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To develop an imaging biomarker-based approach for the diagnosis of Post-COVID-condition (PCC) at 
the individual patient level. Magnetic resonance imaging (MRI) data from a prospective cohort of PCC 
patients (n = 89) were compared with a control group of unimpaired individuals who had contracted 
coronavirus disease 2019 (COVID-19) in the past (n = 38). Participants were divided into two groups: 
a training and a test cohort. The macrostructure, diffusion tensor imaging, and multi-shell-based 
microstructure imaging metrics were extracted using an atlas-based approach. These data were 
subsequently utilized to train a linear support vector machine (SVM). The efficacy of discrimination 
between the groups was evaluated for various combinations of input parameters. Upon comparison of 
the different input combinations, we found the highest area under the receiver operating characteristic 
curve (AUROC) for microstructural parameters. For the optimal combination of input parameters, an 
AUROC value of 0.95 with a sensitivity of 94% and a specificity of 85% was achieved, indicating high 
discriminatory potential but also underscoring the need for further validation given the non-negligible 
false-positive rate. The atlas regions with the highest discriminatory power include both gray (including 
multiple cortical areas, putamen and left thalamus) and white matter (including corpus callosum 
and frontal white matter). The use of a SVM allowed for the differentiation between PCC patients 
and UPC participants with high sensitivity using microstructural MRI data. While these findings 
mark a significant step toward a biomarker-based diagnosis of PCC, the moderate specificity and the 
monocentric design emphasize the need for confirmation in larger and multicentric cohorts before 
clinical application.
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It is estimated that between 6 and 10% of patients who have contracted coronavirus disease 2019 (COVID-19) 
will experience a “Post-COVID-19 condition” (PCC)1,2. Fatigue and neurocognitive deficits are among the most 
frequently occurring symptoms associated with PCC and can have a significant impact on the disease burden3. 
The diagnosis of PCC is made in accordance with the criteria set forth by the World Health Organization 
(WHO)4: A probable or confirmed SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus Type 2) 
infection, manifested by at least one symptom with a relevant impact on everyday functioning, a persistence 
of the symptom for at least two months, and a delay of at least three months between the onset of acute SARS-
CoV-2 infection and diagnosis. In the absence of an accepted pathophysiological disease hypothesis, PCC is a 
diagnosis of exclusion. However, this poses a considerable challenge in view of the substantial socio-economic 
implications, as the capacity to engage in gainful employment of those affected is impaired in approximately 6%5.

One method for objectifying the diagnosis of PCC would be to include imaging biomarkers. Based on 
magnetic resonance imaging (MRI), significant differences were identified on a group-level between patients 
with PCC and controls. Macrostructural alterations were observed, including a diminution in the volume of 
cortical regions, specifically the limbic system and the cerebellum6, as well as subcortical structures, namely 
the left thalamus7, putamen and pallidum. Diffusion tensor imaging (DTI) revealed not only reduced fiber 
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integrity in white matter tracts, as evidenced by e.g. the corpus callosum and uncinate tract6,8, but also altered 
diffusivity in the left thalamus7. However, it is important to note that macrostructural and conventional DTI 
changes may reflect a general sequela of infection rather than a PCC-specific biomarker9. The use of state-of-
the-art diffusion-based multi-shell protocols furthermore enables a comprehensive examination of the cerebral 
meso- and microstructure10–12. Thus, microstructural MRI parameters may provide more refined information 
on tissue composition and thus hold greater potential to discriminate PCC patients from unimpaired Post-
COVID individuals. In line with this hypothesis, a recent study from our research group demonstrated pervasive 
alterations in cerebral microstructure, attributed to a shift in volume from neuronal compartments to free fluid, 
which were associated with the severity of the initial infection13. In terms of clinical outcomes, correlations were 
identified between altered imaging parameters and the symptoms of fatigue7,13, cognitive impairment6,8,13, and 
olfactory performance13.

Consequently, the objective of this study was to determine whether a pattern can be identified based on 
multimodal MRI data to enable an imaging-supported diagnosis of PCC at patient level, as to date most 
observations in PCC are made on group levels. For this purpose, we utilized a large prospective monocentric 
cohort of 89 patients diagnosed with PCC in accordance with the World Health Organization (WHO) criteria. 
The control group consisted of participants who have recovered from an initial infection with SARS-CoV-2 
but were currently asymptomatic. A linear support vector machine (SVM) was trained to distinguish between 
the two groups. The input factors utilized in this analysis were as follows: 1 Tissue probability values (TPV) 
obtained by CAT12 to capture the macrostructure; 2 DTI-based indices; 3 Multi-shell derived parameters from 
neurite orientation dispersion and density imaging (NODDI), and diffusion microstructure imaging (DMI) to 
capture the meso- and microstructure. Also, we hypothesized that microstructural MRI parameters outperform 
macrostructure in diagnosing PCC.

Methods
An overview of the study workflow is provided in Fig. 1.

Study participants and clinical outcomes
We report data from a previously published monocentric, prospective cohort of 89 patients (median age: 49 
with IQR [23] years; 34/55 males/females), who were admitted to the outpatient clinic of the Department of 
Neurology and Clinical Neuroscience of the University Hospital Freiburg between June 2020, and October 2024 
due to neurocognitive symptoms in the chronic phase after COVID-19 infection13. The ethics committee of the 
Albert-Ludwigs-University Freiburg approved this study (EK 211/20) and all subjects provided written informed 
consent. The study was conducted in accordance with the Declaration of Helsinki and its later amendments. 
Inclusion criteria were: (1) reverse transcription polymerase chain reaction (rt-PCR) confirmed SARS-CoV-2 
infection; (2) fulfillment of diagnostic criteria for the “Post-COVID-Condition” (PCC) according to the WHO-
definition (e.g. > 3 months since onset of acute COVID-19 infection; symptoms lasting for at least two months; 
relevant impact on everyday functioning)4; (3) execution of a cerebral MRI. Exclusion criteria were any pre-
existing neurodegenerative disorders and age < 18 years. The “Unimpaired Post-COVID” (UPC)-cohort served 
as the control group, comprising a collective of 38 subjects (median age: 42 [24] years; 13/25 males/females) in 
the chronic phase following a PCR-confirmed diagnosis of SARS-CoV-2 infection without persistent subjective 
complaints. The same exclusion criteria were applied (i.e., any pre-existing neurodegenerative disorders, 
age < 18 years and artifacts in imaging data), and the examination and measurement methods were identical to 
the PCC-group. Groups did not significantly differ in age (Mann–Whitney-U, P = 0.08) and sex (X2, P = 0.60). 

Fig. 1.  Schematic overview of the study workflow.
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Patients were examined and surveyed by board-certified (SF, JH) or experienced (> 6  years of training, NS) 
neurologists. The degree of current disability was graded as follows: 0, no relevant restrictions; 1, relevant 
restrictions but able to work (i.e. patients who remain able to work but must limit leisure activities, hobbies, 
and social or family life in order to sustain employment); 2, reduction of work quota necessary; 3, inability to 
work and/or restriction of daily life activities. Disease severity during the acute stage was scored according to a 
modified version of the German definitions14: 1, no signs of pneumonia; 2, pneumonia, outpatient treatment; 
3, pneumonia, inpatient treatment; 4, acute respiratory distress syndrome (ARDS), mechanical ventilation at 
intensive care unit (ICU). Disease severity was considered to be “mild” in case of outpatient treatment (i.e. 
1–2) and as “severe” in patients that required hospitalization (i.e. 3–4). Cognitive functions were assessed 
with the German version of the Montreal Cognitive Assessment (MoCA version 7.1www.mocatest.org)15. The 
highest possible global MoCA score is 30 with higher scores indicating better performance, the cut-off score 
for cognitive impairment was defined as < 2615. Correction for years of education (YoE) was performed (+ 1 
point in case of ≤ 12 YoE). Fatigue was evaluated using the Würzburg Fatigue Inventory in Multiple Sclerosis 
(WEIMuS)16, a self-rating questionnaire for symptoms of physical and cognitive fatigue. In addition, the 
Geriatric Depression Scale-15 (GDS) was surveyed17. Olfaction was assessed using Burghart-Sniffin’-Sticks® 
(Burghart Messtechnik GmbH, Wedel, Germany; normosmia: 11–12 correctly identified odors; hyposmia: 7–10 
correct odors; anosmia: ≤ 6 correct odors)18. Ammonium was used to assess trigeminal function.

Cerebral MRI
MRI acquisition
The scanner, device settings and head coil were identical for both groups. MRI was performed with a 3 Tesla 
scanner (MAGNETOM Prisma, Siemens Healthcare, Erlangen, Germany) with a 64-channel head and neck 
coil. T1‐weighted (T1w) images were acquired with a three‐dimensional (3D) magnetization‐prepared 180° 
radio‐frequency pulses and rapid gradient‐echo (MP‐RAGE) sequence (repetition time: 2500 ms, echo time: 
2.82 ms, flip angle: 7°, TI = 1100 ms, GRAPPA factor = 2, 1.0 mm3 isotropic voxels, 192 contiguous sagittal slices). 
The diffusion-weighted sequence was acquired with the following parameters: axial orientation, 42 slices, voxel 
size 1.5 × 1.5 × 3  mm3, TR 2800  ms, TE 88  ms, bandwidth 1778  Hz, flip angle 90°, simultaneous multi-band 
acceleration factor 2, GRAPPA factor 2, 58 diffusion-encoding gradient directions per shell with b-factors 1000 
and 2000 s/mm2, 15 non-diffusion weighted images (interleaved during diffusion-encoding directions) resulting 
in overall 131 images.

Calculation and extraction of micro- and macrostructural imaging features
The data processing was conducted using our in-house post-processing platform, NORA (www.nora-imaging.
org), and was performed in accordance with the previously described methodology19. The pre-processing of 
diffusion-weighted images entailed a denoising step20, followed by the correction of Gibbs-ringing artifacts21 
and upsampling to an isotropic resolution of 1.5 mm3. Diffusion microstructural imaging (DMI) metrics were 
estimated using a Bayesian approach that determines the three components of a white matter-based tissue 
standard model10,11. The first of these is the free water/CSF fraction (V-CSF), which represents the proportion 
of molecules that move randomly at the distance of their diffusion length (in the range of tenth of micrometers). 
2. The volume fraction within neuronal processes/neurites (i.e. axons and dendrites; V-intra) is characterized 
by almost one-dimensional molecule diffusion due to the presence of tight membrane borders. 3. The volume 
fraction outside of axons or dendrites (V-extra) is defined by an intermediate constraint to molecule diffusion, 
representing the cellular compartment and the extracellular matrix. Furthermore, diffusivity parameters were 
extracted using the accelerated microstructure imaging via convex optimisation (AMICO)-NODDI, a regularized 
version of the neurite orientation dispersion and density imaging (NODDI) technique that relies on maximum 
likelihood estimation. The linearisation of fitting procedures (AMICO) enables the rapid processing of data 
(https://github.com/daducci/AMICO)22. In consideration of the parameters provided by the AMICO approach 
(ISOVF, ICVF, and OD), it can be posited that the isotropic volume fraction (ISOVF) represents the homologue 
of V-CSF, whereas orientation dispersion (OD) can be seen as a measure of neurite integrity comparable to 
V-intra. Intracellular volume fraction (ICVF) can be finally seen as a proxy of V-extra. The diffusion tensor 
imaging (DTI) measures, namely fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD), and 
axial diffusivity (AD), were obtained from b = 0 and 1000 s/mm2. The images were processed using a publicly 
available open-source toolbox (​h​t​t​p​s​:​​​/​​/​w​w​​w​.​u​n​i​k​l​i​n​i​​k​-​f​​r​e​i​b​u​​​r​g​.​​d​e​​​/​m​r​​-​e​​n​/​r​e​s​e​​​a​r​c​h​-​​g​r​​o​u​p​​s​/​d​i​f​​f​​p​e​r​f​/​​f​i​b​e​r​​t​o​o​l​
s​.​h​t​m​l), employing the ordinary log-linear fitting. T1w imaging datasets were automatically segmented into 
white matter, gray matter and cerebrospinal fluid (CSF) using CAT12 (http://www.neuro.uni-jena.de/cat/) and 
diffusion magnetic resonance imaging (dMRI) images were coregistered to the T1w images. The validity of 
the coregistrations between the dMRI images and the tissue probability values derived from the T1-weighted 
images was manually confirmed. Furthermore, a visual inspection of each individual dMRI map and the CAT12 
segmentation was conducted to ensure quality control. The parameter maps of DMI, NODDI, and DTI were 
separated into gray and white matter using a CAT12-derived tissue probability value (TPV) threshold of 0.4. 
For this, the TPV provides the probability of a voxel being attributed to gray or white matter. From this, only 
the gray matter compartment was read for the AAL3 atlas23 and only the white matter part for the JHU WMPM 
III atlas24. Gray matter TPV were read from the AAL3 atlas only. From these neuroanatomically established 
parcellations, the masks used for the extraction of MRI parameters were selected iteratively using the approach 
described below to avoid selection bias for SVM training, which could be introduced by manually selecting 
regions.
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Training of a linear support vector machine (SVM)
As previously described25, a linear support vector machine (SVM) was trained and optimized with respect to 
the area under the receiver operating characteristic curve (AUC-ROC) in a binary classifier for UPC vs. PCC. 
For this, our cohort was randomly split into a training (n = 43 PCC and n = 18 UPC) and an independent testing 
subset (n = 46 PCC and n = 20 UPC). A random seed was set in R to automate the splitting process, ensuring a 
split without human intervention. Subsequent validation confirmed that there were no significant differences 
in age and sex between the training and testing subsets (p > 0.37). The diagnostic performance of the SVM 
was evaluated in comparison with different inputs, namely TPV, DTI, NODDI, and DMI, both individually 
and in combination. The SVM was developed using the Python (version 3.8.5) package “Scikit-learn” (version 
0.23.2). The atlas-derived microstructural and macrostructural parameters were employed as inputs for the 
linear SVM. We investigated the diagnostic value of 116 TPV-derived features, 912 features obtained by DTI, 
684 by NODDI, and 684 by DMI. To address the considerable disparity in group sizes, the class_weight was 
set to ‘balanced’. The input parameters were normalized to mean 0 and standard deviation using the Scikit-
learn StandardScaler. Prior to the commencement of the training process, the input parameters were sorted in 
accordance with the principle of maximum marginal diversity26. This approach was selected due to the relatively 
modest group sizes in comparison to the maximum number of input features. In this manner, the normalized 
and maximum marginal diversity (MMD)-sorted values of a given combination of features are used as input 
for the linear SVM. To identify the optimal combination of the linear SVM parameter C and the number of 
the MMD-sorted (descending in diversity) input parameters, a grid search approach was employed, whereby 
different linear SVMs were trained with C varying between 0.01 and 100 in logarithmic steps and the number of 
input parameters varying between the top 4–40% in steps of 4%. The resulting models were then fivefold cross-
validated and evaluated based on the area under the curve (AUC). To reduce noise and prevent overfitting, the 
maximum number of input parameters was set to be below 40%. This threshold was obtained by inspecting a 
graphical depiction of the association of the number of input features with the AUROC in the training cohort.

Analysis
Statistical analysis was performed using R (version 4.1.0, https://www.R-project.org/) and SPSS, Version 25 
(IBM, Ehningen, Germany). No statistical method was used to predetermine sample size. The Shapiro–Wilk test 
was used to assess the distribution of data. Non-normally distributed data were presented as the median value 
[inter quartile range] and the non-parametric two-tailed Mann–Witney-U-tests were applied. For comparison 
of sex and comorbidities, Chi-square test was used. The area under the receiver-operating-characteristics curve 
was employed to investigate and compare the discriminative power of the different SVM inputs. The significance 
threshold was set to p < 0.05.

Results
Demographic and clinical characteristics
We included MRI data from a previously characterized cohort of 89 patients (median age 49 years; IQR [23] years; 
range: 19–72 years; 55 females) who fulfilled the WHO diagnostic criteria for Post-COVID-condition (PCC 
group). An overview of demographic and patient characteristics is shown in Table 1, and details are provided in 

Post-COVID-condition (PCC; n = 89) Unimpaired post-COVID (UPC; n = 38)

Demographic data n (%) or median [IQR]; range (%) or median [IQR]; range P value

Age (years) 49 [23]; 19 to 72 42 [24]; 25 to 62 0.081

Sex (male / female) 34 (38) / 55 (62) 13 (34) / 25 (66) 0.602

Δ positive PCR—cMRI (days) 254 [209]; 90 to 710 227 [443]; 145 to 943 0.631

Comorbidities n (%) n (%) P value2

Obesity 12 (14%) 3 (8%) 0.07

Asthma/COPD 8 (9%) 1 (3%) 0.20

Atrial fibrillation 1 (1%) 0 (0%) 0.51

Chronic kidney diesease 1 (1%) 0 (0%) 0.51

Coronary heart disease 3 (3%) 1 (3%) 0.83

Diabetes 5 (6%) 1 (3%) 0.47

History of depression 9 (10%) 2 (5%) 0.37

History of ischemic stroke 2 (2%) 0 (0%) 0.35

Arterial hypertension 19 (21%) 4 (10%) 0.15

Hypothyreodism 9 (8%) 6 (16%) 0.36

Malignancy 3 (3%) 0 (0%) 0.25

Migraine 10 (11%) 1 (3%) 0.11

Obstructive sleep apnoea 7 (8%) 0 (0%) 0.08

Peripheral arterial occlusive disease 1 (1%) 0 (0%) 0.51

Restless legs syndrome 2 (2%) 0 (0%) 0.35

Table 1.  Demographics and comorbidities of study participants. 1Mann–Whitney-U test; 2X2-test.
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Supplementary Table 1 or Hosp et al.13. Although neurological examinations revealed no focal deficits, patients 
complained of impaired attention and memory (100%), fatigue (96%), impaired ability to multitask (97%), and 
word-finding difficulties (89%). 76 patients (85%) exhibited a mild course of acute SARS-CoV-2 infection, with 
no requirement for hospitalization. With regard to comorbidities, no significant difference between the PCC and 
UPC groups was observed (p > 0.07). However, given the relatively small size of the UPC group, the statistical 
power to detect differences is limited, and some of the observed numerical trends (e.g., higher prevalence of 
obesity and obstructive sleep apnea in the PCC group) may still be clinically relevant and could reach significance 
in larger cohorts.

Evaluation of conventional MRI
As previously reported, six patients with PCC exhibited mild microangiopathic white matter changes 
corresponding to Fazekas 127. In one patient (a 39  years-old female), a small, primarily gliotic lesion was 
identified in the right basal ganglia. In another patient (66  years-old male), an occipital cortical defect was 
identified, which was deemed to be a probable post-ischemic lesion. In a third patient (62 years-old male), slight 
T2 signal elevations were observed bilaterally in the globus pallidum, without any correlation to other MRI 
sequences. No further structural changes, signs of atrophy or any evidence of inflammation (e.g. leptomeningeal 
enhancement) were identified. Within the UPC group, symmetrical hyperintense T2 signals of unknown origin 
were observed in one patient (39 year-old male) and slight microangiopathic lesions were noted in two patients 
(both Fazekas 1).

Comparison of input combinations and most discriminative regions
Upon comparison of the different input combinations in the testset, we found the highest AUROC for (a) DMI 
and NODDI (0.95), (b) DMI, DTI and NODDI (0.94), and (c) DMI, NODDI and TPV (0.94). Of note, TPV 
alone reached an AUROC of 0.59 only and DTI alone only 0.78. Further details are provided in Table 2.

For the best-performing combination of DMI and NODDI, the maximum marginal diversity algorithm 
revealed a high diversity of the parameters, especially for frontal, frontobasal, temporal and infratentorial 
regions as given in Supplementary Table 2.

To better understand the distinction between PCC patients and UPC individuals, we first extracted the 
atlas-based DMI/NODDI-derived diffusivity parameters from the training cohort that exhibited the highest 
discriminatory power, as indicated by their support vector machine (SVM) coefficients. A threshold of ± 0.15 
was applied for feature selection (see Supplementary Table  3). To gain further insight into the underlying 
neurobiological processes, we categorized the selected parameters from DMI and NODDI into three biologically 
relevant groups: Neurite integrity, combining intra-axonal volume fraction (V-intra, from DMI) and orientation 
dispersion (OD, from NODDI); Free fluid compartment, combining cerebrospinal fluid volume fraction 
(V-CSF, from DMI) and isotropic volume fraction (ISOVF, from NODDI); and Cellular volume fraction, 
combining extra-axonal volume fraction (V-extra, from DMI) and intracellular volume fraction (ICVF, from 
NODDI). The spatial distribution of both positive and negative SVM coefficients for each feature category is 
visualized in Fig. 2.

With regard to the “neurite integrity” category, we observed increased metrics primarily in the left occipital 
cortex, infratentorial regions, right insula, left frontal operculum, and right orbitofrontal cortex. In contrast, 
decreased neurite integrity was evident across widespread regions, including the basal ganglia, limbic system, 
and the fronto-parieto-occipital cortex. In the “free fluid compartment”, elevated values were detected in 

Input combination SVM performance

DMI DTI NODDI TPV AUROC FP FN Specificity Sensitivity Precision F1-Score

 +  0.83 13 5 0.75 (0.53–0.89) 0.72 (0.57–0.83) 0.54 (0.36–0.70) 0.63

 +   +  0.88 7 6 0.70 (0.48–0.85) 0.85 (0.72–0.92) 0.67 (0.45–0.83) 0.68

 +   +  0.95 3 3 0.85 (0.64–0.95) 0.94 (0.82–0.98) 0.85 (0.64–0.95) 0.85

 +   +   +  0.94 3 4 0.80 (0.58–0.92) 0.93 (0.82–0.98) 0.84 (0.62–0.94) 0.82

 +   +  0.85 4 9 0.55 (0.34–0.74) 0.91 (0.80–0.97) 0.73 (0.48–0.89) 0.63

 +   +   +  0.87 6 7 0.65 (0.43–0.82) 0.87 (0.74–0.94) 0.68 (0.46–0.85) 0.67

 +   +   +  0.94 3 5 0.75 (0.53–0.89) 0.94 (0.82–0.98) 0.83 (0.61–0.94) 0.79

 +   +   +   +  0.93 4 3 0.85 (0.64–0.95) 0.91 (0.80–0.97) 0.81 (0.60–0.92) 0.83

 +  0.59 24 8 0.60 (0.39–0.78) 0.48 (0.34–0.62) 0.33 (0.20–0.50) 0.43

 +  0.89 6 5 0.75 (0.53–0.89) 0.87 (0.74–0.94) 0.71 (0.50–0.86) 0.73

 +   +  0.87 6 5 0.75 (0.53–0.89) 0.87 (0.74–0.94) 0.71 (0.50–0.86) 0.73

 +  0.78 11 6 0.70 (0.48–0.85) 0.76 (0.62–0.86) 0.56 (0.37–0.73) 0.62

 +   +  0.77 14 2 0.90 (0.70–0.97) 0.70 (0.55–0.81) 0.56 (0.39–0.72) 0.69

 +   +  0.89 8 4 0.80 (0.58–0.92) 0.83 (0.69–0.91) 0.67 (0.47–0.82) 0.73

 +   +   +  0.91 6 5 0.75 (0.53–0.89) 0.87 (0.74–0.94) 0.71 (0.50–0.86) 0.73

Table 2.  Comparison of different SVM-input combinations. AUROC, area under the ROC curve; DMI, 
diffusion microstructural imaging; DTI, diffusion tensor imaging; FP, number of false positives; FN, number of 
false negatives; NODDI, neurite orientation dispersion and density imaging; TPV, tissue probability value.
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the cerebellum, frontal white matter, cingulum, and basal ganglia, whereas reductions were observed in the 
thalamus, brainstem, temporal poles, corpus callosum, and frontal operculum. Regarding the “cellular volume 
fraction” category, increased values were found in the orbitofrontal cortex, limbic regions, left occipital cortex, 
left insula, and frontal white matter. Decreased values were noted in the left paracentral lobule, right parietal 
cortex, and the vermis.

In summary, the findings reveal a spatially widespread and directionally heterogeneous pattern of alterations 
across both white and gray matter compartments. This underscores not only the value but also the necessity 
of applying artificial intelligence techniques to capture such complex patterns for diagnostic purposes and for 
discriminating between individuals with PCC and UPC.

Discussion
In this study, we employed artificial intelligence to develop an imaging-based biomarker-assisted diagnosis of 
PCC on a single-patient level. We trained a linear SVM to distinguish between PCC patients and asymptomatic 
individuals who had been infected with SARS-CoV-2 in the past. Upon comparing the diagnostic value of macro- 
and microstructural parameters, best discrimination between groups was found for multicompartimental 
microstructural approaches, while macrostructural information did not contribute to diagnostic accuracy. The 
optimal algorithm achieved an AUROC value of 0.95 with a sensitivity of 94% and a specificity of 85%. The 
atlas regions with the highest discriminatory power include both gray matter (including multiple cortical areas, 
putamen, and left thalamus) and white matter (including corpus callosum and frontal white matter).

Given the previous detection of macrostructural atrophy in patients with PCC6,7, it is unexpected that TPV, 
as an input factor, does not contribute to the discrimination from the UPC group. It is crucial to acknowledge 
that the aforementioned studies employed control groups composed solely of individuals without a history of 
previous SARS-CoV-2 infection, i.e. who were healthy. Nevertheless, there is compelling evidence that SARS-
CoV-2 infection can induce structural alterations in the brain that are not contingent on PCC. A comprehensive 
longitudinal study from the UK Biobank examined MRI data of participants before and 4–5 months after the 
onset of SARS-CoV-2 infection28. The results demonstrated alterations in macrostructure, as well as diffusion-
based indices: A decrease in global brain volume was observed, accompanied by a reduction in cortical thickness 
in several regions, including the parahippocampal gyrus, anterior cingulate cortex, temporal pole, and the left 
orbitofrontal cortex, insula, and supramarginal gyrus. Moreover, an increase in diffusion indices within the 
limbic regions (anterior cingulate, hippocampal, parahippocampal, and orbito-frontal cortex) and the striatum 
indicated microstructural changes in these regions. The limited clinical characterization of the cohort precluded 
the drawing of any conclusions regarding the prevalence of PCC. However, if one assumes that a maximum 
of 10% of those infected develop PCC1,2, it must be expected that the aforementioned SARS-CoV-2-triggered 
structural changes may also occur independently of PCC disease. This hypothesis was corroborated by a recent 
publication on the same cohort we employed in this study13. In the previous study, the patients with PCC 
were compared not only with the UPC group but also with a control group of healthy subjects who had never 
contracted COVID-19. With regard to microstructure, both the PCC and UPC groups exhibited a volume shift 
from the membrane-enclosed compartment into the free-water compartment within the (sub-)cortical gray 
matter. In contrast, an increase of the membrane-enclosed compartment was present within the corpus callosum, 
internal capsule, cerebellum, and brainstem. Nevertheless, the PCC and UPC groups could be distinguished by 
their disparate emphasis on the aforementioned pattern. However, the partial similarity of patterns with respect 
to microstructural changes explains that, despite high sensitivity, only a specificity of 85% could be achieved. 
In conclusion, an image-based diagnosis of PCC must be based on a control-collective that has also contracted 
COVID-19 in order to accurately detect PCC-specific changes. In this context, microstructural parameters 
are of particular importance. Noteworthy, we found a substantially superior performance in the biophysically 
motivated multicompartimental techniques NODDI and DMI upon comparison with single compartment DTI. 
We attribute this to the superior approximation of the actual cerebral microstructure in these approaches which 

Fig. 2.  Regions with high coefficients of the support vector machine for discriminating post-COVID-
Condition from unimpaired-post-COVID for the best performing input combination of diffusion-
microstructure-imaging (DMI) and neurite orientation dispersion and density imaging (NODDI). Atlas-
defined regions with negative coefficients are shown in cyan and positive coefficients in magenta.
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aligns with other studies25,29. The findings in conventional MRI in individual patients with PCC are non-specific 
and cannot account for the overall microstructural alterations present in the PCC cohort.

To better characterize the distinction between PCC and UPC, we identified the most relevant discriminatory 
features and grouped them into the overarching categories of neurite integrity, free fluid, and cellular volume 
fraction, based on microstructural metrics derived from DMI and NODDI. This analysis revealed a spatially 
widespread, yet partially overlapping pattern of alterations across these domains (Fig. 2). The distribution of 
changes suggests that multiple brain networks may be affected in PCC, potentially contributing to the broad and 
heterogeneous symptom spectrum commonly reported in affected individuals3. Importantly, alterations were 
not confined to a single domain or anatomical region, but encompassed cortical, subcortical, and cerebellar areas 
across all categories. These spatial patterns are broadly in line with prior findings of thalamic and subcortical 
involvement in PCC, including microstructural thalamic changes7, widespread cortical affection13,28, and white 
matter alterations, all linked to fatigue or cognitive symptoms6,8,13.

Although the exact biological mechanisms remain to be elucidated, the concurrent involvement of multiple 
tissue compartments may reflect a complex and multifactorial pathophysiology. However, the cellular and 
histopathological basis of the (micro)structural changes in PCC detected by imaging is not well understood. 
Histopathologic studies of patients who died of severe COVID-19 infections in the acute phase have provided 
a relatively clear picture of blood–brain barrier disruption, specific activation of perivascular lymphocytes, 
and transduction of the inflammatory signal into the parenchyma with activation of astrocytes, microglia, and 
formation of microglial nodules30–33. However, histopathologic data from the late phase of COVID-19 infection 
are rare. Examinations of the medulla oblongata of patients who died of sudden cardiac death even months after 
SARS-CoV-2 infection revealed not only persistent T-cell activation31, but also the presence of a SARS-CoV-
2-specific innate immune scar, as evidenced by the persistence of microglial nodules33. With respect to neurite 
integrity, an increase may reflect enhanced structural coupling or a neuroplastic response34, whereas a decrease 
is more likely indicative of axonal loss and reduced connectivity between brain regions35. In our analysis, we 
observed a predominant decrease in neurite integrity, with pronounced involvement of the basal ganglia, limbic 
system, and fronto-parieto-occipital cortex. Regarding the free fluid category, an increase may be attributed 
to blood–brain barrier dysfunction or cerebral edema19, but could also reflect secondary atrophic processes36. 
Conversely, a decrease in free fluid may suggest gliotic transformation or inflammatory infiltration37. In the 
current analysis, we found a predominant increase in free fluid, particularly affecting the cerebellum, frontal 
white matter, cingulum, and basal ganglia. Lastly, an increase in cellular volume fraction may indicate gliotic 
changes or the presence of an inflammatory infiltrate37, whereas a decrease could be suggestive of an underlying 
neurodegenerative process36. Our findings revealed a predominant increase in cellular volume fraction, 
especially in the orbitofrontal cortex, limbic regions, left occipital cortex, left insula, and frontal white matter. 
Further studies are warranted to validate these findings and to explore their relationship with histopathological 
changes and specific clinical phenotypes or symptom clusters in PCC.

In light of the favorable diagnostic accuracy of our SVM methodology, imaging-supported diagnosis of PCC 
appears to be a viable prospect. As our study employs monocentric data, the subsequent step would be to validate 
the SVM approach to a prospective multicenter cohort. The SVM algorithm developed in our cohort would be 
immediately applicable for this purpose. However, retraining using a multicenter control group (analogous to 
our UPC collective) would serve as an additional measure to validate our approach. In addition to our structural 
and diffusion imaging-based strategy, the incorporation of other modalities for the objective diagnosis of PCC 
would be advantageous. While the sensitivity of the proposed approach can be deemed sufficient for clinical 
application, the specificity of 85% should be supplemented with other imaging parameters or biomarkers. In the 
serum of a patient with severe SARS-CoV-2 infection, elevations in glial fibrillary acidic protein (GFAP), a marker 
of astrocyte activation, and neurofilament light chain (NfL), a marker of neuronal damage, were observed during 
the acute phase38. However, these values return to normal levels over time39 and are not increased in patients 
with PCC40. Apart from this, high-throughput approaches have revealed group-level differences between PCC 
patients and controls with regard to circulating immune cell populations, antibody levels against SARS-CoV-2, 
EBV, and VZV, and reduced cortisol and serotonin levels41,42. Furthermore, a protein signature in the blood 
was identified, characterized by increased complement activation and thromboinflammation. This signature 
included activated platelets and markers of red blood cell lysis43. To date, no attempt has been made to utilize 
such a multi-parametric serological approach to facilitate diagnosis at the individual patient level. Moreover, the 
creation of a comprehensive data set that incorporates serological analyses, cerebral MR imaging, and clinical 
characterization through questionnaires and neurocognitive diagnostics would be beneficial for facilitating a 
biomarker-based diagnosis of PCC.

Several limitations of our study should be acknowledged. First, although our findings demonstrate a 
correlation between neuroimaging parameters and clinical symptoms of PCC, causality cannot be established. 
Longitudinal studies incorporating detailed clinical assessments are needed to better understand the temporal 
dynamics and persistence of PCC-related symptoms and to clarify whether observed microstructural alterations 
are a cause or consequence of clinical impairment. Second, this study employed a monocentric design, which 
may limit generalizability. While our control group (UPC) provides a robust clinical comparison, external 
validation through multicenter datasets, ideally using harmonized imaging protocols and similarly defined 
control groups, is essential to confirm the reproducibility and applicability of our approach. Here, a larger group 
size of UPC in the testing dataset might have improved stability of the specificity. Third, the use of advanced 
diffusion imaging based on multi-shell protocols necessitated scanning at 3 T field strength to ensure sufficient 
data quality. Although such imaging systems are available at most academic radiology departments, this 
requirement may limit immediate broader clinical adoption, particularly in non-academic settings. A further 
limitation arises from the relatively small size of the UPC training cohort (n = 18). Although class balancing and 
cross-validation were applied, the stability of the selected discriminative features may be strongly influenced 
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by the specific composition of this subgroup. Moreover, even though the headline AUROC of 0.95 indicates 
excellent discriminatory potential, the wide confidence intervals around key performance metrics highlight 
substantial uncertainty. For the best-performing model, specificity was 85%, but the 95% confidence interval 
ranged from 0.64 to 0.95, and precision showed the same range. This largely attributable to the small size of the 
UPC test group (n = 20) and underscores the need for replication in larger, multicentric datasets to obtain more 
stable and clinically reliable estimates.

In conclusion, our processing approach allowed for the reliable differentiation between PCC patients and 
UPC participants with high sensitivity, while specificity remained moderate. This highlights both the potential 
of microstructural MRI as a diagnostic tool on a single patient level, but also the necessity of further validation 
and multimodal approaches before clinical translation.

Data availability
Data is available from the corresponding author (JAH) upon reasonable request and approval of the local ethics 
committee.
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