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This work explores a novel integration of experimental conversion of waste cooking oil (WCO) into 
biodiesel with advanced machine learning modeling to optimize transesterification outcomes. 
A reusable CaO catalyst derived from egg shells was employed, delivering a more affordable and 
sustainable option compared to typical homogeneous catalysts. A total of 16 experimental runs 
were conducted to investigate the effects of catalyst concentration (CC), reaction temperature (RT), 
and methanol-to-oil molar ratio (MOR) on biodiesel yield. Four boosted ML algorithms XGBoost, 
AdaBoost, Gradient Boosting Machine (GBM), and CatBoost were applied to model the process, 
with hyperparameter tuning via grid search and validation through k-fold cross-validation (k = 5) and 
residual plots to ensure reliability and mitigate overfitting. CatBoost emerged as the best-performing 
model (R² = 0.955, RMSE = 0.83, MSE = 0.68, MAE = 0.52), predicting a maximum biodiesel yield of 95% 
at 3% CC, 80 °C RT, and a 6:1 MOR. Feature importance and partial dependence plots identified MOR 
and CC as the most influential parameters. Engine performance tests further validated the practical 
viability of CaO-based biodiesel, showing 26% lower CO emissions and 13% lower smoke emissions 
compared to diesel, resulting in a marginal 2.83% decline in brake thermal efficiency alongside a 4.31% 
rise in fuel consumption. This interdisciplinary approach combining green catalyst development with 
interpretable machine learning demonstrates a promising pathway for cleaner energy applications and 
data-driven optimization in biodiesel research.

Keywords  Biodiesel, Renewable fuel, Machine learning, Biomass conversion, Energy efficiency

In recent decades, the search for alternative diesel fuels has intensified due to concerns over emissions, resource 
depletion, and rising fuel costs1. The conversion of waste and biomass into useful energy has gained attention 
as a sustainable fuel exploration strategy, offering numerous environmental and economic benefits2,3. Among 
various feedstocks, WCO has emerged as a promising source for biodiesel production due to its high availability 
and cost-effectiveness4,5. The global generation of WCO has increased significantly with the growth of the food 
industry and rising populations, making it a viable alternative to conventional biofuels. Unlike raw vegetable 
oils, WCO eliminates the need for additional cultivation or extraction, minimizing operational expenses and 
ecological footprint. However, the direct use of WCO in diesel engines, generators, and marine engines presents 
challenges such as high carbon footprint, increased fuel consumption, and lower efficiency, necessitating fuel 
upgrading techniques6–8.

Transesterification remains the most effective method for biodiesel conversion, where alcohols and catalysts 
enhance production yield. Catalyst type and concentration, along with alcohol selection, significantly influence 
fuel properties and conversion efficiency. Methanol serves as a preferred choice due to its high reactivity, 
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cost-effectiveness, and availability, making it the preferred alcohol in biodiesel production9,10. Catalysts play a 
critical role in transesterification, influencing reaction efficiency, biodiesel properties, and yield. They facilitate 
the chemical transformation of triglycerides in biofuel, yielding biodiesel and glycerol. Common catalysts 
include homogeneous catalysts, like NaOH, KOH, and H₂SO₄, which provide high reaction rates but require 
extensive purification and generate chemical wastewater11,12. Heterogeneous catalysts like CaO, MgO, Al₂O₃-
based oxides and etc. offer advantages such as reusability, easy separation, and minimal environmental impact, 
improving reaction efficiency13,14. Enzymatic catalysts, particularly lipases, allow biodiesel production under 
mild conditions, eliminating soap formation, though their high cost and long reaction times limit industrial 
applications15,16. Nano-catalysts provide enhanced surface area, higher catalytic efficiency, and lower energy 
consumption, optimizing transesterification reactions17,18.

Biomass-sourced catalytic materials are increasingly recognized for their low cost, eco-friendly nature, and 
reusability. Derived from natural waste materials, they promote sustainable transesterification while reducing 
chemical waste. Agricultural residues such as rice husk ash, palm kernel shells, and sugarcane bagasse ash exhibit 
high silica and calcium content, improving biodiesel yield19–21. Egg shell-derived CaO, a widely explored biomass 
catalyst, provides high catalytic efficiency and reusability, making it a sustainable alternative22,23. Industrial 
byproducts such as red mud, fly ash, and spent bleaching earth contribute to waste valorization, requiring 
modifications to improve catalytic activity24,25. Nano-enhanced biomass catalysts, such as nano-modified 
CaO or biochar-supported catalysts, improve reactant diffusion and conversion rates, minimizing reliance on 
synthetic chemical catalysts26,27.

The RT, MOR, and process duration significantly impact yield and quality. Optimizing these parameters 
ensures maximum efficiency, but conventional iterative experimentation often demands substantial time and 
resources. To overcome these challenges, researchers have employed DOE tools such as ANOVA and RSM. 
However, these methods struggle with nonlinear interactions and exhibit higher error rates when analyzing 
complex reaction dynamics28,29. The rapid evolution of AI and ML technologies has facilitated data-driven 
optimization approaches for biodiesel production. ML algorithms such as Boosted Decision Trees (XGBoost, 
AdaBoost), SVR, and ANN enhance predictive accuracy and optimization capabilities. These models automate 
parameter selection, reduce experimental costs, and maximize biodiesel yield by learning intricate relationships 
between CC, RT, MOR, and mixing speed30,31.

Additionally, ML-driven interpretability tools such as SHAP analysis, Pearson correlation heatmaps, and 
partial dependence plots allow researchers to fine-tune catalyst efficiency. Advanced hyperparameter tuning 
ensures optimal algorithm performance, minimizing bias-variance trade-offs and improving regression 
accuracy in biodiesel yield predictions32,33. ML integration also enables real-time process optimization, linking 
sensor-based monitoring systems for continuous parameter adjustments. Ensemble learning techniques further 
improve biodiesel conversion accuracy, process reliability, and scalability for industrial applications34,35.

Despite extensive studies on biodiesel production from WCO, limited research has explored the synergistic 
use of biomass-derived heterogeneous catalysts particularly CaO synthesized from waste egg shells in conjunction 
with machine learning optimization techniques. Existing approaches often rely on conventional homogeneous 
catalysts (e.g., KOH, NaOH), which pose environmental and separation challenges. This study addresses the 
gap by synthesizing a sustainable CaO catalyst from biomass waste and applying advanced boosted machine 
learning algorithms (CatBoost, XGBoost, AdaBoost, GBM) to predict and optimize biodiesel yield. The models 
were rigorously cross-validated and assessed for overfitting and generalization performance, ensuring robust 
predictive accuracy. Furthermore, the produced biodiesel was tested in diesel engines, and its performance was 
benchmarked against biodiesel derived from homogeneous catalysts to evaluate environmental impact, fuel 
efficiency, and operational viability. This integrative approach represents a novel contribution by combining 
green catalyst synthesis, AI-driven process optimization, and real-world engine validation, paving the way for 
scalable and eco-friendly biodiesel production.

Materials and methodology
The Feedstock of biodiesel were collected from local restaurants, university hostels and hotels. The alcohol 
(methanol) and catalyst (KOH and NaOH) were procured from local scientific store.

Synthesis of egg-shell CaO catalyst
Egg shells, sourced from local restaurants, were thoroughly cleaned using distilled water to remove residual 
organic matter and contaminants. The washing process was conducted in multiple stages to ensure complete 
elimination of impurities. The shells were air-dried and subjected to a second rinse with distilled water to further 
boost purity. Following this, the cleaned shells were placed in a furnace at 60 °C for 12 h to moisture elimination 
and facilitate brittleness, which aids in efficient grinding.

The dried egg shells underwent mechanical comminution using a planetary ball milling technique to obtain 
fine powder, ensuring uniform particle size distribution to promote greater surface exposure and catalytic 
efficiency of the final product. The powdered material was further exposed to a calcination process at 600 °C for 
6 h, a crucial thermal treatment step to facilitate the decomposition of calcium carbonate (CaCO₃) into calcium 
oxide (CaO). Calcination at this temperature optimizes the crystalline structure of CaO, improving its reactivity 
and catalytic potential for transesterification reactions in biodiesel production23,36. The obtained CaO catalyst 
was sealed in an airtight container to inhibit external interference, which could lead to CaO hydration and 
reduce its catalytic performance. The synthesis process is visually summarized in the schematic shown in Fig. 1, 
illustrating each step from raw material preparation to final catalyst formation.
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Procedure of biodiesel production
The transesterification of WCO was conducted using three different catalysts: egg-shell-derived CaO, KOH, 
and NaOH. Each catalyst was used separately in three distinct transesterification reactions, and the resulting 
biodiesel products were stored separately for comparative analysis. While the process parameters for KOH 
and NaOH were obtained from literature, machine learning optimization was applied exclusively to the CaO-
catalyzed reaction to enhance biodiesel yield. The procedure begins with the pre-treatment of WCO, where the 
oil is filtered to separate undesired constituents and heated to eliminate moisture. Since the FFA content was high, 
an acid elimination treatment was performed using H₂SO₄ to reduce FFA levels before transesterification. In this 
step, a required amount of methanol and H₂SO₄ was added to the pre-treated WCO and stirred under controlled 
conditions at 70 °C. The reaction proceeded under elevated thermal conditions to enhance the translation of 
FFAs into methyl esters while minimizing soap formation. After completion, the mixture was neutralized and 
washed to remove excess acid and impurities37.

For each transesterification reaction, a required amount of methanol and catalyst was mixed with the 
esterified WCO in a reactor. The mixture was stirred continuously to ensure efficient mass transfer and reaction 
kinetics. To prevent methanol loss, all reactions were conducted in a closed system equipped with a reflux 
condenser, which effectively condensed methanol vapours and returned them to the reaction mixture38,39. In 
the transesterification process, triglycerides interact with methanol under catalytic conditions, resulting in the 
production of FAME and glycerol. After completion, the reaction mixture was allowed to settle, facilitating the 
separation of biodiesel from glycerol and residual impurities. The biodiesel phase was washed multiple times 
with warm water to remove contaminants, followed by drying to eliminate excess methanol. The final biodiesel 
product was characterized using analytical techniques to confirm purity and compliance with fuel standards. 
The schematic of the acid-catalyzed esterification and transesterification setup is shown in Fig. 2.

Background of boosted ML model
As an ensemble learning strategy, boosting enhances predictive performance by sequentially combining 
weak learners. Unlike traditional ensemble methods, boosting dynamically adjusts model weights based on 
misclassification rates, ensuring improved generalization and minimized bias over successive iterations. This 
approach allows for continuous refinement of predictions, making it particularly effective in complex, nonlinear 
datasets. In this research, four distinct boosting models XGBoost, AdaBoost, GBM, and CatBoost are employed 
to optimize biodiesel yield predictions. XGBoost is a highly efficient gradient boosting framework known for its 
scalability and regularization mechanisms,

preventing overfitting while delivering high-performance predictive modeling. AdaBoost sequentially 
improves weak classifiers by assigning greater weights to misclassified instances, thereby fine-tuning 
decision boundaries to enhance accuracy. GBM, another powerful gradient-based method, iteratively refines 
models through gradient descent optimization, effectively capturing intricate patterns within datasets while 
requiring careful hyperparameter tuning to maintain stability. CatBoost, specifically designed for categorical 
data, mitigates overfitting through ordered boosting and efficient handling of categorical features, making it 
particularly suitable for structured datasets with high cardinality variables. These models collectively improve 
prediction reliability by leveraging adaptive weighting mechanisms and sequential learning, ensuring robust and 
interpretable results in biodiesel optimization applications39–41. To contextualize the selection of boosted models 
in this study, we compared our approach with recent machine learning applications in biodiesel research. Table 1 
summarizes key studies published that employed ML algorithms including ensemble methods for biodiesel 
yield prediction, engine performance modeling, and fuel optimization. The table outlines the algorithms used, 
dataset characteristics, validation strategies, and performance metrics. This comparative analysis highlights the 
growing preference for boosted models such as Ad boost, XGBoost, CatBoost, and GBM due to their superior 
accuracy, interpretability, and scalability. Our study builds upon these findings by integrating experimental data 
with advanced ML workflows, including hyperparameter tuning, k-fold validation, and residual diagnostics, to 

Fig. 1.  Steps involved in CaO catalyst synthesize process.
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ensure robust and generalizable predictions. Also, the schematic flow diagram exposes the step-by-step work 
flow involved which was shown in Fig. 3.

Data collection
The data used for machine learning optimization were collected from trial-and-error experimental outputs. 
A total of 16 datasets were gathered, with 80% utilized for training and 20% for testing to run the model. The 
inputs included CC, MOR, and RT, while the output parameter was biodiesel yield. The collected data spanned 
the following ranges: CaO varied from 100 ppm to 300 ppm, MOR ranged from 4 to 12, and RT was between 60 
and 140 min. These data points are represented using violin plot, as shown in Fig. 4.

To ensure robust reliability and adaptability before integrating the learning algorithm into real-time 
engineering applications, it underwent extensive validation using key performance metrics. These included the 
R², RMSE, MSE, and MAE. By applying these metrics across multiple learning models, the objective was to 
refine accuracy and establish a dependable predictive framework.

Author’s ML algorithms used Dataset description Validation method Performance metrics Key findings

Sanjeevannavar et al.42 XGBoost, Random forest Engine performance data from 
biodiesel blends Train-test split

R2 = 0.99, RMSE = 0.54,
MSE = 0.24
MAE = 0.29

XGBoost outperformed; 
emphasized 
hyperparameter tuning

Siqueira-Filho et al.43 XGBoost Fuel consumption data from 
thermoelectric plants Train-test split R2 = 0.95

XGBoost showed 
high accuracy and 
computational efficiency

Navid Kardani et al.44 XGBoost, ANN and SVM
conversion of lignocellulosic 
biomass during hydrothermal 
carbonization

Train-test split R2 = 0.999 XGBoost showed high 
accuracy

Xiangmeng Chen et al.45 ANN, GAM, SVR and ELM Conversion of bio-oil from biomass 
by catalytic pyrolysis Train-test split R2 = 0.89, RMSE = 0.03, 

and MAE = 0.01
ELM showed high 
accuracy

Xin Jin et al.46 kNN, SVM, RF and 
AdBoost Biodiesel yield prediction Train-test split Training RMSE = 2.778

Validation RMSE = 5.178
RF showed high 
accuracy

Ilham Yahya et al.47 LR, RF, ANN and SEM 
(Stacking ensemble models)

Microwave-assisted biodiesel yield 
prediction Train-test split R2 = 0.949 and lowest 

MSE of 54.64.
SEM showed high 
accuracy

Almohana et al.48 AdBoost-HBR, AdBoost-
DT,  AdBoost-GBR, Biodiesel conversion from WCO Train-test split R2 = 0.996,

MAE = 1.82
AdBoost-GBR showed 
high accuracy

Abdulrahman Sumayli49 Boosted-MLP, GPR, KNN Biofuel production from papaya oil Train-test split R2 = 0.994
RMSE = 6.5180

Boosted KNN showed 
high accuracy

Somboon 
Sukpancharoen et al.50 SVR, RF, XGB, and KRR Biodiesel production 10-fold cross-validation R2 = 0.98 XGB showed high 

accuracy

Table 1.  Comparative summary of recent ML-Based biodiesel studies.

 

Fig. 2.  Steps involved in conversion of biodiesel (a) esterification process (b) transesterification process.
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Fig. 4.  Visualization of trial & error experimental data collection.

 

Fig. 3.  Work flow of learning model.
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The selection of the most effective model was driven by a systematic validation process, involving continuous 
evaluation of prediction accuracy against the experimental dataset. Emphasis was placed on understanding 
the dynamic interactions between input constraints and output responses. Assessment of model precision was 
conducted via the validation metrics outlined below.

R2 = 1 −
∑ (

yi−ŷi

)2

∑ (
yi−

−
y

)2

where:
yi= True values
ŷi= Anticipated values−
y ​ = Mean of true values

RMSE = 
√

1
n

∑
(yi − ŷi)2

MSE = 1
n

∑
(yi − ŷi)2 

MAE = 1
n

∑
|yi − ŷi|

Data pre-processing
Prior to model training, the dataset underwent a series of pre-processing steps to ensure consistency, reliability, 
and optimal performance. The raw data, obtained from controlled transesterification experiments, was first 
subjected to rigorous cleaning procedures. This included the identification and removal of outliers, as well as 
verification of input-output relationships to maintain physical plausibility across all samples. The dataset was 
randomly shuffled before splitting into training and testing subsets to eliminate any ordering bias. Additionally, 
the distribution of key input parameters like MOR, CC, and RT was examined to confirm that the dataset 
was reasonably balanced across the experimental domain. This diversity in conditions helped improve the 
generalizability of the model.

Overview of hyper parameter tunning
To achieve superior performance in predictive modeling tasks, hyperparameter tuning was conducted using 
the Grid Search technique. This process was applied to all ensemble algorithms used in the study XGBoost, 
AdaBoost, Gradient Boosting Machine (GBM), and CatBoost. Grid Search systematically evaluates a predefined 
set of hyperparameter combinations to determine the configuration that maximizes model performance. The 
procedure begins by selecting the learning algorithm and defining a parameter grid, which includes a range of 
candidate values for each hyperparameter. These combinations are then exhaustively evaluated by training the 
model on the training dataset and assessing its performance using the coefficient of determination (R²) as the 
primary metric. The hyperparameter set that achieves the highest R² score is selected as the optimal configuration 
for each model. This tuning process ensures that the models are not only accurate but also generalizable across 
unseen data. The specific parameter ranges explored for each algorithm are summarized in Table 2, and the final 
selected values are discussed in the Results section.

Overview of cross validation
To assess the reliability and generalizability of the ML models, k-5 validation was employed. Conventional 
single-partition validation methods such as an 80:20 train-test split can introduce bias and increase the risk of 
overfitting, particularly when working with limited datasets. To mitigate these issues, this study adopted a 5-fold 
cross-validation strategy. In this approach, the dataset is split into five equally proportioned subsets. The model 
is trained and tested five times, with each fold serving once as the testing set while the remaining four folds are 
used for training. This iterative process, promoting balanced utilization of the dataset and reducing variance in 
performance estimates. The average R² score across the five folds provides a more robust and unbiased evaluation 
of model accuracy. This method is especially valuable in experimental studies with constrained sample sizes, 
where maximizing data efficiency is critical. A schematic illustration of the cross-validation workflow is provided 
in Fig. 5.

Experimental setup and protocols
The tests were conducted using an agriculture-based Kirloskar model TV1 diesel engine. The engine equipped 
with an air-fuel induction system, emission analyzers including a smoke meter and an AVL five-gas analyzer, an 
eddy current dynamometer, and temperature measurement panels. The engine has a stroke length of 112 mm, 
a bore diameter of 86.6 mm, and a compression ratio of 17:1. It delivers a power output of 5.2 kW and operates 

Model

Hyper parameters range

n_estimators learning_rate max_depth

XGBoost 50–1000 0.01–0.3 3–15

AdaBoost 50–500 0.01–1.0 Not used (base estimator controls depth)

GBM 50–1000 0.01–0.3 3–10

CatBoost 100–1000 0.01–0.3 4–10

Table 2.  Range of hyper-parameter tuning for chosen ML models.
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at a constant speed of 1500 rpm. The emission analyzer was connected to the exhaust tailpipe of the engine via a 
gas analyzer probe for precise monitoring, and all emission measurements were conducted in accordance with 
the ISO 8178 standard, as shown in Fig. 6.

Before initiating the engine experiments, a thorough inspection was conducted to verify the integrity of 
essential components, including checking for oil leaks, ensuring proper connections, and confirming adequate 
levels of coolant and lubricants. After completing the verification process, diesel fuel was initially supplied 
to operate the engine, allowing it to reach steady-state conditions. Once the engine stabilized under diesel 
operation, the fuel system was drained completely to eliminate residual effects before introducing the test 
fuels50,51. The trials were performed using various test fuels, and measurements were recorded under different 
loading conditions: idle, 25%, 50%, 75%, and full load. To ensure the reliability and repeatability of results, each 
fuel type was tested three times, and the recorded values were averaged for subsequent analysis and plotting. The 
averaged data points were used to evaluate performance indicators and exhaust emissions, ensuring robust and 
reproducible findings.

Uncertainty report
To enhance the accuracy and repeatability of experimental results, a comprehensive uncertainty analysis 
was conducted. This process is essential for identifying and minimizing potential sources of error that may 
affect the reliability of the final outcomes. During experimentation, various types of errors were encountered, 
including human error, instrumental limitations, environmental fluctuations, and other miscellaneous factors. 
By systematically evaluating these uncertainties, we aim to reduce measurement variability and improve the 
credibility of performance and emission data. The uncertainty values associated with key instruments and 

Fig. 6.  The diesel engine experimental setup (a) Schematic view (b) Actual view.

 

Fig. 5.  Basic concept of cross validation (k-5).
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measured parameters are summarized in Table  3. The total uncertainty for each performance and emission 
parameter was calculated using.

= √ {(total performance metrics) 2+ (total emission metrics) 2}
= √ {(UCBTE) 2 + (UCBSEC) 2 + (UCCO) 2 + (UCNOx) 2+(UCSMOKE) 2}
=√ {(0.5) 2 + (0.7) 2 + (0.14) 2 + (0.7) 2 + (0.7) 2}
=±1.318

Results and discussions
Performance enhancement via hyperparameter tuning
Table 4 presents a comparative summary of default and optimized hyperparameter configurations for the four 
boosted learning models used in biodiesel yield prediction. Initially, all models shared default settings of n_
estimators (ne) = 100, learning_rate (lr) = 0.1, and max_depth (md) = None, which remained unchanged for 
AdaBoost due to its limited tuneable parameters and stable performance. However, after systematic tuning, 
notable adjustments were made to the other models. For both XGBoost and GBM, the optimal configuration was 
identified as ne = 100, lr = 0.05, and md = 5. In contrast, CatBoost achieved its best performance with ne = 150, 
lr = 0.1, and md = 5.

Figure 7 illustrates the impact of hyperparameter optimization on model performance, measured by the 
coefficient of determination (R²). As expected, AdaBoost showed no change in R² values due to unchanged 
parameters. However, the other models demonstrated clear improvements. For XGBoost, R² increased from 
0.79 to 0.82 following tuning, while GBM improved from 0.73 to 0.79. The most significant enhancement was 
observed in CatBoost, where R² rose from 0.92 to 0.95, confirming its superior predictive capability under 
optimized conditions.

ML model selection and validation
Four boosted learning models XGBoost, AdaBoost, GBM, and CatBoost were implemented to train and test the 
prediction of biodiesel oil yield using experimental data. Each model processed the dataset, learning patterns 
and relationships between the input variables and the corresponding yield. The goal was to determine the most 

ML models Default hyper-parameter Optimised hyper-parameter

XGBoost
ne = 100,
lr = 0.1,
md = None

ne = 100,
lr = 0.05,
md = 5

AdaBoost
ne = 100,
lr = 0.1,
md = None

ne = 100,
lr = 0.1,
md = None

GBM
ne = 100,
lr = 0.1,
md = None

ne = 100,
lr = 0.05,
md = 5

CatBoost
ne = 100,
lr = 0.1,
md = None

ne = 150,
lr = 0.1,
md = 5

Table 4.  Comparative summary of default and optimized hyperparameter configurations.

 

(a) Instrument accuracy and measurement 
uncertainty

Parameter Accuracy Uncertainty (%)

Fuel flow rate ± 0.5% ± 0.75

Air flow rate ± 1.0% ± 1.2

Brake power ± 0.2% ± 0.5

In-cylinder pressure ± 0.5% ± 0.7

Crank angle ± 1° CA ± 1.0

Temperature ± 1 °C ± 0.8

CO ± 0.03 vol% ± 0.14

NOx ± 10 ppm ± 0.7

Smoke ± 0.05 vol% ± 0.7

(b) Derived parameters uncertainty

Parameter Method of calculation Uncertainty (%)

BSFC Based on fuel flow and brake power ± 0.7

BTE From calorific value and BSFC ± 0.5

Table 3.  Uncertainty of different measuring parameters.
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accurate model for prediction. To assess performance, the predicted yield from each model was compared 
against the actual experimental yield. A graphical representation, shown in Fig. 8, illustrates this comparison.

The representation includes a fit line (blue line), training set (yellow dots), and testing set (green dots) to 
assess the most accurate model for predicting and validating the experimental outputs. Among all models, the 
CatBoost model exhibited the strongest relationship with the experimental output, showing a high degree of 
similarity to the actual results. Compared to other learning models, CatBoost’s training and testing sets had 
minimal deviations from each other and closely aligned with the fit line. In contrast, the remaining models 
including AdaBoost, XGBoost, and GBM displayed a perfect alignment between the training set and the fit line, 
following almost the same trend. However, the testing points showed greater deviations, indicating that these 
models did not accurately predict the experimental output trends. The accuracy of each model was confirmed 
using evaluation metrics, including R², RMSE, MSE, and MAE. A model with a high R² and low error values 
was considered more accurate for assessing the experimental data. The evaluation metrics also confirmed that 
the CatBoost learning model was the best choice for future assessments, based on its performance indicators 
(R² = 0.9554, RMSE = 0.83, MSE = 0.68, MAE = 0.52). This was presented in the Fig. 9. From the figure, it was 
observed that, except for CatBoost, the remaining models had R² values ranging from 0.791 to 0.820. CatBoost 
demonstrated a significantly higher R² 20–22% greater than the other models.

Outcome of cross validation (K-fold)
A comprehensive k-fold analysis was performed to assess the reliability and generalization capability of the 
boosted learning models. Each algorithm contributed five R² values across five folds, resulting in a total of 20 
performance scores. These values were averaged to compute the mean R² for each model, as summarized in 
Table 5. The results indicate that the CatBoost algorithm consistently achieved the highest average R² among 
all models, demonstrating its superior predictive accuracy and robustness. Its ability to maintain strong 
performance across multiple fold iterations highlights its effectiveness in modeling biodiesel yield under varying 
training conditions. The cross-validation procedure further validates CatBoost’s stability and reliability, making 
it a suitable choice for structured experimental datasets with limited sample sizes.

Overfitting assessment for best model
Residual plots serve as essential diagnostic tools for assessing the performance and generalization capability 
of ML models. By plotting the residuals distinct as the difference between experimental and predicted values 
against the predicted outputs, these plots reveal whether the model captures the underlying data distribution 
without systematic bias. For a well-fitted model, residuals are expected to be evenly distributed about the 

Fig. 7.  The R2 comparison of default and optimized hyper-parameter.
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horizontal axis at zero, reflecting the absence of systematic error. In the context of overfitting assessment, key 
indicators include disproportionate clustering of training residuals compared to the test set, or visible trends in 
residual dispersion. Overfitting is typically suggested when the model performs exceptionally well on training 
data but exhibits high variance or poor accuracy on unseen test data. As illustrated in Fig.  10, the residual 
plot for the CatBoost model demonstrates a well-balanced and tightly clustered distribution of residuals for 
both training (blue) and testing (green) datasets. The residuals are concentrated near the zero line, with no 
apparent heteroscedasticity or systematic deviation. This uniformity across both data partitions confirms that 
the CatBoost model achieves high predictive accuracy while maintaining generalization capability. The absence 
of large residuals or directional patterns further supports the conclusion that the model avoids overfitting and 
performs reliably under varying training conditions.

Model interpretation
Model interpretation is essential for understanding the impact of different input features on predictions. 
Conducting feature importance analysis helps identify the most influential variables, guiding future model 
improvements and decision-making. Additionally, partial dependence analysis provides insights into how specific 
features affect model predictions, ensuring transparency and reliability in machine learning applications52,53. 
Figure   11 illustrate the feature importance scores and partial dependence trends for the best-performing 
learning model.

Figure 11a reveals the feature importance scores for the CatBoost model, indicating that MOR holds the 
highest importance in oil yield prediction, with a magnitude coefficient approaching 50. This suggests that MOR 
has a substantial impact on biodiesel yield optimization. Catalyst concentration emerges as the second most 
impactful variable, exhibiting an importance score close to 35, further reinforcing its critical role in biodiesel 
yield improvement. These insights highlight that both variables significantly contribute to optimizing biodiesel 
production efficiency.

Partial dependence analysis offers enhanced insight how input features influence the model’s predictions. The 
trend analysis indicates that CC consistently augments biodiesel yield as its CC increases. However, beyond a 
certain threshold, a diminishing return effect is observed. MOR exhibits an increasing trend in yield generation 

Fig. 8.  Comparative analysis of experimental and predicted outputs across four boosting algorithms (a) 
XGBoost, (b) Adaboost, (c) GBM, (d) CatBoost.
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up to a value of 9, after which its impact reverses, leading to a decrease in yield. This suggests an optimal range 
for MOR that must be maintained for maximum efficiency. Reaction time follows a similar trend to MOR, 
Exhibiting a positive association with biodiesel up to 100 min. A diminishing trend in yield is observed beyond 
this threshold, indicating a potential oversaturation or unwanted side reactions affecting the process which was 
represented in Fig. 11b. These findings emphasize the necessity of determining optimal operating conditions for 
biodiesel production while considering both feature interactions and diminishing returns. The combination of 
feature importance and partial dependence analysis provides a comprehensive framework for refining model 
predictions and enhancing process efficiency.

Process parameter optimization for biodiesel production
To maximize oil yield in biodiesel production, process parameters were optimized using the CatBoost learning 
model, selected as the best predictive tool based on evaluation metrics, including R2, RMSE, MSE, and MAE, as 
well as comparisons with experimental results. The CatBoost model was trained using experimental biodiesel 
yield data, where CC, MOR, and RT served as input features. The model was validated to ensure predictive 

Output parameter Iterations (k = 5)

R2 values for boosted model

XGBoost AdaBoost GBM CatBoost

Biodiesel yield

Iteration 1 0.85 0.89 0.67 0.98

Iteration 2 0.68 0.99 0.74 0.76

Iteration 3 0.75 0.99 0.8 0.97

Iteration 4 0.97 0.95 0.63 0.98

Iteration 5 0.78 0.41 0.76 0.99

Average R2 0.806 0.68 0.72 0.94

Table 5.  K-fold cross validation on average R2 results.

 

Fig. 9.  Validation metric for all four boosting models (a) R2, (b) RMSE, (c) MSE, (d) MAE.
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accuracy, and feature importance examination was conducted to assess the relative impact of each parameter 
on oil yield.

The optimization process involved systematically varying one parameter while keeping the others constant, 
enabling an isolated assessment of its effect. As illustrated in Fig.  8, the optimization results highlight the 
influence of these parameters on biodiesel yield using a 2D representation. The final optimized values 80 min 
reaction time, 9:1 MOR, and 3 wt% catalyst concentration were identified based on the highest predicted yield, 
consistent with experimental validation. These optimized parameters are summarized in Table 6.

Fig. 11.  Model interpretation (a) Feature Importance (b) Partial dependence.

 

Fig. 10.  The residual plot for the CatBoost model.
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In Fig. 12a, the reaction time was varied while CC and MOR remained constant. The scrutiny determined that 
the optimal RT for attaining extreme oil yield was 80 min, resulting in a yield of 95.083%. Oil yield progressively 
increased from 60 min, reaching its peak at 80 min. However, beyond 120 min, the yield declined, suggesting 
an upper threshold where excessive reaction time negatively impacts reaction kinetics. This decline indicates 
that prolonged exposure may lead to adverse thermal effects or side reactions, reducing biodiesel conversion 
efficiency. Optimizing reaction time is crucial to maximizing yield while preventing unnecessary degradation 
or secondary reactions.

Similarly, Fig. 12b presents the effect of MOR variation, while CC and RT were kept constant. The results 
showed that the optimal MOR for achieving maximum oil yield was 9:1, yielding 95.083%. The oil yield increased 
steadily from 6:1, reaching its peak at 9:1, after which further increases in MOR resulted in a decline. This decline 
suggests that excessive methanol may disrupt the reaction equilibrium, leading to inefficient transesterification 
or unwanted side reactions. Maintaining the optimal MOR is essential for ensuring complete conversion while 
avoiding excess methanol, which could increase purification costs and reduce process efficiency. These findings 
emphasize the importance of precise MOR control in biodiesel production.

Finally, Fig. 12c illustrates the effect of catalyst concentration variation while keeping RT and MOR constant. 
The analysis revealed that the optimal catalyst concentration for maximum oil yield was 3 wt%, yielding 95.083%. 
Oil yield steadily increased from 1 wt%, peaking at 3 wt%, before declining at higher concentrations. This decline 
suggests that excessive catalyst may lead to unwanted side reactions, soap formation, or mass transfer limitations, 
negatively affecting biodiesel production efficiency. Maintaining the correct catalyst concentration is crucial 
for achieving high yield while preventing excess catalyst usage, which could complicate purification steps and 

Fig. 12.  Optimum process parameters by CATboost (a) Reaction temperature (b) Methanol to oil molar ratio, 
(c) catalyst concentration.

 

Reaction temperature (oC) Methanal to oil molar ratio Catalyst concentration (ppm) Yield

80 6 151 95.38%

Table 6.  Optimum process parameters for maximum oil yield.
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increase production costs. These results highlight the importance of optimizing catalyst concentration to ensure 
efficient transesterification and maximum biodiesel yield which was presented in Table 6.

Yield assessment and error calculation in biodiesel production
The production of biodiesel using a CaO-based catalyst and WCO was conducted with 1000 mL of pretreated 
WCO under optimized process conditions. The process parameters included a MOR of 6:1, a RT of 80 °C, and 
a CC of 151 ppm. To determine the necessary methanol volume, calculations were based on the molar mass of 
triglycerides and methanol. With an estimated oil density of 0.91 g/mL, the total oil mass is 910 g, corresponding 
to 1.034 moles of triglycerides. Applying the 6:1 molar ratio, this equates to 6.204 moles of methanol. Given 
methanol’s density of 0.791 g/mL and molar mass of 32 g/mol, the required methanol volume is 251 mL. The 
catalyst concentration of 151 ppm translates to 137.41 mg for this oil quantity.

The biodiesel production process begins by heating the pretreated oil to 80 °C in a reactor equipped with 
stirring. Methanol (251 mL) is gradually added, followed by the CaO catalyst (137.41 mg), ensuring thorough 
mixing. The reaction is maintained under constant agitation for 2–3 h, allowing complete transesterification. 
After completion, the mixture is left to settle for 6–12 h, during which biodiesel separates from the glycerol 
layer. Washing the biodiesel with warm water removes residual methanol and catalyst impurities, followed by 
mild heating or vacuum drying to ensure purity. Once the biodiesel was purified, the final yield was measured to 
verify process efficiency. Based on a predicted 95.38% yield, the expected biodiesel volume is 1000 mL × 95.38% 
= 953.8 mL. However, the actual yield obtained was 945 mL, resulting in a discrepancy of 8.8 mL. The percentage 
error is calculated as follows:

Percentage Error = [(Predicted Yield – Actual Yield) / Predicted Yield] ×100
= [(953.8–945) / 953.8] × 100
≈ 0.92% error
For biodiesel production using NaOH and KOH catalysts, a RT of 60 °C, a 6:1 MOR, and 10 g of catalyst were 

used. This process yielded 950 to 960 mL of biodiesel.

Yield comparisons among the different catalyst
A comparison of biodiesel yield using CaO-based catalysts and conventional KOH and NaOH catalysts provides 
insight into efficiency and sustainability. Literature suggests that biodiesel conversion using KOH and NaOH, as 
homogeneous catalysts, typically achieves yields exceeding 95%, depending on reaction conditions. For example, 
biodiesel conversion using KOH at 60 °C, a 6:1 MOR, and 1 g KOH per 100 mL of feedstock resulted in a 95% 
yield, while further optimization with 0.8 g KOH at 55 °C increased the yield to 96%54–56. Studies on used frying 
oils reported biodiesel yields of 92–96% using NaOH and KOH, with variations in reaction time and catalyst 
concentration. Research on vegetable oil-based biodiesel found that KOH catalysts generally provide higher 
yields than NaOH, with KOH achieving up to 97% yield, while NaOH yielded slightly lower values55,57.

In contrast, the CaO-based catalyst achieved a yield of 945 mL from 1000 mL of oil, corresponding to 94.5%, 
which is slightly lower than the optimized KOH-based biodiesel yields but remains highly efficient. The 0.92% 
error in yield calculation suggests minor losses due to reaction kinetics, catalyst dispersion, or purification steps. 
While KOH and NaOH catalysts provide high biodiesel conversion rates, they present significant challenges, 
particularly soap formation due to saponification, which complicates downstream purification. This issue 
necessitates additional processing steps, increases material loss, and adds to overall production costs, making the 
purification phase more labor-intensive and less sustainable. In contrast, CaO-based catalysts, despite achieving 
yields comparable to or slightly lower than conventional catalysts, offer distinct advantages that justify their 
application in biodiesel production.

Being heterogeneous, CaO catalysts allow for straightforward separation, eliminating the need for excessive 
washing steps and reducing unwanted chemical byproducts. Their recyclability enables multiple reaction cycles, 
minimizing waste generation and lowering overall catalyst consumption. Additionally, CaO-derived catalysts 
contribute to greater environmental sustainability, as they avoid the harsh chemical interactions that NaOH and 
KOH undergo in liquid-phase transesterification. The long-term benefits of CaO catalysts including efficiency 
in process handling, reduced purification requirements, and lower environmental impact position them as 
a compelling alternative for biodiesel synthesis, even if yield figures are marginally lower than conventional 
alkaline catalysts58–60. After storing the biodiesel in a proper container, it underwent thermos-physical property 
analysis, and the results were tabulated in Table 7. The property analysis was conducted in accordance with 
ASTM standards.

Engine outcomes
Figure 13 presents the Brake Thermal Efficiency (BTE) output across various load states for different test 
fuels, including diesel, CaO biodiesel, KOH biodiesel, and NaOH biodiesel. The trend specifies that BTE 

Fuel properties Unit Diesel CaO biodiesel KOH biodiesel NaOH biodiesel

Viscosity (mm2/s) 3.1 4.7 5.2 5.5

Cetane number (CN) - 48 51 50 47

Calorific value (CV) (MJ/kg) 43 39 37 36

Oxygen (O2) (%) - 11 12 13

Table 7.  Comparison of test fuel properties.

 

Scientific Reports |        (2025) 15:33265 14| https://doi.org/10.1038/s41598-025-18757-6

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


increases with rising engine load due to better fuel atomization and amended air-fuel mixing, leading to higher 
combustion efficiency61. At higher loads, diesel exhibited the highest BTE at 31.89%, followed by CaO biodiesel 
at 28.06%, KOH biodiesel at 27.16%, and NaOH biodiesel at 26.02%. The superior BTE of diesel is attributed 
to its higher CV and lower viscosity, which enhance combustion efficiency and energy conversion. Among 
the biodiesel variants, CaO biodiesel demonstrated the highest BTE among biodiesel fuels, showing a 2.8% 
reduction compared to diesel. This is due to its higher CN and oxidative stability, which promote more complete 
combustion. KOH biodiesel exhibited a 5.8% reduction in BTE compared to diesel, indicating slightly lower 
combustion efficiency due to elevated viscosity and lower cetane number. NaOH biodiesel showed the lowest 
BTE, with an 6.4% reduction compared to diesel, confirming its higher viscosity and lower CV, which negatively 
impact fuel atomization and combustion efficiency. Overall, while biodiesel blends exhibit slightly lower BTE 
than diesel, their renewable nature and lower emissions make them promising alternatives for sustainable diesel 
engine applications. CaO biodiesel remains the most efficient biodiesel option, because closer BTE with diesel 
than other test cases.

Figure 14 presents the BSEC output across various load states for different test fuels, including diesel, CaO 
biodiesel, KOH biodiesel, and NaOH biodiesel. The trend shows that BSEC decreases as engine load increases 
for all test fuels due to improved combustion efficiency and better energy utilization per unit of fuel62. At higher 
loads, diesel exhibited the lowest BSEC at 10.25 MJ/kWh, confirming its superior calorific value and atomization 
characteristics. Among the biodiesel variants, CaO biodiesel demonstrated the lowest BSEC at 14.71 MJ/kWh, 
indicating better energy utilization compared to KOH biodiesel (17.39 MJ/kWh) and NaOH biodiesel (18.79 MJ/
kWh). This advantage is attributed to CaO biodiesel’s higher cetane number and oxidative stability, promoting 
more complete combustion. The percentage increase in BSEC compared to diesel at higher loads further 
highlights efficiency differences. CaO biodiesel shows a 4.31% increase, making it the most efficient biodiesel 
option. In comparison, KOH biodiesel exhibits a 6.97% increase, demonstrating higher fuel consumption due 
to viscosity-related atomization issues. NaOH biodiesel shows the highest BSEC increase, reaching 8.33%, 
confirming its poorer atomization and greater fuel consumption under high-load conditions. Overall, while 
biodiesel fuels exhibit slightly higher BSEC than diesel at peak loads, among which CaO biodiesel remains the 
most efficient biodiesel option, because closer BSEC with diesel than other test cases.

Figure 15 presents the carbon monoxide (CO) emissions across various load states for different test fuels, 
including diesel, CaO biodiesel, KOH biodiesel, and NaOH biodiesel. The trend shows that CO emissions 
decrease as engine load increases for all test fuels. This is because higher loads improve combustion efficiency, 
leading to more complete oxidation of fuel and reducing CO formation63,64. At higher loads, diesel exhibited 
the highest CO emissions at 3.02 g/kWh, primarily due to incomplete combustion and lower oxygen content 

Fig. 13.  The results of BTE for various test fuels.
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Fig. 15.  The results of CO for various test fuels.

 

Fig. 14.  The results of BSEC for various test fuels.
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in the fuel. Among the biodiesel variants, CaO biodiesel demonstrated the lowest CO emissions at 2.22 g/kWh, 
indicating better oxygen availability and improved combustion efficiency compared to KOH biodiesel (2.71 g/
kWh) and NaOH biodiesel (2.89  g/kWh). The percentage reduction in CO emissions compared to diesel at 
higher loads further highlights the advantages of biodiesel fuels. CaO biodiesel shows a 26.5% reduction, making 
it the cleanest-burning biodiesel option. In comparison, KOH biodiesel exhibits a 10.3% reduction, while NaOH 
biodiesel shows a 4.3% reduction, confirming its slightly poorer combustion efficiency due to elevated viscosity 
and lower atomization quality. Overall, CaO biodiesel blend significantly diminishes CO emissions associated 
to diesel.

Figure 16 presents the NOx emissions across various load states for different test fuels, including diesel, CaO 
biodiesel, KOH biodiesel, and NaOH biodiesel. The trend shows that NOx increases as engine load increases. 
This is primarily due to peak combustion temperatures at elevated loads, which promote thermal NOx65,66. At 
higher loads, diesel exhibited the lowest NOx emissions at 8.21 g/kWh, while CaO biodiesel recorded 10.2 g/
kWh, followed by KOH biodiesel at 11.9 g/kWh, and NaOH biodiesel at 12.35 g/kWh. The increase in NOx 
emissions for biodiesel blends is attributed to their higher O2, which accelerating NOx. The percentage rise 
in NOx than diesel at higher loads further highlights the impact of biodiesel combustion characteristics. CaO 
biodiesel shows a 24.2% increase, making it the least NOx-intensive biodiesel option. In comparison, KOH 
biodiesel exhibits a 45.0% increase, while NaOH biodiesel shows the highest NOx increase at 50.5%, confirming 
its higher combustion temperature and oxygen content. Overall, CaO biodiesel blend chosen was best option 
for lower NOx intensity.

Figure 17 presents the smoke emissions across various load states for different test fuels, including diesel, CaO 
biodiesel, KOH biodiesel, and NaOH biodiesel. The trend indicates that smoke emissions increase with rising 
engine load due to increased rate of fuel injection, leading to increased particulate matter formation67–69. At 
higher loads, diesel exhibited the highest smoke emissions at 51.5%, while CaO biodiesel recorded 44.5%, KOH 
biodiesel at 42.01%, and NaOH biodiesel at 41.67%. The reduction in smoke for biodiesel blends than diesel is 
primarily due to their higher O2, which promotes more complete combustion and diminishes soot formation. 
Among the biodiesel variants, CaO biodiesel showed a 13.6% reduction in smoke emissions compared to diesel, 
indicating moderate particulate matter reduction. KOH biodiesel exhibited an 18.5% reduction, demonstrating 
better atomization characteristics, while NaOH biodiesel showed the highest smoke reduction at 19.1%, 
confirming improved oxygen-enhanced combustion efficiency and better fuel-air mixing. The higher smoke 
emissions of diesel compared to biodiesel blends can be attributed to its lower oxygen availability, leading to 
fuel-rich zones and increased soot formation. In contrast, NaOH biodiesel, with superior oxygen content and 
improved spray characteristics, exhibited the lowest smoke emissions among all test fuels. Overall, while diesel 
produces the highest smoke emissions, biodiesel blends provide significant reductions, with NaOH biodiesel 
offering the most effective soot reduction, followed by KOH and CaO biodiesel. This demonstrates the role of 

Fig. 16.  The results of NOx for various test fuels.
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fuel oxygenation and viscosity in controlling particulate emissions, making biodiesel a promising alternative for 
reducing smoke in diesel engine applications.

Practical implications and future directions
The discoveries of this study present several practical implications for industrial application and future research 
in sustainable biofuel systems. The successful use of biomass-derived CaO catalysts highlights a resource-efficient 
and environmentally conscious method for producing biodiesel, particularly suitable for decentralized and 
rural settings where agricultural waste is abundant. The optimized biodiesel blends, validated through engine 
performance and emission testing, demonstrate compatibility with existing diesel engines, offering a pathway 
to reduce emissions without requiring significant engine modifications. Furthermore, the integration of ML 
models such as CatBoost and XGBoost Offers a comprehensive structure for predictive modeling and process 
optimization. These models can be embedded into industrial control systems to enable real-time monitoring, 
fault detection, and adaptive tuning, thereby improving operational efficiency and reducing downtime. Future 
research should focus on catalyst regeneration and long-term stability across multiple reaction cycles, as well 
as conducting comprehensive lifecycle assessments to evaluate environmental and economic impacts. The 
development of hybrid ML frameworks that combine data-driven models with physics-based simulations could 
enhance prediction accuracy and deepen understanding of reaction kinetics and engine thermodynamics. 
Additionally, pilot-scale trials and techno-economic scrutinizes are vital to assess the scalability and market 
competitiveness of the proposed biodiesel production route. Finally, the outcomes of this study align with policy 
goals aimed at decarbonizing the transport and agricultural sectors, and collaboration with regulatory bodies 
could facilitate certification and broader deployment of biofuel technologies.

Conclusion

•	 This study demonstrates the effective integration of ML techniques with experimental biodiesel synthesis, 
offering a reliable framework for optimizing yield and evaluating engine performance. Among the boosted 
learning models evaluated, CatBoost exhibited superior predictive accuracy (R2 = 0.955) and minimal error 
metrics, confirming its robustness for biodiesel process modeling. Feature importance and partial depend-
ence analyses revealed that MOR and CC were the most influential parameters, enabling precise process 
adjustments. Under optimized conditions MOR of 9:1, CC of 3 wt%, and RT of 80 min a maximum biodiesel 
yield of 95.083% was achieved, with CatBoost accurately predicting these outcomes. Although CaO-based 
catalysts produced slightly lower yields than NaOH and KOH, they offer significant advantages in sustaina-
bility, recyclability, and ease of separation, positioning them as promising alternatives for scalable biodiesel 
production.

Fig. 17.  The results of smoke for various test fuels.
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•	 Engine performance testing further confirmed the viability of CaO biodiesel, which demonstrated reduced 
CO and smoke emissions compared to diesel, despite a moderate increase in NOx. BTE for CaO biodiesel 
reached 28.06%, while BSEC increased by 43.5%, indicating a trade-off between combustion efficiency and 
emissions control. However, the overall cleaner-burning profile reinforces its potential for sustainable diesel 
engine applications.

•	 Despite these encouraging results, the study is limited by the use of a single-cylinder engine, a relatively 
small dataset, and the absence of long-term catalyst durability assessments. These constraints may affect the 
generalizability and industrial readiness of the findings. To discourse these gaps, future research should focus 
on field-scale validation of CaO biodiesel in multi-cylinder engines under variable load conditions, the appli-
cation of deep learning models for multi-objective optimization, and comprehensive techno-economic and 
lifecycle analyses to evaluate scalability and environmental impact. These efforts will be essential to transition 
biodiesel technologies from laboratory success to real-world deployment.

Data availability
Relevant data are accessible through the corresponding authors, subject to reasonable academic inquiry.
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