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This work reports the development of a sustainable Al7075 metal matrix composite reinforced with 
bio-derived activated carbon (AC) obtained from rice hull agricultural waste. Unlike conventional 
reinforcements such as SiC and Al₂O₃, rice hull-derived AC provides an eco-friendly, lightweight, and 
cost-effective alternative. The composites were fabricated using ultrasonic stir casting with varying AC 
contents (2–8 wt%). Microstructural characterization (OM, FESEM-EDS, and XRD) confirmed uniform 
dispersion of AC and the absence of detrimental Al₄C₃ formation. Mechanical testing revealed that 
2 wt% AC yielded the optimum properties, improving hardness (by 21%) and tensile strength (by 
23%) compared to unreinforced Al7075. Abrasive wear studies showed enhanced wear resistance and 
reduced coefficient of friction at the same reinforcement level. Beyond mechanical and tribological 
assessment, this work introduces a predictive framework using machine learning models (Gradient 
Boosted Trees, Gaussian Process Regression), which achieved near-perfect accuracy (R² > 0.99 for wear, 
R² > 0.96 for COF). These findings establish rice hull–derived activated carbon as a viable reinforcement 
for Al7075 composites and highlight the potential of data-driven approaches in predicting tribological 
performance, thereby advancing sustainable and intelligent material design.
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The increasing demand for innovative materials for demanding engineering applications has led to a significant 
surge in research and development of metallic composites. Among all the metal matrix composites, Al7075 is 
frequently used in automotive, aerospace, mechanical, and marine industries due to its high strength-to-weight 
ratio, high tensile strength1,2, high yield strength3, and high elongation4 during the moment of failure. Al7075 
alloy is a widely preferred material for many applications in industries. Nevertheless, it has significant drawbacks 
as well, such as complex welding procedures and high reactivity with oxygen5, high reactivity with water, 
low tribological resistance6,7 and rapid corrosion by acids8. Powder Metallurgy or stir casting are customary 
methods to create aluminium matrix composites9–12. The process evenly distributes particles before the casting 
using a mechanical stirrer13. The study was carried out on an aluminium matrix supplemented with varying 
concentrations of silicon carbide (SiC), which is commercially available and very densely made using stir-casting 
method14. Industrial and agricultural operations produce much waste. The fact that agricultural wastes like fly 
ash, bagasse, bamboo, rice hulls, coconut shells, and so on are used as reinforcement is heartening. Most waste 
produced by natural sources is burnt to ashes and creates environmental pollution15. Utilizing natural waste 
materials can ultimately lower costs and significantly improve the strength-to-weight ratio. Meanwhile, the 
mechanical and tribological properties of metals/alloys were found to improve from using rice hull. There are 
many other sources, but rice hull contains a good amount of cellulose, hemicellulose, and lignin. Researchers 
created a capacitor using AC, rice husk, beetroot, and silica impregnation with an optimal specific capacitance of 
116 F/g16. In addition to cadmium and copper, the AC made from rice hull and fly ash can adsorb heavy metals 
such as iron, lead, and nickel, with a 20–60 mg/l capacity17. According to a study, even with a smaller surface area 
and pore volume than carbon fibre, AC made from rice hulls had a higher adsorption capacity18. This resulted 
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from the rice hull’s higher ash content and higher concentrations of carbon and oxygen atoms. Nitrogen, an 
inert medium, is frequently employed to activate carbon at elevated temperatures between 600 and 900 °C19–21.

P. Saini et al.22 fabricated an Al4043 + SiC composite using the bottom stirring cast technique and analysed its 
morphological and mechanical properties. They achieved homogeneous dispersion of particles up to 6 wt% SiC 
but observed agglomeration beyond this point. SiC particles (up to 6 wt%) enhanced the UTS and microhardness 
of the aluminium matrix composite (AMC). However, at an 8 wt% fraction, these characteristics declined due to 
particle aggregation and poor interfacial bonding.

Venkataraman et al.23 carried out a study on titanium carbide-reinforced Al 7075 matrix composites which 
revealed that the wear behaviour of alloys is influenced by titanium carbide content in the microstructure and 
the applied load. At a lower load, an increase in titanium carbide content decreased the wear rate of the alloy. 
However, at higher loads of 26.7 and 35.6 N the spray-deposited Al7075 alloy exhibited superior wear resistance 
compared to Al7075/TiC composites.

Harish et al.24 studied the microstructure and mechanical properties of aluminium matrix composites and 
found that the addition of fly ash reinforcement significantly improved the composite’s strength.

Many studies have been found on the AI7075-based composite; however, research on activated carbon-
mixed AI7075 metal matrix composites and their microstructural, mechanical, and abrasive wear characteristics 
from the perspective of different activated carbon contents is limited. In this work, metal matrix composites 
are prepared by reinforcing Al7075 with activated carbon obtained from rice hulls at different weight fractions. 
These composites are tested for their microstructural, mechanical, and abrasive wear characteristics, which are 
crucial for suggesting potential applications for these new materials.

It has been noticed that many authors used the waste material as reinforcement to fabricate the composite 
material and only a few of the researchers used the activated carbon which is obtained from the waste material 
like rice hull. Therefore, an effort has been made to reinforce various weight fraction of activated carbon (AC) 
as reinforcement. This work is executed in two steps which includes, extraction of AC from rice hull waste 
instead of using commercial fillers, which are lighter in weight and density. The activated carbon is used as 
reinforcement with AA7075 to fabricate a sustainable metal matrix composite.

The present work is achieved in two phases. In the first phase, activated carbon was extracted from rice 
hulls by calcination process, producing a low-density and cost-effective reinforcement material. In the second 
phase, developed activated carbon was infused into aluminium matrix alloy using ultrasonic stir casting. XRD 
and FTIR analysis were used to characterize the extracted AC. A field emission scanning electron microscope 
(FESEM), an energy-dispersive X-ray spectroscopy (EDX) analysis, and elemental mapping were used to assess 
the material, this process also characterizes the substances (constituents) within the matrix, ensuring their 
optimal integration to enhance the composite’s properties. Thus, the current aim is to examine the mechanical 
and tribological properties of aluminium matrix composites that were made in part from bio-waste (rice hull) 
and to shed light on whether the composite is appropriate for load-bearing applications.

The incorporation of activated carbon as a reinforcement in Al7075 alloy composites presents a compelling 
strategy for improving mechanical, and tribological properties without compromising on lightweight 
characteristics. As a sustainable and economically viable material, activated carbon paves the way for greener 
composite technologies.

Materials and methods
Materials
The matrix material Al7075 alloy which has 2.81 g/cc density was purchased from Venuka Engineering Private 
Limited, Hyderabad, India. The Activated carbon (AC) is extracted using carburization method from the rice 
hull. The density of the extracted AC is 1.279 g/cc.

Extraction of activated carbon
Initially, rice hulls were collected from a rice mill and cleaned with water to remove dirt and debris. After 
cleaning, the rice hulls underwent a leaching process and were then soaked in 1 M HCl for 1 h. Following the 
acid treatment, the rice hulls were thoroughly washed with distilled water to remove any residual HCl. The 
washed rice hulls were dried in an oven for 24 h to eliminate moisture. Once moisture-free, the rice hulls were 
placed in a tubular furnace in an inert atmosphere at 800 °C for 2 h, with a ramping period of 1 h. The calcination 
process in the inert atmosphere resulted in the extraction of activated carbon, as shown in Fig. 1a.

After the calcination process, the resulting activated carbon was mixed with potassium bromide (KBr) to 
form a KBr film which acts as a window material. This mixture was then subjected to a hydraulic press to ensure 
proper formation and densification of the activated carbon film. The final activated carbon product, as shown in 
Fig. 1a, was obtained through this process.

As shown in Fig. 1b, the activated carbon derived from the rice hulls was confirmed for microstructural, 
chemical, and morphological analysis. Microstructural, compositional, and morphological aspects of the 
activated carbon were investigated in Fig. 1b using material characterization methods such Energy Dispersive 
Spectroscopy (EDS) and Scanning Electron Microscopy (SEM). The EDS image revealed the presence of 
activated carbon with 78.05 wt% and an atomic % of 84.98.

Fabrication of Al7075 alloy with AC
A graphite crucible containing Al7075 alloy was filled and heated to 750 °C. To ensure proper melting of Al7075 
alloy, the temperature was maintained between 750 °C and 800 °C for an hour. To reduce the quantity of gas 
present in the aluminium melt, a C2Cl6 degassing tablet was utilized. During molten liquid stirring, coarser 
grain-sized Mg particles acted as a flux to enhance the wettability of reinforcements. Employing ultrasonic 
stir casting technique, AC preheated below 500°c was mixed into the liquid and stirred for 20 min at a vertex 
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formation speed of 350–400 rpm by a mechanical stirrer. An elevated melting point of 800 °C was maintained 
within the crucible to improve the followability of AC and ensure successful sonication. After sonication, Al7075 
alloy was set into a graphite crucible and heated to 75 °C for 5 min to break up any agglomerations or clusters in 
AC reinforcement. The molten liquid was then transferred into a die-steel mould preheated to 500 °C. Over the 
following 24 h, the mould was allowed to cool down to room temperature spontaneously. Once the cylindrical 
workpieces were solidified, they were removed from the mould and machined per ASTM specifications for 
various testing purposes as shown in Fig. 2.

XRD of activated carbon (AC)
Extensive characterization was performed on the specimens produced using a powder X-ray diffractometer 
(Model: PANALYTICAL XPERT POWDER). The radiation source was CuKα, and the scanning angle was 20° 
to 60°. The parameters were modified with a step size of 0.02° and a duration of 50  s. These were added to 
measurement parameters to guarantee precise data capture. Figure 3 displays a XRD patterns of activated carbon 
at several intensities. A maximum intensity peak was recorded at 2θ = 22° at 550 °C. The comprehensive C (002) 
peak observed in untreated rice hulls is indicative of their amorphous nature. In contrast, the broad C(111) and 
C (200) diffraction angle at 2θ = (35° to 40°) and (40° to 50°) respectively detected in rice hulls treated with HCl 
suggests the presence of carbon in the form of graphite structure25.

FTIR of activated carbon (AC)
This study employed Fourier-transform infrared spectroscopy (FTIR) to analyse specimens with KBr as window 
material using a Bruker Alpha II spectrometer.

Due to stretching involving C-H bonds, the signal at 2923.0 cm− 1 suggests the presence of carboxylic acid26. 
Hemicelluloses are identified by the emergence of the aldehyde group (C = O) at around 1634 cm− 1, whereas 
lignin is determined by the presence of aromatic compounds at approximately 1500 cm− 1. As seen in Fig. 4, 
stretching vibration peaks are shown at 1455 cm− 1 caused by carboxylate groups, indicating the composites’ 
strength27,28.

Density and porosity of the composite
The following formula was used to determine theoretical density (ρt).

	
ρ t =

∑
ixiρ i� (1)

The Archimedes principal is used to find the experimental density. The distilled water is used as the buoyant 
fluid, and it was employed to determine the mole fractions (xi) and densities (ρi) of the specimen; applying 
Archimedes’ principle, the real density of the composite (ρexp) was determined. In addition, the following 
equation is used to determine the experimental density (ρexp) and porosity (ϕ) fraction of the composites.

	
ρ exp =

(
Mair

Mair − Mwater

)
× ρ water � (2)

	
φ =

(
1 −

ρ exp

ρ th

)
× 100� (3)

At least three experiments under conditions produced the data used for several studies in the manuscript. The 
mean ± standard deviation was used to present the results.

Hardness
The hardness of the fabricated composites is evaluated using a Vickers micro-hardness tester according to the 
ASTM E92. During the test, a duration of 20 s and a consistent force of 1 kg was applied.

Fig. 1.  (a) Activated carbon extraction by the tubular furnace and (b) SEM & EDS image of Activated carbon.
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Tensile test
To develop a composite material, the fundamental characteristics of engineering materials and the calibre of 
materials used in the design and construction of mechanical testing are crucial. Testing the material under 
tension can reveal if it can handle a tensile load.

Following the ASTM E8 standards, the specimens’ tensile properties were determined using a crosshead 
speed of 0.5 mm/min and a strain rate of 2.3 × 10–4s–1. Three specimens of each composition, each measuring 
25 mm in gauge length and 6 mm and a gauge width, were subjected to stress. Moreover, Scanning Electron 
Microscopy (SEM) was employed for surface morphological examination.

Tribological properties
In compliance with ASTM G99-09 standards, the prepared samples’ wear behaviour was investigated using a 
(TE-165-LE, Magnum Engineers, India) pin-on-disc tribometer with a disk material of EN32 steel of size, Ø165 
mm and 8 mm thickness. The test specimens that were utilized to analyse the abrasive wear of the composite 
material were sliced into cylindrical pin samples measuring a length of 30 mm and diameter of 8 mm. Grit size 
grades of (180, 200 and 220 μm) abrasive paper served as the opposite surface. Three separate loads of (10, 15, 
and 20 N) were applied at a constant speed of 300 rpm for wear studies. The typical room temperature was used 
for the trials. Friction formula is used for wear coefficient calculation of the composite.

Results and discussions
Optical microscopy
Optical microscopy was used to examine the microstructure. The samples were dry polished with emery papers 
of various grades 200, 400, 600, 800, 2000, and 4000. This was followed by cloth polishing with alumina. Finally, 
the samples were immersed in Keller’s etchant (a mixture of HCl, HF, HNO3, and Distilled water) for 5 to 7 s. 

Fig. 2.  Schematic representation of composite preparation.
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Fig. 4.  FTIR analysis of activated carbon.

 

Fig. 3.  XRD analysis of Activated carbon.
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Images were captured at a 200-µm scale of magnification 200X for both unreinforced and reinforced matrix. 
There were voids and coarse granules in the basic matrix as presented in Fig. 5a. Heavy tension may accumulate 
in the area around these voids as they have the potential to serve as stress concentrators. These voids could later 
serve as hubs for the start and propagation of cracks, which would eventually result in a loss of mechanical 
qualities.

The microstructure of the reinforced Al7075 with the activated carbon is presented in Fig.  5b under the 
same magnification as that considered for the unreinforced Al7075. Clear differences are observed between the 
unreinforced and reinforced Al7075. Proper grain formation and uniform reinforcement particle distribution 
were observed in Fig. 5b, Settlement of fine grains and reinforcement particles at grain boundaries was evident, 
which could be attributed to additional carbon reinforcement to enhance overall composite strength.

Due to the settlement of activated carbon particles at the boundaries, they are useful in two different aspects. 
First, these settled carbon particles impeded the dislocation movement, as these dislocations are defects within 
the crystal structure that move when the material is deformed. When the dislocations encounter these particles, 
the dislocations are pinned or blocked, and as a result, the resulting material becomes more difficult to deform. 
In another way, compared to grain interiors, grain boundaries are weaker regions, and the accumulation of 
activated carbon particles at the grain boundaries strengthens the boundary and enhances the load bearing 
capacity29,12.

FESEM of unreinforced and reinforced composite
The unreinforced Al7075 and reinforced Al7075 composites were analysed using FESEM along with EDS 
spectrum. The presence of reinforcement particles was confirmed using EDS element mapping. Figure 6a. shows 
the FESEM images of the samples in the selected area, as well as the EDS image and compositions of major 
elements of unreinforced Al7075 in Fig. 6b. Different colours indicate the presence of elements in EDS element 
mapping, as shown in Fig. 6c.

FESEM images of selected area is illustrated in Fig. 7a and some reinforcing particles settled at the grain 
boundaries, with activated carbon located grain boundaries. The EDS elemental composition reveals the 

Fig. 6.  Al7075 casted alloy (a) FESEM of Microstructure (b) Elemental Composition (c) EDS Mapping.

 

Fig. 5.  (a) optical micrographs for Al7075 casted alloy and (b) 2 wt%/Al7075 AC composites.
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presence of elements in the composite, with a majority of elements such as Zn, Mg and Cu present along with 
activated carbon as depicted in Fig. 7b. Furthermore, the complete bonding of activated carbon (AC) to Al7075 
alloy matrix and the reinforcing particles’ homogeneous distribution could be seen in Fig. 7c.

From the EDS elemental composition, it is observed that the Al7075 cast alloy contains aluminum, copper, 
zinc, and manganese. These elements are used to enhance strength, hardness, and toughness, which is clear from 
Fig. 6.

However, with the addition of activated carbon, some more elements are presented in the Al7075-based 
composite as depicted in Fig. 7. In addition to the elements in the base alloy, it includes carbon from activated 
carbon and potentially magnesium. Carbon and magnesium enhance mechanical properties like wear resistance, 
strength, and hardness.

XRD of unreinforced and reinforced composite
The XRD of unreinforced composite is shown in Fig.  8a. The peaks in the Fig.  8a indicate the presence of 
crystalline aluminium, which is the primary phase in the alloy. The positions and intensities of these peaks 
correspond to the crystal planes of aluminium.

Figure 8b shows the XRD of 2% weight% activated carbon reinforced Al 7075 composite. This composite 
shows peaks corresponding to aluminium (Al) as well as presence of activated carbon (AC). Preventing the 
formation of aluminium carbide (Al4C3) in composites reinforced with activated carbon (AC) is challenging 
during preparation. Al4C3 is the most energetically favourable stoichiometry of Al4C3 and negatively impacts 

Fig. 8.  XRD graph of (a) Al7075 casted alloy and (b) 2wt%AC/Al7075 composites.

 

Fig. 7.  2wt%AC/Al7075 composite (a) FESEM of Microstructure (b) Elemental Composition (c) EDS 
Mapping.
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the mechanical properties of composites. The likelihood of its formation is highly dependent on the processing 
temperature, and it becomes inevitable when the fabrication temperature exceeds 500 °C29. Higher temperatures 
and increased density of defects on the AC surface facilitate the formation of Al4C3. XRD analysis of pure 7075 
aluminium alloy and 2wt% composites reveal the absence of characteristic peaks of Al4C3 and other metallic 
carbides, this absence is attributed to low sintering temperature of about 400 °C as shown in Fig. 8b30,31. The 
ICDD Pdf card corresponding to the aluminium phase is ICDD PDF #00-04-0787. An Al4C3-free interface is 
established between the AC and metal matrix, which is advantageous for achieving superior performance in 
aluminium-activated carbon composites.

Density and porosity measurement
The actual density of the composites consistently falls below the theoretical density across all samples depicted in 
Fig. 9a. This deviation can be attributed to defects within the composite samples. The casting technique may have 
introduced trapped gas bubbles or voids, diminishing the overall density. Furthermore, these defects can disrupt 
atomic arrangements, resulting in local density fluctuations and contributing to general reduction in densities; 
the research findings were in line with earlier study32.

The density of activated carbon is significantly lower than that of the aluminum matrix. A greater volume 
is occupied when AC is introduced to the aluminum matrix at varying weight fractions. The greater volume 
causes the AC particles to gather together, creating agglomerates. Instead of being evenly scattered, the particles 

Fig. 9.  (a) Theoretical and experimental density of Al7075 alloy and (2,4,6 & 8%) AC/Al7075 composites and 
(b) Porosity of Al7075 alloy and (0,2,4,6 & 8%) AC/Al7075 composites.
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are more likely to come into contact with one another, which leads to this agglomeration. The composite may 
contain areas where the AC particles are not firmly bound to the matrix material due to their aggregation. The 
porosity occur as a result of these weakly connected areas33. The Archimedes principal has been used to calculate 
the density. The experimental density (ρexp) and porosity(ϕ) is calculated using the Eqs. 1, 2 and 3 respectively, 
the corresponding results are shown in Fig. 9a and b.

Hardness of composite
Analysis of Fig.  10 reveals an enhancement in the base material’s microhardness on the reinforcement’s 
introduction. At 2% weight fraction of activated carbon blended Al7075 composite, the Vickers hardness 
number increases from 72 HV (as-cast Al7075) to 89.6 HV, representing a 21.08% improvement over as 
unreinforced Al7075. This improvement may also be attributed to dynamic processes such as recovery and 
re-crystallization33,34. Similar outcomes were reported in the reinforcement of Al 7075 with various fillers35,36.

In contrast to the composite made with a 2% weight fraction of activated carbon infused composite, the 
hardness is reduced at other weight fractions like 4%, 6%, and 8%; however, in comparison to the base material 
(Al7075), the hardness is increased at all weight fractions of activated carbon mixed composite. However, a 
decline in mechanical properties was observed for 4%, 6% and 8% wt% of AC because of the presence of porosity. 
The interface bonding between the matrix and the reinforcement was not even, and that resulted in a lack of 
uniformity37.

Tensile test of composite
Figure 11 illustrates all fabricated composite specimens’ ultimate tensile strength (UTS). Notably, the UTS of 
Al7075 with activated carbon composite increased by 23.24% for a 2 wt% AC content, followed by a consistent 
reduction pattern for all other carbon percentages. This improvement is attributed to increased % of AC 
reinforcement, enhanced between the matrix and reinforcement interfacial bonding, and the strain gradient 
and grain size strengthening effect in the composites. The ultimate tensile strength rises at the remaining weight 
fraction when compared to unreinforced Al7075; however, the percentage of improvement decreases as the 
weight fraction of activated carbon increases.

The incorporation of activated carbon reinforcement in the Al7075 aluminum alloy matrix serves as a 
nucleation site, influencing the recrystallization process of the aluminum matrix. As these particles are settled 
at the grain boundary, which is evident from the SEM images presented in Fig. 5b, they are used to lock the 
movement of the grain boundaries, which reduces the elongation of the composite and makes the composite 
stronger and these findings are consistent with earlier reports41,45.

Fig. 10.  Hardness of Al7075 alloy with (0, 2, 4, 6 & 8%) activated carbon composites.
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The ultimate tensile strength of Al7075 is reduced as the weight% of activated carbon is increased because 
of the agglomerations of this high-volume, low-density particles. Accumulation of the AC particles results from 
increasing the weight fraction of activated carbon, which also increases volume. Because of these agglomerations, 
the effective load distribution is restricted, which causes greater stresses to be concentrated and ultimately leads 
to failure at lower loads.

Fracture mode was predominant in the tensile fractography of Al7075 and AC, this is evident from features 
such as facets, cracks, voids, and inter-granular cracks along the fracture surface as illustrated in Fig. 12a. and the 
de-bonding observed represents the nature of the ductile fracture, as shown in Fig. 12b.

Wear behaviour
The impact of load and reinforcement on weight loss
By varying the load and AC (activated carbon) content in Al7075 matrix alloy, as shown in Fig. 13, the inclusion 
of AC particles significantly increased the wear resistance. Al7075–AC composite has lower wear rates than the 
alloy without reinforcement at all tested loads. The wear rate of Al7075 matrix alloy and its composites goes 
up with heavier loads. More significant loads lead to more plastic deformation, making more wear debris and 
higher wear rates. Also, there’s more cracking and material loss under heavy loads38.

At a track diameter of 80 mm, the wear rate is highest at 10 N load (0.00018 mm³/m) and was displayed by 
base metal, while the lowest wear rate at same load (0.000149 mm³/m) was exhibited by 2 wt% AC. When 2% 
activated carbon is added to the unreinforced Al7075, the wear resistance increases to 17.22%. These observations 
align with findings from previous research.

The reinforcement of activated carbon into Al7075 matrix generated the aluminium, magnesium and carbon 
which are evident from EDS elemental composition (Fig. 7). These elements used to increase the wear resistance 
and hardness39. The elevated hardness values of the composites with AC contribute to improved wear resistance 

Fig. 11.  UTS of Al7075 alloy with (0, 2, 4, 6 & 8%) activated carbon composites.
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in the specimens40,41.Maximum coefficient of friction COF was observed for Al7075 alloy (base material), and 
COF for Al7075/ 2 wt% AC exhibits low COF, as depicted in Fig. 14.

Figure 15a, there are minimal grooves but a significant amount of wear debris. The Al7075 alloy seems to 
have undergone peeling, with material transfer occurring during the wear process, where material from the 
aluminium alloy’s surface migrates to its counterpart. Additionally, some larger wear debris adhered to the 
counterpart due to insufficient milling time. In contrast, the counterpart surface of the Al7075/AC composite, 
depicted in Fig. 15b, appears smooth, with no substances adhering to it. This indicates a more stable wear process 
compared to the counterpart of Al7075 alloy42–46.

Fig. 13.  The wear rate of Al7075 alloy with (0–8wt%) composites at different loads (10 N,15 N & 20 N).

 

Fig. 12.  (a) SEM image for tensile samples for Al7075 casted alloy and (b) Al7075 / 2 wt% AC composites.
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Comparative predictive analysis of wear rate and coefficient of friction using 
machine learning models
This analysis presents a comprehensive comparison of five machine learning models for predicting wear rate and 
coefficient of friction (COF) based on tribological testing data. The models evaluated include Artificial Neural 
Networks (ANN), Support Vector Regression (SVR), Random Forest (RF), Gradient Boosted Trees (GBT), and 
Gaussian Process Regression (GPR).

Fig. 15.  Steel counterpart worn surfaces: (a) Unreinforced Al7075 alloy; (b) 2 wt% AC/Al7075 composite.

 

Fig. 14.  COF of Al7075 alloy composites with (0–8 wt%) activated carbon.
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The dataset used in this analysis consists of 27 experimental observations, each characterized by three input 
parameters and two response variables. The input parameters are load (ranging from 10 to 20 N), rotational 
speed (RPM, ranging from 300 to 500), and reinforcements percentage which varies from 2 to 6%. The two 
response variables measured are wear rate and coefficient of friction (COF). Wear rate values in the dataset range 
from approximately 0.000101 to 0.000782, indicating very fine measurements of material loss under different 
test conditions. The COF values span from 0.026 to 0.59, capturing a wide spectrum of frictional behaviour 
across the tested samples. The data covers various combinations of input parameters, providing a comprehensive 
basis for evaluating the predictive performance of machine learning models on tribological properties.

The methodology for this predictive analysis involved a systematic approach to both data collection and 
Modeling. Initially, tribological tests were conducted to generate a dataset consisting of 27 observations, each 
defined by three input parameters, load, rotational speed (RPM), and weight% of reinforcement and two 
response variables: wear rate and coefficient of friction (COF). The experimental matrix was designed to cover a 
range of values for each input, ensuring that the effects of varying load, speed, and additive content on wear and 
friction could be thoroughly assessed.

Following data acquisition, the dataset underwent preprocessing, which included integrity checks to 
confirm the absence of missing or anomalous values, normalization of input features using Min-Max scaling 
to standardize their ranges and splitting into training and testing subsets (80% training, 20% testing) with a 
fixed random state for reproducibility42. This step ensured that the models would be trained and evaluated on 
consistent data partitions.

Model development involved selecting five regression algorithms, ANN, SVR, RF, GBT, and GPR each 
Configured with carefully chosen hyperparameters to balance complexity and overfitting risk. The models 
were trained using the processed training data, with deterministic initialization to guarantee reproducibility. 
Performance evaluation was carried out using standard regression metrics: coefficient of determination (R²), 
mean absolute error (MAE), mean squared error (MSE), and root mean squared error (RMSE). These metrics 
provided a comprehensive assessment of each model’s predictive accuracy for both wear rate and COF47. Finally, 
the results were visualized using scatter plots comparing actual and predicted values, and performance tables 
were generated to facilitate direct comparison among the models. This rigorous methodology ensured a robust 
and transparent analysis of the predictive capabilities of various machine learning approaches for tribological 
property estimation. The methodology adopted to predict the wear and COF is shown in Fig. 16.

The training protocol for this predictive analysis was designed to ensure robust, reproducible, and fair 
evaluation of all machine learning models. The model development process incorporated; Consistent initialization 
is used in which Random state is 42 for all stochastic processes. For Parallel computation, utilized all CPU cores 
through n jobs is – 1 setting. And for the deterministic workflow, Sequential training without cross-validation is 
implemented due to small dataset size instead, the test set served as the basis for all performance evaluations. The 
model selection and configuration listed in Table 1. This protocol ensured that each model was trained under 
identical conditions, enabling a direct and reliable comparison of their predictive capabilities for both wear rate 
and coefficient of friction48.

Performance metrics comparison
The performance of each model was evaluated using four standard regression metrics as listed in Tables 2 and 3. 
The results clearly demonstrate significant differences in predictive capability across the models.

Analysis of model performance for wear rate prediction
The wear rate prediction results reveal a stark contrast between the traditional and advanced regression 
approaches. This performance gap can be attributed to the complex, nonlinear relationships in tribological data 
that certain algorithms are better equipped to model.

The High-Performing Models like GBT and GPR models achieved nearly identical, exceptional performance 
with R² values of 0.9997, indicating almost perfect prediction capability. These models demonstrated remarkably 
low error metrics with RMSE values of approximately 3.13 × 10–6, which is several orders of magnitude smaller 
than the actual wear rate values (which are in the 10⁻⁴ range). This extraordinary performance is likely due to 
the ability of both algorithms to capture complex nonlinear patterns in the data. GBT achieves this through 
sequential ensemble learning with decision trees, while GPR excels through its probabilistic approach to 
function approximation.

The Random Forest model also performed excellently with an R² of 0.9932 and RMSE of 1.48 × 10⁻⁵. Although 
slightly less accurate than GBT and GPR, RF still demonstrated robust predictive capability, leveraging the power 
of ensemble learning to model the wear rate with high precision.

While the Poor-Performing Models like The ANN and SVR models both failed dramatically at predicting 
wear rate, with negative R² values indicating performance worse than simply using the mean value as a predictor. 
The ANN produced extreme errors with an R² of – 25,969,918.18 and RMSE of 0.9167, which is several thousand 
times larger than the actual wear rate values. This catastrophic performance suggests that the neural network 
architecture (single hidden layer with 100 neurons) was inappropriate for this small dataset, Potential overfitting 
occurred during training and the learning process may have fallen into poor local minimum. The SVR model 
performed better than ANN but still poorly with an R² of – 1.5645. This suggests the chosen kernel and 
hyperparameters failed to capture the underlying relationships in the data.

Analysis of model performance for COF prediction
The COF prediction results show a similar pattern to the wear rate predictions, though with less extreme 
differences between the models.
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The High-Performing Models like GBT and GPR again emerged as the top performers, both achieving an 
R² of 0.9646, demonstrating excellent predictive capability for COF values. Their nearly identical performance 
metrics (MAE of 0.0092 and RMSE of 0.0124) suggest they were equally effective at modeling friction coefficient 
relationships. These error values represent less than 5% of the average COF value, indicating highly reliable 
predictions.

The Random Forest model performed well with an R² of 0.8721, though not as exceptionally as for wear rate 
prediction. This slightly reduced performance may indicate that COF has more subtle nonlinear relationships 
that the random forest algorithm couldn’t fully capture.

While the Poor-Performing Models the ANN again performed catastrophically with an R² of – 463.3616, 
producing COF predictions that were entirely uncorrelated with actual values. The SVR also performed poorly 
with a negative R² of – 0.2919, though its errors were much smaller than the ANN’s.

If we do comparative analysis across response variables, then the consistent performance ranking across 
both wear rate and COF prediction (GBT/GPR > RF > SVR > ANN) suggests fundamental differences in model 
suitability for tribological data rather than response-specific issues. The exceptional performance of ensemble 
methods (GBT, RF) and GPR can be attributed to several factors like Ability to capture complex nonlinear 
relationships without requiring extensive hyperparameter tuning, Resilience to overfitting on small datasets 
through ensemble averaging (RF) or regularization (GBT), Natural handling of feature interactions, which are 
likely important in tribological systems where load, speed, and additive concentration may have interdependent 
effects. The poor performance of ANN and SVR highlights important limitations due to Neural networks 
typically require larger datasets to perform well and avoid overfitting, The single hidden layer architecture may 
have been insufficient for capturing the complexity of the tribological relationships and SVR’s performance is 

Fig. 16.  Flowchart of methodology adopted for comparative predictive analysis.

 

Scientific Reports |        (2025) 15:35421 14| https://doi.org/10.1038/s41598-025-18747-8

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


heavily dependent on kernel selection and hyperparameter tuning, which may have been suboptimal for this 
application.

Inspection of predictions
Examining the actual predictions provides additional insight into model performance differences: For one test 
sample with an actual wear rate of 0.000102, the predictive performance of different models varied significantly. 
The Artificial Neural Network (ANN) predicted a wear rate of 1.2750, which is approximately 12,500 times 
larger than the actual value, indicating a substantial overestimation. The Support Vector Regression (SVR) 
model predicted 0.0004415, about 4.3 times higher than the actual wear rate. The Random Forest (RF) model 
yielded a prediction of 0.000111, which is only 1.09 times larger than the actual value. Both the GBT and GPR 
models produced predictions of 0.0001025, which are almost identical to the actual wear rate (only 1.005 times 
larger). This example clearly illustrates the significant differences in precision among the models, with GBT and 
GPR achieving nearly exact predictions.

Similarly, for a test sample with an actual coefficient of friction (COF) of 0.32, the ANN model produced 
a completely erroneous negative value of -1.3254. The SVR model predicted a COF of 0.4470, corresponding 
to a 39.7% error. The RF model provided a prediction of 0.3045, resulting in a 4.8% error. Both the GBT and 
GPR models predicted a COF of 0.3250, which is only 1.6% higher than the actual value. These results further 
highlight the superior predictive accuracy of the GBT and GPR models compared to the others.

These predictions further highlight the superior accuracy of GBT and GPR models for both response 
variables from Figs. 17 and 18.

Model R² MAE MSE RMSE

ANN – 463.3616 1.3888 2.0226 1.4222

SVR – 0.2919 0.0570 0.0056 0.0750

RF 0.8721 0.0191 0.0006 0.0236

GBT 0.9646 0.0092 0.0002 0.0124

GPR 0.9646 0.0092 0.0002 0.0124

Table 3.  Coefficient of friction (COF) prediction Performance.

 

Model R² MAE MSE RMSE

ANN – 25.18 0.8782 0.8403 0.9167

SVR – 1.5645 0.0003 8.30e–08 0.0003

RF 0.9932 1.01e–05 2.20e–10 1.48e–05

GBT 0.9997 2.42e–06 9.79e–12 3.13e–06

GPR 0.9997 2.42e–06 9.78e–12 3.13e–06

Table 2.  Wear rate prediction performance.

 

Model Key Parameters / Configuration

Artificial Neural Network (ANN)

− 1 hidden layer (100 neurons)
- Activation: ReLU
- Solver: Adam
- Max iterations: 1000
- Regularization: L2 (α = 0.01)
- Random state: 42

Support Vector Regression (SVR)
- Kernel: Radial Basis Function (RBF)
- C (regularization): 1.0
- Epsilon (ε): 0.1
- Gamma: auto/default

Random Forest (RF)
- Number of trees: 100
- Maximum depth: none (unlimited)
- Criterion: MSE
- Random state: 42

Gradient Boosted Trees (GBT)
- Number of estimators: 100
- Learning rate: 0.1
- Maximum depth: 3
- Random state: 42

Gaussian Process Regression (GPR)
- Kernel: RBF (length scale = 1.0) × Constant (1.0)
- Alpha (noise level): 1e-10
- Random state: 42

Table 1.  The model selection and configuration.
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Conclusions
The present study successfully demonstrates the fabrication and evaluation of Al7075/activated carbon 
composites with dual objectives: (i) to assess the influence of bio-derived AC on mechanical and tribological 
properties, and (ii) to establish predictive modeling of wear and friction using machine learning. The main 
conclusions are:

•	 Activated carbon derived from rice hulls was effectively utilized as a reinforcement, offering an eco-friendly 
and lightweight alternative to conventional ceramic fillers.

•	 Optical and FESEM analyses confirmed uniform dispersion of AC, while XRD confirmed the absence of 
Al4C3, ensuring stable reinforcement–matrix interfaces.

•	 At 2 wt% AC, the composites exhibited the highest improvement, with tensile strength increased by 23% 
and microhardness by 21% compared to unreinforced Al7075. Higher AC content (4–8 wt%) led to reduced 
properties due to agglomeration and porosity.

•	 The 2 wt% AC composites achieved the lowest wear rate and coefficient of friction, attributed to increased 
hardness, effective grain boundary pinning, and stable counter-surface interaction.

•	 Among machine learning models tested, Gradient Boosted Trees and Gaussian Process Regression achieved 
excellent predictive accuracy (R² > 0.99 for wear rate; R² > 0.96 for COF), validating the applicability of da-
ta-driven methods in tribology.

•	 The synergy of sustainability (bio-waste utilization), improved mechanical/tribological properties, and relia-
ble predictive modeling makes Al7075/AC composites promising for aerospace and automotive components 
requiring lightweight and wear resistance.

Fig. 17.  Comparison of actual and predicted results of different machine learning models.
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Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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Fig. 18.  Regression plots for each model showing the relationship between actual and predicted values for 
both wear rate and coefficient of friction (COF) (a) ANN predictions (left: wear rate, right: COF) (b) SVR (c) 
RF (d) GBT (e) GPR.
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