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Cerebral microstructural alterations
as an imaging biomarker for Post-
COVID-condition
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Cornelius Weiller?, Marco Reisert>*, Horst Urbach® & Jonas A. Hosp3**

To develop an imaging biomarker-based approach for the diagnosis of Post-COVID-condition (PCC) at
the individual patient level. Magnetic resonance imaging (MRI) data from a prospective cohort of PCC
patients (n=89) were compared with a control group of unimpaired individuals who had contracted
coronavirus disease 2019 (COVID-19) in the past (n=38). Participants were divided into two groups:

a training and a test cohort. The macrostructure, diffusion tensor imaging, and multi-shell-based
microstructure imaging metrics were extracted using an atlas-based approach. These data were
subsequently utilized to train a linear support vector machine (SVM). The efficacy of discrimination
between the groups was evaluated for various combinations of input parameters. Upon comparison of
the different input combinations, we found the highest area under the receiver operating characteristic
curve (AUROC) for microstructural parameters. For the optimal combination of input parameters, an
AUROC value of 0.95 with a sensitivity of 94% and a specificity of 85% was achieved, indicating high
discriminatory potential but also underscoring the need for further validation given the non-negligible
false-positive rate. The atlas regions with the highest discriminatory power include both gray (including
multiple cortical areas, putamen and left thalamus) and white matter (including corpus callosum

and frontal white matter). The use of a SVM allowed for the differentiation between PCC patients

and UPC participants with high sensitivity using microstructural MRI data. While these findings

mark a significant step toward a biomarker-based diagnosis of PCC, the moderate specificity and the
monocentric design emphasize the need for confirmation in larger and multicentric cohorts before
clinical application.
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It is estimated that between 6 and 10% of patients who have contracted coronavirus disease 2019 (COVID-19)
will experience a “Post-COVID-19 condition” (PCC)". Fatigue and neurocognitive deficits are among the most
frequently occurring symptoms associated with PCC and can have a significant impact on the disease burden?.
The diagnosis of PCC is made in accordance with the criteria set forth by the World Health Organization
(WHO)* A probable or confirmed SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus Type 2)
infection, manifested by at least one symptom with a relevant impact on everyday functioning, a persistence
of the symptom for at least two months, and a delay of at least three months between the onset of acute SARS-
CoV-2 infection and diagnosis. In the absence of an accepted pathophysiological disease hypothesis, PCC is a
diagnosis of exclusion. However, this poses a considerable challenge in view of the substantial socio-economic
implications, as the capacity to engage in gainful employment of those affected is impaired in approximately 6%°.

One method for objectifying the diagnosis of PCC would be to include imaging biomarkers. Based on
magnetic resonance imaging (MRI), significant differences were identified on a group-level between patients
with PCC and controls. Macrostructural alterations were observed, including a diminution in the volume of
cortical regions, specifically the limbic system and the cerebellum®, as well as subcortical structures, namely
the left thalamus’, putamen and pallidum. Diffusion tensor imaging (DTI) revealed not only reduced fiber
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integrity in white matter tracts, as evidenced by e.g. the corpus callosum and uncinate tract®®, but also altered
diffusivity in the left thalamus’. However, it is important to note that macrostructural and conventional DTI
changes may reflect a general sequela of infection rather than a PCC-specific biomarker®. The use of state-of-
the-art diffusion-based multi-shell protocols furthermore enables a comprehensive examination of the cerebral
meso- and microstructure!®-'2. Thus, microstructural MRI parameters may provide more refined information
on tissue composition and thus hold greater potential to discriminate PCC patients from unimpaired Post-
COVID individuals. In line with this hypothesis, a recent study from our research group demonstrated pervasive
alterations in cerebral microstructure, attributed to a shift in volume from neuronal compartments to free fluid,
which were associated with the severity of the initial infection'®. In terms of clinical outcomes, correlations were
identified between altered imaging parameters and the symptoms of fatigue”!?, cognitive impairment®®13, and
olfactory performance'?.

Consequently, the objective of this study was to determine whether a pattern can be identified based on
multimodal MRI data to enable an imaging-supported diagnosis of PCC at patient level, as to date most
observations in PCC are made on group levels. For this purpose, we utilized a large prospective monocentric
cohort of 89 patients diagnosed with PCC in accordance with the World Health Organization (WHO) criteria.
The control group consisted of participants who have recovered from an initial infection with SARS-CoV-2
but were currently asymptomatic. A linear support vector machine (SVM) was trained to distinguish between
the two groups. The input factors utilized in this analysis were as follows: 1 Tissue probability values (TPV)
obtained by CAT12 to capture the macrostructure; 2 DTI-based indices; 3 Multi-shell derived parameters from
neurite orientation dispersion and density imaging (NODDI), and diffusion microstructure imaging (DMI) to
capture the meso- and microstructure. Also, we hypothesized that microstructural MRI parameters outperform
macrostructure in diagnosing PCC.

Methods

An overview of the study workflow is provided in Fig. 1.

Study participants and clinical outcomes

We report data from a previously published monocentric, prospective cohort of 89 patients (median age: 49
with IQR [23] years; 34/55 males/females), who were admitted to the outpatient clinic of the Department of
Neurology and Clinical Neuroscience of the University Hospital Freiburg between June 2020, and October 2024
due to neurocognitive symptoms in the chronic phase after COVID-19 infection'’. The ethics committee of the
Albert-Ludwigs-University Freiburg approved this study (EK 211/20) and all subjects provided written informed
consent. The study was conducted in accordance with the Declaration of Helsinki and its later amendments.
Inclusion criteria were: (1) reverse transcription polymerase chain reaction (rt-PCR) confirmed SARS-CoV-2
infection; (2) fulfillment of diagnostic criteria for the “Post-COVID-Condition” (PCC) according to the WHO-
definition (e.g.>3 months since onset of acute COVID-19 infection; symptoms lasting for at least two months;
relevant impact on everyday functioning)®; (3) execution of a cerebral MRI. Exclusion criteria were any pre-
existing neurodegenerative disorders and age < 18 years. The “Unimpaired Post-COVID” (UPC)-cohort served
as the control group, comprising a collective of 38 subjects (median age: 42 [24] years; 13/25 males/females) in
the chronic phase following a PCR-confirmed diagnosis of SARS-CoV-2 infection without persistent subjective
complaints. The same exclusion criteria were applied (i.e., any pre-existing neurodegenerative disorders,
age <18 years and artifacts in imaging data), and the examination and measurement methods were identical to
the PCC-group. Groups did not significantly differ in age (Mann-Whitney-U, P=0.08) and sex (X2 P=0.60).
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Fig. 1. Schematic overview of the study workflow.
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Patients were examined and surveyed by board-certified (SE, JH) or experienced (>6 years of training, NS)
neurologists. The degree of current disability was graded as follows: 0, no relevant restrictions; 1, relevant
restrictions but able to work (i.e. patients who remain able to work but must limit leisure activities, hobbies,
and social or family life in order to sustain employment); 2, reduction of work quota necessary; 3, inability to
work and/or restriction of daily life activities. Disease severity during the acute stage was scored according to a
modified version of the German definitions'*: 1, no signs of pneumonia; 2, pneumonia, outpatient treatment;
3, pneumonia, inpatient treatment; 4, acute respiratory distress syndrome (ARDS), mechanical ventilation at
intensive care unit (ICU). Disease severity was considered to be “mild” in case of outpatient treatment (i.e.
1-2) and as “severe” in patients that required hospitalization (i.e. 3-4). Cognitive functions were assessed
with the German version of the Montreal Cognitive Assessment (MoCA version 7.1www.mocatest.org)'®. The
highest possible global MoCA score is 30 with higher scores indicating better performance, the cut-off score
for cognitive impairment was defined as<26'". Correction for years of education (YoE) was performed (+1
point in case of <12 YoE). Fatigue was evaluated using the Wiirzburg Fatigue Inventory in Multiple Sclerosis
(WEIMuS)'S, a self-rating questionnaire for symptoms of physical and cognitive fatigue. In addition, the
Geriatric Depression Scale-15 (GDS) was surveyed'”. Olfaction was assessed using Burghart-Sniffin’-Sticks®
(Burghart Messtechnik GmbH, Wedel, Germany; normosmia: 11-12 correctly identified odors; hyposmia: 7-10
correct odors; anosmia: <6 correct odors)'®. Ammonium was used to assess trigeminal function.

Cerebral MRI

MRI acquisition

The scanner, device settings and head coil were identical for both groups. MRI was performed with a 3 Tesla
scanner (MAGNETOM Prisma, Siemens Healthcare, Erlangen, Germany) with a 64-channel head and neck
coil. T1-weighted (T1w) images were acquired with a three-dimensional (3D) magnetization-prepared 180°
radio-frequency pulses and rapid gradient-echo (MP-RAGE) sequence (repetition time: 2500 ms, echo time:
2.82 ms, flip angle: 7°, TI=1100 ms, GRAPPA factor=2, 1.0 mm?> isotropic voxels, 192 contiguous sagittal slices).
The diffusion-weighted sequence was acquired with the following parameters: axial orientation, 42 slices, voxel
size 1.5x 1.5x3 mm?, TR 2800 ms, TE 88 ms, bandwidth 1778 Hz, flip angle 90°, simultaneous multi-band
acceleration factor 2, GRAPPA factor 2, 58 diffusion-encoding gradient directions per shell with b-factors 1000
and 2000 s/mm?, 15 non-diffusion weighted images (interleaved during diffusion-encoding directions) resulting
in overall 131 images.

Calculation and extraction of micro- and macrostructural imaging features

The data processing was conducted using our in-house post-processing platform, NORA (www.nora-imaging.
org), and was performed in accordance with the previously described methodology'. The pre-processing of
diffusion-weighted images entailed a denoising step?’, followed by the correction of Gibbs-ringing artifacts?!
and upsampling to an isotropic resolution of 1.5 mm?®. Diffusion microstructural imaging (DMI) metrics were
estimated using a Bayesian approach that determines the three components of a white matter-based tissue
standard model'®!!. The first of these is the free water/CSF fraction (V-CSF), which represents the proportion
of molecules that move randomly at the distance of their diffusion length (in the range of tenth of micrometers).
2. The volume fraction within neuronal processes/neurites (i.e. axons and dendrites; V-intra) is characterized
by almost one-dimensional molecule diffusion due to the presence of tight membrane borders. 3. The volume
fraction outside of axons or dendrites (V-extra) is defined by an intermediate constraint to molecule diffusion,
representing the cellular compartment and the extracellular matrix. Furthermore, diffusivity parameters were
extracted using the accelerated microstructure imaging via convex optimisation (AMICO)-NODDI, aregularized
version of the neurite orientation dispersion and density imaging (NODDI) technique that relies on maximum
likelihood estimation. The linearisation of fitting procedures (AMICO) enables the rapid processing of data
(https://github.com/daducci/AMICO)?. In consideration of the parameters provided by the AMICO approach
(ISOVE ICVE and OD), it can be posited that the isotropic volume fraction (ISOVF) represents the homologue
of V-CSF, whereas orientation dispersion (OD) can be seen as a measure of neurite integrity comparable to
V-intra. Intracellular volume fraction (ICVF) can be finally seen as a proxy of V-extra. The diffusion tensor
imaging (DTI) measures, namely fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD), and
axial diffusivity (AD), were obtained from b=0 and 1000 s/mm?. The images were processed using a publicly
available open-source toolbox (https://www.uniklinik-freiburg.de/mr-en/research-groups/diffperf/fibertool
s.html), employing the ordinary log-linear fitting. T1w imaging datasets were automatically segmented into
white matter, gray matter and cerebrospinal fluid (CSF) using CAT12 (http://www.neuro.uni-jena.de/cat/) and
diffusion magnetic resonance imaging (dMRI) images were coregistered to the T1w images. The validity of
the coregistrations between the dMRI images and the tissue probability values derived from the T1-weighted
images was manually confirmed. Furthermore, a visual inspection of each individual dMRI map and the CAT12
segmentation was conducted to ensure quality control. The parameter maps of DMI, NODD], and DTT were
separated into gray and white matter using a CAT12-derived tissue probability value (TPV) threshold of 0.4.
For this, the TPV provides the probability of a voxel being attributed to gray or white matter. From this, only
the gray matter compartment was read for the AAL3 atlas®® and only the white matter part for the JHU WMPM
III atlas®®. Gray matter TPV were read from the AAL3 atlas only. From these neuroanatomically established
parcellations, the masks used for the extraction of MRI parameters were selected iteratively using the approach
described below to avoid selection bias for SVM training, which could be introduced by manually selecting
regions.
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Training of a linear support vector machine (SVM)

As previously described?, a linear support vector machine (SVM) was trained and optimized with respect to
the area under the receiver operating characteristic curve (AUC-ROC) in a binary classifier for UPC vs. PCC.
For this, our cohort was randomly split into a training (n=43 PCC and n=18 UPC) and an independent testing
subset (n=46 PCC and n=20 UPC). A random seed was set in R to automate the splitting process, ensuring a
split without human intervention. Subsequent validation confirmed that there were no significant differences
in age and sex between the training and testing subsets (p>0.37). The diagnostic performance of the SVM
was evaluated in comparison with different inputs, namely TPV, DTI, NODDI, and DMI, both individually
and in combination. The SVM was developed using the Python (version 3.8.5) package “Scikit-learn” (version
0.23.2). The atlas-derived microstructural and macrostructural parameters were employed as inputs for the
linear SVM. We investigated the diagnostic value of 116 TPV-derived features, 912 features obtained by DTI,
684 by NODDI, and 684 by DML To address the considerable disparity in group sizes, the class_weight was
set to ‘balanced. The input parameters were normalized to mean 0 and standard deviation using the Scikit-
learn StandardScaler. Prior to the commencement of the training process, the input parameters were sorted in
accordance with the principle of maximum marginal diversity?®. This approach was selected due to the relatively
modest group sizes in comparison to the maximum number of input features. In this manner, the normalized
and maximum marginal diversity (MMD)-sorted values of a given combination of features are used as input
for the linear SVM. To identify the optimal combination of the linear SVM parameter C and the number of
the MMD-sorted (descending in diversity) input parameters, a grid search approach was employed, whereby
different linear SVMs were trained with C varying between 0.01 and 100 in logarithmic steps and the number of
input parameters varying between the top 4-40% in steps of 4%. The resulting models were then fivefold cross-
validated and evaluated based on the area under the curve (AUC). To reduce noise and prevent overfitting, the
maximum number of input parameters was set to be below 40%. This threshold was obtained by inspecting a
graphical depiction of the association of the number of input features with the AUROC in the training cohort.

Analysis

Statistical analysis was performed using R (version 4.1.0, https://www.R-project.org/) and SPSS, Version 25
(IBM, Ehningen, Germany). No statistical method was used to predetermine sample size. The Shapiro-Wilk test
was used to assess the distribution of data. Non-normally distributed data were presented as the median value
[inter quartile range] and the non-parametric two-tailed Mann-Witney-U-tests were applied. For comparison
of sex and comorbidities, Chi-square test was used. The area under the receiver-operating-characteristics curve
was employed to investigate and compare the discriminative power of the different SVM inputs. The significance
threshold was set to p<0.05.

Results

Demographic and clinical characteristics

We included MRI data from a previously characterized cohort of 89 patients (median age 49 years; IQR [23] years;
range: 19-72 years; 55 females) who fulfilled the WHO diagnostic criteria for Post-COVID-condition (PCC
group). An overview of demographic and patient characteristics is shown in Table 1, and details are provided in

Post-COVID-condition (PCC; n=89) | Unimpaired post-COVID (UPC; n=38)

Demographic data n (%) or median [IQR]; range (%) or median [IQR]; range Pvalue
Age (years) 49 [23];19t0 72 42 [24];25t0 62 0.08!
Sex (male / female) 34 (38) /55 (62) 13 (34) / 25 (66) 0.60?
A positive PCR—cMRI (days) 254 [209]; 90 to 710 227 [443]; 145 to 943 0.63!
Comorbidities n (%) n (%) Pvalue?
Obesity 12 (14%) 3 (8%) 0.07
Asthma/COPD 8 (9%) 1(3%) 0.20
Atrial fibrillation 1 (1%) 0 (0%) 0.51
Chronic kidney diesease 1(1%) 0 (0%) 0.51
Coronary heart disease 3 (3%) 1 (3%) 0.83
Diabetes 5(6%) 1 (3%) 0.47
History of depression 9 (10%) 2 (5%) 0.37
History of ischemic stroke 2 (2%) 0 (0%) 0.35
Arterial hypertension 19 (21%) 4 (10%) 0.15
Hypothyreodism 9 (8%) 6 (16%) 0.36
Malignancy 3 (3%) 0 (0%) 0.25
Migraine 10 (11%) 1(3%) 0.11
Obstructive sleep apnoea 7 (8%) 0 (0%) 0.08
Peripheral arterial occlusive disease | 1 (1%) 0 (0%) 0.51
Restless legs syndrome 2 (2%) 0 (0%) 0.35

Table 1. Demographics and comorbidities of study participants. '"Mann-Whitney-U test; 2X?-test.
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Supplementary Table 1 or Hosp et al.!. Although neurological examinations revealed no focal deficits, patients
complained of impaired attention and memory (100%), fatigue (96%), impaired ability to multitask (97%), and
word-finding difficulties (89%). 76 patients (85%) exhibited a mild course of acute SARS-CoV-2 infection, with
no requirement for hospitalization. With regard to comorbidities, no significant difference between the PCC and
UPC groups was observed (p>0.07). However, given the relatively small size of the UPC group, the statistical
power to detect differences is limited, and some of the observed numerical trends (e.g., higher prevalence of
obesity and obstructive sleep apnea in the PCC group) may still be clinically relevant and could reach significance
in larger cohorts.

Evaluation of conventional MRI

As previously reported, six patients with PCC exhibited mild microangiopathic white matter changes
corresponding to Fazekas 1. In one patient (a 39 years-old female), a small, primarily gliotic lesion was
identified in the right basal ganglia. In another patient (66 years-old male), an occipital cortical defect was
identified, which was deemed to be a probable post-ischemic lesion. In a third patient (62 years-old male), slight
T2 signal elevations were observed bilaterally in the globus pallidum, without any correlation to other MRI
sequences. No further structural changes, signs of atrophy or any evidence of inflammation (e.g. leptomeningeal
enhancement) were identified. Within the UPC group, symmetrical hyperintense T2 signals of unknown origin
were observed in one patient (39 year-old male) and slight microangiopathic lesions were noted in two patients
(both Fazekas 1).

Comparison of input combinations and most discriminative regions

Upon comparison of the different input combinations in the testset, we found the highest AUROC for (a) DMI
and NODDI (0.95), (b) DMI, DTT and NODDI (0.94), and (c) DMI, NODDI and TPV (0.94). Of note, TPV
alone reached an AUROC of 0.59 only and DTT alone only 0.78. Further details are provided in Table 2.

For the best-performing combination of DMI and NODDI, the maximum marginal diversity algorithm
revealed a high diversity of the parameters, especially for frontal, frontobasal, temporal and infratentorial
regions as given in Supplementary Table 2.

To better understand the distinction between PCC patients and UPC individuals, we first extracted the
atlas-based DMI/NODDI-derived diffusivity parameters from the training cohort that exhibited the highest
discriminatory power, as indicated by their support vector machine (SVM) coeflicients. A threshold of £0.15
was applied for feature selection (see Supplementary Table 3). To gain further insight into the underlying
neurobiological processes, we categorized the selected parameters from DMI and NODDI into three biologically
relevant groups: Neurite integrity, combining intra-axonal volume fraction (V-intra, from DMI) and orientation
dispersion (OD, from NODDI); Free fluid compartment, combining cerebrospinal fluid volume fraction
(V-CSE, from DMI) and isotropic volume fraction (ISOVE from NODDI); and Cellular volume fraction,
combining extra-axonal volume fraction (V-extra, from DMI) and intracellular volume fraction (ICVE from
NODDI). The spatial distribution of both positive and negative SVM coeflicients for each feature category is
visualized in Fig. 2.

With regard to the “neurite integrity” category, we observed increased metrics primarily in the left occipital
cortex, infratentorial regions, right insula, left frontal operculum, and right orbitofrontal cortex. In contrast,
decreased neurite integrity was evident across widespread regions, including the basal ganglia, limbic system,
and the fronto-parieto-occipital cortex. In the “free fluid compartment”, elevated values were detected in

Input combination SVM performance

DMI | DTI | NODDI | TPV | AUROC | FP | FN | Specificity Sensitivity Precision F1-Score

+ 0.83 13 |5 0.75 (0.53-0.89) | 0.72 (0.57-0.83) | 0.54 (0.36-0.70) | 0.63

+ + 0.88 716 0.70 (0.48-0.85) | 0.85 (0.72-0.92) | 0.67 (0.45-0.83) | 0.68

+ + 0.95 3 (3 0.85 (0.64-0.95) | 0.94 (0.82-0.98) | 0.85 (0.64-0.95) | 0.85

+ + + 0.94 314 0.80 (0.58-0.92) | 0.93 (0.82-0.98) | 0.84 (0.62-0.94) | 0.82

+ + 0.85 419 0.55 (0.34-0.74) | 0.91 (0.80-0.97) | 0.73 (0.48-0.89) | 0.63

+ + + 0.87 6 |7 |0.65(0.43-0.82) | 0.87 (0.74-0.94) | 0.68 (0.46-0.85) | 0.67

+ + + 0.94 315 0.75 (0.53-0.89) | 0.94 (0.82-0.98) | 0.83 (0.61-0.94) | 0.79

+ + + + 0.93 4 (3 0.85 (0.64-0.95) | 0.91 (0.80-0.97) | 0.81 (0.60-0.92) | 0.83

+ 0.59 24 |8 |0.60(0.39-0.78) | 0.48 (0.34-0.62) | 0.33 (0.20-0.50) | 0.43

+ 0.89 6 |5 0.75 (0.53-0.89) | 0.87 (0.74-0.94) | 0.71 (0.50-0.86) | 0.73

+ + 0.87 6 |5 0.75 (0.53-0.89) | 0.87 (0.74-0.94) | 0.71 (0.50-0.86) | 0.73

+ 0.78 11 |6 |0.70 (0.48-0.85) | 0.76 (0.62-0.86) | 0.56 (0.37-0.73) | 0.62

+ + 0.77 14 |2 0.90 (0.70-0.97) | 0.70 (0.55-0.81) | 0.56 (0.39-0.72) | 0.69

+ + 0.89 8 |4 0.80 (0.58-0.92) | 0.83 (0.69-0.91) | 0.67 (0.47-0.82) | 0.73

+ + + 0.91 6 |5 0.75 (0.53-0.89) | 0.87 (0.74-0.94) | 0.71 (0.50-0.86) | 0.73

Table 2. Comparison of different SVM-input combinations. AUROC, area under the ROC curve; DMI,
diffusion microstructural imaging; DTI, diffusion tensor imaging; FP, number of false positives; FN, number of
false negatives; NODDI, neurite orientation dispersion and density imaging; TPV, tissue probability value.
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Neurite integrity Free fluid compartment Cellular volume fraction

Fig. 2. Regions with high coefficients of the support vector machine for discriminating post-COVID-
Condition from unimpaired-post-COVID for the best performing input combination of diffusion-
microstructure-imaging (DMI) and neurite orientation dispersion and density imaging (NODDI). Atlas-
defined regions with negative coeflicients are shown in cyan and positive coefficients in magenta.

the cerebellum, frontal white matter, cingulum, and basal ganglia, whereas reductions were observed in the
thalamus, brainstem, temporal poles, corpus callosum, and frontal operculum. Regarding the “cellular volume
fraction” category, increased values were found in the orbitofrontal cortex, limbic regions, left occipital cortex,
left insula, and frontal white matter. Decreased values were noted in the left paracentral lobule, right parietal
cortex, and the vermis.

In summary, the findings reveal a spatially widespread and directionally heterogeneous pattern of alterations
across both white and gray matter compartments. This underscores not only the value but also the necessity
of applying artificial intelligence techniques to capture such complex patterns for diagnostic purposes and for
discriminating between individuals with PCC and UPC.

Discussion

In this study, we employed artificial intelligence to develop an imaging-based biomarker-assisted diagnosis of
PCC on a single-patient level. We trained a linear SVM to distinguish between PCC patients and asymptomatic
individuals who had been infected with SARS-CoV-2 in the past. Upon comparing the diagnostic value of macro-
and microstructural parameters, best discrimination between groups was found for multicompartimental
microstructural approaches, while macrostructural information did not contribute to diagnostic accuracy. The
optimal algorithm achieved an AUROC value of 0.95 with a sensitivity of 94% and a specificity of 85%. The
atlas regions with the highest discriminatory power include both gray matter (including multiple cortical areas,
putamen, and left thalamus) and white matter (including corpus callosum and frontal white matter).

Given the previous detection of macrostructural atrophy in patients with PCCS”, it is unexpected that TPV,
as an input factor, does not contribute to the discrimination from the UPC group. It is crucial to acknowledge
that the aforementioned studies employed control groups composed solely of individuals without a history of
previous SARS-CoV-2 infection, i.e. who were healthy. Nevertheless, there is compelling evidence that SARS-
CoV-2 infection can induce structural alterations in the brain that are not contingent on PCC. A comprehensive
longitudinal study from the UK Biobank examined MRI data of participants before and 4-5 months after the
onset of SARS-CoV-2 infection?8. The results demonstrated alterations in macrostructure, as well as diffusion-
based indices: A decrease in global brain volume was observed, accompanied by a reduction in cortical thickness
in several regions, including the parahippocampal gyrus, anterior cingulate cortex, temporal pole, and the left
orbitofrontal cortex, insula, and supramarginal gyrus. Moreover, an increase in diffusion indices within the
limbic regions (anterior cingulate, hippocampal, parahippocampal, and orbito-frontal cortex) and the striatum
indicated microstructural changes in these regions. The limited clinical characterization of the cohort precluded
the drawing of any conclusions regarding the prevalence of PCC. However, if one assumes that a maximum
of 10% of those infected develop PCC!?, it must be expected that the aforementioned SARS-CoV-2-triggered
structural changes may also occur independently of PCC disease. This hypothesis was corroborated by a recent
publication on the same cohort we employed in this study'. In the previous study, the patients with PCC
were compared not only with the UPC group but also with a control group of healthy subjects who had never
contracted COVID-19. With regard to microstructure, both the PCC and UPC groups exhibited a volume shift
from the membrane-enclosed compartment into the free-water compartment within the (sub-)cortical gray
matter. In contrast, an increase of the membrane-enclosed compartment was present within the corpus callosum,
internal capsule, cerebellum, and brainstem. Nevertheless, the PCC and UPC groups could be distinguished by
their disparate emphasis on the aforementioned pattern. However, the partial similarity of patterns with respect
to microstructural changes explains that, despite high sensitivity, only a specificity of 85% could be achieved.
In conclusion, an image-based diagnosis of PCC must be based on a control-collective that has also contracted
COVID-19 in order to accurately detect PCC-specific changes. In this context, microstructural parameters
are of particular importance. Noteworthy, we found a substantially superior performance in the biophysically
motivated multicompartimental techniques NODDI and DMI upon comparison with single compartment DTT.
We attribute this to the superior approximation of the actual cerebral microstructure in these approaches which
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aligns with other studies?>?’. The findings in conventional MRI in individual patients with PCC are non-specific
and cannot account for the overall microstructural alterations present in the PCC cohort.

To better characterize the distinction between PCC and UPC, we identified the most relevant discriminatory
features and grouped them into the overarching categories of neurite integrity, free fluid, and cellular volume
fraction, based on microstructural metrics derived from DMI and NODDI. This analysis revealed a spatially
widespread, yet partially overlapping pattern of alterations across these domains (Fig. 2). The distribution of
changes suggests that multiple brain networks may be affected in PCC, potentially contributing to the broad and
heterogeneous symptom spectrum commonly reported in affected individuals®. Importantly, alterations were
not confined to a single domain or anatomical region, but encompassed cortical, subcortical, and cerebellar areas
across all categories. These spatial patterns are broadly in line with prior findings of thalamic and subcortical
involvement in PCC, including microstructural thalamic changes’, widespread cortical affection'*?3, and white
matter alterations, all linked to fatigue or cognitive symptoms®®1,

Although the exact biological mechanisms remain to be elucidated, the concurrent involvement of multiple
tissue compartments may reflect a complex and multifactorial pathophysiology. However, the cellular and
histopathological basis of the (micro)structural changes in PCC detected by imaging is not well understood.
Histopathologic studies of patients who died of severe COVID-19 infections in the acute phase have provided
a relatively clear picture of blood-brain barrier disruption, specific activation of perivascular lymphocytes,
and transduction of the inflammatory signal into the parenchyma with activation of astrocytes, microglia, and
formation of microglial nodules*®-33. However, histopathologic data from the late phase of COVID-19 infection
are rare. Examinations of the medulla oblongata of patients who died of sudden cardiac death even months after
SARS-CoV-2 infection revealed not only persistent T-cell activation®!, but also the presence of a SARS-CoV-
2-specific innate immune scar, as evidenced by the persistence of microglial nodules®. With respect to neurite
integrity, an increase may reflect enhanced structural coupling or a neuroplastic response®, whereas a decrease
is more likely indicative of axonal loss and reduced connectivity between brain regions®>. In our analysis, we
observed a predominant decrease in neurite integrity, with pronounced involvement of the basal ganglia, limbic
system, and fronto-parieto-occipital cortex. Regarding the free fluid category, an increase may be attributed
to blood-brain barrier dysfunction or cerebral edema'®, but could also reflect secondary atrophic processes®.
Conversely, a decrease in free fluid may suggest gliotic transformation or inflammatory infiltration”’. In the
current analysis, we found a predominant increase in free fluid, particularly affecting the cerebellum, frontal
white matter, cingulum, and basal ganglia. Lastly, an increase in cellular volume fraction may indicate gliotic
changes or the presence of an inflammatory infiltrate®”, whereas a decrease could be suggestive of an underlying
neurodegenerative process®®. Our findings revealed a predominant increase in cellular volume fraction,
especially in the orbitofrontal cortex, limbic regions, left occipital cortex, left insula, and frontal white matter.
Further studies are warranted to validate these findings and to explore their relationship with histopathological
changes and specific clinical phenotypes or symptom clusters in PCC.

In light of the favorable diagnostic accuracy of our SVM methodology, imaging-supported diagnosis of PCC
appears to be a viable prospect. As our study employs monocentric data, the subsequent step would be to validate
the SVM approach to a prospective multicenter cohort. The SVM algorithm developed in our cohort would be
immediately applicable for this purpose. However, retraining using a multicenter control group (analogous to
our UPC collective) would serve as an additional measure to validate our approach. In addition to our structural
and diffusion imaging-based strategy, the incorporation of other modalities for the objective diagnosis of PCC
would be advantageous. While the sensitivity of the proposed approach can be deemed sufficient for clinical
application, the specificity of 85% should be supplemented with other imaging parameters or biomarkers. In the
serum of a patient with severe SARS-CoV-2 infection, elevations in glial fibrillary acidic protein (GFAP), a marker
of astrocyte activation, and neurofilament light chain (NfL), a marker of neuronal damage, were observed during
the acute phase®®. However, these values return to normal levels over time*® and are not increased in patients
with PCC*. Apart from this, high-throughput approaches have revealed group-level differences between PCC
patients and controls with regard to circulating immune cell populations, antibody levels against SARS-CoV-2,
EBV, and VZV, and reduced cortisol and serotonin levels**2. Furthermore, a protein signature in the blood
was identified, characterized by increased complement activation and thromboinflammation. This signature
included activated platelets and markers of red blood cell lysis**. To date, no attempt has been made to utilize
such a multi-parametric serological approach to facilitate diagnosis at the individual patient level. Moreover, the
creation of a comprehensive data set that incorporates serological analyses, cerebral MR imaging, and clinical
characterization through questionnaires and neurocognitive diagnostics would be beneficial for facilitating a
biomarker-based diagnosis of PCC.

Several limitations of our study should be acknowledged. First, although our findings demonstrate a
correlation between neuroimaging parameters and clinical symptoms of PCC, causality cannot be established.
Longitudinal studies incorporating detailed clinical assessments are needed to better understand the temporal
dynamics and persistence of PCC-related symptoms and to clarify whether observed microstructural alterations
are a cause or consequence of clinical impairment. Second, this study employed a monocentric design, which
may limit generalizability. While our control group (UPC) provides a robust clinical comparison, external
validation through multicenter datasets, ideally using harmonized imaging protocols and similarly defined
control groups, is essential to confirm the reproducibility and applicability of our approach. Here, a larger group
size of UPC in the testing dataset might have improved stability of the specificity. Third, the use of advanced
diffusion imaging based on multi-shell protocols necessitated scanning at 3 T field strength to ensure sufficient
data quality. Although such imaging systems are available at most academic radiology departments, this
requirement may limit immediate broader clinical adoption, particularly in non-academic settings. A further
limitation arises from the relatively small size of the UPC training cohort (n=18). Although class balancing and
cross-validation were applied, the stability of the selected discriminative features may be strongly influenced
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by the specific composition of this subgroup. Moreover, even though the headline AUROC of 0.95 indicates
excellent discriminatory potential, the wide confidence intervals around key performance metrics highlight
substantial uncertainty. For the best-performing model, specificity was 85%, but the 95% confidence interval
ranged from 0.64 to 0.95, and precision showed the same range. This largely attributable to the small size of the
UPC test group (n=20) and underscores the need for replication in larger, multicentric datasets to obtain more
stable and clinically reliable estimates.

In conclusion, our processing approach allowed for the reliable differentiation between PCC patients and
UPC participants with high sensitivity, while specificity remained moderate. This highlights both the potential
of microstructural MRI as a diagnostic tool on a single patient level, but also the necessity of further validation
and multimodal approaches before clinical translation.

Data availability
Data is available from the corresponding author (JAH) upon reasonable request and approval of the local ethics
committee.
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