display of correlations.

Cell-Cell interaction analysis using cellphonedb
This study uses the AddModuleScore42method to calculate scores for gene modules related to damage - 
associated molecular patterns (DAMPs)43 in cells. By incorporating predefined DAMPs - related feature gene 
sets, this method quantifies DAMPs - related signaling activity in each cell based on single - cell transcriptomic 
data. To explore DAMPs’ role in severe sepsis - associated encephalopathy (SAE), CellChat R package (version 
1.6.1)44 is used to estimate receptor - ligand pair expression across cell types, determining specific signaling 
pathways. Receptor - ligand interaction data comes from CellChatDB45. Based on this data, marker genes of 
source and target cell types in CellChatDB are compared to check for significant associations between cell types 
with different scores.
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Mitochondrial DNA (mtDNA) extraction and purification
Take the hippocampus of male SD rats and homogenize with STE buffer. Centrifuge at 1500 rpm for 15 min 
at 0 °C and take the supernatant; centrifuge the supernatant at 12,000 rpm for 40 min to obtain the precipitate 
(mitochondria), and repeat the differential centrifugation. Resuspend the precipitate in STE, let it stand at room 
temperature for 15 min, then centrifuge at 12,000 rpm for 10 min. Add TEN to the precipitate for suspension, 
add SDS and ice-bath for 10 min, then add KAC and ice-bath for 30 min. Centrifuge at 12,000 rpm for 8 min, 
take the supernatant, add 2 volumes of ethanol, and precipitate at -20 °C for 30 min to obtain crude mtDNA. 
Add RNase A to the crude DNA and digest at 37 °C for 30 min. After phenol extraction, extract with phenol/
chloroform/isoamyl alcohol, and then extract again with chloroform. Add ethanol to the supernatant and 
precipitate at -20 °C. After centrifugation, the purified mtDNA is dissolved in TE, the concentration and purity 
are measured, adjusted to 10 µg/ml, and stored at -20 °C for later use.

Animal maintaining
In this study, 40 SPF-grade adult male Sprague-Dawley (SD) rats (provided by Genebio Company, Guangzhou) 
were selected. The experimental protocol was approved by the Ethics Committee of the First Affiliated Hospital 
of Nanchang University (Ethics Approval No.: 2021-8-013). The SD rats were randomly divided into the sham 
operation group (Sham, n = 10) and the sepsis model group (CLP, n = 30). One week before the operation, 
electroencephalogram (EEG) monitoring electrodes were implanted, and the rats were fasted for 12 h. All rats 
were anesthetized with isoflurane inhalation. The CLP group underwent cecal ligation and puncture (CLP). 
The specific operation included ligating the distal 1/3 of the cecum, puncturing twice with a 20-gauge needle, 
and squeezing out the intestinal contents. The sham operation group received the same operations except for 
cecal ligation and puncture. After the operation, the animals were housed in an SPF-grade animal laboratory 
and managed in accordance with international regulations for the use and protection of animals. During the 
experiment, the rats had free access to food and water, the temperature was maintained at 23 ± 2  °C (with a 
humidity of 45–65%), and a 12-hour light/dark cycle was controlled. At 8 h after the operation, neurobehavioral 
scoring was performed to determine whether the SAE model was successfully established. After modeling, 
2 animals in the CLP group died, and 10 animals did not meet the criteria for SAE.The 10 rats in the sham 
operation group were divided into the sham + PBS group (n = 5) and the sham + mtDNA group (n = 5) using the 
same method. The 10 rats that did not meet the criteria for SAE were included in the sepsis group and divided 
into the sepsis + PBS group (n = 5) and the sepsis + mtDNA group (n = 5) in the same way mentioned above. The 
18 rats with successfully induced models were divided into two groups: SAE + PBS (n = 9) and SAE + mtDNA 
(n = 9). Twenty-four hours after modeling, 2 ml of PBS and mtDNA (10 µg/ml) were respectively administered 
via tail vein injection. Twenty-four hours later, the surviving rats were subjected to neurological reflex scoring 
and EEG monitoring. At the end of the experiment, the rats were euthanized with a high dose of anesthetic 
agent. Femoral artery blood, cerebrospinal fluid, and brain tissue samples were collected and stored in a -80 °C 
freezer for future examination.

Cell culture
Rat microglial cells (from Shanghai, Chinese Academy of Sciences, Cat# ac340723) were cultured in DMEM 
(GIBCO, Shanghai) with 10% fetal bovine serum. When confluence reached 70%, cells were passaged and 
grouped into four groups: control, LPS, LPS + mtDNA (10 µl), and LPS + mtDNA (5 µl). Except for the control 
group treated with PBS, all groups were treated with LPS (1  µg/ml), and the intervention groups received 
10 µl–5 µl mtDNA (10 µg/ml) in 2 ml medium. Cells were incubated at 37℃ with 5% CO₂ and collected at 6 h, 
12 h, and 24 h for further experiments.

Histological processing and H&E staining
Following fixation and rinsing, brain tissues were dehydrated through an ethanol gradient (70%, 80%, 90%, and 
absolute ethanol), cleared in xylene, and embedded in paraffin after wax infiltration. Section (4 μm thickness) 
were dewaxed, rehydrated, and stained using a hematoxylin and eosin (H&E) kit. Briefly, nuclei were stained 
with hematoxylin for 5 min, differentiated in 1% acid alcohol (25 s), and blued in warm water (50 °C, 5 min). 
Cytoplasmic counterstaining was performed with eosin for 2 min. Sections were dehydrated through an ethanol 
series, cleared in xylene, and mounted with neutral resin for light microscopic observation.

Immunohistochemistry
Deparaffinized brain sections underwent antigen retrieval in citrate buffer, followed by blocking with 5% BSA 
(37 °C, 30 min). Sections were incubated overnight at 4  °C with primary antibodies (AQP-4, HPA, MMP-9; 
1:100 dilution), then treated with HRP-conjugated goat anti-rabbit IgG (1:100, 37 °C, 30 min). DAB (5–10 min) 
visualized signals, counterstained with hematoxylin, dehydrated, and mounted.

Enzyme-Linked immunosorbent assay (ELISA)
TNF-α, IL-1β, and IL-6 levels in serum, CSF, and brain homogenates were measured using commercial ELISA 
kits. Absorbance at 450 nm was recorded, and concentrations were calculated via standard curve regression.

RNA extraction and real-time quantitative PCR
Total DNA was extracted (ONE-4-ALL Kit), quantified spectrophotometrically, and amplified using SYBR 
Green reagents under: 95 °C 30 s (initial denaturation), 40 cycles of 95 °C 5 s, 60 °C 30 s. Melt curve analysis 
(85 °C) confirmed specificity. Relative mRNA levels (TNF-α, IL-1β, IL-6) were normalized to GAPDH (2 − ΔΔCt 
method). Absolute mtDNA copies were calculated using plasmid standard curves (Supplementary Table S2).
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Statistical analysis
To conduct the statistical analysis, we utilized R software (version 4.2.3), with a significance level set at p < 0.05.

Results
Mitochondrial dysfunction in SAE differential gene expression and pathway analysis
The workflow of this study is illustrated in Fig. 1. Using the GSE253438 dataset, differential expression analysis 
was performed with DESeq2, identifying a total of 3310 differentially expressed genes (DEGs) between the 
SAE group and the control group. The volcano plot (Fig.  2A) revealed 1,524 significantly upregulated and 
1,786 downregulated genes in the SAE group. Intersection of these DEGs with 1140 mitochondrial-related 
genes retrieved from the MitoCarta3.0 database detected 144 overlapping MitoDEGs (38 upregulated and 106 
downregulated) in SAE brain tissues (Fig. 2B).

To systematically characterize the biological features of SAE, GO and KEGG pathway enrichment analyses were 
conducted. As shown in Supplementary Fig. S2, significantly enriched GO terms were categorized into biological 
processes (BP), molecular functions (MF), and cellular components (CC). Upregulated DEGs in SAE were 
predominantly associated with immune-related processes, including responses to bacterial-derived molecules, 
regulation of inflammatory/innate immune responses, and antiviral mechanisms. The downregulated DEGs 
were enriched in the following terms: extracellular matrix organization, extracellular structure organization, 
external encapsulating structure organization, vascular process in circulatory system, and transport across blood 
- brain barrier. KEGG analysis further demonstrated that SAE pathogenesis was closely linked to cytokine-

Fig. 1.  Schematic overview of the study workflow. (1) Identification and validation of mitochondrial 
differentially expressed genes (MitoDEGs): MitoDEGs were screened using the murine brain transcriptomic 
dataset (GSE253438), followed by validation and subtyping analysis with human sepsis data (GSE65682); 
(2) Screening of core biomarkers and diagnostic model construction: Key MitoDEGs (ALDH7A1, HOGA1, 
AA467197) were identified through WGCNA and machine learning algorithms. A diagnostic nomogram 
model was established and its performance evaluated in both the training set (GSE253438) and an independent 
validation cohort (GSE198871); (3) Characterization of the immune microenvironment: Immune infiltration 
analysis (GSE253438) was integrated with single-cell RNA sequencing data (GSE101901) to systematically 
profile the dynamic immune landscape in brain tissues of SAE model mice; (4) Experimental validation of 
mtDNA-mediated inflammatory mechanisms: The critical role of mitochondrial DNA (mtDNA) in microglial 
inflammatory activation and neuroinflammation in septic rats was experimentally confirmed using animal 
models. The graphical abstract and workflow of this study were created using Figdraw.
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Fig. 2.  Differentially expressed genes linked to mitochondria and their roles in SAE. A Volcano plot of 
differentially expressed genes (DEGs) between the sepsis-associated encephalopathy (SAE) group and the 
control group. Genes meeting the significance thresholds (|log2FC| > 1 and adjusted p-value < 0.05) are 
highlighted in red (upregulated in SAE) and blue (downregulated in SAE), respectively. B Venn diagrams 
displayed the number of MitoDEGs chosen from MitoCarta 3.0’s mitochondria-related genes and up- and 
down-regulated DEGs. C, D KEGG pathway analysis of upregulated C and downregulated D genes. KEGG is 
available at www.kegg.jp/kegg/kegg1.html and permission for use has been obtained. (E-G) Measurement of 
mitochondrial DNA copy number levels in serum E, brain tissue (F), and cerebrospinal fluid G, presented as 
mean ± SD (n = 5–8). The experiment was repeated three times (*P < 0.05, **P < 0.01). SAE, Sepsis-Associated 
Encephalopathy; DEG, differentially expressed gene. KEGG, Kyoto encyclopedia of genes and genomes. CSF, 
cerebrospinal fluid.
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receptor interactions, viral protein-host interactions, COVID-19 signaling, cytoskeleton regulation, neutrophil 
activation, drug metabolism, and glutathione metabolism (Fig. 2C-D).

Given the crucial role of mitochondria in cellular energy metabolism and immune responses, functional 
changes in mitochondria often lead to the release of mtDNA, which may play an important role in the pathogenesis 
of SAE. To test this, we quantified mtDNA levels using real-time quantitative PCR (qPCR) in plasma, brain 
tissues, and cerebrospinal fluid (CSF) as biomarkers of mitochondrial damage and systemic inflammation.
Notably, mtDNA levels in plasma, brain tissues, and cerebrospinal fluid of SAE rats were significantly elevated 
compared to those in sepsis rats and sham controls (*p* < 0.05) (Fig. 2E–G). This suggests that mitochondrial 
damage and mtDNA release into the circulation and CNS may contribute to the inflammatory processes and 
metabolic dysregulation identified in the transcriptomic analyses.

MitoDEGs-Driven molecular subtypes and survival analysis
We used the consensus clustering algorithm to identify different SAE subtype groups based on the MitoDEGs 
identified in the GSE253438 dataset. The results showed that consensus clustering revealed three molecular 
subtypes (Cluster 1, Cluster 2, and Cluster 3), with the optimal stability at k = 3. This result is supported by the 
cumulative distribution function (CDF) curves, and the incremental area change of the maximum consensus 
score also reaches the minimum (Fig. 3A). Kaplan-Meier survival analysis indicated that there were statistically 
significant differences in prognosis among the subtypes (log-rank test, P = 0.042). Compared with Cluster 1 and 
Cluster 2, the survival rate of Cluster 3 was significantly reduced (Fig. 3B).

Mechanistically, Cluster 3 exhibits distinct molecular characteristics. Heatmap analysis highlights the 
significant upregulation of MitoDEGs in this subtype (Fig.  3C), as well as the increased expression of 
inflammatory cytokines (Fig. 3D). Gene set variation analysis (GSVA) further revealed significant enrichment 
of biological processes in Cluster 3. Supplementary Fig. S3A and B illustrate the biological pathways of Cluster 
3 compared with Clusters 1 and 2, including GOBP: amino acid transmembrane transport, anterior head 
development, ammonium transmembrane transport, and amine metabolic process. These findings suggest that 
Cluster 3 represents a sepsis subtype characterized by altered mitochondrial function and disrupted metabolic 
reprogramming. This may lead to adverse clinical outcomes through impaired regulation of energy metabolism 
and inflammatory responses.

Risk prediction and validation of SAE based on WGCNA and machine learning
Based on the GSE253438 dataset, we employed the WGCNA algorithm to identify key gene modules closely 
associated with the pathogenesis of SAE.A scale-free co-expression network was constructed using WGCNA, 
which classified 17,221 genes into 8 distinct modules. The topological overlap matrix (TOM) of all module-
assigned genes was visualized as a heatmap. Module-trait relationship analysis revealed that the MEturquoise 
module (containing 5,715 genes) exhibited the strongest positive correlation with SAE (r = 0.88; Fig.  4A–C). 
Intersection analysis between genes in the MEturquoise module and MitoDEGs yielded 72 overlapping genes.

Subsequently, three machine learning models—RF, SVM-RFE, and LASSO—were trained using five-fold 
cross-validation to screen for SAE-specific diagnostic biomarkers from these 72 candidate genes. LASSO 
regression identified 9 genes with non-zero coefficients (Fig. 4D), while the SVM-RFE algorithm selected 12 
genes demonstrating the lowest root mean square error (Fig. 4E). The RF classifier ranked genes by importance 
scores and retained those with significance values > 0.5 (Fig. 4F). Venn diagram analysis further prioritized three 
hub MitoDEGs (ALDH7A1, HOGA1, and AA467197) shared across all three models (Fig. 4G).

To validate the biological significance of ALDH7A1, HOGA1, and AA467197, we conducted comparative 
analyses between two independent datasets (GSE253438 and GSE198861). The results demonstrated that in the 
validation set GSE198861, HOGA1 and AA467197 exhibited significant upregulation, while ALDH7A1 showed 
a marked downregulation trend, with these expression changes directionally consistent with the GSE253438 
dataset (Fig. 5A-B). Notably, HOGA1 and AA467197 mRNA levels were higher on day 3 of SAE compared to days 
10 and 20. Conversely, ALDH7A1 mRNA levels were lower on day 3 relative to days 10 and 20, suggesting their 
critical regulatory roles during the acute pathological progression of SAE. To determine whether ALDH7A1, 
HOGA1, and AA467197 can serve as diagnostic biomarkers for SAE, a nomogram was constructed based on 
these three genes. In this nomogram, the relative expression level of each gene corresponds to a specific score, 
and the total score is calculated by summing up the scores of each gene (Fig. 5D).

Furthermore, the analyses of ROC curves (Fig. 5E and F) and precision-recall curves (Supplementary Figure 
S 4) using both the GSE253438 dataset and the independent external validation cohort GSE198871 indicated 
that these biomarkers have strong diagnostic potential.

Immune microenvironment features reveal mitochondrial gene regulation in SAE
To clarify the immunoregulatory mechanisms of severe sepsis-associated encephalopathy (SAE), immune 
infiltration analysis revealed that there are specific patterns of immune changes in the brain tissues of LPS-
induced sepsis mouse models (Figs. 6A, B). Specifically, resting NK cells, M1 macrophages, and resting dendritic 
cells exhibited significantly elevated infiltration levels, whereas resting CD4 + memory T cells, M0 macrophages, 
and resting mast cells showed markedly reduced infiltration compared to controls. Further analysis of the three 
hub MitoDEGs demonstrated their divergent immunomodulatory roles. ALDH7A1 expression was positively 
correlated with M0 macrophages, resting mast cells, and resting CD4 + memory T cells, but negatively correlated 
with M1 macrophages and resting dendritic cells. In contrast, HOGA1 and AA467197 displayed entirely 
opposite correlation patterns (Fig. 6C).

Spearman correlation analysis between MitoDEGs and DAMPs-related genes showed that ALDH7A1 was 
significantly negatively correlated with most DAMPs-associated genes, whereas HOGA1 and AA467197 exhibited 
positive correlations (Fig. 6D). Additionally, ALDH7A1 expression was inversely associated with mitochondrial 
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respiratory chain complex I-V genes, while HOGA1 and AA467197 showed positive correlations with these 
genes (Fig. 6E). It is worth noting that ALDH7A1 is negatively correlated with pro-inflammatory cytokines (such 
as IL-1β and TNF-α), whereas HOGA1 and AA467197 are positively correlated with inflammatory mediators. 
(Fig. 6F).

Overall, the downregulation of ALDH7A1 and the upregulation of HOGA1 and AA467197 may 
synergistically drive SAE progression by modulating immune cell infiltration, promoting DAMPs signaling, 
impairing mitochondrial respiratory chain activity, and amplifying inflammatory responses.

Microglia with High DAMPs Scores Regulate Neuroinflammation in SAE through Enhanced 
Inflammatory Factor Expression and Cellular Interactions.

Through the analysis of the GSE101901 dataset, 12 cell types, including astrocytes and microglia, were 
identified (Fig. 7A). In the brain tissues of SAE patients, the proportions of astrocytes and microglia significantly 

Fig. 3.  Characteristics of mitochondrial related gene subgroups. A Consensus matrix of MitoDEGs at k = 3. 
(B The survival analysis between the three subgroups showed a statistically significant overall difference 
(P = 0.042). C The expression of MitoDEGs in different subgroups, with red indicating high expression and 
green indicating low expression.D The expression levels of IL11, CXCL5, AQP1, and AQP5mRNA in different 
groups. P values were determined by Student’s t-test and Kruskal-Wallis test (NS P > 0.05, *P < 0.05, **P < 0.01, 
***P < 0.001, ****P < 0.0001).
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increased, while the proportions of CA subtype 1 and CA subtype 2 neurons decreased (Fig. 7B). Using the 
AddModuleScore algorithm, it was found that microglia and oligodendrocytes had higher DAMPs enrichment 
scores (Fig.  7C). CellChat analysis revealed that the intensity of ligand-receptor interactions was higher in 
the high-score group than in the low-score group (Fig. 7D). Scatter plot analysis indicated that astrocytes and 
oligodendrocyte progenitor cells had high interaction strength and were the core of the cellular communication 
network, while CA1 neurons had low interaction activity (Supplementary Fig. S5A). Pathway analysis showed 
that the relative information flow of pathways such as GALECTIN and PDGF was significantly increased in the 
SAE group (Supplementary Fig. S5B). There were significant differences in the intercellular information flow 
network between Score Up microglia and Score Down microglia. Figure 7E and Supplementary Fig. 5C show 
that, compared to the low DAMPs scoring subtype (Score Down microglia), the high DAMPs scoring subtype 
of microglia (Score Up microglia) exhibits higher interaction intensity and upregulation of inflammatory factor 
expression. In summary, microglia with high DAMPs scores may play a key role in the neuroinflammatory 
regulation of SAE by enhancing the expression of inflammatory factors and cellular interactions.

MtDNA exacerbates SAE pathogenesis via inflammatory pathway activation
Neuroinflammation occupies a central position in the pathogenesis of sepsis-associated encephalopathy (SAE). 
Previous bioinformatics analyses have revealed significant associations between mitochondrial differentially 
expressed genes (MitoDEGs) and immune infiltration or inflammatory pathways. Based on these findings, this 
study further experimentally validated the crucial role of mitochondrial DNA (mtDNA) in the pathogenesis 
of SAE. As shown in Fig.  8A, we established a rat model of sepsis-associated brain injury according to the 
methods and criteria described by Kafa IM et al.46. In vivo experimental results from this model showed that 
24 h after intravenous injection of mtDNA, light microscopy revealed no significant abnormalities in the size 
or morphology of brain tissue cells in the sham-operated group. In contrast, in the sepsis-induced brain injury 
group, some cells exhibited perinuclear halos, suggesting pyknosis and disorganized cellular arrangement. 
Compared to the sepsis-induced brain injury group, the brain tissue of the mtDNA-injected group exhibited 
more severe damage, manifested as significantly greater cellular structural abnormalities and disorganized 
arrangement (Fig.  8B). Furthermore, the levels of inflammatory cytokines (TNF-α, IL-1β, IL-6) in both the 
brain tissue and plasma of mtDNA-injected rats were also significantly higher than those in the sepsis control 
group (P < 0.01) (Fig. 8C).

Neuroinflammation serves as the primary pathological basis of septic encephalopathy, with microglial 
activation playing a pivotal role. Therefore, we selected microglial cells as the research subject to observe 
the expression changes of pro-inflammatory factors such as TNF-α, IL-1β, and IL-6 in response to mtDNA 
stimulation. In vitro experimental results demonstrated that mtDNA significantly enhanced the LPS-induced 
inflammatory response in microglial cells. Compared to the LPS stimulation alone group, the secretion levels of 
these pro-inflammatory factors (TNF-α, IL-1β, and IL-6) were further elevated (P < 0.05) (Fig. 8D). This result 
aligns with the activation of pro-inflammatory pathways (such as cytokine-cytokine receptor interaction and 
NF-κB signaling) identified in prior transcriptomic analyses.

To further explore the role of mtDNA and its downstream signaling pathways, we conducted a comparative 
analysis on the expression levels of MMP-9, AQP4, and HPA axis-related markers in the hippocampal brain 
tissues of rats with SAE. The results showed that all the above indicators were highly expressed in the brain tissues 
of the sepsis encephalopathy rat model, with the most significant upregulation observed in the SE + mtDNA tail 
vein injection group (Fig. 9).

Discussion
SAE is a common central nervous system complication in patients with sepsis, with an incidence rate ranging 
from 8 to 70% among sepsis patients46. The pathogenesis of SAE is extremely complex, with inflammation 
playing a key role. Studies have shown that the characteristic feature of SAE is the increased expression of pro-
inflammatory cytokines in the brain, while there is no significant change in cerebral blood flow or direct infection. 
It is currently believed that the pathogenesis of SAE is closely related to cytokine-mediated microvascular, 
coagulation system, or organ damage, with neuroinflammation being the underlying cause47. Mitochondrial 
dysfunction plays an important role in the development of SAE, but research on the role of mitochondrial-
related genes in the pathogenesis of SAE remains relatively limited3.

In this study, we integrated multi-omics data to comprehensively analyze the pathological modifications of 
mitochondria in the SAE environment and identified mitochondrial biomarkers associated with SAE, aiming 
to provide new insights into the pathogenesis of SAE. Previous studies have demonstrated that mitochondria, 
as the center of energy metabolism48drive the progression of SAE through kinetic imbalance49oxidative 
stress50,51and energy metabolism collapse52. Autophagy clearance impairment (disruption of Parkin-dependent/
non-dependent pathways) and the release of pro-apoptotic proteins, in concert with calcium overload, activate 
the caspase cascade, ultimately leading to neuronal programmed death53–55. These interactive mechanisms 
together constitute the multi-dimensional pathological network of brain dysfunction in SAE. In the brain 
tissue of SAE Mus musculus, 12.6% (144/1140) of mitochondrial-related genes exhibited significant expression 
differences, indicating widespread disruption of the mitochondrial homeostasis regulation network. Gene 
Ontology (GO) enrichment analysis revealed that upregulated genes were mainly involved in innate immune 
responses (such as recognition of bacterial molecular patterns and Type I interferon signaling pathways), while 
downregulated genes were concentrated in processes such as extracellular matrix remodeling (collagen fiber 
assembly and angiogenesis). This expression pattern further confirms the SAE pathological pattern: On the 
one hand, overactivation of immune-inflammatory pathways causes neuroinflammation damage56; on the other 
hand, dysfunction of the vascular support system worsens the metabolic crisis57.
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Unlike previous screening methods, this study employed machine learning algorithms to identify SAE-
specific diagnostic biomarkers. WGCNA identified modules highly correlated with SAE, and further machine 
learning models ultimately pinpointed three core MitoDEGs: ALDH7A1, HOGA1, and AA467197. These genes 
exhibited consistent expression patterns in an independent cohort (GSE198861) and demonstrated strong 
diagnostic efficacy (ROC-AUC = 0.856). The nomogram constructed based on these biomarkers effectively 
stratified SAE risk, providing a practical tool for early diagnosis and prognostic assessment.

Mitochondria play a crucial role in integrating cellular immunity, physiological functions, and metabolic 
regulation. Previous studies have clearly shown that the three genes, ALDH7A1, HOGA1, and AA467197, 
are closely associated with mitochondrial functions and energy metabolism.​The HOGA1 gene encodes the 
mitochondrial enzyme HOGA1, which can catalyze the final step of mitochondrial hydroxyproline metabolism, 
converting 4-hydroxy-2-oxoglutarate (HOG) into glyoxylic acid and pyruvate. When the HOGA1 gene mutates, 
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it leads to the deficiency of HOGA1, thereby causing a large accumulation of HOG in mitochondria, and ultimately 
triggering primary hyperoxalurias (PH). In addition, HOGA1 is highly expressed in the adipose tissue of obese 
individuals and has a close genetic association with body mass index (BMI). It may function by up - regulating 
genes related to adipogenesis and inhibiting the expression of genes related to lipolysis58. Moreover, studies 
have confirmed that HOGA1 also has the effect of inhibiting the growth of various tumors59,60.​ ALDH7A1 plays 
an important role in lysine metabolism61. ALDH7A1 is not essential when nutrients are sufficient. However, 
under energy stress conditions such as hunger and hypoxia, it can inhibit COPI vesicle transport through BARS, 
thereby maintaining ATP levels and promoting cell survival. At the same time, ALDH7A1 shows specificity 
in maintaining membrane NADH levels, and membrane NADH is precisely produced by ALDH7A163. 
Besides, ALDH7A1 can also reduce lipid peroxidation by directly consuming reactive aldehydes and promote 
the membrane recruitment of FSP1 to resist ferroptosis63.​In the B16-F10 melanoma model, the transcription 
of AA467197 can be induced by interferons (IFN - γ and IFN - β) in the tumor microenvironment, thereby 
promoting the degradation of NDUFA4. The deficiency of NDUFA4 can trigger mitochondrial stress, leading to 
the release of mtDNA and the activation of the cGAS - STING pathway, thus amplifying interferon signals64. In 
addition, the AA467197 gene can also regulate the intensity of immune responses by adjusting the activity of the 
NLRP3 inflammasome. Under low - dose infection conditions, the abnormal activation of the GSDMD cleavage 
pathway will significantly aggravate pyroptosis65.

Recent studies have highlighted the significant value of mtDNA in the prognostic assessment of critically ill 
patients66. Sepsis can induce mitochondrial cellular hypoxia, disrupt the respiratory chain, and ultimately lead 
to reduced energy production and overexpression of free radicals, thereby exacerbating organ dysfunction12. 
Therefore, mitochondrial structural and functional impairments play a crucial role in the pathogenesis of SAE. In 
a SAE mouse model established via cecal ligation and puncture (CLP), severe mitochondrial dysfunction in the 
hippocampus was observed, accompanied by a significant increase in reactive oxygen species (ROS) production, 
which further induced neuronal apoptosis and enhanced inflammatory responses, thereby promoting the 
occurrence of SAE14. However, we propose that the role of mitochondria in the pathophysiological processes 
of SE may extend beyond these mechanisms. According to the theory of DAMPs, in non-infectious immunity, 
mtDNA, due to its high homology with bacterial DNA, is an important DAMP molecule that can induce innate 
immune responses in the brain, leading to or amplifying cerebral inflammation15. In vitro experiments have 
shown that mtDNA can amplify lipopolysaccharide (LPS)-induced inflammation in microglia, with significant 
increases in TNF-α, IL-1β, and IL-6 levels in the LPS + mtDNA group compared to the LPS group. Similarly, in 
in vivo experiments, rats injected with mtDNA via the tail vein exhibited significantly higher plasma levels of 
TNF-α, IL-1β, and IL-6 24 h post-injection compared to control groups, and the levels of TNF-α and IL-1β in 
brain tissue were also significantly higher than those in control groups, confirming that mtDNA can stimulate 
inflammatory responses in a sepsis rat model. Studies have also demonstrated that plasma free mtDNA is highly 
expressed in patients with sepsis and correlates with disease severity67. Our experiments similarly found that the 
level of plasma free mtDNA in sepsis rats was significantly higher than that in control and sham groups, further 
confirming that the level of plasma free mtDNA is parallel to the severity of sepsis. The level of free mtDNA in 
the cerebrospinal fluid (CSF) of SAE rats was also higher than that in sepsis and sham groups, suggesting that the 
level of free mtDNA in CSF is associated with the occurrence of SAE-related brain damage.

It is commonly believed that mtDNA specifically binds to Toll-like receptor 9 (TLR9) within neutrophils, 
leading to the phosphorylation of the p38 mitogen-activated protein kinase (MAPK) signaling pathway. 
Activated neutrophils release matrix metalloproteinases 8/9 (MMP8/9), which disrupt the basement membrane 
of vascular endothelial cells68resulting in damage to distant organ tissues. Cerebral edema of brain parenchymal 
cells is a key pathological process in SAE, significantly affecting the recovery of brain cells. Its formation and 
resolution are closely related to AQP4, which is most abundantly expressed in the gray matter of the brain 
and spinal cord. HPA is widely expressed in various cells, including neurons, astrocytes, endothelial cells, and 
macrophages69,70. It is the only known endoglycosidase that degrades heparan sulfate proteoglycans in the 
extracellular matrix and basement membrane and is involved in neuroinflammatory responses71. Therefore, 
in the detection and analysis of mtDNA and its downstream signaling pathways, we compared the expression 
levels of MMP-9, AQP-4, and HPA in the hippocampal brain tissue of SAE rats and found that these proteins 
were highly expressed in the brain tissue of SAE rats, especially in the SAE + mtDNA tail vein injection group, 
consistent with the results reported in the aforementioned literature. This indicates that free mtDNA in CSF may 
act as a special DAMP that binds to TLR9, activates microglia to release MMP-9, and causes brain edema and 
increased levels of inflammatory factors in the brain.

Fig. 4.  Identification of potential hub genes. A Heatmap showing the correlation between the SAE and 
Control groups. The values in the small cells represent the correlation coefficients calculated twice between 
the eigenvalues of each trait and the eigenvalues of each module, as well as the corresponding statistically 
significant p-values. The color intensity corresponds to the magnitude of the correlation. A scatter plot of gene 
significance is also shown. B Soft threshold (power = 8) and scale-free topological fitting index (R2 = 0.9). S 
Gene hierarchical clustering dendrogram. The horizontal axis represents different genes, while the vertical axis 
represents the differences between genes. Lower branches indicate reduced differences within the branches 
(i.e., stronger correlations). D Based on the Lasso regression algorithm, 9 genes corresponding to the lowest 
binomial deviation are most suitable for SAE diagnosis. E Based on SVM-RFE, the top 12 genes with the 
smallest error and highest accuracy in SAE were selected. F According to the importance scores of the random 
forest algorithm in SAE, the top 15 genes were selected and ranked. G The final candidate biomarkers for SAE 
are shown as overlapping regions in the Venn diagram.

◂

Scientific Reports |        (2025) 15:33572 11| https://doi.org/10.1038/s41598-025-18650-2

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


However, despite the phased achievements of this study, there are still some areas for improvement. In terms of 
sample selection, the current risk model relies on a limited public database, resulting in insufficient validation. To 
enhance the credibility and applicability of the model, future research needs to conduct independent prospective 
cohort analyses and expand the clinical data sample size. Regarding molecular mechanisms, although the study 

Fig. 5.  Evaluation of the diagnostic value and construction of nomograms for candidate biomarkers in the 
validation datasets. A Differential expression of the three shared genes in the dataset GSE253438. B Differential 
expression of the three shared genes in the dataset GSE198861. C The detection results of mRNA levels for the 
genes HOGA1, AA467197, and ALDH7A1 in the GSE198871 dataset across different experimental days. D 
Nomogram constructed for the three shared genes in the validation dataset GSE198871. E ROC curves of the 
three shared genes in the GSE253438 dataset. F ROC curves of the three shared genes in the validation dataset 
GSE198871.
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has observed expression differences of ccf-mtDNA in the SAE rat model and changes in the expression levels 
of MMP-9, AQP-4, and HPA, the specific mechanisms of action between MitoDEGs and these molecules still 
need to be elucidated. Subsequent research will focus on elucidating the regulatory mechanisms underlying 
the recruitment and activation of these three genes in innate immune cells of SAE, as well as delineating their 
mechanistic contributions to modulating cytoplasmic escape of mtDNA.

Fig. 6.  Examination of the infiltration of immune cells and the connection between hub genes and distinct 
immune cells in SAE patients.(A) The bar chart displays the proportions of immune cells in SAE and normal 
tissues.(B) Heatmap displaying the expression patterns of immune cell types.(C) Heatmap illustrating 
correlations between genes (HOGA1, ALDH7A1, AA467197) and different immune cell types.(D) Scatter 
plot matrix demonstrating correlations between genes (HOGA1, ALDH7A1, AA467197) and DAMPs-related 
genes. (E) Scatter plot matrix for each complex, showing correlations between genes (HOGA1, ALDH7A1, 
AA467197) and mitochondrial respiratory chain complex-related genes. (F) Correlations between genes 
(HOGA1, ALDH7A1, AA467197) and inflammatory factors.
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Conclusion
In summary, this study has established a novel mitochondrial-based molecular signature, encompassing key 
genes such as ALDH7A1, HOGA1, and AA467197. By integrating bioinformatics analysis and machine learning 
approaches, we have delved into the interplay between these genes, immune infiltration, and mitochondrial 
metabolic functions. Additionally, our findings suggest that the levels of mtDNA in plasma and cerebrospinal 
fluid may serve as critical indicators of SAE progression, providing compelling evidence for mitochondrial 
dysfunction and oxidative stress injury in SAE patients. These discoveries offer new insights into the pathogenesis 
of SAE and identify potential targets for future clinical interventions.

Fig. 7.  Single-cell sequencing analysis and cell localization. (A) T-SNE plot with cells colored according to 
annotations. (B) Stacked bar chart showing the percentage of cells in control and SAE samples. (C) T-SNE 
visualization of high and low DAMPS score distributions. (D) Relationship network between different cell 
types. (E) Expression of various inflammatory genes in different cell populations.
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Data Availability
The datasets analyzed in this study are available in the GEO database (https://www.ncbi.nlm.nih.gov/geo/).

Fig. 8.  Mitochondrial DNA (mtDNA) Stimulation in Septic Rats and Lipopolysaccharide (LPS)-Induced 
Inflammatory Response in Microglia(A) Establishment of the SAE Rat Model. (B) Effect of mtDNA on 
Hippocampal Pathological Alterations in Septic Rats. Hematoxylin and eosin staining was used to visualize 
the tissue sections. Scale bar: 100 μm. (C) Serum and brain tissue TNF-α, IL-6, and IL-1β levels in septic 
model rats treated with PBS and mtDNA after 24 h. (D) Quantification of mRNA expression levels of IL-1β, 
TNF-α, and IL-6. Expression levels were assessed following treatment with LPS, LPS + mtDNA (5 µl), and 
LPS + mtDNA (10 µl) for 6, 12, and 24 h. Data are presented as fold change relative to PBS-treated controls. 
*P < 0.05 vs. control group; &P < 0.05 vs. LPS group; #P < 0.05 vs. LPS + mtDNA (5 µl) group. Abbreviations: IL-
1β, interleukin-1β; IL-6, interleukin-6; LPS, lipopolysaccharides; TNF-α, tumor necrosis factor-α.
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Data availability
The datasets analyzed in this study are available in the GEO database ( ​[​h​t​t​p​s​:​/​/​w​w​w​.​n​c​b​i​.​n​l​m​.​n​i​h​.​g​o​v​/​g​e​o​/​]​(​h​t​t​
p​s​:​/​w​w​w​.​n​c​b​i​.​n​l​m​.​n​i​h​.​g​o​v​/​g​e​o​) ).
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