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In cognitive 5G networks, identifying malicious users is essential for protecting dynamic spectrum 
access against attacks like jamming as well as spectrum sensing fraud. However, the complexity 
associated with many 5G settings, limited labelled information, as well as evolving attack methods 
make it extremely challenging to detect these individuals. In order to provide dependable effectiveness 
as well as confidence in cognitive radio-enabled 5G communication frameworks, these networks 
need real-time, efficient, and adaptable classification approaches that can reduce false alarms 
while generalizing successfully. Therefore, this paper performs the Malicious User Classification in 
Cognitive 5G Networks (MUC-C5GN) using novel intelligent machine learning-oriented optimization 
methodology. The data is first collected from the standard benchmark sources called 5G Network 
Intrusion Detection Dataset (5G‑NIDD). The pre-processing of this collected data is accomplished by 
the normalization and scaling methods. Next, the feature extraction of this pre-processed data takes 
place by the Self-Attention RNN-AE (Recurrent Neural Network-Autoencoder) approach. Finally, the 
classification of the malicious users in cognitive 5G networks is performed by the novel Improved 
Bidirectional Encoder Representations from Transformers (IBERT) model. The parameter tweaking 
in BERT is done by the nature inspired optimization algorithm called Revolution Optimization 
Algorithm (ROA). Accuracy maximization is considered as the fitness function for the overall MUC-
C5GN model. Over seven types of attack as well as benign traffic, the proposed IBERT-ROA method is 
evaluated against LSTM-GRU, MLP, Chaotic DBN, and Detectron2 + YOLOv7. According to simulation 
results, IBERT-ROA achieves the best results with 99.74% accuracy, 98.48% sensitivity, 98.91% 
precision, 97.82% MCC, as well as 98.91% specificity—demonstrating improvements of up to 5.99% in 
sensitivity and 2.74% in accuracy over the state-of-the-art technique. These results demonstrate the 
effectiveness, scalability, as well as suitability of IBERT-ROA for real-time malicious user detection in 
dynamic cognitive 5G environments.
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 In recent times, 5G networks have changed the concept of dynamic access to spectrum through Cognitive 
Radio (CR) that enables secondary users to import opportunistically on unused spectrum bands1. As well 
as satisfying the ultra-reliable, low-latency communication services of 5G, this advanced method enhances 
spectral efficiency2. However, due to the fact that the cognitive radio configurations are not only open, but also 
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decentralized, the network becomes susceptible to various security vulnerabilities and in this case, malicious 
parties tend to exploit them3. In their effort to gain unauthorized access, these attackers can also: carry out DoS 
attacks, masquerade out spectrum sensing data or impersonate authorized users4. Consequently, the integrity, 
reliability, and effective functioning of cognitive 5G architectures would rely on the ability to identify and identify 
malicious activities in real-time5.

Although machine learning methods and even signal processing methods have existed, there exist various 
limitations to the detection of malicious users in the 5G cognitive network6. To begin with, malicious activities 
are not easy to model once through a rule-based system because they are usually both dynamic and modifiable7. 
To prevent detection, attackers may replicate the activities of authentic users or utilize advanced methods like 
jamming, main user emulation or use Spectrum Sensing Data Falsification (SSDF)8. Second, classification 
models have access to a limited amount of labelled data, especially in real-world 5G network where data sharing 
is limited both by privacy issues and deployment limitations9. This limitation in resources may impede the 
efforts of developing not only robust but also generalizable methodology10. Third, efficient extraction and indeed 
categorization by any measure are further complicated by understanding the highly dynamic nature and the 
highly variable environments in which cognitive 5G networks have to deal with different traffic spectrum, user 
mobility and indeed signal conditions11.

New and flexible classification techniques, capable of adapting to the changing nature of attacks and network 
bandwidth requirements are required to deal with such issues12. To avoid incorrectly classifying real users, 
methods must be able to learn from sparse, unbalanced, or noisy datasets while lowering false positives13. 
Moreover, for real-time execution on devices with restricted resources, minimizing computational overhead 
is essential14. The development of scalable, interpretable, as well as accurate classifiers for identifying malicious 
users describes a crucial component of safeguarding the future of cognitive 5G networks due to ongoing research 
in this field15.

Conventional machine learning algorithms (like ELM, SVM, as well as DTs) and deep learning ensembles as 
well as incremental learning are some of the previous approaches for identifying malicious users in cognitive 5G 
networks. Even while ELM offers efficient generalization as well as rapid training, it struggles to adapt to rapidly 
changing network conditions and is very susceptible to damaging input interference. Although deep learning 
ensembles increase robustness, their deployment on edge devices—which are ubiquitous in 5G settings—is 
limited by their high processing needs as well as inference delays. While methods such as Self-Attention RNN-
AE improve temporal feature learning, they can be computationally demanding as well as their efficacy can 
be diminished by noisy or incorrectly calibrated training datasets. Although incremental learning techniques 
adapt to evolving threats, they run the risk of catastrophic forgetting as well as decreased accuracy when update 
streams contain hostile or mislabeled information.

These issues are directly addressed by the proposed MUC-C5GN methodology through a combination 
of design choices: (i) IBERT for efficient bidirectional sequence modelling with integer quantization as well 
as reduced attention complexity—decreasing latency and memory usage for edge implementation; (ii) Self-
Attention RNN-AE for extracting noise-resistant temporal–contextual features from diverse traffic patterns; 
and (iii) ROA optimization for dynamic fine-tuning to improve accuracy while maintaining low false positives, 
even in the face of class imbalance. This integration directly addresses the computational as well as adaptability 
constraints of previous attempts, allowing the framework to achieve increased detection accuracy while 
maintaining scalability and real-time viability. The diagram describing the system model for the Cognitive 5G 
network malicious users is displayed in Fig. 1.

The paper contribution is as below.

•	 To perform the MUC-C5GN using novel intelligent machine learning-oriented optimization methodology by 
gathering the 5G‑NIDD dataset.

•	 To accomplish the pre-processing of this collected data by the normalization and scaling methods and to do 
the feature extraction by the Self-Attention RNN-AE approach.

•	 To perform the classification of the malicious users in cognitive 5G networks by the novel IBERT model, 
where the parameter tweaking in BERT is done by the nature inspired optimization algorithm called ROA 
that in turn considers accuracy maximization as the fitness function for the overall MUC-C5GN model.

 The paper organization is as follows. Section 1 is the introduction of malicious users in cognitive 5G networks. 
Section 2 is literature survey. Section 3 is proposed methodology with proposed model, dataset description, pre-
processing by normalization and scaling, feature extraction by self-attention RNN-AE, classification by novel 
IBERT and ROA algorithm. Section 4 is results and analysis. Section 5 is conclusion.

Motivation
Cognitive radio networks are essential for increasing spectrum efficiency as well as enabling dynamic spectrum 
access in the emerging field of 5G communication. However, because these networks are open as well as 
decentralized, they are particularly vulnerable to malicious user attacks, such as impersonation, jamming, and 
manipulation of spectrum sensing information. These risks compromise the dependability as well as security 
of crucial communication services in addition to impairing network effectiveness. Conventional detectors may 
have a problem with accuracy too, not to mention time adaptation, particularly when the wireless environment 
is highly dynamic and diverse (as it will be in the case of 5G). This vibrates an urgent need to develop smart, 
scalable and also good methods capable of catching evil users with the least amount of false positives. Operation 
of cognitive 5G networks requires the generation of trust in spectrum access options in addition to protection of 
the authorized users against misuse. These issues have to be resolved when developing next-generation wireless 
communication architectures that are reliable, secure, and robust.
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Related work
To detect malicious users in collaborative spectrum sensing in cognitive radio network, this paper employed 
the Extreme Learning Machine (ELM)16. The ELM technique was implemented to differentiate between the 
malicious and the legitimate sensing data due to its fast-training capabilities and great generalization. The ELM 
model performed better in comparison to a more sophisticated classifier such as SVM, or Decision Trees (DTs), 
in identifying attempts of falsification of spectrum sensing with high accuracy of detection and low False Alarm 
Rates (FARs). Free access of the clean labelled information was imperative to the success of the method. It also 
failed to adapt to rapidly changing network environments real time and was also prone to malicious inputs.

The study proposed, in the context of assessing as well as categorizing risks in 5 g cognitive radio systems, 
an ensemble method of deep learning, involved the combination of numerous neural networks17. The ensemble 
methodology applied a range of structures to become more robust. The ensemble method greatly enhanced the 
precision associated with the threat detection where the overlap effect as well as the covert or concealed attacks 
were also observed. Its high complexity of processing and inference latency were its main constraints and finding 
edge devices, or mobile ones were complicated to apply in real-time without additional optimization.

The work in18 used an approach to deep learning to detect encrypted traffic by using AI to detect any ill aims 
in encrypted 5G networks data streams. It applied flow-oriented features as opposed to payload content. The 
method aided in providing security to sharing information in 5G networks without compromising the integrity 
of encryption as it is effective in detecting and identifying different types of malicious encrypted traffic. One may 
need to retrain the technique often to adjust to changeable traffic patterns and the technique may face challenges 
by zero-day attacks. Also, in a few cases, it may occur that it could cause ambiguous classification, where some 
extracted characteristics were described by the encrypted flows.

A Self-Attention Recurrent Neural Network Autoencoder (RNN-AE) can be applied to real-time spectral 
intrusion detection19. Although the AE design separated anomalies, the self-attention process accelerated 
information gathering of the time context. Tiny spectral activity invasions were detected very well and only a 
few false positives were obtained. Furthermore, it showed good real time capabilities in detection of spectral 
anomalies. The technique had performed well in the case of detection, but it may be computationally very 
demanding on the continuous spectrum monitoring. Additionally, the quality of its effectiveness was also 
spoiled by the noise training information and by the uncalibration of thresholds that took place during the 
reconstruction process.

To study the changing malicious traffics trend in 5G, this literature developed intrusion detection based 
on incremental learning20. To dynamically learn new ways of detection, it introduced the concept of machine 
learning and real-time traffic monitoring. The learning-incremental approach also contributed to greater use 
and a massive decrease in deterioration of the model over time because of the flexibility of the method related 
to the new attacks. The updates can come in the form of incremental updates, which can introduce inaccurate 

Fig. 1.  System model for the Cognitive 5G Network Malicious Users.
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or harmful information and at the same time add flexibility. Training was insufficient, thus creating the danger 
of catastrophic lapse.

In order to safeguard CR-IoT networks, the study proposes OntoBlock, a platform that combined blockchain-
augmented spectrum sensing with ontology-driven threat modelling21. It blended trust validation with 
semantic reasoning. Using blockchain information, ontological danger patterns, as well as spectrum sensing 
reports, OntoBlock effectively detected and halted malicious user behavior. It made traceability possible as well 
as increased confidence. When ontologies as well as blockchain were used together, system complexity and 
latency increase. To function effectively, it required well-defined ontological methodologies as well as a wealth of 
available resources. Some of the features and challenges of traditional models are given in Table 1.

Problem statement
Although the goal of cognitive 5G networks is to effectively utilize underutilized spectrum, their dynamic as 
well as decentralized nature makes them susceptible to security threats, particularly from malicious users. 
These adversaries can carry out attacks such as main user simulation, jamming, as well as spectrum sensing 
data modification, which can lower network effectiveness, disrupt communication, and Denial of Service 
(DoS) for authorized users. Existing detection techniques usually rely on inflexible rule-oriented frameworks 
or conventional machine learning methods, which lack the adaptability as well as accuracy needed to function 
effectively in the quickly evolving 5G environment. Furthermore, their limited scalability as well as high FPRs 
hinder their usefulness. Accurately identifying malicious users in cognitive 5G networks beneath a variety 
of operational situations as well as traffic patterns requires a robust and efficient classification framework. 
Developing a reliable system that ensures safe spectrum access, lowers the likelihood of misclassification, as well 
as maintains network effectiveness and confidence describes the problem.

Proposed methodology
Proposed model
The proposed MUC-C5GN model is composed of various phases such as data collection, pre-processing, feature 
extraction and classification. The initial data is obtained from 5G-NIDD, a typical benchmark source. The 
gathered data is processed using the normalization as well as scaling procedures. The Self-Attention RNN-AE 
technique is then used to extract features from the previously processed data. Finally, in cognitive 5G networks, 
the novel IBERT model performs the categorization of malicious users. ROA, an optimization technique inspired 
by nature, is used to modify the parameters of BERT. For the entire MUC-C5GN model, the objective function 
is thought to be maximizing accuracy. This proposed IBERT-ROA of the MUC-C5GN model classifies the final 
output into seven classes such as normal, User Datagram Protocol (UDP), HyperText Transfer Protocol Flood 
(HTTP) Flood, port-scan attacks, Internet Control Message Protocol (ICMP), Synchronize (SYN) and Slow rate 
respectively. The overall proposed MUC-C5GN model is displayed diagrammatically in Fig. 2.

Dataset description
A big, useful dataset called the 5G-NIDD is developed to evaluate techniques for identifying malicious users 
in 5G network environments. It was taken from a real-world 5G test environment and includes a variety of 
traffic kinds, involving regular communication as well as a number of attack techniques, including UDP flood, 

Citation Methodology Features Challenges
22 Machine learning models Fast as well as adaptive threat detection Needs frequent retraining
23 Reputation-based fusion algorithm Robust against data falsification Slower convergence
24 Federated learning Minimizes requirement for central data storage High communication overhead
25 Deep learning Improved sensing accuracy Hardware deployment complexity
26 Hybrid model combining GRU and SVM Enhances detection accuracy over standalone methods Needs optimal hyper parameter tuning

27 Behavioral as well as slicing-oriented 
anomaly detection Performs better in virtualized 5G environments Detection may lag real-time events

28 DeepTransIDS Efficient even with class imbalance Feasibly higher computational cost than simpler 
methods

29 contrastive learning Offers visualization for interpretability. Potential high computational needs for training
30 Transformer model Handles data efficiently. Complexity of overfitting
31 Zero-shot prompting Minimizes manual analysis time Certain detected vulnerabilities remain unverified.
32 LSTM Scalable and applicable for real-time IoT contexts. Needs substantial training resources.

33 ML/DL models Improves interpretability as well as analyst trust in AI-driven 
detection Ongoing problems with class imbalance

34 Transformer-based neural network Adapts to local traffic changes for enhanced effectiveness. Needs stable communication for federated modifications
35 Federated learning Adaptable to distinct deployment scenarios. Needs important computation at edge nodes

36 Auditor-oriented verification tree Eradicates transitive trust dependency, describing collusion 
attacks Includes latency in verification.

37 Self-Supervised Learning (SSL) Scalable to vast automotive frameworks Potential complexity in deployment across 
heterogeneous vehicle frameworks.

Table 1.  Features and challenges of traditional models.
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ICMP flood, HTTP flood, SYN flood and port-scan attacks. The dataset allows for both flow-oriented as well 
as packet-level analysis since it contains traffic logs in formats including CSV, pcapng, and Argus. To facilitate 
supervised machine learning tasks, each sample is labelled to distinguish among benign and harmful activity. 
Because it replicates real traffic contexts across multiple network interfaces, 5G-NIDD is especially helpful for 
researching cognitive 5G networks. It facilitates the development as well as validation of classification methods 
that can identify malicious secondary users or anomalous behaviors in situations involving fluctuating spectrum 
access. Because of its architecture, it may be used to train, test, as well as assess classification algorithms in both 
federated and centralized intrusion detection frameworks.

An actual 5G testbed (the 5GTN in Oulu, Finland) is used to build the fully annotated 5G-NIDD dataset, which 
documents network traffic flows under both typical use as well as a variety of attack scenarios. Approximately 
1,215,890 network flow records in total. A vector of 112 input attributes, including data from several network 
levels (IP, TCP/UDP, and application—like HTTP, HTTPS, SSH, and SFTP), is used to represent each flow. 
Network metrics are mostly flow-oriented (Layer 3/4 information after GTP removal). It shows combination of 
higher-level indications like HTTP/SSH/SFTP trends with protocol-specific characteristics (such as packet and 
byte counts, time intervals, as well as indicators) within IP, TCP, UDP, and ICMP. Class ratios are maintained by 
stratified divisions (e.g., 80% for training and 20% for testing), which is crucial given the class imbalance (e.g., 
ICMP Flood is notably under-described relative to UDP Flood). The class distribution by the count of flows is 
shown in Table 2.

Pre-processing by normalization and scaling
In cognitive 5G networks, pre-processing is crucial for increasing the accuracy as well as efficacy related to 
malicious user categorization. Efficient pre-processing is crucial to ensuring that the input for classification 
methods is consistent, important, as well as unambiguous due to the high amount, diversity, as well as noise in 
raw network traffic information. In the dynamic, spectrum-sharing scenarios typical of cognitive 5G networks, 
the various pre-processing steps are essential for improving model generalization, reducing false positives, as 
well as enabling real-time detection of malicious users.

Fig. 2.  Overall Proposed MUC-C5GN model.
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In cognitive 5G networks, normalization as well as scaling are crucial pre-processing techniques for getting 
network traffic information ready for malicious user classification. Directly feeding raw network traffic data (like 
signal strength, inter-arrival time, packet size, as well as port numbers) into a machine learning model might 
lead to biased results since they vary in scale and unit. Normalization is essential to ensure that every feature 
has an equal influence on the final choice since machine learning methods are extremely sensitive to the size of 
features.

Min-Max Normalization describes a commonly used technique that modifies the data to fit inside a given 
range, often [0, 1]. This is particularly advantageous when the method assumes that the input characteristics are 
distributed consistently. The formula is:

	
y′ = y − yMin

yMax − yMin
� (1)

Here, the normalized feature value is shown by y′ , minimum as well as maximum values of that feature is shown 
by yMin and yMax and the original feature value is given by y respectively.

Z-score Normalization (Standardization) describes a frequently used technique that modifies the feature 
values to have a variance of one as well as a mean of zero. This is particularly helpful when traits have a Gaussian 
distribution. The formula is:

	
y′ = y − µ

σ
� (2)

Here, the standardized feature is shown by y′ , standard deviation is shown by σ  and the mean associated with 
the feature is shown by µ  respectively.

The process of normalization enhances the effectiveness of the training process and convergence of the 
machine learning approaches in the cognitive 5G scenarios where the properties to be learned are of significantly 
different scales, e.g., Signal-to-Noise Ratio (SNR) is calculated in decibels and packet sizes are value in bytes in 
the 5G-NIDD dataset. Moreover, it minimizes the effect of significant features alongside increasing the capacity 
of a classifier to identify the slightest changes caused by malicious users, e.g. aberrant timing schemes or spastic 
transmission rates. Thus, in medium to large, real-time 5G network scenarios, normalization is workable along 
with scaling enhancement model effectiveness, less amount of false positive, as well as general detection trust.

Feature extraction by Self-Attention RNN-AE
In the cognitive 5G networks, feature extraction is the important component in the characterization of malicious 
users since it creates clear and understandable descriptions of raw network data that is deemed suitable in machine 
learning algorithms. Efficient feature extraction makes it possible to determine the main behavioral qualities 
that can serve as the criteria of distinguishing fraudulent user and legal users in high-dimensional, dynamic 
5G environments. Spectrum data or traffic logs can all be used to extract statistical features (e.g. signal strength 
change, average packet size), temporal features (e.g. session length, time between arrivals), and protocol-specific 
measures (e.g. number of flags, port access frequency). With cognitive 5G networks, where malicious users tend 
to disguise themselves as regular communicators, feature extraction minimizes requirements on processing, 
enhances accuracy of classifications, and also facilitates quicker and real-time detection of abnormalities by 
focusing on key attributes.

Self-Attention RNN-AE is an effective feature extraction utility which is capable of learning both temporal 
and contextual relationships in sequential network traffic streams, which is valuable as far as detection of 
malicious users in cognitive 5G networks is concerned. Malicious actions like false spectrum sensing or jamming 
messages in cognitive 5G networks tend to be not only subtle but also temporally and spatially diffused and are 
high dimensional. Self-attention RNN-AEs are especially useful since identifying such complex patterns may be 
tricky by using conventional feature extraction.

The two primary components of an RNN-AE are a decoder RNN that reconstructs the original sequence using 
the encoded features as well as an encoder RNN that compresses input sequences into a latent feature description. 
The encoder calculates hidden states iu for each time step u of an input sequence Y = {y1, y2, · · · , yU }in a 
mathematical format as follows:

Class Number of flows

Benign 477,737

HTTP Flood 140,812

ICMP Flood 1,155

SYN Flood 9,721

SYN Scan 20,043

Slowrate DoS 73,124

TCP Connect Scan 20,052

UDP Flood 457,340

UDP Scan 15,906

Table 2.  Class distribution by the number of Flows.
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	 iu = g (iu−1, yu)� (3)

Here, g describes a recurrent function like GRU or LSTM. The encoded latent vector a is generally derived from 
the final hidden state iU  as follows.

	 a = iU � (4)

The decoder next plans to reconstruct the sequence Ŷ = {ŷ1, ŷ2, · · · , ŷU } utilizing:

	 ŷu = h
(
i′
u

)
, i′

u = g
(
i′
u−1, ŷu−1

)
� (5)

The reconstruction error is intended to be decreased by the method:

	
MRec =

∑
U
u=1∥ yu − ŷu ∥2� (6)

A self-attention procedure is included to enhance the method’s ability to focus on important parts related to the 
sequence. Varied time steps are given varied weights by the attention procedure based on how important they 
are. For a hidden state matrix I = [i1, i2, · · · , iU ], attention weights α u are measured as below.

	
α u = exp (fu)∑ U

l=1exp (fl)
, fu = score (iu)� (7)

Either a trainable feedforward layer or the dot product are common scoring functions. Next, a weighted total is 
produced for the context vector d:

	
d =

∑
U
u=1α uiu� (8)

The last extracted feature, represented by the context vector d, captures both temporal dependencies as 
well as notable patterns that are critical for identifying malicious activity. These identified properties enable 
the classifiers of cognitive 5G networks to dissimilarity between adversaries involved in covert attacks such 
as Spectrum Sensing Data Falsification (SSDF) besides Primary User Emulation (PUE) and licensed users. In 
the noisiest or partly observed domains, immense precision plus endurance is attained upon using sequence 
learning of RNN and dynamic the focus capacity of attention. The Self-Attention RNN-AE has become one 
of the leading techniques of feature extraction in intelligent spectrum access schemes (as well as safe) via 5G 
cognitive radio systems.

Classification by novel IBERT
Classification in cognitive 5G networks is very significant in recognizing malicious users, where illicit or 
fraudulent actions of an impersonator, jammers or misusers of spectrum sensing data can be automatically 
identified. When relevant features have been extracted in the network traffic or signal or it is done in the 
signal data, classification algorithms are applied to determine the user as malicious or not. These classifiers 
analyze labelled datasets to determine a pattern that suggests abnormal activities so that there is the possibility 
of both fast and correct identification of threats in variable and fast-dynamically changing 5G environments. 
Both efficiency and safety of cognitive 5G systems are based on effective segregation, which also guarantees 
maximum utilization of the spectrum, safeguards the dependability of communication, and maintains the 
integrity pertaining to the dynamic spectrum access.

The capability of BERT to understand complex contextual relationships in sequential data has lots of benefits 
in terms of malicious users’ classification in cognitive 5G networks. BERT has been especially successful at 
studying both time-based and protocol-level trends of network traffice since, unlike existing approaches whose 
analysis is restricted to one direction i.e., both past and future effects are unknown, it employs a bi-directional 
attention process to discern their previous and future dependencies. This is how BERT is able to detect minor 
anomalies capable of signifying the existence of dangerous behaviour, including data tampering or spectrum 
abuse. It can be well generalized with access to limited labelled data even though the data is only labelled as 5G, 
as its pre-training has enough large datasets.

Moreover, BERT can be tuned to be efficient to numerous classification tasks with minimum adjustment to 
its structure. These properties lead to higher detection rates, lower false alarms and high reliability in action in 
complex and dynamic area that define the cognitive 5G networks. BERT has numerous drawbacks that negate 
BERT benefits even though it can be well used in the case of malicious user categorization in cognitive 5G 
networks. It is very complex, computationally and very resource-demanding. Because of its high memory and 
processing needs, BERT cannot be as easily applied to real-time usage in edge, or otherwise resource-limited 
devices in a network, particularly in a 5G network. Additionally, it might take quite some time to fine-tune or 
tweak it into becoming as effective as possible in cybersecurity tasks because the organization of network traffic 
is not necessarily going to gel perfectly with the linguistic information that it initially trained on. Due to the fact 
that BERT approaches are often difficult to interpret or obscure, they challenge issues of not only explainability 
but also trust in security-sensitive systems.

Moreover, when there is insufficient labelled information specific to the domain, BERT can either overfit or 
perform poorly with malicious activity being rare or when the dataset is significantly imbalanced. These issues 

Scientific Reports |        (2025) 15:43415 7| https://doi.org/10.1038/s41598-025-19156-7

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


constrain the BERT applicability in certain hostile user identification that are real time or run on lightweighted 
hosts in cognitive 5G networks. The new IBERT has numerous benefits in terms of classifying malicious users in 
the cognitive 5G networks by enhancing the efficiency and the versatility of the original BERT design. IBERT is far 
better suited to real-time edge inference using limited-capable devices, a typical 5G scenario, after its enhanced 
version that provides integer quantization, a lower attention computational complexity, and a simplified model 
compression. While drastically reducing latency as well as memory usage, it maintains the robust contextual 
comprehension of regular BERT, enabling faster detection of malicious activities such as spoofing, jamming, 
or spectrum sensing manipulation. Furthermore, IBERT can more successfully adapt to domain-specific traffic 
anomalies as well as behaviors while preserving classification accuracy thanks to its improved fine-tuning 
capability. With these advantages, IBERT is positioned as a strong choice for high-performance, deployable, 
as well as scalable malicious user detection in the dynamic, dispersed environment of cognitive 5G networks.

A context-sensitive as well as effective machine learning methodology for MUC-C5GN applications is 
provided by the IBERT model. Despite its ability to comprehend intricate contextual meanings, classic BERT 
is resource-intensive as well as difficult to implement in real-time 5G network environments. Using model 
compression techniques such as integer quantization, weight pruning, as well as attention simplification, IBERT 
overcomes these difficulties and achieves excellent accuracy having significantly lower memory and processing 
requirements, making it ideal for deployment at edge or fog nodes within a 5G cognitive paradigm.

IBERT uses just integer arithmetic instead of floating-point computations, while maintaining the 
Transformer-oriented encoder architecture of BERT. An organized representation of network traffic or user 
behavior sequences (such as protocol interactions, time patterns, or port use) makes up the input for IBERT. 
Every input sequence Y = {y1, y2, · · · , yo} is initially embedded as below.

	 F = embedding (y1, y2, · · · , yo)� (9)

Here, the embedding dimension is shown by e and the input embeddings are shown by F ∈ So× e. The 
attention scores are computed in standard BERT utilizing the following:

	
attention (R, L, W ) = softmax

(
RLT

√
el

)
W � (10)

In IBERT, this is tuned by quantizing the matrices R, L, W  for lowering precision integers in order to enable 
effective calculation.

	
quantized attention (R, L, W ) = softmax

(
R(Int)L(Int)T

√
el

)
W (Int)� (11)

These quantized procedures significantly reduce the amount of time as well as energy required for inference, 
which is crucial in 5G edge scenarios. The input description is obtained by pooling the contextual output from 
the final encoder layer, often using the [CLS] token:

	 a = layer norm
(
I[CLS]

)
� (12)

Here, the hidden state respective to the [CLS] token is shown by I[CLS] ∈ Se. This is transferred via a simple 
fully connected classifier.

	 ẑ = softmax (Xa + c)� (13)

Here, X ∈ Sd× e, c ∈ Sd and the count of classes (benign or malicious user) is shown by d. The purpose of 
the model is to lower the cross-entropy loss:

	
M = −

∑
d
j=1zj log (ẑj)� (14)

Because of its scalability to handle large traffic volumes, excellent accuracy with unbalanced data, as well as 
real-time inference capabilities, IBERT stands out in cognitive 5G networks. The contextual nature related to 
the transformer makes it possible to detect minor abnormalities such as PUE and SSDF by recognizing both 
short- as well as long-range relationships in user behavior. Its lightweight design also makes it easy to integrate 
with edge devices used for real-time threat detection as well as distributed spectrum monitoring in 5G network 
slicing. By utilizing contextual sequence modelling in conjunction with low-latency, resource-efficient inference, 
IBERT provides a robust as well as effective classification method for identifying malicious users in cognitive 5G 
networks, establishing it as a promising option for secure wireless communication in next generations. The block 
diagram of novel IBERT for the MUC-C5GN model is displayed in Fig. 3.

ROA algorithm
Optimization is crucial for enhancing the effectiveness of malicious user categorization systems in cognitive 
5G networks by modifying model parameters and system resources. This enables more greater accurateness, 
faster identification, and less False Positive Rates (FPRs). In such complex and dynamic scenarios, optimization 
methods are employed to change hyperparameters of machine learning models and also achieve a nice balance 
between sensitivity and specificity of detection. Moreover, optimization enables real-time execution on edge 
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gadgets with scarce resources since it changes the computational intricacy. Optimization also provides accurate 
and effective threat detection within the spectrum sharing system of cognitive 5G networks due to better model 
generalization and a reduction in false positive rates in which the non-malicious user is classified as being 
malicious.

Inspired by social revolutions, ROA divides its methodology into three phases: (i) revolutionary ideology, 
which lays the foundation for variation; (ii) revolutionary action, which represents metamorphosis; as well as 
(iii) increased self-awareness, which denotes improvement and adaptability. Each step contributes to a strong 
mathematical foundation that guides the algorithm’s operations.

Because ROA is a population-driven algorithm, it uses a collection of possible solutions to look into the issue. 
Each solution corresponds to a unique set of decision factors and is represented by a person in the population. 
Together, these elements make up the solution matrix, which is expressed as mathematical vectors Eq. (15). To 
ensure sufficient variety as well as prevent early convergence, the starting population is generated at random over 
the solution space at the start of the process utilizing Eq. (16).

	

Y =




y1,1
...

yj,1
...

yO,1

· · ·
. . .
· · ·
. . .
· · ·

y1,k

...
yj,k

...
yO,k

· · ·
. . .
· · ·
. . .
· · ·

y1,n

...
yj,n

...
yO,n




O× n

� (15)

	 yj,k = LBk + s × (UBk − LBk)� (16)

The population matrix is represented by Y  in these calculations, the jth member associated with the ROA 
is indicated by Yj , the value assigned to the kth variable by the jth member is represented by yj,k , and the 
number of population members as well as problem variables are indicated by O and n, respectively. Every 
variable’s lower as well as upper bounds are represented by the parameters LBk  and UBk , whereas s describes 
a random number between 0 and 1.

Following initialization, each member’s fitness function is evaluated, producing an aligned vector of function 
values (Eq. (17)). The current leader, who guides subsequent search stages, describes the person who offers the 
optimal fitness value.

	

G =




G1
...

Gj

...
GO




O× 1

=




G (Y1)
...

G (Yj)
...

G (YO)




O× 1

� (17)

Here, the vector related to the fitness function, which includes the general goals associated with the optimization 
problem, is represented by the symbol G. This vector is increased by each component of the ROA, in which Gj  
stands for the specific fitness function value associated with the jth member of the ROA.

Three interrelated stages—Revolutionary Ideology, Revolution Movement, as well as Enhancement of 
Self-awareness—are used by the ROA algorithm to repeatedly alter its population. These phases illustrate 
the dynamics of revolutions by striking a balance between exploitation (improving existing solutions) and 
exploration (exploring novel regions).

The population members’ placements inside the search space are altered by the leader’s beliefs in each ROA 
iteration. The formula given in Eq. (18) determines a novel position for every individual by taking into account 
the leader’s growing ideological influence. As the algorithm advances, this formula ensures that individuals 

Fig. 3.  Block diagram of Novel IBERT for the MUC-C5GN model.
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gradually come into line with the leader’s vision. The update is approved, replacing the individual’s previous 
location as shown in Eq. (19), if the fitness function’s value rises with the novel location.

	
yQ1

j,k =
(

1 − u

U

)
· yj,k +

(
u

U

)
· Mk � (18)

	
Yj =

{
Y Q1

j , GQ1
j < Gj

Yj , otherwise
� (19)

Here, Y Q1
j  represents the updated position related to the jth member of the population in the first stage, 

whereas yQ1
j,k  represents the kth component of that updated position. GQ1

j  represents the value linked with the 
fitness function at this novel point. The pioneering leader, represented by M , holds a position with Mk  as its 
kth component. The present iteration is denoted by the variable u, while the total number of iterations allowed 
by the algorithm is denoted by U . Participants become nearer to the leader’s position as iterations go, simulating 
the increasing alignment of followers with a compelling revolutionary vision over time.

Following the leader’s plan determines each individual’s starting location in order to mimic the revolutionary 
movement stage in ROA. Equation (20), which shows how individuals alter their behaviors to fit the leader’s 
influence, is used to achieve this. The calculated shifts show notable changes in the individual’s positions, 
promoting global investigation in different regions related to the search space. Finding better solutions is more 
likely as a result of this thorough examination. If the updated location improves the fitness function’s result, as 
shown in Eq. (21), it is maintained.

	 yQ2
j,k = yQ2

j,k + s ·
(
Mk − J · yQ2

j,k

)
� (20)

	
Yj =

{
Y Q2

j , GQ2
j < Gj

Yj , otherwise
� (21)

In this case, the newly calculated position for the jth population individual in the second stage of ROA is 
denoted by Y Q2

j , and the kth dimension of this position is denoted by yQ2
j,k . Here, GQ2

j  represents the value 
associated with the fitness function. The leader’s location is indicated by the symbol M , and the kth element of 
that location is represented by Mk . Randomness is added to the alteration by selecting the variable J  at random 
from the collection {1,2}. Additionally, s describes a random value between 0 and 1, which adds unpredictability 
to ensure a variety of investigation.

The program randomly generates a novel place near every population individual’s existing position in order 
to replicate the third stage of ROA. This approach demonstrates the little changes people make as a result of 
reflection and learning. Equation  (22) was used to calculate these little locational modifications, which are 
intended to assist the individuals in gradually improving their solutions. These small-scale modifications ensure 
that the search prioritizes using local areas of the issue space, which improves the algorithm’s capacity to find 
better solutions close to those that have previously been discovered. The goal of the modification procedure is to 
increase the search’s precision, which complements the broader analysis carried out in earlier phases.

As shown in Eq. (23), every individual’s updated location will only be approved if it results in a higher fitness 
function value. This approach ensures that the algorithm keeps beneficial changes while removing ineffective 
ones.

	
yQ3

j,k =
{

yj,k + s
(
yOLD

j,k − yj,k

)
, GOLD

j < Gj

yj,k + s
(
yj,k − yOLD

j,k

)
, otherwise

� (22)

	
Yj =

{
Y Q3

j , GQ3
j < Gj

Yj , otherwise
� (23)

Here, Y Q3
j  denotes the jth individual’s freshly established location in the third stage of ROA, whereas yQ3

j,k  
refers to its kth dimension. The fitness function value at the updated location is represented by the value GQ3

j . 
The kth dimension associated with the individual’s location from the earlier iteration (i.e., u − 1) is indicated 
by the symbol yOLD

j,k , and the fitness function value at that earlier location is shown by GOLD
j . The pseudocode 

of ROA is displayed in Algorithm 1 and the flow model of ROA for the MUC-C5GN model is shown in Fig. 4.
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Fig. 4.  Flow model of ROA for the MUC-C5GN model.
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Algorithm 1 ROA

Results and analysis
Experimental setup
The proposed IBERT-ROA for the MUC-C5GN model was implemented in MATLAB and the findings were 
discussed. The population size and the iteration count was taken to be 10 and 200. The proposed IBERT-ROA 
was compared with numerous models like LSTM-GRU, MLP, Chaotic DBN and Detectron2 + YOLOv7 with 
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consideration of analysis such as accuracy, sensitivity, FPR, precision, Matthews Correlation Coefficient (MCC), 
F1 Score and specificity to reveal the superiority of the proposed MUC-C5GN model.

Accuracy analysis
The MUC-C5GN accuracy evaluation demonstrates the proposed IBERT-ROA model’s exceptional as well as 
reliable effectiveness throughout 200 iterations as in Fig. 5. With a starting classification accuracy of 92.49% at 20 
iterations as well as reaching 99.74% at 200 iterations, IBERT-ROA consistently improves and outperforms entire 
other approaches. Although their progress seems more slow, Detectron2 + YOLOv7 also obtains outstanding 
findings, peaking at 98.40%. Chaotic DBN comes in second, at 97.46%. Despite improving over iterations, 
LSTM-GRU as well as MLP still perform poorly, with ultimate accuracies of 97.08% and 94.91%, respectively. 
The results show that IBERT-ROA exhibits strong generalization as well as convergence capabilities, maintaining 
high accuracy from the first iterations while scaling better with further training. This demonstrates that IBERT-
ROA describes a very effective method for accurately as well as scalable identifying malicious users in dynamic 
cognitive 5G network environments. The proposed IBERT-ROA for the MUC-C5GN model in terms of accuracy 
is 2.74%, 5.09%, 2.34% and 1.36% better than LSTM-GRU, MLP, Chaotic DBN and Detectron2 + YOLOv7 
respectively.

Sensitivity analysis
The proposed IBERT-ROA model’s improved detection capability across entire iterations is demonstrated by the 
sensitivity analysis for MUC-C5GN as in Fig. 6. The proposed approach continuously outperforms conventional 
methods, with a strong sensitivity of 89.41% at 20 iterations as well as gradually improving to 98.48% at 200 
iterations. Impressive sensitivity is also demonstrated by Detectron2 + YOLOv7, which ends at 97.17% and is 
followed by Chaotic DBN at 95.10%. Both show consistent as well as reliable effectiveness. By contrast, LSTM-
GRU as well as MLP exhibit reduced sensitivity, attaining 92.91% and 93.08% in the final iteration, respectively. 
As the number of iterations increases, the sensitivity gradually increases, demonstrating the model’s strong 

Fig. 5.  Accuracy analysis.
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ability to accurately detect real malicious users. This consistent as well as high sensitivity over the training 
spectrum demonstrates IBERT-ROA’s robustness and flexibility in dynamic 5G cognitive environments, in 
which lowering false negatives is essential to guaranteeing reliable and secure communication. The sensitivity 
gains of the proposed IBERT-ROA for the MUC-C5GN model over LSTM-GRU, MLP, Chaotic DBN, and 
Detectron2 + YOLOv7 are 5.99%, 5.80%, 3.55% and 1.35%, respectively.

FPR analysis
The effectiveness of the proposed IBERT-ROA in lowering incorrect categorization of malicious users is 
highlighted by the FPR study of MUC-C5GN as in Fig. 7. Its remarkable capacity to eliminate false alarms is 
demonstrated by its steady decline from a low FPR of 3.96% at 20 iterations to an amazing 1.16% by 200 iterations. 
On the other hand, traditional models like LSTM-GRU as well as Detectron2 + YOLOv7 have noticeably higher 
FPRs throughout the course of iterations; LSTM-GRU starts at 8.74% and only reaches 2.09%, whilst YOLOv7 
exhibits more fluctuation before levelling off. Over time, MLP as well as Chaotic DBN also reduce FPRs, 
although not as well as IBERT-ROA. The proposed model’s continuously lower FPR demonstrates its capacity to 
maintain high classification accuracy while maintaining sensitivity, which is critical in 5G cognitive networks in 
which user confidence as well as efficient spectrum usage are critical. For the MUC-C5GN model, the suggested 
IBERT-ROA outperforms LSTM-GRU, MLP, Chaotic DBN, and Detectron2 + YOLOv7 in terms of FPR by 
44.50%, 54.86%, 48.67% and 44.23%, respectively.

Precision analysis
The MUC-C5GN precision study demonstrates the proposed IBERT-ROA’s capacity to detect malicious users 
with fewer false positives as in Fig. 8. From 89.84 to 98.91% by the 200th iteration, IBERT-ROA consistently 
outperforms entire remaining approaches tested. Despite showing somewhat fewer consistency in the early 
rounds, Detectron2 + YOLOv7 comes in second with excellent performance, reaching 97.25%. While LSTM-
GRU records a lower ultimate precision of 94.10%, MLP as well as Chaotic DBN show progressive increases, 

Fig. 6.  Sensitivity analysis.
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culminating at 96.12% and 95.20% respectively. Strong dependability for threat detection in sensitive cognitive 
5G network scenarios is ensured by the notable increase in precision during training iterations for IBERT-
ROA, which highlights its capacity to properly detect malicious actions while avoiding misclassifying legitimate 
users. This remarkable precision shows how well the model learns as well as generalizes in complex, real-time 
communication networks. The suggested IBERT-ROA outperforms LSTM-GRU, MLP, Chaotic DBN, and 
Detectron2 + YOLOv7 in terms of precision for the MUC-C5GN model by 5.11%, 2.90%, 3.90% and 1.71%, 
respectively.

MCC analysis
The proposed IBERT-ROA model’s improved prediction accuracy is demonstrated by the MCC analysis for 
MUC-C5GN as in Fig.  9. IBERT-ROA consistently outperforms entire remaining models in each iteration, 
starting at 88.45% as well as reaching a peak of 97.82% by the 200th iteration. Because it balances true and 
false positives as well as negatives, MCC seems to be essential for evaluating models on unbalanced datasets. 
With MCC ratings of 96.91% and 95.34%, respectively, Chaotic DBN and LSTM-GRU demonstrate strong 
but slightly inconsistent effectiveness. The final MCC values for MLP as well as Detectron2 + YOLOv7 show 
moderate increases, at 93.98% and 94.73%. IBERT-ROA’s steady as well as high MCC development underpins its 
dependability, stability, and superior generalization in a variety of scenarios, making it highly efficient for reliable 
and scalable threat detection in complex cognitive 5G environments. In terms of MCC for the MUC-C5GN 
model, the suggested IBERT-ROA outperforms LSTM-GRU, MLP, Chaotic DBN, and Detectron2 + YOLOv7 by 
2.60%, 4.09%, 0.94% and 3.26%, respectively.

F1 score analysis
The proposed IBERT-ROA model’s exceptional performance in achieving a superb balance among precision 
as well as recall is highlighted by the F1 Score evaluation for MUC-C5GN in Fig. 10. It continuously improves 

Fig. 7.  FPR analysis.
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over the iterations, reaching an astounding 98.01% at the 200th iteration after starting with a strong F1 Score 
of 89.12% at 20 iterations. The model’s ability to accurately recognize malicious users while lowering inaccurate 
classifications is seen by this consistent growth. Comparatively, Detectron2 + YOLOv7 as well as LSTM-
GRU accomplish well, attaining final F1 Scores of 96.68% and 97.14%, respectively, although both initial and 
subsequent iterations fail to meet IBERT-ROA. Both MLP as well as Chaotic DBN accomplish inadequately, 
peaking at 94.58% and 95.14%. The F1 Score trend clearly illustrates IBERT-ROA’s improved capacity to deliver 
balanced, high-quality classification effectiveness, which is essential for accurate as well as rapid threat detection 
in cognitive 5G network environments. The suggested IBERT-ROA outperforms LSTM-GRU, MLP, Chaotic 
DBN, and Detectron2 + YOLOv7 in terms of F1 Score for the MUC-C5GN model by 0.90%, 3.63%, 3.02% and 
1.38%, respectively.

Specificity analysis
The proposed IBERT-ROA model’s effectiveness in correctly identifying authorized users as well as lowering 
false positives is demonstrated by the specificity study for MUC-C5GN in Fig. 11. IBERT-ROA consistently 
outperforms entire remaining models throughout training, achieving 98.91% by the 200th iteration after 
beginning with a high specificity of 89.88% after 20 iterations. Although they do not equal the findings of 
the suggested model, Chaotic DBN as well as MLP also exhibit noteworthy specificity, peaking at 97.81% and 
96.80%, respectively. Moderate improvements are shown by LSTM-GRU as well as Detectron2 + YOLOv7, 
which achieve 94.76% and 95.25%, respectively. IBERT-ROA’s sophisticated as well as high specificity ratings 
show how well it can preserve network trust by reducing false alarms. In 5G cognitive systems, where accurate 
differentiation among benign as well as malicious users ensures safe, efficient spectrum access and network 
dependability, this feature is particularly crucial. In the specificity for the MUC-C5GN model, the suggested 
IBERT-ROA outperforms LSTM-GRU, MLP, Chaotic DBN, and Detectron2 + YOLOv7 by 4.38%, 2.18%, 1.12% 
and 3.84% respectively.

Fig. 8.  Precision analysis.
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Confusion matrix
The confusion matrix presented in Fig. 12 offers a detailed evaluation of the classification outcomes achieved by 
the proposed IBERT-ROA model on the test dataset. The matrix captures true positives along the diagonal and 
illustrates how well each of the nine classes, namely, Benign, HTTP Flood, ICMP Flood, SYN Flood, SYN Scan, 
Slowrate DoS, TCP Connect Scan, UDP Flood, and UDP Scan—were identified by the classifier. Notably, the 
majority of instances across all classes were correctly classified, demonstrating the model’s strong discriminative 
power. For example, 95,170 out of 95,189 benign samples were accurately identified, while malicious classes such 
as HTTP Flood and UDP Flood achieved perfect or near-perfect prediction scores with minimal misclassification. 
Misclassifications were primarily observed in closely related categories, such as SYN Scan versus TCP Connect 
Scan, where structural similarity in traffic patterns may cause minor ambiguity. Nonetheless, the overall high 
diagonal dominance of the matrix confirms that the IBERT-ROA model effectively generalizes across diverse 
attack types and benign traffic, maintaining both high sensitivity and specificity.

The TP, TN, FP, and FN breakdown provided in Table 3 offers a granular assessment of the classification 
behavior of the IBERT-ROA model. It reveals how accurately the model identifies each class and highlights areas 
where minor misclassifications occur.

For example, the Benign class has 95,170 true positives and only 19 false negatives, indicating strong detection 
ability with minimal misclassification. Similarly, HTTP Flood shows perfect classification with no false positives 
and only 4 false negatives, reflecting the model’s robustness in identifying high-volume flood-based threats. In 
classes like SYN Scan and TCP Scan, a small number of false positives and false negatives are observed, which 
may arise from behavioral similarity in traffic patterns. Notably, the ICMP Flood class records a perfect recall (0 
FN) and nearly zero false positives, highlighting the model’s precision in detecting even under-represented attack 
types. These values validate the superior performance of IBERT-ROA, especially in minimizing false positives 
(critical in network trust maintenance) and false negatives (essential for robust security). Overall, the TP/TN/
FP/FN metrics affirm that the model generalizes well and is suitable for real-time deployment in cognitive 5G 
networks.

Fig. 9.  MCC analysis.
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Table 4 provides a comparative view of the precision and recall metrics computed separately for the training 
and testing phases of the proposed IBERT-ROA model. The values reflect class-wise performance consistency 
and model generalization from training to deployment.

Table 4 presents a detailed comparison of precision and recall for both training and testing phases across all 
nine classes. The minimal variation observed between training and testing metrics indicates strong generalization 
of the IBERT-ROA model and confirms that overfitting is not present. For instance, the Benign class achieves 
a training precision of 99.40% and testing precision of 98.91%, with recall values of 99.20% and 98.48%, 
respectively. Classes with rare occurrences, such as ICMP Flood, still achieve near-perfect recall in testing 
(100.0%) and maintain precision above 98.5%, showcasing the model’s effectiveness in handling imbalanced 
datasets. The SYN Scan and TCP Scan classes show slightly lower test-phase precision (98.15% and 98.45%) but 
compensate with high recall (99.88% and 99.85%), which is crucial in minimizing false negatives. These results 
underscore the IBERT-ROA model’s capability to retain classification fidelity even when deployed outside the 
training domain, confirming its robustness for real-time malicious user detection in cognitive 5G environments.

comparison analysis
The comparison with the existing methods to confirm the value and contribution of the proposed work is 
described below in Table 5.

discussion
The comparison linked to the effectiveness of the MUC-C5GN model perfectly indicates that the offered 
IBERT-ROA explains a better option of MUC-C5GN. The model outperforms the classical methods steadily: 
LSTM-GRU, MLP, Chaotic DBN and Detectron2 + YOLOv7 in all crucial metrics: the accuracy, sensitivity, FPR, 
precision, MCC, F1 Score and specificity. IBERT-ROA is performing quite well on learning, generalization and 
convergence abilities, as IBERT-ROA reaches the highest final scores on all of the criteria after 200 iterations as 
well. What makes it even more reliable in high-stakes and real-time conditions is its remarkable accuracy along 

Fig. 10.  F1 Score analysis.
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with the F1 Score, and how the case with the FPR being quite low and specificity being quite high validates its 
effectiveness in the realm of categorizing malicious and legitimate users. Its competitive nature is also solidified 
by the estimated percentages of advantages as compared to other models. These findings point to a relevant 
potential of IBERT-ROA applications in dynamic, safe 5G cognitive systems, where the confidence of users and 
network integrity are supported by fast, precise, and scalable threats identification.

Conclusion
The MUC-C5GN was carried out in this work using a novel intelligent optimization technique that was centered 
on machine learning. Initially, the data was collected via the 5G-NIDD standard benchmark resources. The 
gathered data was processed using scaling as well as normalization algorithms. This pre-processed data was then 
subjected to feature extraction using the Self-Attention RNN-AE approach. Finally, malicious users in cognitive 
5G networks were classified using the new IBERT model. ROA, a nature-inspired optimization technique, was 
used to change the settings of BERT. For the whole MUC-C5GN model, maximizing accuracy was considered 
the fitness function. According to simulation data, the suggested MUC-C5GN model fared better than the other 
existing approaches that were looked at across a number of measures. For the MUC-C5GN model, the proposed 
IBERT-ROA outperformed existing techniques by 5.99% in sensitivity as well as 2.74% in accuracy.

Fig. 11.  Specificity analysis.
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Class True Positives (TP) True Negatives (TN) False Positives (FP) False Negatives (FN) Class

Benign 95,170 147,092 12 19 Benign

HTTP 28,120 214,169 0 4 HTTP

ICMP 225 242,067 1 0 ICMP

SYN 1905 240,386 0 2 SYN

SYN Scan 4008 238,272 8 5 SYN Scan

Slowrate 14,320 227,969 3 1 Slowrate

TCP Scan 3990 238,291 6 6 TCP Scan

UDP 91,456 150,807 18 12 UDP

UDP Scan 3050 239,242 1 0 UDP Scan

Table 3.  TP, TN, FP, and FN values for each class in the test Phase.

 

Fig. 12.  Confusion matrix analysis.
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Data availability
The datasets generated and/or analyzed during the current study are available in the 5G-NIDD repository, 
[https://ieee-dataport.org/documents/5  ​g​-​n​i​d​d​-​c​o​m​p​r​e​h​e​n​s​i​v​e​-​n​e​t​w​o​r​k​-​i​n​t​r​u​s​i​o​n​-​d​e​t​e​c​t​i​o​n​-​d​a​t​a​s​e​t​-​g​e​n​e​r​a​t​e​
d​-​o​v​e​r​-​5 g-wireless#files].
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