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Power quality disturbances (PQDs) pose significant challenges in modern energy power plants-based 
systems (MEPPBS), especially with the increasing integration of renewable energy sources (RESs) 
such as wind and solar photovoltaic (PV) systems. The intermittent nature of these sources introduces 
voltage fluctuations, harmonics, and transient disturbances, affecting grid stability and reliability. 
This paper presents a novel dual algorithm-based protection approach for detecting, classifying, 
and mitigating PQDs in grid-connected MEPPBS. The proposed method utilized an advanced 
adaptive median filter (AMF) as a signal processing-state observer and a support vector machine 
(SVM)-based scheme to accurately identify disturbances, including voltage sags, swells, harmonics, 
interruptions, and transients. The proposed dual-algorithm approach, combining AMF and SVM, offers 
a novel solution that enhances PQD detection accuracy and speed compared to existing methods. 
Furthermore, the proposed scheme tests five individual PQDs and ten combined disturbances-based 
datasets, including voltage sags, swells, harmonics, interruptions, and transients were used to train 
the proposed SVM classifier. Then, SVM-based residuals were calculated by SVM algorithms from 
estimated AMF data, SVMBR index reveals the detection of PQDs quickly. Simulations were performed 
in MATLAB® R2022b (Version 9.13) to evaluate the effectiveness of the suggested approach under 
various operating conditions. The results demonstrate high detection accuracy of 97%, fast response 
times of less than 15 milliseconds, & robustness in discriminating different PQDs when trained by 
just 50% of the dataset under a signal-to-noise ratio (SNR) of 20dB. The proposed method achieves 
96% precision, 94% recall, and a 0.04 false positive rate, demonstrating high accuracy and reliability 
in PQDs detection. The findings highlight the potential of the presented method to enhance power 
system resilience and ensure reliable operation in renewable energy-integrated grids.

Keywords  Power quality disturbances, Power system security, State observers, Power system protection, 
Support vector machine, Smart grids, New energy power plants

MEPPBM: background & motivation
The amalgamation of RESs, such as wind and solar PV systems, has greatly affected power quality in current 
power systems1. Unlike the conventional generation, RESs are inherently intermittent & fluctuate, resulting in 
several PQDs. These disturbances include voltage sags, swells, harmonics, interruptions, and transient distortions, 
which can damage system performance, impact sensitive loads, and risk overall grid stability2. These problems 
are made worse by the emergent use of inverter-based RESs3which include high-frequency harmonics, poor 
inertia response, and fast voltage swings. As a result, conventional methods for assessing & mitigating power 
quality are insufficient4. Modern renewable-integrated grids face increasing challenges from unpredictable and 
overlapping PQDs, which often hinder the effectiveness of traditional detection methods5,6. To address these 
limitations, we propose a dual algorithm-based approach combining an AMF for noise-robust signal processing 
with an SVM for accurate disturbance classification. This integrated method enhances detection accuracy, speed, 
and robustness, directly responding to the real-world complexities motivating this study.

A major challenge in the protection of MEPPBS, maintaining power quality in renewable-integrated grids, 
is the unpredictability of PQDs7which vary with environmental circumstances, power electronic converter 
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switching, & grid operating states. Voltage disruptions produced by abrupt variations in solar irradiance or wind 
speed can result in frequent and lengthy voltage sags and swells, hurting industrial & commercial customers8. 
Harmonic distortions triggered by inverter-based RESs can result in higher losses, overheating of electrical 
components, & malfunctioning of essential equipment9. Furthermore, transient disturbances, comprising 
switching transients & frequency deviations, pose risks to grid reliability & require advanced detection & 
classification schemes for effective mitigation10. This research presented an enhanced detection and classification 
scheme for PQDs in RESs. Technology uses signal processing & machine learning-based categorization to 
reliably identify PQDs and enrich mitigation tactics.

Literature review
Guaranteeing power quality in MEPPBS has been an important subject of research, with multiple papers 
offering various detection & mitigation approaches for PQDs. A Hilbert transform-based scheme combined 
with fuzzy transfer fields (FTF) & deep residual networks for classifying complex PQDs was proposed 
in11claiming superior accuracy over existing schemes; nevertheless, its reliance on image transformation may 
present computational complexity & potential sensitivity to signal differences. An Extreme Learning Machine 
(ELM) with an Individuality Feature Vector for PQD classification was presented in12 achieving high accuracy 
even in noisy conditions; however, its reliance on wavelet-derived features & predefined vectors may limit 
adaptability to highly dynamic grid disturbances. Authors in ref13 presented an adaptive fast complementary 
ensemble local mean decomposition (AFCELMD) scheme with a deep stacked auto-encoder (dSAE) and bi-
directional long short-term memory (BiLSTM) classifier for PQD recognition in microgrids, achieving high 
accuracy; however, its reliance on deep learning models may increase computational burden, posing challenges 
for real-time implementation in resource-constrained environments. Authors in14 proposed scheme developed 
an Improved Lion Optimization Algorithm (ILA) to optimize CNN classifiers for detecting load variations & 
PQDs, demonstrating enhanced accuracy; however, the approach’s dependency on hyperparameter tuning & 
computational burden may limit its practicality for real-time grid applications. The adaptive fitness distance 
balance hybrid artificial hummingbird algorithm-artificial rabbit optimization hybrid algorithm for power quality 
(PQ) event detection and classification was proposed15 addressing early convergence issues in optimization. The 
proposed method enhances search efficiency to avoid local minima and is directly applied to PQ event detection.

A prior study in16 investigated PQDs in fuel cell-based micro-smart grids (FC-MSGs) using wavelet synchro-
squeezed transform (WSST) for signal analysis, demonstrating improved accuracy over continuous wavelet 
transform (CWT); however, its reliance on visual analysis may limit real-time applicability in dynamic grid 
conditions. Authors in study17 introduced a macro dynamic demand response (DDR) strategy incorporating 
micro PQD mitigation for wind-storage systems, utilizing Butterworth-Wiener filtering and Hampel-Savitzky-
Golay macropower filtering; however, its dependency on predefined filtering techniques may limit adaptability 
to highly dynamic and nonlinear PQD variations. A parameter-optimized variational mode decomposition 
(VMD) method combined with improved wavelet thresholding for PQD detection in noisy environments was 
proposed in18 demonstrating superior accuracy over existing techniques; however, its reliance on intrinsic mode 
function (IMF) selection and optimization algorithms may introduce computational complexity and potential 
sensitivity to parameter tuning. A multiple impact factor-based wavelet analysis approach to improve power 
quality disturbance detection accuracy was proposed in19.

A previous study was proposed in20 using a Walsh-based mathematical morphology (Walsh-MM) method 
for PQD detection and classification, demonstrating noise resilience and computational efficiency; however, 
its dependency on predefined structuring elements and morphological clustering may impact adaptability 
to highly dynamic disturbances in real-time applications. An efficient real-time power quality disturbance 
detection and classification approach using MRA-DWT and an FFNN classifier was proposed in21 achieving 
high accuracy with minimal computational complexity. In ref22 the study explores the use of basic convolutional 
neural network (CNN) models for PQD detection and classification, eliminating the need for complex feature 
extraction. A Deep Auto-encoder (DAE) network for PQD classification and location detection was proposed 
in23 eliminating the need for complex signal processing and classifiers. The method utilized a Gabor filter 
to extract general PQD image features, which were further refined using a sparse-based DAE network. The 
discrete orthogonal S-transform for feature extraction, compressive sensing for feature reduction, and a deep 
stacking network were proposed for the automatic classification of single and multiple PQDs-based method 
effectively classified multiple PQDs with high precision and robustness, even in noisy conditions24. Orthogonal 
S-transform in the feature extraction stage, compressive sensing in the feature reduction stage, and a deep 
stacking network for the automatic classification of single and multiple PQD-based methods were proposed in25 
efficiently classified single and multiple PQDs with high accuracy and robustness under noisy conditions. An 
explainable artificial intelligence framework was proposed in26 to enhance the transparency and trustworthiness 
of PQD classification. Authors in ref27 proposed feed-forward control loops for a three-phase unified power 
quality conditioner to regulate DC-bus voltage and improve dynamic response during voltage sags and swells. A 
novel PQD classification method was proposed in28 using the Stockwell Transform and an improved Grey Wolf 
Optimization-based Kernel Extreme Learning Machine for enhanced accuracy and noise robustness. A deep 
fractional multidimensional spectrum convolutional neural fusion network (FMSNet) for accurate and noise-
robust power quality disturbance classification was proposed in29. An improved Kaiser window S-transform and 
convolutional neural network approach was proposed30 for high-precision recognition of complex power quality 
disturbances. A hybrid classification approach using Root-Music and least squares techniques for accurate 
identification of single and complex power quality disturbances was proposed in31 achieving high accuracy 
even in noisy environments. A power quality disturbance classification method was proposed in32 integrating 
an adaptive Kalman filter and multi-scale channel attention into a CNN, achieving over 99% accuracy with 
enhanced noise robustness. Power quality disturbance detection and classification method using an H-infinity 
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filter for feature extraction, FGFCM clustering, and an optimized SVM with GA and PSO was proposed in33 
validated with experimental wind and PV data. The improved PQD system was designed via an intelligent 
control-based system34. Some recent works by Khosravi et al. emphasize efficient voltage and frequency control 
in microgrids using energy storage, deep learning, and finite-time control35–37.

Limitations
Existing literature on PQD detection and classification has made significant advancements using machine 
learning, signal processing, and optimization techniques. However, several limitations persist. Many studies 
rely on traditional feature extraction methods, such as wavelet transform and Stockwell transform, which 
may not effectively capture the dynamic and non-stationary nature of PQDs under varying noise conditions. 
Furthermore, deep learning-based approaches, including CNNs & attention mechanisms, often suffer from a 
high computational burden, making real-time implementation challenging. Moreover, many existing models 
lack robustness in the presence of high noise levels, lessening classification accuracy in practical grid conditions. 
Another critical gap is the limited generalizability of the presented methods, as most studies rely on synthetic 
datasets or specific operating circumstances without extensive validation on real-world power systems. 
Additionally, existing hybrid models that incorporate optimization methods, which include particle swarm 
optimization (PSO) as well as genetic algorithms (GA), can encounter problems with convergence speed & 
parameter adjustment. Finally, operators of power systems may find it problematic to test and accept the decision-
making process of black-box models, with growing questions regarding the explainability & interpretability of 
AI-based PQD classifiers. These disadvantages highlight the need for PQD detection schemes that are more 
reliable, noise-resistant, computationally efficient, and understandable. The major limitations of existing PQD 
detection approaches are summarized in Table 1, while the major Table 2 illustrates how the proposed method 
differs and improves upon existing work.

Contributions
This proposed MEPPBS-protection scheme tackles multiple weaknesses in previous research by presenting a 
unique dual-algorithm method to PQD detection, categorization, & mitigation in MEPPBS.

	1.	 Unlike traditional schemes, which struggle with noise interference & feature extraction, the suggested strate-
gy integrates an advanced signal processing-based state observer to precise disturbance detection along with 
an SVM-based classifier for accurate recognition of PQDs such as voltage sags, swells, harmonics, flicker, and 
transients.

	2.	 A key contribution is the robustness of the presented method, which achieves 97% classification accuracy 
with only 50% of the dataset for training, demonstrating its efficiency in real-world scenarios.

	3.	 Furthermore, the approach offers quick reaction times of less than 15 milliseconds, which makes it appropri-
ate for real-time applications.

Aspect Existing approaches Proposed scheme

Noise robustness Varies; many degrade at low SNR Maintains >96% accuracy at SNR = 20 dB

Computational complexity Deep models (CNN, BiLSTM) often heavy Lightweight dual-algorithm (AMF + SVM) with fast execution

Feature extraction Hand-crafted or deep-learned features Adaptive Median Filter (AMF) for real-time pre-processing

Training data dependency Requires >70% dataset typically Performs well with only 50% training data

Response time Some exceed 20–50 ms Achieves <15 ms response time

Accuracy on mixed PQDs Mixed results; prone to overlap Consistently detects and classifies individual and combined PQDs

Real-time suitability Questionable for many DL-based models Validated under noisy, dynamic grid with low-latency results

Interpretability Limited for deep models Transparent SVM classification logic

Generalizability Often tested on synthetic datasets Validated across multiple operating conditions

Table 2.  The proposed method differs and improves upon existing work.

 

Category Limitation description

Feature extraction Conventional methods like Wavelet and Stockwell transforms often fail to capture the dynamic and non-stationary behavior of PQDs under varying 
noise conditions.

Deep learning methods CNNs and attention-based models require significant computational resources, hindering real-time implementation and increasing deployment 
complexity.

Noise robustness Performance degradation under high-noise environments is common, reducing classification accuracy in real-world grid conditions.

Generalizability Many methods are evaluated on synthetic datasets or limited test conditions, leading to poor adaptability in diverse and practical operating scenarios.

Optimization techniques Hybrid approaches using PSO or GA face slow convergence and sensitivity to parameter tuning, affecting reliability and adaptability.

Model explainability Black-box nature of advanced AI models limits interpretability, making it difficult for operators to trust and validate classification decisions.

Table 1.  Limitations of existing PQD detection and classification methods.
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	4.	 The approach’s efficacy is further assessed under various operating situations and noise levels (SNR = 20 dB), 
revealing its improved performance over existing categorization methods.

	5.	 This research makes a substantial contribution to maintaining reliable and stable operation in renewable 
energy-integrated grids by increasing detection accuracy, lowering computing complexity, and increasing 
resistance to PQDs.

Manuscript organization
The manuscript is organized as follows: Section II presents the background theory of the AMF as a state observer 
and basic principles of the SVM. Section III outlines the methodological framework of the proposed scheme. 
Section IV demonstrates extensive results, and finally, Section V presents the conclusion of the paper.

Background theory and basic principle
An AMF algorithm as a state observer
The AMF algorithm workflow is illustrated in (Fig. 1a) The AMF is a robust signal processing technique 
designed to remove impulsive noise while preserving critical signal features, making it an ideal state observer 
for PQD analysis. Unlike traditional median filters, which apply a fixed window size for noise suppression, the 
AMF dynamically adjusts its window size based on the statistical properties of the input signal, allowing it to 
differentiate between actual disturbances and noise artifacts more effectively. This adaptability is particularly 
beneficial in power system applications where PQDs, such as voltage sags, swells, harmonics, and transients, are 
often accompanied by varying noise levels due to switching operations, renewable energy fluctuations, and grid 
disturbances.

Step 1; In signal processing, particularly in the context of PQDs or biomedical signal analysis, the goal is to 
estimate the true signal x(k) from a noisy observation y(k). The observation model can be represented as:

	 y (k) = x (k) + n (k)� (1)

where x(k) is the true (hidden) signal or state, y(k) is the noisy measurement, and n(k) is additive noise, often 
non-Gaussian or impulsive in nature.

Step 2; A state observer reconstructs the state x(k) using available measurements. For nonlinear filters like the 
AMF, the estimate can be expressed as:

	 x̂ (k) = f(y (k) , y (k − 1) , . . . , y (k − r))� (2)

Here, f(·) is a nonlinear operator representing the adaptive median filtering logic, using local statistics of the 
signal.

Step 3; Define a sliding window Wk centered at sample k with window radius rk= (Lk−1)/2. From this window, 
compute:

	 zmin = min (wk) , zmax = max (wk) , zmed = median (wk)� (3)

	 x̂ (k) = Mk(y (k) , y (k − 1) , . . . , y (k − r))� (4)

where Mk(·) is the adaptive nonlinear function that chooses between the median or original sample based on 
local statistics. The Adaptive Median Filter thus functions as a nonlinear, robust state observer especially effective 
in environments with impulsive or non-Gaussian noise. The AMF operates by first computing the median value 
within a small window and assessing whether the central pixel (or data point) is a noise component by comparing 
it with local statistical parameters as illustrated in (Fig. 1b).

If the point is identified as noise, it is replaced with the computed median; otherwise, it remains unchanged. 
If the noise persists, the window size is incrementally expanded until an appropriate non-noise replacement 
is found. This adaptive mechanism ensures that actual signal variations caused by PQDs are retained while 
efficiently eliminating high-frequency impulsive noise. In the proposed method, the AMF serves as a state 
observer, effectively enhancing the accuracy of PQD detection by improving signal clarity before feature 
extraction. Its noise-immune system is crucial in low SNR environments, ensuring reliable performance even in 
noisy conditions with SNR as low as 20 dB. Appendix A illustrates the pseudocode of AMF.

Basic principles of the SVM algorithm
The SVM is a powerful supervised machine learning algorithm widely used for classification and regression tasks, 
particularly in PQD detection and classification. SVM is based on the principle of structural risk minimization, 
which seeks to maximize the margin between different classes in the feature space, ensuring high generalization 
ability even in the presence of noisy and complex data. In the context of PQD categorization, SVM is used 
to distinguish between several types of disturbances, such as voltage sags, swells, harmonics, interruptions, 
transients, & frequency deviations, by learning patterns from extracted signal features. The strategy maps input 
data into a space of high dimensions using a kernel function, which can be polynomial, RBF, linear, or sigmoid. 
This modification enables SVM to essentially deal with non-linearly separable data, which is frequent in power 
system signals. The optimum decision boundary, known as the hyperplane, is next determined by reducing the 
margin between the nearest data points of distinct classes, known as support vectors. The strength of SVM in 
PQD classification, as well as its short dataset size, makes it ideal for real-time electrical system applications. 
Moreover, parameter optimization methods such as PSO & GA may be used to fine-tune the SVM model and 
improve classification accuracy.
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The SVM classifier employed in this study utilizes a radial basis function (RBF) kernel owing to its proven 
effectiveness in handling non-linear separable data, which is common in PQD classification. The hyperparameters 
of the SVM, specifically the penalty parameter C and the kernel parameter γ (gamma), were carefully tuned 
using grid search and cross-validation strategies to ensure optimal performance. The tuning process aimed to 
strike a balance between model complexity and classification accuracy, avoiding overfitting and underfitting. 
A five-fold cross-validation approach was applied to validate the generalizability of the model on unseen data. 
The selected hyperparameters, as mentioned in Table 3 were those that yielded the highest average classification 
accuracy while maintaining a low training error. This careful tuning process contributed significantly to the high 
accuracy and fast response of the proposed AMF-SVM-based method.

The workflow of the SVM algorithm is shown in (Fig. 2). The recommended approach for PQD recognition & 
categorization in MEPPBS combines an AMF-based state observer with an enhanced SVM classifier to improve 
accuracy & resilience. A simulation of MEPPBS extracts crucial elements from AMF-estimated PQD signals at 
the beginning point of the procedure. Non-fundamental feature extraction helps identify distortions such as 

Fig. 1.  (a) Workflow of the AMF algorithm. (b) Median strategy of AMF using the sliding window method.
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voltage sags, swells, and interruptions, as well as transients that RESs’ fluctuations often cause. The optimization 
procedure starts with initializing SVM hyperparameters to determine sampling size (N) and maximum number 
of iterations (iterMax). The assessment of fitness function proceeds through iterations until it discovers optimal 
solutions for correct classification. Following the completion of iterations, the procedure terminates as the 
selection of SVM hyperparameters achieves maximum classification results. The SVMBR index allows exact 
discrimination of different PQDs by calculation. The formula for the SVMBR index becomes available as follows.

	 SVMBRt = P QDSV Mn − P QDAMF n−1� (5)

The optimum harmonic features are then engaged to train the SVM classifier, which is then used to classify 
PQDs in real time. The proposed method maintains 97% accuracy while responding at lower than 15 millisecond 
intervals within an SNR condition of 20 dB. The approach detects six differentiated PQDs along with ten aggregate 
disturbances which improve power system stability and resilience. The integration between an AMF-based state 
observer and SVM hyperparameter modification enhances PQD detection reliability in grid-connected RESs so 
they are ready for present-day power grids.

Background theory and mathematical modeling of various PQD
MEPPBS encounters substantial barriers when dealing with PQDs because the ongoing integration of renewable 
energy systems through wind and solar PV adds to the complexity. These PQDs consist of voltage sags and 
swells and harmonics alongside interruptions and transients endanger system stability and reliability as well as 
power electronics operation. An in-depth understanding of PQD mathematical modeling is needed to correctly 
identify and group them. The article explores in detail PQD theory alongside their historical development and 
their impact on power networks38. The paper includes precise mathematical models of disturbances which 
enable researchers to create reliable detection and classification methods.

Voltage Sag
Voltage sag is a short-term drop in RMS voltage below the nominal level, lasting between 0.5 and 30 cycles. It 
is generated by unexpected spikes in power system challenges, load demand, or the operation of big inductive 
motors. Voltage sags can harm sensitive electronic equipment & industrial operations. A voltage sag can be 
mathematically illustrated as follows:

	 Vsag (t) = As.Vmsin2π ft� (6)

Where Vsag (t)is the sagged voltage signal, As is the sag depth factor (0< As<10 ​<1), Vm is the nominal peak 
voltage, f is the fundamental frequency, and t is time.

Voltage swell
Voltage swell is a temporary upsurge in RMS voltage above the nominal level, caused by sudden load reductions, 
capacitor switching, or faults in neighboring feeders. Swells can lead to insulation destruction, equipment 
malfunction, & overvoltage stress. It is mathematically expressed as:

	 Vswell (t) = Aw.Vmsin2π ft� (7)

Where Vswell (t)is the swelled voltage signal, Aw  is the swell depth factor (0< Aw<10 ​<1), Vm, f, and t is 
defined as earlier.

Harmonics
Harmonics are non-sinusoidal waveform distortions caused by nonlinear loads such as power electronic 
converters, variable frequency drives, and fluorescent lighting. They introduce integer multiples of the 
fundamental frequency, leading to increased heating and power losses. The total harmonic distortion (THD) 
is given by:

	
Vharm (t) = Vm

∑
∞
n=1Ansin(2π nft + ∅ n)� (8)

Where Vharm (t)is the distorted voltage signal, An is the amplitude of the nth harmonics, n is the harmonic 
order (n = 1,2,3,…), ∅ n is the phase angle of the nth harmonics.

THD is calculated as:

Parameter Description Tested range Optimal value Tuning method

C Penalty parameter for misclassification [0.1, 1, 10, 100] 10 Grid search + cross-validation

γ Kernel coefficient for RBF kernel [0.01, 0.1, 1, 10] 0.1 Grid search + cross-validation

Kernel Type of kernel used in SVM {Linear, polynomial, RBF} RBF Empirical evaluation

CV folds Number of folds for cross-validation 5 5 Fixed

Table 3.  Hyperparameter tuning of the SVM classifier using RBF kernel for optimal PQD classification 
performance.
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Fig. 2.  Workflow of SVM algorithm.
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T HD =

√ ∑ ∞
n=2(Vn)2

V1
× 100% � (9)

where V1 is the fundamental voltage component.

Interruption
Interruption is a periodic fluctuation in voltage amplitude due to rapidly changing loads such as arc furnaces and 
welding machines. It leads to visible light flicker and affects sensitive loads. The mathematical model is:

	 Vintr (t) = Vm(1 + Af sin (2π fmt))sin (2π ft))� (10)

Where Af  is the Interruption modulation index, (fm) is the flicker frequency (typically below 30 Hz), Vm, f, 
and t is defined as earlier.

Transients
Transients are sudden high-frequency disturbances that last for a short duration and can be classified as impulsive 
or oscillatory. They are caused by capacitor switching, lightning strikes, and load switching. The mathematical 
representation of an impulsive transient is:

	 Vtransients (t) = Vm.e−α tsin2π frt� (11)

Where α is the damping factor, fr  is the resonant frequency of the transient. Vm and t is defined as earlier. 
The rationale behind choosing SVM for power quality disturbance detection lies in its robustness, high 
accuracy, and strong generalization capability, even with limited and nonlinearly separable data. Power quality 
disturbances, such as voltage sags, swells, harmonics, and transients, often exhibit complex patterns that are 
difficult to distinguish using traditional threshold-based methods. SVM effectively handles such complexities by 
constructing an optimal hyperplane that maximizes the margin between different disturbance classes, thereby 
improving classification accuracy. Additionally, SVM’s ability to utilize kernel functions allows it to project input 
features into higher-dimensional spaces, enhancing its effectiveness in distinguishing subtle variations in power 
signal characteristics. This makes it a powerful and reliable tool for real-time detection and classification of 
power quality issues in smart grids and modern power systems.

To validate the stability and robustness of the proposed control framework, we consider the estimation 
dynamics of the AMF combined with the SVM-based classifier. While traditional model-based observers 
require Lyapunov stability theorems to guarantee convergence, our hybrid scheme is primarily data-driven and 
signal-processing-based, and hence, its stability is interpreted in terms of bound error response and consistency 
of detection accuracy under perturbations and noise.

Let x (t) represent the actual disturbance signature and x̂ (t) denote the AMF-estimated signal. The 
boundedness of the estimation error t e (t) = x (t) − x̂ (t) under input disturbance t d (t) and measurement 
noise t n (t) is given by:

	 ∥e (t)∥ ≤ γ ∥d (t)∥ + δ ∥n (t)∥� (12)

where γ and δ are finite constants depending on the AMF window size and filter adaptation rate. This satisfies 
the Input-to-State Stability (ISS) criterion, implying that small disturbances and noise result in proportionally 
small estimation errors. Furthermore, the robustness of the SVM classifier is ensured by maximizing the margin 
between disturbance classes in high-dimensional space, leading to strong generalization even with limited and 
noisy training data. Empirically, the classifier maintained over 96% accuracy under noise conditions of SNR = 20 
dB, and its response time remained below 15 ms, confirming real-time viability and robustness. Thus, while 
classical Lyapunov-based theorems are not directly applicable to this non-model-based framework, the bounded 
error formulation and empirical validation provide a strong theoretical and practical foundation for the scheme’s 
stability and robustness.

Methodology framework of the proposed MEPPBS-protection scheme
The proposed MEPPBS-protection scheme adopts a comprehensive and structured methodological framework 
specifically designed to detect, classify, and mitigate PQDs within MEPPBS. This framework integrates advanced 
signal processing, feature extraction, and intelligent classification techniques to ensure reliable performance 
across a wide range of operational scenarios. As depicted in Fig. 3 the framework is organized into multiple 
sequential steps, starting from the acquisition of electrical signals such as voltage and current, followed by 
preprocessing to eliminate noise and normalize the data. Subsequently, critical features that characterize different 
types of PQDs, such as sags, swells, harmonics, flickers, and transients, are extracted using time-frequency or 
statistical techniques. These features are then analyzed and fed into a classification model of SVM to accurately 
identify the type and severity of the disturbance. The final step involves a mitigation strategy tailored to the 
specific disturbance identified, ensuring system stability and continuous power quality. This multi-step approach 
not only improves detection sensitivity and classification accuracy but also ensures that the MEPPBS system 
operates efficiently and resiliently under varying load and generation conditions.

Simulation and data acquisition
The first step involves simulating a grid-connected MEPPBS model in MATLAB Simulink, incorporating 
renewable energy sources such as wind and PV systems. Various PQDs, including voltage sag, voltage swell, 
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harmonics, flicker, transients, and frequency deviations, are introduced under different environmental and load-
switching conditions. The simulation generates raw power quality signals that serve as the input dataset for 
further processing.

Signal preprocessing using AMF
To enhance signal quality and remove unwanted noise, the raw PQD signals are processed using the AMF as 
illustrated in (Fig. 4). Acting as a state observer, AMF dynamically adjusts its filtering window based on local 
noise characteristics, preserving critical disturbance features while effectively suppressing impulse and Gaussian 
noise. This step ensures that the filtered signals maintain the integrity of PQD characteristics for accurate feature 
extraction.

Feature extraction using SVM
After preliminary processing, non-fundamental characteristics are retrieved from PQD signals for use in 
accurate detection classification. The extracted feature set serves as input to the classification algorithm. The 
SVM classifier receives features obtained from the system and uses them to differentiate PQDs according to their 
specific characteristics. The SVM model relied on six isolated PQD samples along with ten merged interference 

Fig. 3.  Flowchart of the methodological framework of the proposed scheme.
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datasets during its establishment. The radial basis function (RBF) kernel serves to enhance the classification 
accuracy. The training process of the classifier spans different SNR settings (such as 20 dB) for successful 
operation in practical grid conditions.

Performance evaluation
In the performance assessment phase of the SVM classifier, a set of standard evaluation metrics is employed 
to provide a comprehensive analysis of its effectiveness in detecting and classifying PQDs. These metrics 
include classification accuracy, which measures the overall correctness of the model by comparing the number 
of correctly classified PQD instances to the total number of instances. Precision evaluates how many of the 
disturbances identified by the classifier as a specific class are actually correct, while recall assesses the classifier’s 
ability to detect all actual disturbances of that class. The F1-score, a harmonic mean of precision and recall, offers 
a balanced measure especially useful in cases where data is imbalanced or when false positives and false negatives 
have different impacts on system reliability. Additionally, response time is critically evaluated to determine how 
quickly the system reacts to disturbances, which is vital for real-time applications. In this study, the proposed 
SVM-based method demonstrated a high detection accuracy of 97%, indicating reliable performance across 
different PQD types. Moreover, the system maintained a rapid response time of less than 15 milliseconds, 
validating its suitability for real-time power quality monitoring and protection in MEPPBS environments, where 
swift and accurate decision-making is essential for operational stability.

Real-time implementation and decision making
Conclusively, the trained and validated classifier is deployed in a real-time environment for PQD detection 
& classification. The system continuously monitors the power grid, recognizing disturbances and enabling 
appropriate mitigation strategies to ensure power quality enhancement & grid stability. The proposed 
methodological framework incorporates advanced signal processing techniques with machine learning-based 
classification, providing an efficient & reliable solution for PQD detection in renewable energy-integrated grids.

Fig. 4.  Acquired original PQDs and AMF-estimated signatures of PQDs.
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Simulation results and discussion
To evaluate the effectiveness of the proposed scheme, extensive simulations were performed in MATLAB to 
analyze various PQDs. The simulation framework consists of different test cases, where multiple disturbances 
were introduced into the system, and their detection was validated using SVMBR. The key performance 
indicators include the confusion matrix, accuracy vs. training data size, and computational efficiency.

PQDS cases
Testing Initially, for a pure sine wave, the SVMBR remains at zero, indicating no disturbances. However, when 
a PQ disturbance occurs, such as voltage sag, swell, interruption, harmonics, or transient. The SVMBR exhibits 
distinct variations corresponding to the disturbance initiation and duration. These variations highlight the 
ability of the scheme to differentiate between normal and disturbed conditions accurately. Figure 5 illustrate the 
successful operation of the proposed scheme in identifying all kinds of PQDs. Moreover, due to space limitations, 
some results of the cases are also presented in Table  4, which were simulated in different noisy conditions. 
The SVMBR values remain stable during normal conditions, demonstrating the robustness of the method in 
avoiding false detections. When disturbances initiate, the SVMBR significantly deviates from zero, confirming 
the presence of PQ events. Each disturbance results in a unique SVMBR signature, aiding in classification. The 
performance plots validate the scheme’s efficiency, with high accuracy, precision, and recall, ensuring reliable 
disturbance detection. This proves that the proposed approach is capable of real-time PQ monitoring with 
minimal false alarms.

Performance analysis
The confusion matrix provides a detailed insight into how well the SVM model classifies various PQ disturbances, 
as illustrated in (Fig. 6a). It represents the number of correct and incorrect predictions for each class, highlighting 
the model’s accuracy and misclassification rates. The proposed scheme achieves high classification accuracy, with 
minimal false positives and false negatives. This indicates that the model can effectively differentiate between 
disturbances like voltage sag, swell, interruption, harmonics, and transients, even when noise is present in the 
signal. The low misclassification rate further confirms the robustness of the SVM-based approach in handling 
real-world PQ variations. One crucial aspect of machine learning models is their ability to generalize well with 
increasing training data.

The accuracy vs. training data size plot in (Fig. 6b) demonstrates how the SVM model’s performance improves 
as more training samples are included. Initially, with a limited dataset, the accuracy varies. The proposed method 
exceeds current available approaches in terms of performance. The proposed detection technique delivers an 
accuracy level of 97% which establishes a superior result than previous systems. Noisy situations in the system 
become manageable through the use of an AMF-based preprocessing technique in the proposed scheme. The 
computational burden of the proposed method is much lower than that exists in current systems. The proposed 
detection method operates at a fast speed shorter than 15 milliseconds, which suits real-time applications. The 
proposed detection method shows improved performance, which proves its ability to find PQDs effectively 
within MEPPBS under conditions of speed and increased computational efficiency.

Figure 7 illustrate quantitatively, the method achieves a Precision of 96%, indicating that the majority of 
the disturbances identified by the model are indeed true positives, with minimal false alarms. The Recall, 
or sensitivity, stands at 94%, highlighting the model’s strong ability to correctly detect the majority of actual 
disturbances present in the signal. Furthermore, a Specificity of 95% confirms the method’s robustness in 
correctly identifying non-disturbance events, effectively minimizing misclassification of normal conditions as 
disturbances. The F1-score, which balances both precision and recall, is recorded at 0.95, reflecting the method’s 
high overall classification quality even under noisy conditions and limited training data. Importantly, the false 
positive rate (FPR) is as low as 4%, which ensures that the system introduces very few false alarms, a critical 
aspect for real-time grid applications where unnecessary corrective actions can be costly or disruptive.

The stability and robustness of the proposed AMF-based method are demonstrated through a time-domain 
analysis in (Fig. 8). The estimated signal closely follows the actual signal under noise and disturbance conditions, 
with the estimation error remaining consistently low and bounded. The disturbance and noise inputs reflect 
realistic grid perturbations, yet the method maintains reliable tracking without divergence. This validates the 
theoretical stability proofs and confirms the AMF strategy’s effectiveness for accurate and robust PQD detection 
in dynamic, noise-prone environments.

Real-world PQD scenarios
To evaluate the robustness and adaptability of the proposed method under real-world disturbances, several 
unpredictable PQD scenarios were simulated, including sudden load switching, intermittent RES output, 
transient spikes from microgrid faults, and harmonics caused by EV charger interference. As illustrated in 
(Fig. 9). Each disturbance introduces unique waveform distortions, such as sag, flicker, transient spike, and 
waveform distortion. The SVMBRE index successfully detected these events with a high sensitivity to abrupt 
energy variations. Specifically, in all four cases, the SVMBRE response exhibited distinct and sharp magnitude 
variations corresponding precisely with the onset and pattern of the disturbances. Quantitatively, the SVMBRE 
index maintained a detection accuracy above 94%, with a false positive rate below 3% in simulated tests. This 
demonstrates the method’s effectiveness in real-time disturbance recognition, even in highly unpredictable and 
dynamic grid conditions, reinforcing its practical applicability for intelligent PQD monitoring in modern power 
systems.
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Comparative examination
The comparative analysis in Table  5 calculates the proposed MEPPBS-protection method against existing 
benchmark methods in terms of detection accuracy, computational burden, noise consideration, and detection 
time. The proposed method exceeds current available approaches in terms of performance. The proposed 
detection technique delivers an accuracy level of 97% which establishes a superior result than previous systems. 
Noisy situations in the system become manageable through the use of an AMF-based preprocessing technique 
in the proposed scheme. The computational burden of the proposed method is much lower than that exists in 
current systems. The proposed detection method operates at a fast speed shorter than 15 milliseconds, which 

Fig. 5.  Successful detection of the PQDs as illustrated by SVMBR signatures.
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suits real-time applications. The proposed detection method shows improved performance, which proves 
its ability to find PQDs effectively within MEPPBS under conditions of speed and increased computational 
efficiency.

Limitations in real-world conditions
While the proposed AMF and SVM-based detection scheme exhibits excellent performance in terms of 
classification accuracy, response time, and noise robustness under simulated conditions, certain limitations must 
be acknowledged when considering real-world deployment. Firstly, hardware-induced delays, such as analog-
to-digital conversion lag, computational latency of embedded processors, and data communication delays, may 
affect the real-time detection and classification capabilities. Secondly, the system may encounter non-Gaussian 
or impulsive noise in practical environments, which could degrade signal clarity and mislead the classifier if not 
properly addressed through adaptive preprocessing. Additionally, environmental variations such as temperature 
changes and component aging could influence sensor accuracy. While the adaptive nature of the AMF offers 
some resilience, further investigation is warranted to ensure consistent performance under such uncertainties. 
Future work will explore real-time implementation and online learning capabilities to improve adaptability in 
practical microgrid scenarios.

Conclusion
This study presented a dual-algorithm approach for detecting and classifying PQDs in a microgrid environment 
with high renewable energy penetration. By integrating the AMF for signal observation with SVMBR for 
classification, the proposed method effectively identifies multiple PQD types such as voltage sags, swells, 
harmonics, transients, and interruptions even under noisy conditions (SNR = 20 dB). Experimental validation 
demonstrated that the SVMBR classifier achieved an average accuracy of ~ 97% and response times below 15 
ms across diverse PQD scenarios. This high performance was maintained even when the classifier was trained 

Fig. 6.  (a) Confusion Matrix of SVM Classification. (b) SVM accuracy vs. Training data size.

 

Case no. Disturbance type Detection accuracy (%) Classification accuracy (%) Response time (ms) Error margins (±%)

1 Voltage sag 98.5 97.2 12.8 ± 0.8

2 Voltage swell 97.8 96.9 13.1 ± 0.9

3 Harmonics 96.3 95.5 14.3 ± 1.0

4 Transient 99.1 98.4 10.5 ± 0.7

5 Flicker 97.2 96.1 13.6 ± 0.9

6 Frequency deviation 98.0 96.8 12.9 ± 0.8

7 Combined sag + harmonics 96.5 95.2 14.7 ± 1.1

8 Combined swell + flicker 97.3 96.4 13.8 ± 1.0

9 Combined transient + sag 98.7 97.5 11.6 ± 0.8

10 Combined harmonics + flicker 96.9 95.7 14.1 ± 1.0

Table 4.  Performance of proposed scheme under noisy measurements (SNR = 20 dB).
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on only half of the available data, showcasing the method’s generalizability. Such fast and accurate detection 
is critical in real-time grid operations, where timely action is essential to prevent cascading failures, trigger 
protective mechanisms, and facilitate adaptive control. From a practical perspective, the proposed AMF-SVM 
scheme offers significant benefits for grid operators by improving fault detection reliability, minimizing manual 
intervention, and enhancing grid stability and resilience. Future work will focus on transitioning toward real-time 
deployment via hardware-in-the-loop (HIL) testing, addressing latency and resource limitations. Additionally, 
incorporating adaptive learning techniques such as online or reinforcement learning will further improve the 
system’s responsiveness and robustness in dynamic, data-driven grid environments.

Fig. 8.  Stability validation of the proposed AMF method under noisy conditions.

 

Fig. 7.  Performance evaluation of the proposed PQD classification method using key metrics, including 
precision, recall, specificity, F1-score, and false positive rate.
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All simulations and data analysis were performed using MATLAB® R2022b (Version 9.13), developed by 
MathWorks Inc. The official software details can be accessed at: ​h​t​t​p​s​:​/​/​w​w​w​.​m​a​t​h​w​o​r​k​s​.​c​o​m​/​p​r​o​d​u​c​t​s​/​m​a​t​l​a​b​
.​h​t​m​l​​​​​.​​

Data availability
All data generated or analyzed during this study are included in this article.
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