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With increasing cybersecurity threats, effective intrusion detection has become critical for 
safeguarding networks. Although deep learning methods have advanced, two major issues 
persist: (1) class imbalance biases models toward normal traffic, increasing false negatives; (2) 
single-task frameworks limit feature representation and fail to leverage multi-task collaboration 
potential. To address these, we propose Memory Autoencoder with CNN-Attention Integration 
Network(MEMCAIN), a multi-task feature fusion deep learning method. First, MEMCAIN integrates 
CNN with attention mechanisms, constructing CCA Blocks through contrastive normalization to 
capture spatiotemporal features. These blocks are stacked to form CCANet, enabling comprehensive 
spatiotemporal feature extraction from traffic data. Second, a memory autoencoder is introduced 
to capture latent distribution features of traffic flows. Finally, an end-to-end collaborative training 
framework jointly optimizes CCANet (main task) and the memory autoencoder (auxiliary task). 
Experiments demonstrate MEMCAIN’s significant superiority over baselines across multiple datasets, 
with ablation studies validating each module’s efficacy for fine-grained intrusion detection in complex 
network environments.
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According to deployment scenarios and monitoring scope, IDS are divided into host-based HIDS and network-
based NIDS. HIDS are deployed on individual terminal devices such as servers and PCs, and monitor local 
data including system logs and process activities to identify intrusions targeting the device such as malware 
implantation. However, they have limitations: their monitoring scope is confined to a single host, making them 
unable to detect cross-device collaborative attacks like DDoS, and they rely on host resources, which leads to 
high costs in large-scale deployment. By contrast, NIDS are deployed at key network nodes such as gateways and 
core switches. They achieve global threat perception by analyzing full-network traffic including TCP/IP packets 
and session interactions. They can not only capture cross-domain attacks beyond the coverage of HIDS, but also 
provide inter-device communication context data needed for attack chain reconstruction. Moreover, they do not 
require agent installation on terminals, thus having higher deployment flexibility and adaptability to large-scale 
networks. Therefore, NIDS is more aligned with the needs of modern network security research. The detection 
method proposed in this study belongs to the category of NIDS, as it detects threats across the entire network 
scope by analyzing network traffic.

In recent years, advances in artificial intelligence (AI) have led to the widespread application of machine 
learning techniques in NIDs, complementing traditional rule-based pattern matching approaches. Existing 
machine learning-based NIDs employ either traditional machine learning models or deep learning models. 
However, traditional machine learning models have limitations in handling network traffic data features, making 
them less suitable for modern NIDs. Deep learning models, on the other hand, can automatically extract high-
level feature representations from large-scale network traffic data. As a result, they are more widely adopted in 
NIDs.

Deep learning-based NIDs can be categorized into supervised and unsupervised learning. Supervised 
learning employs labeled network traffic data to provide fine-grained detection of known anomalous traffic1. 
Unsupervised learning utilizes unlabeled network traffic data, preserving the diversity of normal network traffic 
patterns and distinguishing between normal and anomalous traffic to discover unknown network anomalies2.

Despite deep learning’s extensive application in NIDs, two primary issues still exist. First, class imbalance in 
network traffic data is an inherent practical issue: anomalous traffic is typically much less frequent than normal 
traffic, causing models trained on imbalanced datasets to bias towards the majority class and resulting in higher 
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false-positive rates. Second, existing approaches predominantly employ single-task frameworks, which not only 
limit the representation power of the extracted features but also fail to leverage the performance enhancement 
potential from multi-task collaboration, despite evidence suggesting its effectiveness3,4.

To address the above issues, this paper proposes Memory Autoencoder with CNN-Attention Integration 
Network (MEMCAIN), a multi-task feature fusion deep learning method. To overcome the class imbalance 
problem, we innovatively introduce a memory autoencoder; to tackle the limitations of existing methods 
in feature representation capability, we innovatively propose CCANet and construct a multi-task learning 
framework. Specifically, the model integrates the memory autoencoder and CCANet within a multi-task 
architecture, achieving fine-grained detection of anomalous traffic while discriminating it from normal traffic. 
The primary and auxiliary tasks mutually enhance performance via end-to-end collaborative learning. The 
contributions of this work can be summarized as follows: 

	(1)	 We integrate the attention mechanism with a convolutional neural network (CNN) and introduce contras-
tive normalization layers, proposing the CCA Block. By stacking multiple CCA Blocks, we achieve efficient 
spatiotemporal feature extraction from network traffic data. Our approach effectively captures the structur-
al characteristics of network traffic, making it more suitable for large-scale NIDs.

	(2)	 We employ CCANet as the main task and the memory autoencoder as the auxiliary task. By leveraging the 
memory autoencoder’s ability to distinguish normal and abnormal traffic, we fuse the extracted CCANet 
features with the learned latent traffic features from the memory encoder. This fusion addresses the issue of 
limited feature representation and alleviates class imbalance.

	(3)	 We validate the effectiveness of MEMCAIN through ablation experiments on multiple datasets and com-
pare its performance with several baseline models, demonstrating its superiority in network intrusion de-
tection.

The remainder of this paper is structured as follows: Following this Introduction, the Methodology section 
systematically introduces the design rationale and key components of the MEMCAIN proposed in this study. 
Subsequently, the Experiment section details the experimental setup, datasets employed, evaluation metrics, 
and presents comprehensive experimental results along with in-depth analysis to validate the effectiveness of 
the proposed approach. Building upon the findings, the Conclusion and future Work section summarizes the 
main contributions and conclusions of this research, and discusses potential improvements and future research 
directions. Finally, the paper includes supplementary information in the form of Funding acknowledgements, 
Data availability, and Contribution.

Related work
In recent years, intrusion detection systems based on deep learning technology have attracted increasing 
attention from enterprises and universities. In this section, we will review recent studies on deep learning and 
multi-task learning in network anomaly detection, the application of memory modules in deep learning, and 
research on handling imbalanced data.

Deep learning
Ahmad et al.5 compared SVM, RF, and ELM using the NSL-KDD dataset, showing that ELM’s superior 
classification efficiency makes it more effective for large-scale intrusion detection. Wang et al.6 introduced HAST-
IDS, which leverages CNNs for spatial feature extraction and LSTMs for temporal modeling, enabling end-to-
end feature learning and improving detection accuracy while reducing false positives. Wu et al.7,8 proposed 
LuNet, a spatiotemporal fusion network integrating CNNs and RNNs, which enhances feature extraction and 
lowers false alarm rates while maintaining high detection accuracy. They also developed Pelican, a deep residual 
network with skip connections that optimize gradient propagation and eliminate reliance on handcrafted 
features, demonstrating improved attack detection and reduced false positives. Sinha et al.9 combined CNNs 
and Bi-LSTMs for spatiotemporal modeling, achieving superior performance on NSL-KDD and UNSW-NB15 
while significantly lowering false alarms. Gupta et al.10 introduced a three-tier intrusion detection framework 
integrating cost-sensitive deep learning with ensemble learning, using CS-DNN for class imbalance mitigation, 
XGBoost for anomaly filtering, and RF for fine-grained classification. Cross-dataset evaluations confirm its 
enhanced recall and high detection accuracy.Vinayakumar et al.11 proposed a hyperparameter optimization-
based method for selecting DNN topologies, validating its capability in high-dimensional feature abstraction for 
unknown attack detection. They also developed a dynamic evaluation framework, providing a quantitative basis 
for assessing the robustness of IDS algorithms in continuously evolving attack scenarios.

Similar to prior spatiotemporal models6,7,9, our CCANet adopts CNN and Attention mechanisms for joint 
spatial-temporal feature learning, but further introduces contrastive normalization layers to adaptively suppress 
noisy correlations and enhance structural feature discrimination, addressing both class imbalance and traffic 
complexity in a unified framework.

Multi-task learning
Multi-task learning (MTL) is a subfield of Deep learning in which multiple learning tasks are solved at the same 
time, while exploiting commonalities and differences across tasks. This can result in improved learning efficiency 
and prediction accuracy for the task-specific models, when compared to training the models separately.Inherently, 
Multi-task learning is a multi-objective optimization problem having trade-offs between different tasks.Lan et 
al.12 addressed class imbalance and the limitations of traditional feature representations by integrating a memory 
encoder, CNN, and a distance-based prototype network into a multi-task learning model. Extensive experiments 
on multiple benchmark datasets demonstrated that their proposed model outperforms state-of-the-art baseline 

Scientific Reports |        (2025) 15:34958 2| https://doi.org/10.1038/s41598-025-18951-6

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


methods. Liu et al.13introduced a multi-task learning framework that integrates anomaly detection, clustering, 
and classification. By effectively combining autoencoders with pairwise contrastive learning, they extended the 
application of autoencoders from unsupervised to supervised learning. Nie et al.14 leveraged autoencoders as the 
shared model architecture in their multi-task learning framework to enhance the performance of the primary 
task. They also designed a loss-weighting algorithm as the loss function, improving the detection of rare attacks. 
Telikani et al.15 proposed a multi-task learning approach based on a cost-sensitive learning loss strategy. For each 
task, the hinge loss function was optimized using cost-sensitive learning, effectively leveraging the strengths of 
different tasks.

Our feature fusion strategy extends12’s memory modeling and13’s representation learning by bidirectionally 
aligning CCANet’s structural patterns with memory-induced latent subspaces, achieving both feature 
enhancement and implicit class balancing.

Handling imbalanced classes
In network traffic anomaly detection, class imbalance is a common issue where normal traffic samples significantly 
outnumber anomalous attack samples. This imbalance negatively impacts the classification performance of 
models, making it difficult to identify anomalous traffic instances. There are two main approaches to addressing 
this issue. The first involves data preprocessing, focusing on balancing the minority class. The second approach 
involves modifying the algorithm or model itself, emphasizing the optimization of the model’s learning capability 
for the minority class. Specifically, this approach does not directly alter the data distribution but improves the 
model’s training strategy or introduces specific mechanisms to enhance its sensitivity to anomalous samples. 
This paper adopts the second approach. Abdulrahman et al.16 designed a CNN-based intrusion detection system 
for Industrial IoT environments and employed Synthetic Minority Over-sampling Technique (SMOTE) to 
balance the dataset. Andresini et al.17 proposed a GAN- and CNN-based network traffic anomaly detection 
method, using GANs to augment imbalanced network traffic data, thereby training a more robust anomaly 
detection model. Ding et al.18 proposed a data augmentation method using a GAN with a multi-generator 
structure, capable of generating various types of attack data to train models and improve performance. Ren 
et al.19 proposed a CNN-based neural network with an attention mechanism and introduced the Equalization 
Loss function (EQLv2). By dynamically adjusting the weights of minority samples, their approach mitigated the 
adverse impact of class imbalance. Experimental results demonstrated that their method reduced false alarm 
rates and improved detection accuracy.

While data augmentation techniques like SMOTE and GANs offer a direct way to address imbalance, they 
present significant challenges in the network security domain: 

	(1)	 SMOTE limitations: SMOTE and its variants generate synthetic samples by interpolating between existing 
minority instances. This can lead to the creation of unrealistic or noisy samples that do not accurately re-
flect the true, often complex and non-linear, distribution of real attack traffic, potentially degrading model 
performance or introducing generalization issues.

	(2)	 GAN limitations: Models trained predominantly on GAN-generated data risk learning spurious patterns 
inherent to the generation process rather than true attack signatures. This synthetic overfitting degrades 
performance when detecting real-world attacks, potentially increasing false negatives.

In contrast to existing methods that relied on data augmentation or loss reweighting for class balance, our 
approach proposed the CCA Block, integrating attention mechanisms with contrastive normalization to 
adaptively capture structural correlations in network traffic and inherently mitigate imbalance through 
feature-space regularization. Essentially resolving the “Synthetic Sample Dependency Syndrome” that plagues 
generalization performance.

Methodology
In this section, we introduce the design of MEMCAIN framework.

The structure of MEMCAIN
The structure of our proposed multi-task learning network architecture (MEMCAIN) is illustrated in Fig. 1. 
MEMCAIN consists of three main components: data preprocessing, a memory-augmented autoencoder 
(MEMAE) as the auxiliary task, and CCANet as the main  task. The workflow of MEMCAIN proceeds as 
follows:

First, in the data preprocessing component, the raw data is preprocessed and sampled to enhance its quality. 
Subsequently, the preprocessed data is fed in parallel to the two task components: 

	(1)	 For the auxiliary task, we construct an end-to-end unsupervised learning network based on memory auto-
encoders to learn latent traffic features from the data.

	(2)	 For the main task, we develop CCANet, composed of CCA Blocks, to extract spatiotemporal features from 
the data.

Following this, a feature fusion module integrates the latent traffic features learned by the auxiliary task with the 
spatiotemporal features extracted by the main task. Therefore, we apply the dilated self-attention mechanism to 
process the concatenated feature vector, which dynamically adjusts receptive fields to capture both local details 
and global dependencies. This generates refined embedding tokens with enhanced discriminative power.

Finally, these embedding tokens are utilized by a classifier to perform anomaly detection.
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Data preprocessing
Before training and testing the model, we preprocess the source to eliminate outliers that may interfere with the 
model, thereby accelerating convergence and improving accuracy. Unlike data augmentation methods16–18 , our 
preprocessing does not require sampling to address data imbalance. Instead, we leverage multi-task learning to 
mitigate data imbalance, reducing preprocessing time. Our data preprocessing consists of the following three 
steps: 

	(1)	 Data cleaning: The dataset may contain ‘NAN’, ‘INF’, or missing values, which cannot be directly fed into 
the model as they may cause training errors. To address this, we replace all outliers and missing values with 
zero.

	(2)	 One-hot encoding: The dataset may contain textual symbols such as “https” and “http”. One-hot encoding 
converts categorical variables into mutually exclusive binary vectors, preventing misleading relationships 
between categories.

	(3)	 Normalization: Normalization prevents gradient instability and computational errors caused by large fea-
ture value ranges. Therefore, we apply min-max normalization to scale feature values to the [0,1] range. The 
formula for min-max normalization is as follows: 

	
Xnorm = X − Xmin

Xmax − Xmin
� (1)

	 where X ,Xmin,Xmax represent the original data value, Minimum value in the dataset and Maximum value in 
the dataset.

The final dimensionality of the CICIDS2017 dataset data input to the model is 77, and that of the KDD dataset 
data is 122.

Multi-task learning
MEMAE
MEMAE is an unsupervised learning model. Serving as an auxiliary task, this architecture leverages the 
structural characteristics of its specialized compression–reconstruction mechanism and the memory module’s 
addressing capabilities to amplify core distinctions between traffic categories, thereby making latent features 
of different traffic types highly distinct. The extracted latent features are integrated into the main task’s feature 
space, addressing the inherent limitations of feature representation capability in existing methods.

As shown in Fig. 2, MEMAE consists of three main components: an encoder, a memory module, and a 
decoder. The encoder compresses the input data into a low-dimensional latent space.

The memory module stores and retrieves latent traffic patterns. The decoder reconstructs the data. The 
encoder and decoder form a symmetric structure to reconstruct latent traffic features to match the original 
traffic data size for loss calculation. The memory module employs an attention-based similarity computation 
mechanism to retrieve the most relevant memory entries. The selected memory entries are concatenated with 
the encoder-generated latent representations and subsequently passed to the decoder to aid reconstruction.

We define the overall sample feature space as T  and the latent encoded sample feature space as Z  . For each 
sample feature ti ∈ T  , the encoder compresses it into a latent sample feature zi ∈ Z . For each latent sample 
feature z′ ∈ Z , the decoder reconstructs it into t̂i ∈ T .

Fig. 1.  The structure of MEMCAIN.
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	 z = fencoder(ti, θe) � (2)

	 t̂i = fdecoder(z′, θd) � (3)

where θe and θd are the trainable parameters of the encoder and decoder, respectively.
The memory module enhances the encoder’s ability to model complex data, enabling rapid recall of key 

features.
The memory module is defined as a random matrix M ∈ RN×S , where N the number of memory slots 

denotes the total number of independent memory entries corresponding to memory size in implementation and 
S the slot width represents the feature dimension of each memory entry equivalent to the dimension of memory 
values. Each memory entry mj ∈ [1, N ] is retrieved from the j-th row of M. The module employs separate keys 
and values with memor keys of shape (N, key_dim) computing attention weights and memory values of shape 
(N, S) providing actual memory content. For reading, the latent sample feature interacts with memory keys via 
dot product to generate attention weights which are then used to weight-sum memory values to produce the 
memory-enhanced feature z′. Specifically, the latent sample feature z′ enhanced by the memory module can be 
expressed as follows :

	
z′ = z + wM = z +

N∑
j=1

wjmj � (4)

where w ∈ RN  represents the attention weight vector, and wj  denotes the j-th element of w, computed using 
cosine similarity between z and mj :

	
wj = exp (c(z, mj))∑N

q=1 exp (c(z, mq)) � (5)

where C(·) represents cosine similarity.

	
c(z, mj) =

zm⊤
j

∥z∥∥mj∥
� (6)

Additionally, the attention weight matrix w needs to be sparsified to ensure the encoder focuses on key features 
during reconstruction, preventing interference from irrelevant combinations. Similar to Gong et al.20, we employ 
a hard thresholding approach for sparsifying the attention weight matrix, but we introduce a weight difference 
term (wi − τ) to enhance the strictness of sparsification.

	
ŵi = max(wi − λ, 0) · (wi − τ)

|wi − λ| + ϵ

where ϵ represents a small positive scalar, ϵ is a threshold chosen from the range [1/N,  3/N], and max(·) 
corresponds to the ReLU activation function. After sparsification, ŵ is re-normalized as follows:

	
ŵi = ŵi

∥ŵ∥1
� (7)

Minimizing the entropy of attention weights sharpens their distribution. We employ a negative entropy-based 
loss term as the sparsification loss function:

Fig. 2.  The architecture of MEMAE. It primarily consists of three components: an encoder, a memory module, 
and a decoder.
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Lspar = −

N∑
i=1

ŵi log (ŵi) � (8)

To enable MEMAE to learn more representative features from the data, we use mean squared error (MSE) as the 
reconstruction loss:

	
LMSE = 1

n

n∑
i=1

(
t̂i − ti

)2
� (9)

The total MSE loss is obtained from Eq. (8) and Eq. (9) as follows:

	 La = δLspar + Lmse� (10)

where δ denote a hyperparameter. In this work, we set it to 0.01 for training MEMAE.

CCANet
Existing approaches to address class imbalance typically employ data augmentation techniques such as GANs. 
However, models trained on GAN-generated data may learn spurious patterns inherent in the generation 
process rather than authentic attack characteristics, which degrades performance in detecting real attacks and 
potentially increases the false negative rate. To resolve this issue, our research introduces innovations at the 
model level. While current models for handling class imbalance primarily utilize CNNs and LSTMs to leverage 
spatial and sequential features for modeling, and their limited ability to capture long-range dependencies in ultra-
long sequences remain critical bottlenecks. Therefore, we propose CCANet, a novel deep learning architecture 
tailored for spatiotemporal feature extraction in network traffic analysis.

Specifically, we propose the CCA (CNN-ContraNorm-Attention) Block, a triple-enhanced feature 
extraction module. As shown in Fig. 3 , the block cascades a 1D convolutional layer, a contrastive normalization 
(ContraNorm) layer, and an attention mechanism into a cohesive pipeline.

Figure 3 shows that the first two layers of the CCA Block consist of a 1D-CNN and a Max-pooling layer. The 
1D-CNN extracts spatial features from input samples, while Max-pooling reduces the dimensionality of the 
feature map and the number of parameters in subsequent layers, thereby mitigating the risk of overfitting. The 
operations of CNN and Max-pooling on data are formally described in Eqs. (11) and (12).

	 xn = frelu (fconv (Wn · tn + bn))� (11)

	 yi = max(xi)� (12)

where tn represents the input features of the n-th CCA Block, and when n=1, it corresponds to the raw data. 
xn denotes the output of the n-th CCA Block. wn and bn represent the weight matrix and bias parameters, 
respectively.

To enhance training stability and mitigate overfitting, we apply contrast normalization to adjust the outputs 
of 1D-CNN and Max-pooling:

	
yn = yi

∥y∥2
� (13)

	
S = ContraNorm(y) = LayerNorm

(
y − γ

(
Softmax

(
yny⊤

n

τ

)
y

))
� (14)

where yn represents the normalized feature of the n-th CCA Block, calculated using the ℓ2-norm. The term 
yny⊤

n
τ  is used to calculate the similarity weights between features. softmax(·)y computes the weighted attention 

Fig. 3.  The overall structure of CCANet, which consists of three CCA Blocks. Each CCA Block consists of a 
1D-CNN, a Max-pooling layer, a Contra Norm layer, and an Attention mechanism.
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matrix. The function LayerNorm(·) denotes layer normalization, which helps maintain training stability. 
y − γ(·) introduces residual subtraction for correction, enhancing feature discriminability. γ and τ  are hyper 
parameters, set to 0.1 and 1 in practice, yielding promising results. In the final layer of the CCA Block, we 
incorporate a self-attention mechanism for connection.

	
y′ = Attention(Q, K, V ) = softmax

(
QK⊤
√

dk

)
V � (15)

where Q,  K,  V represent the query, key, and value matrices, respectively, respectively, which are generated 
through independent linear transformations.

	 Q = S · WQ + bQ� (16)

	 K = S · WK + bK � (17)

	 V = S · WV + bV � (18)

whereS ∈ RB×L×din  denotes the output of contrast normalization, with B as batch size, L as input sequence 
length, and din as input dimension; WQ, WK , WV ∈ Rdin×dk  are learnable weight matrices for the linear 
transformations of Q, K, and V, respectively; bQ, bK , bV ∈ Rdk  are trainable bias terms corresponding to WQ, 
WK , and WV ; dk  represents the dimensionality of the input features, while 1√

dk

 serves as the scaling factor.
After applying the self-attention mechanism, the CCA Block captures more comprehensive global contextual 

information.

Feature fusion and classification
In the proposed multi-task learning framework, the feature fusion block is responsible for obtaining the final 
feature vector. Specifically, the compressed feature representation from MEMAE is denoted as z′, while the 
spatiotemporal features extracted by CCANet are represented as y′. The final feature vector obtained through 
multi-task learning is expressed as (Fig. 4):

	 X = Concat(z′, y′)� (19)

Therefore, we apply the Multi-Dilated local attention mechanism to process the concatenated feature vector X. 
The dilated self-attention mechanism is formulated as follows:

	
X

(h,d)
window[i] =

{
X [i + d · m]

∣∣∣∣∣ m ∈
⌊

−k − 1
2 ,

k − 1
2

⌋}
� (20)

	 Q
(d)
h = X

(h,d)
windowW h

q , K
(d)
h = X

(h,d)
windowW h

k , V
(d)

h = X
(h,d)
windowW h

v � (21)

	
Xo = MultiDilatedLocalAttention(X) = Proj

(
1
k

k∑
m=1

[
Concat

({
Softmax

(
Q

(d)
h K

(d)
h

⊤

√
C/H

)
V

(d)
h

}H

h=1

)])
� (22)

where h denotes the index of the attention head, H is the total number of attention heads, d represents the dilation 
rate, k is the local window size, and C/H corresponds to the feature dimension per head. X(h,d)

window[i] represents 

Fig. 4.  The feature fusion block, which consists of three components: Concat, Multi-Dilated local Attention, 
and flatten.
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the extracted dilated window, where each attention head independently learns W h
q , W h

k , W h
v . Concat(·)H

h=1 
denotes the aggregation and concatenation of the H attention heads. Proj(·) represents the projection layer.

Subsequently, a fully connected layer with softmax as the activation function is used as the classifier to 
produce the final classification output ŷ.

	 ŷ = argmax(softmax(WcXo + bc))� (23)

where Wc and bc denote the trainable parameters of the fully connected layer.
In the main task training, we use cross-entropy as the loss function:

	
Lb = − 1

N

N∑
n=1

C∑
i=1

yn,i log(ŷn,i)� (24)

where yn,i and ŷn,i represent the one-hot encoded ground-truth labels and the predicted probability distribution, 
respectively. N  and C  denote the batch size and the number of classes, respectively.

Finally, based on Eqs. (10) and (24) the total loss of MEMCAIN is defined as:

	 L = αLa + βLb� (25)

α and β serve as hyperparameters. Empirically, setting α to 0.9 and β to 1.2 produced optimal performance.

Comparative analysis with existing methods
To demonstrate the superiority of our approach, we conduct comparisons with state-of-the-art deep learning 
methods.

LuNet7 adopts a hierarchical architecture that integrates CNN and RNN, where each hierarchical level 
contains a combined CNN-RNN module to enable synchronous learning and collaborative capture of spatial 
and temporal features. Batch normalization is applied between the CNN output and RNN input within each 
LuNet Block to accelerate training convergence and improve accuracy. Compared to LuNet, while drawing 
inspiration from its idea of combining different foundational neural networks, our proposed model employs a 
CNN-Attention hybrid structure in its primary task, which demonstrates enhanced effectiveness in extracting 
spatiotemporal features from traffic data relative to LuNet.

Pelican8 proposes a deep residual network based on CNN and GRU, pioneering the application of residual 
learning in network anomaly traffic detection to mitigate performance degradation during training of its 
designed deep neural network, enabling deeper networks to maintain or even improve performance. Compared 
to Pelican, we incorporate its concept of residual connections in the network traffic anomaly detection domain 
by introducing residual connections to the Memory Autoencoder in the auxiliary task of our model, achieving 
efficient extraction of latent features in traffic data.

M2VT-IDS14 designs a multi-view shared network with task-specific attention mechanisms. Its multi-view 
shared network combines LSTM and Transformer to extract generic high-dimensional features for cross-task 
feature sharing, while task-specific attention networks implement simultaneous multi-task training via distinct 
attention modules for three subtasks. In contrast to M2VT-IDS’s parameter-hard-sharing-based multi-task 
learning framework, our proposed model adopts a soft-sharing-based multi-task framework, enhancing overall 
performance through collaborative training of primary and auxiliary tasks.

MEMBER12 proposes a multi-task learning framework comprising a CNN-based primary task, a prototype 
network DPNet-based auxiliary task, and a memory autoencoder-based auxiliary task. Compared to MEMBER, 
while leveraging its multi-task learning framework and MEMAE architecture, we refine the encoder and decoder 
components of the memory autoencoder. Specifically, we design a primary task centered on CCANet and an 
auxiliary task grounded in MEMAE, which thoroughly exploits contextual dependencies among network traffic 
and elevates detection effectiveness.

Experiment
In this section, we evaluate the proposed model on the NSL-KDD and CICIDS2017 datasets. The sample 
distributions of the two datasets are shown in Fig. 5. The dataset descriptions are as follows:

The NSL-KDD dataset is an improved version of the KDD99 dataset, addressing inherent issues such as 
redundant records and class imbalance. It is extensively utilized for benchmarking network intrusion detection 
systems and contains labeled network traffic divided into normal and attack categories. The dataset comprises 41 
features, including numerical and categorical attributes. Each record is classified into one of five major categories: 
Normal, DoS, Probe, R2L, and U2R.

The CICIDS2017 dataset is an intrusion detection benchmark dataset designed to simulate real-world network 
environments. It includes normal traffic and various emerging attack types such as BruteForce, DoS, Heartbleed, 
Web attacks, and DDoS. Each traffic record is labeled based on timestamp, IP address, port, protocol, and attack 
type. The dataset was collected over five business days from July 3 to July 7, 2017. The first day consists solely 
of normal traffic, whereas the subsequent four days feature scheduled injections of eight attack types, including 
penetration attacks and botnets. Since DDoS and DoS attacks share the primary objective of exhausting target 
system resources to disrupt services, they exhibit high similarity in attack behavior and impact. Therefore, in this 
experiment, they are merged into the DoS category.

We use accuracy, precision, recall, false positive rate and F1-score as performance metrics, which are defined 
as follows:
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ACC = T P + T N

T P + T N + F P + F N
� (26)

ACC  is the proportion of correctly predicted samples to the total number of samples.

	
P RE = T P

T P + F P
� (27)

P RE is the proportion of true positive instances among the samples predicted as positive.

	
REC = T P

T P + F N
� (28)

REC  is the proportion of correctly predicted positive instances to the actual positive instances.

	
F P R = F P

F P + T N
� (29)

F P R is the proportion of negative instances incorrectly predicted as positive among all actual negative 
instances.

	
F 1 = 2T P

2T P + F P + F N
� (30)

F 1 is the harmonic mean of Precision (Pre) and Recall (Rec).
T P , T N , F P , and F N  represent the four fundamental metrics: true positive, true negative, false positive, 

and false negative, respectively.
In our proposed MEMCAIN model, we set the number of neurons in the first two fully connected layers of 

the MEMAE encoder to 128 and 16, respectively, with a memory size of 128. Additionally, in CCANet, the kernel 
sizes of the CNN layers in the three CCA Blocks are set to 32, 64, and 128, respectively, while the convolution 
kernel size is uniformly set to 32. Each kernel has a stride of 1, and the padding is set to “SAME”. For the feature 
fusion module, we configure the dilated self-attention heads to 8, the local window size to 3, and the dilation 
rate to 1.

The training parameter settings of the model are presented in Table 1. All experiments in this study are 
conducted on a small-scale server equipped with an Intel i5-12400 CPU, an 8GB NVIDIA GeForce RTX 4060 
GPU, and 32 GB of RAM.

Model results
We evaluated the model’s performance through 10 rounds of multi-class classification experiments, where 
multi-class classification refers to the model’s task of determining whether a sample belongs to a specific attack 
category or the normal category within the dataset.

The results of 10 rounds of multi-class classification experiments on the CICIDS2017 and KDD datasets are 
presented in Table 2. To evaluate the model’s robustness, we compare the standard deviations (Std Dev) of metrics 
across datasets: NSL-KDD exhibits lower Std Dev for all indicators—ACC (0.021 vs. 0.031 for CICIDS2017), 
REC (0.069 vs. 0.791), and FPR (0.008 vs. 0.011). The drastic difference in REC’s Std Dev underscores the model’s 

Fig. 5.  Class distribution.
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more stable performance on NSL-KDD, likely due to its simpler sample distribution compared to CICIDS2017’s 
diverse, complex traffic patterns.

The multi-class classification results are presented in Tables 6 and 7.On the NSL-KDD dataset, the ACC is 
99.48, REC is 93.57, and FPR is 0.17. For the CICIDS2017 dataset, the ACC is 99.08, REC is 97.07, and FPR 
is 0.17. Figure 6a,b illustrate the PRE, REC, and F1 metrics for each category on NSL-KDD and CICIDS2017 
datasets respectively.

As shown in the figures, our proposed method exhibits excellent performance in malicious traffic detection. 
To better visualize the model results, we present the confusion matrix to shows the multi-class classification 
results on the NSL-KDD dataset, where most test samples are concentrated along the diagonal, indicating a high 
overall accuracy.

For the NSL-KDD dataset, as shown in the diagonal of the confusion matrix in Fig. 7a, our model successfully 
detects Normal traffic, as well as DoS, Probe, U2R, and R2L traffic.

Notably, although the number of U2R attack samples is relatively small compared to other categories, the 
model still achieves a sufficient recall rate, as indicated in Fig. 6a . This observation suggests that our model is 
capable of mitigating the class imbalance issue. Similarly, based on the experimental results on CICIDS2017 as 
presented in Figs. 6b and 7b, we observe that the model can effectively detect malicious traffic even only a few 
infiltration attack samples is available.

For the NSL-KDD dataset, as shown in the diagonal of the confusion matrix in Fig. 7a, our model successfully 
detects Normal traffic, as well as DoS, Probe, U2R, and R2L traffic.

The Precision-Recall (PR) curve of the NSL-KDD dataset (Fig. 9a) further quantifies this performance: the 
AUPRC (Area Under the PR Curve) for Normal, DoS, Probe, and R2L traffic reaches 1.000, 1.000, 0.998, and 
0.985, respectively, demonstrating near-perfect classification ability.

Fig. 6.  Category metrics.

 

Metric

CICIDS2017 NSL-KDD

Mean (%) Std Dev (%) Mean (%) Std Dev (%)

ACC 99.08 0.031 99.48 0.021

REC 97.07 0.791 93.57 0.069

FPR 0.17 0.011 0.17 0.008

Table 2.  Statistical evaluation of model performance across 10 runs on NSL-KDD and CICIDS2017 test 
datasets.

 

Parameter Details

Batch size 128

Epochs 100

Optimizer Adam

Dataset split ratio Training:Validation:Test = 8:1:1

Random seed 42

EarlyStopping Monitors val_output_loss; stops after 10 epochs without improvement (min_delta=0.0001); mode=‘min’;

Learning rate strategy Initial learning rate of 0.001 (first 20 epochs); from the 21st epoch onward, exponential decay with a base of e−1

Table 1.  Settings of model training parameters.
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Notably, even for the U2R attacks with relatively few samples, the model still achieves an AUPRC of 0.761, 
and the macro-averaged AUPRC reaches 0.949. This result reflects the model’s robustness to class imbalance 
from the trade-off perspective between precision and recall, aligning with the observation in Fig. 6a.

Similarly, based on the experimental results on CICIDS2017 as presented in Figs. 7b and 9b, we observe that 
the model can effectively detect malicious traffic even when only a few infiltration attack samples are available. 
The PR curve of CICIDS2017 provides intuitive support: although Infiltration attack samples are scarce, its 
AUPRC reaches 1.000. Meanwhile, categories such as Benign, DoS, PortScan, and BruteForce all achieve an 
AUPRC of 0.998 or higher, with Bot and WebAttack achieving 0.987 and 0.978, respectively, and the macro-
averaged AUPRC is 0.994. This consistency between PR curve analysis and confusion matrix results validates the 
model’s capability to handle rare attack scenarios.

This excellent performance stems from our innovative model architecture: 

	(1)	 The proposed CCANet effectively extracts spatiotemporal features of traffic data through the combination 
of CNN and Attention. Specifically, we stack three CCA Blocks, utilizing 1D CNN to capture local spatio-
temporal patterns of traffic flow, and employ Attention mechanisms to model global contextual dependen-
cies within the data.

	(2)	 The adopted MEMAE (Memory-Augmented Autoencoder) addresses feature limitation issues by amplify-
ing core distinctions between traffic categories through its memory module’s addressing mechanism, result-
ing in significantly distinct latent features for different classes.

	(3)	 Under our multi-task learning framework, auxiliary tasks impose constraints on the main task, compelling 
the model to learn meaningful features while enhancing generalization capabilities. Furthermore, the im-
plemented Multi-Dilated Local Attention dynamically integrates spatiotemporal and latent features through 
a dilated attention mechanism, increasing the informativeness and discriminative power of fused features. 
This architecture provides optimal inputs for subsequent classifiers to distinguish imbalanced classes.

Multi-task weight sensitivity analysis
To analyze the sensitivity of hyper parameters α (weight for the main task) and β (weight for the auxiliary task) 
in the Eq. (25).we interpret the experimental results across the NSL-KDD and CICIDS2017 datasets, focusing 
on ACC, REC, and FPR.

The multi-task weights α and β were tuned via grid search on a held-out validation set (10% of the original 
data). We evaluated α ∈ 0.6, 0.8, 0.9, 1.1, 1.2 and β ∈ 1.5, 1.3, 1.2, 1.0, 0.9, selecting the combination (α=0.9, β
=1.2) that maximized validation accuracy while maintaining a false positive rate below 0.2%. The final model 
was trained on the combined training and validation sets and evaluated strictly on the untouched test set.

As shown in the Tables 3 and 4 , the results demonstrate that the optimal balance occurs at α=0.9, β=1.2, 
achieving 99.48% ACC with 0.16% FPR on NSL-KDD and 97.07% REC on CICIDS2017. This confirms the 
synergy between spatiotemporal features (CNN-Attention) and latent representations (MEMAE).

Imbalanced parameters severely degrade performance. Excessive α suppresses latent feature extraction, 
reducing REC and increasing FPR, while excessive β weakens CNN-Attention’s discriminative capability, 
causing ACC degradation. Notably, CICIDS2017 exhibits higher sensitivity: increasing β from 0.9 to 1.2 reduces 
REC by 3.0%.

In conclusion, parameter ranges should adapt to dataset complexity. For NSL-KDD with simpler patterns, 
α=0.9 and β=1.2 remain optimal. In contrast, for CICIDS2017’s complex traffic, α=0.9 and β=1.2 are 

Fig. 7.  Confusion matrix.
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recommended to balance spatiotemporal pattern capture (main task) and feature robustness (auxiliary task), 
thereby minimizing FPR.

Two-factor sweep of memory size and key dimension
Since the CICIDS2017 dataset has more classes compared with the KDD dataset, we choose to conduct the two-
factor experiment on this dataset. With parameter combinations as the dimension, this design facilitates the 
rapid identification of the optimal parameters. Class-wise results are presented in the Table 5. We found that the 
model achieves the best performance when the Memory Size (N) is 128 and the key dimension (S) is 16.

Comparisons with other methods
To evaluate the superiority of our model,we compare the performance of MEMCAIN to other state-of-the-art 
models.

For the NSL-KDD dataset, we compared MEMCAIN with the traditional machine learning model SVM and 
four deep learning models: HAST-IDS, LuNet7 , Pelican8, and CNN-BiLSTM9. For the CICIDS2017 dataset, we 
compared MEMCAIN with two deep learning methods, CSE-IDS10 and DNN, as well as three machine learning 
methods: LR, DT, and RF. All models were trained using the same publicly available datasets.

Tables 6 and 7 summarize the multi-class classification performance of our proposed model in comparison 
with the baseline models.

The experimental results indicate that our model demonstrates competitive advantages relative to baseline 
methods on specific metrics within our experimental configuration. On the NSL-KDD dataset, compared 
with the best-performing baseline approach (CNN-BiLSTM), our solution exhibits marginal but consistent 
improvements, achieving a 0.26% increase in ACC and reduces FPR by 0.27% . When evaluated on the 
CICIDS2017 benchmark, the proposed architecture shows superior performance over conventional machine 
learning models in all measured metrics. Compared with the top-performing deep learning baseline (DNN), it 
achieves a 3.48% improvement in ACC.

Ablation study
In this section, we conduct an ablation study to validate the effectiveness of MEMCAIN. We compare the 
complete MEMCAIN with its three variants and two optimal methods, described as follows:

Memory size (N) Key dimension (S) 8 16 32 64

32 F1 score 96.16 94.93 93.86 92.30

Accuracy 98.02 97.68 98.74 95.64

64 F1 score 92.93 96.87 97.49 97.75

Accuracy 96.34 98.76 98.97 98.44

128 F1 score 94.20 96.48 93.35 95.25

Accuracy 96.25 99.08 97.74 98.55

Table 5.  Performance of MEMAE on CICIDS2017 dataset under different combinations of memory size (N) 
and key dimension (S).

 

α β ACC% REC% FPR%

0.6 1.5 98.43 95.95 0.29

0.8 1.3 98.75 94.23 0.23

0.9 1.2 99.08 97.07 0.17

1.1 1.0 98.68 96.21 0.24

1.2 0.9 98.64 94.09 0.25

Table 4.  The impact of α and β on experimental results in the CICIDS2017 test dataset.

 

α β ACC% REC% FPR%

0.6 1.5 98.78 93.15 0.2

0.8 1.3 99.42 93.21 0.17

0.9 1.2 99.48 93.57 0.16

1.1 1.0 99.43 93.32 0.19

1.2 0.9 99.39 93.35 0.19

Table 3.  The impact of α and β on experimental results in the NSL-KDD test dataset.
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•	 CCANet: Utilizes only CCANet for model training.
•	 CCANet+MDA: Connects Multi-Dilated Local Attention (MDA) between CCANet and the classifier.
•	 CCANet+MEMAE: Integrates CCANet and MEMAE while removing MDA from the feature fusion module.
•	 CCANet+MEMAE+MDA (MEMCAIN): Integrates CCANet, MEMAE, and MDA.

Table 8 presents the results of MEMCAIN and its three variants in terms of ACC, REC, and FPR. Using CCANet 
as the baseline, we observe that when evaluated by REC, both MDA and MEMAE significantly enhance the 
performance of CCANet on the NSL-KDD and CICIDS2017 datasets. Clearly, integrating these two modules 
with our proposed CCANet results in a substantial improvement in ACC, REC, and FPR for the full MEMCAIN, 
especially in REC, on both NSL-KDD and CICIDS2017. This improvement is particularly notable in REC. For 
instance, on NSL-KDD, REC increases by 16.61%, ACC improves by 0.88%, and FPR decreases by 0.03%. On 
CICIDS2017, REC rises by 24.61%, ACC improves by 6.49%, while FPR drops by 1.44%.

Through the ablation study, we also observe that in the NSL-KDD dataset, although incorporating the 
MDA module improves the ACC, it exerts a certain negative impact on the FPR, a phenomenon not seen in 
CICIDS2017. As illustrated in Figs. 9a and 8a, on the KDD dataset, integrating MDA increases the Macro 
AUPRC (Area Under the Precision-Recall Curve) from 0.933 to 0.949. Notably, it enhances the performance 
of hard-to-detect categories such as U2R, with its AUPRC rising from 0.721 to 0.761, which demonstrates the 
effectiveness of MDA in extracting key local features. However, the PR curve of the U2R category exhibits 
significant fluctuations, indicating that the model still struggles to distinguish U2R from normal traffic—this 
aligns with the characteristic that U2R attacks share similar local features with normal traffic, and we attribute 
this to the local attention bias of MDA. In contrast, as shown in Figs. 8b and 9b, on the CICIDS2017 dataset, 
adding the MDA module increases the Macro AUPRC from 0.986 to 0.994, and all categories show remarkable 
performance improvements. For instance, Bot attacks have distinct local feature differences from normal traffic, 
allowing the advantages of MDA to be fully leveraged. Therefore, to alleviate the local attention bias of MDA 
when handling traffic with high feature similarity, we introduce MEMAE as an auxiliary task, utilizing the global 
consistent features provided by the memory module for effective supplementation.

The compressed intermediate features of MEMAE complement global structural information, reducing 
misclassification due to local similarities and significantly decreasing FPR. As a result, the full MEMCAIN, 
incorporating MDA and MEMAE, utilizes MEMAE’s global semantic priors to adjust MDA’s attention 

Model

NSL-KDD CICIDS2017

ACC% REC% FPR% ACC% REC% FPR%

CCANet 98.60 76.96 0.19 92.59 72.46 1.61

CCANet + MDA 98.87 76.76 0.26 95.41 80.47 0.93

CCANet + MEMAE 98.72 89.16 0.17 95.55 88.76 0.86

CCANet + MEMAE + MDA (MEMCAIN) 99.48 93.57 0.16 99.08 97.07 0.17

Table 8.  Results of the ablation study.

 

Model ACC% REC% FPR%

LR 87.00 87.00 –

DT 94.00 94.00 –

RF 94.40 94.40 –

CSE-IDS 92.00 – –

DNN 95.60 95.60 –

MEMCAIN (ours) 99.08 97.07 0.17

Table 7.  Model results and comparison on the CICIDS2017 dataset.

 

Model ACC% REC% FPR%

SVM 69.52 – –

HAST-IDS 93.27 95.85 –

LuNet 99.14 99.02 0.61

Pelican 99.21 99.13 0.65

CNN-BiLSTM 99.22 98.88 0.43

MEMCAIN (ours) 99.48 93.57 0.16

Table 6.  Model results and comparison on the NSL-KDD dataset.
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distribution. This process enhances class separation in the feature space, ultimately improving classification 
performance.

Conclusion and future work
This study proposes MEMCAIN, a multi-task feature fusion framework for network intrusion detection, 
pioneering the integration of a memory-enhanced autoencoder as an auxiliary task to enhance discriminative 
capability in anomaly traffic identification. The key contributions and findings are summarized as follows:

	(1)	 Spatiotemporal feature learning via CCA Block We design the CCA Block by synergizing attention mech-
anisms with 1D convolutional networks and contrast normalization layers. Cascaded deployment of CCA 
blocks enables efficient spatiotemporal feature extraction from raw network traffic, significantly improving 
scalability and adaptability for large-scale network intrusion detection systems (NIDS).

	(2)	 Multi-task synergism through dual-task architecture MEMCAIN combines CCANet with a memory-en-
hanced autoencoder (auxiliary task) to achieve complementary feature fusion. The memory module mit-
igates class imbalance through latent traffic prototype learning while enhancing feature discriminability. 
Joint end-to-end optimization ensures mutual reinforcement between tasks: CCANet refines anomaly de-

Fig. 8.  Precision-recall curves.

 

Fig. 9.  Precision-recall curves.
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tection precision, whereas the memory autoencoder enforces global discriminative constraints via proto-
type-guided regularization.

	(3)	 Empirical superiority validation Ablation studies and comparative experiments on NSL-KDD and CIC-
IDS2017 demonstrate MEMCAIN’s superiority over state-of-the-art methods in accuracy (ACC) and false 
positive rate (FPR). The integration of MDA (Multi-Dilated Local Attention) and MEMAE (Memory-En-
hanced Autoencoder) achieves ACC improvements of 0.24% on NSL-KDD and 3.48% on CICIDS2017 
compared to optimal baselines, alongside FPR reductions up to 0.27%. These findings substantiate the criti-
cal role of multi-task feature fusion and memory-driven prototype learning in advancing network anomaly 
detection.

Future directions

	(1)	 CCA Block optimization potential Ablation results reveal that CCANet exhibits suboptimal discriminative 
power in distinguishing feature-wise similarities (e.g. between U2R and R2L attacks in NSL-KDD). Future 
work will focus on architectural refinements to enhance its separability.

	(2)	 MDA’s pseudo-similarity challenge While MDA improves feature extraction, its local window similarity 
computation struggles to differentiate legitimate intra-class variations from cross-category pseudo-simi-
larities. Though MEMAE partially addresses this through supplementary feature constraints, subsequent 
research will explore contrastive learning or adversarial separation mechanisms to refine MDA.

Data availability
The datasets analysed during the current study are available in NSL-KDD and CICIDS-2017. NSL-KDD: ​h​t​t​p​s​:​/​
/​w​w​w​.​u​n​b​.​c​a​/​c​i​c​/​d​a​t​a​s​e​t​s​/​n​s​l​.​h​t​m​l​​​​ CICIDS-2017: https://www.unb.ca/cic/datasets/ids-2017.html
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