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Al-assisted phenotyping in a
zebrafish hypophosphatasia model
enables early and precise detection
of skeletal alterations

Regina Hark®%3>!, Simon Ziirlein?3, Viet T. Nguyen(®?, Gunther Gust(®?, Lukas Hekel &
Daniel Liedtke®"

Hypophosphatasia (HPP) is a rare genetic disorder mainly affecting bone and tooth mineralization

in patients due to ALPL gene mutations. Understanding genotype-phenotype correlations in HPP
remains challenging due to different severities and the disease’s heterogeneity. To address this, we
established a novel zebrafish animal model (alp[*®7), which mimics severe HPP disease forms. To
bypass limitations in human-based phenotypic classification of skeletal alterations in this transgenic
line, we developed and trained an artificial intelligence (Al) model capable of image-based classification
with 68% accuracy—an improvement of 79% over manuval classification. Our Al model could
successfully identify early developmental alterations independent of altered image magnification,
coloration quality and executing scientists. Using attention rollout, we further visualized Al decision-
making, revealing not only expected focus on early bone structures but also unexpected emphasis on
the otoliths—parts of the zebrafish’s hearing and balancing organ. We see applications of our Al system
in analyzing other skeletal disorder models as well as in providing an unbiased, high-throughput
phenotypic rescue quantification assay for potential drug screening applications in zebrafish larvae.
Overall, our findings establish an integrated platform for studying HPP and open new avenues for Al-
assisted phenotyping and therapeutic discovery.

Keywords Hypophosphatasia, Zebrafish, ALPL, Deep learning, Vision Transformers, Phenotype
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Hypophosphatasia (HPP) is a rare, genetically inherited metabolic disorder that manifests in different clinical
forms and severities'?. It is classified into maximum six clinical subtypes, which exhibit highly variable
symptoms. These range from the perinatal lethal form as the most severe, to the adult form, which represents
the mildest manifestation (adult: OMIM # 146300, infantile: OMIM # 241500, childhood: OMIM # 241510,
odontoHPP: OMIM # 146300)°. The most prominent symptoms of all HPP patients are caused by impaired
bone and tooth mineralization?, which subsequently results in increased occurrence of fractures, ricket-like
deformities, osteomalacia, short stature, and premature tooth loss?. The estimated incidence of severe HPP
is approximately 1 in 300,000 births in Europe® and 1 in 100,000 in North America®. In addition to skeletal
symptoms, HPP can also present with milder manifestations in other organs, including the liver, kidneys, lungs,
and central nervous system*’.

The genetic cause of hypophosphatasia (HPP) has been causatively linked to loss-of-function mutations in
the ALPL gene (HGNC ID:438)8-1%, which encodes the ectoenzyme "Tissue Nonspecific Alkaline Phosphatase’
(TNAP; UniProt ID: P05186). Disease-causing variants in ALPL can be inherited in either an autosomal recessive
or autosomal dominant manner!!. The most severe forms of HPP are typically observed in individuals who
are compound heterozygous or homozygous variant carriers, resulting in a complete loss of TNAP function'2.
TNAP plays a central biochemical role in bone mineralization by regulating the formation of hydroxyapatite!>.
It does so through the dephosphorylation of mineralization inhibitors such as inorganic pyrophosphate (PPi)
and phosphorylated osteopontin (pOPN), thereby facilitating the deposition of hydroxyapatite crystals in the
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extracellular matrix (ECM)!*1°. During skeletal development, both the concentration and enzymatic activity of
TNAP in the ECM are critical, as they precisely control the local balance of substrates and products necessary
for proper mineralization of skeletal tissues®!?.

Several studies have attempted to establish genotype—phenotype correlations in HPP; however, the exceptional
heterogeneity of the disease has made this challenging. As a result, many ALPL genetic variants still cannot be
reliably associated with a specific phenotype or clinical outcome!'?!%'7. Furthermore, identical ALPL variants
can lead to various HPP phenotypes in intra-familiar patients. So far, this observation cannot be satisfactorily
explained and hints to additional confounding factors during disease progression!”%.

To identify such potential factors and investigate the molecular mechanisms underlying HPP, several mouse
models have been developed!®. However, similar to the Heterogeneity observed in patients, mouse models
mimicking the infantile HPP subtype exhibit inconsistent phenotypes. For example, only approximately 50%
of homozygous mice display impaired bone mineralization eight days after birth®®. As an auxiliary vertebrate
model for studying bone development, the zebrafish (Danio rerio) has been widely and successfully used to
model various human diseases®!. Initial studies from our lab using alp! morpholino knockdown and Tnap
chemical inhibition in zebrafish indicated prominent effects on earliest zebrafish bone development??. However,
morpholino-based knockdown can lead to phenotypes that differ from those caused by genetic ablation due
to genetic compensation mechanisms?»*, while chemical inhibition can result in pharmacological off-target
effects®.

To eliminate potential misinterpretations caused by genetic compensation or off-target effects, we generated
a stable transgenic alp! knockout zebrafish line lacking both the alpl promoter and exon 1 (alpl**¢). This model
was histologically investigated for common HPP-related phenotypes and exhibited mineralization defects across
multiple skeletal structures, consistent with findings from previous knockdown studies?2.

Given the subtle and heterogeneous disease presentations observed in our zebrafish HPP model, manual
evaluation of skeletal structures—despite high-resolution imaging—proved to be both subjective and error-
prone. These limitations underscored the need for a more robust, scalable, and unbiased approach to phenotype
classification. To overcome these challenges, we turned to automated image analysis using deep learning, a
methodology that has rapidly gained prominence in biological and medical research. Convolutional neural
networks (CNNs) have long been the dominant architecture in image-based classification tasks within these
fields*6-31. In this study, we employed Vision Transformers (ViTs)*, a state-of-the-art model architecture for
image classification. ViTs offer advantages over CNNs in capturing global image features and have demonstrated
strong performance in tasks involving limited data and subtle visual cues—such as biological phenotypes. We
specifically used the BEiT (Bidirectional Encoder representation from Image Transformers) framework??, which
builds upon the ViT architecture. To adapt the model to our biological image data, we applied a transfer learning
(see subsection 4.3) approach, initializing with a BEiT model pre-trained on the ImageNet-1K dataset—a large-
scale image collection containing approximately one million natural images®*.

To address the unresolved genotype-phenotype correlations in HPP, we apply state-of-the-art deep learning
techniques to our newly developed alpl*"¢’ knockout zebrafish model. This approach enables unbiased
classification of heterogeneous skeletal phenotypes and revealed subtle, previously unrecognized morphological
alterations. By combining the AI model with a curated dataset of annotated images, we provide novel insights
into the complex phenotypic manifestations of HPP and establish an explainable, scalable framework for early
phenotypic analysis. These contributions advance the fields of HPP research, biomedical image analysis, and
offer further applicability for drug screening and skeletal disease modeling across species.

Methods

This section describes the acquisition and preprocessing of microscopy images (Sections 2.1 to 2.3), and the
development and evaluation of the AI model (Sections 2.4 to 2.7). Detailed methods for the generation and
characterization of the transgenic zebrafish alp*"*’ line are stated in supplementary sections 4.2.1-4.2.6. All
procedures involving experimental animals were performed in compliance with local animal welfare laws
(Tierschutzgesetz §11, Abs. 1, Nr. 1 and corresponding TierSchVersV, husbandry permit number 568/300-
1870/13), European Union animal welfare guidelines (EU directive 2010/63/EU), and ARRIVE guidelines.
Establishment and propagation of alpl transgenic lines has been approved by the Regierung von Unterfranken
(permit number 55.2.2-2532-2-1472). All experimental zebrafish used in this study were euthanized until 120
hours post fertilization (hpf) by 10 min incubation in 0.3 mg/ml MS-222 on ice.

Bone and cartilage double staining

For simultaneous visualization of cartilage and mineralized tissue, acid-free alizarin red and alcian blue staining
was performed in zebrafish larvae at 120 hpf according to standard protocols®. PTU treated larvae were killed
and fixed in 4 % paraformaldehyde/phosphate buffered saline (PBS) for 2 h at room temperature. A double
staining solution consisting of 0.001 % Alizarin red S (m/v, C.I. 58005, Carl Roth, Germany) and 0.4 v/v % Alcian
blue 8 GS (m/v, C.I. 74240, Carl Roth GmbH, Germany), 150 mM MgCl, diluted in 70 % ethanol was used
subsequently. After staining for two days, larvae were destained in 20 % glycerol/1 % KOH/water for 2 h, and 50
% glycerol/1 % KOH/water overnight. Larvae were transferred in a rising dilution series of 50 %, 75 % glycerol/
water (each step 5 min, RT) and were finally dissected in 100 % glycerol. The trunk was used for genotyping
(see supplement method 4.2.5), while heads were manually dissected into viscerocranium (“DOWN”) and
neurocranium (“UP”).

Imaging
Microscopy images were acquired either with a Keyence BZ-X810 fluorescence microscope (used filter set: Texas
Red, bright field) or a ZEISS Axio.Imager Al microscope (camera: AxioCAM “MRc”, used filter set: Texas Red
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and bright field, fluorescent lamp: ZEISS HXP 120). Brightfield images were taken for assesment of general
morphology, fluorescence imaging was only used to clarify red staining. Images were aquired correspondingly
by Axiovision software (ZEISS, Germany), or BZ-X800 Analyzer (Keyence Corporation, Japan). Images were
subsequently processed as .tif or .zvi formats by using Image] Fiji (https://fiji.sc/) and CorelDraw Graphics Suite
2023 software (Corel Corporation).

Dataset

The dataset used in this study consists exclusively of brightfield microscopy images of bone cartilage staining,
which were obtained in the experiments described in subsection 2.1). Each image was assigned an unique ID
during preprocessing, encoding metadata related to the experiment and the individual specimen. No images
were excluded due to irregularities. The ground truth labels were assigned based on genetic genotyping.

A total of 97 zebrafish larvae were examined, 36 of which were wildtype (alpl**) genotypes, 38 heterozygous
(alpl*"¢7'*), and 24 homozygous (alpl*"<’"* 7). The dataset includes neurocranium (ventral) and viscerocranium
(dorsal) microscopy images captured at varying magnification levels (zoom) levels (see Table 1).

The raw images were initially acquired in .tif or .zvi format at a resolution of 1920 1440 pixels. To ensure
a uniform format for processing, all images were converted to .png using the ImageJ python library*® and
subsequently compiled into the final dataset in .pkl format. Color information was fully preserved throughout
these pre-processing steps.

The complete dataset supporting this paper has been made publicly available on Zenodo and can be accessed
at https://zenodo.org/records/15269595.

Foundational model architecture: BEIT

To classify the microscopy images, a Transformer-based model was used as the basis. The transformer architecture,
introduced in “Attention Is All You Need”¥, first revolutionized natural language processing (NLP) through the
self-attention mechanism. Transformers are the foundation of popular large language models such as ChatGPT
(Generative Pre-trained Transformer)® or DeepSeek™. Their application to computer vision was later pioneered
with the Vision Transformer (ViT)?, which divides images into smaller, grid-like regions (patches) and analyzes
their interrelations - analogous to how language models capture dependencies between words.

BEIT extends the ViT architecture by introducing a self-supervised pretraining strategy. Self-supervised
learning leverages the intrinsic structure of data to generate learning signals, eliminating the need for labeled
examples. As part of this strategy, BEiT incorporates masked image modeling (MIM). The objective of MIM is
to enable the model to infer missing visual information based on the surrounding context. During pretraining,
portions of the input image are randomly masked, and the model is trained to reconstruct these masked regions.
This encourages the learning of meaningful and robust image representations®. For this pretraining, the
ImageNet-1K>* dataset, containing approximately 1.2 million images at a resolution of 224 x 224%, is used.

Following the self-supervised pretraining, BEiT undergoes an additional refinement step at different
resolutions on an auxiliary dataset. The model used in this work was subsequently retrained on the ImageNet-
1K dataset, this time using the images ground truth classes, at a higher resolution of 512 x 512 pixels. Only
after this intermediate pretraining step is a task-specific classification layer added, enabling the model to make
predictions for the downstream task-in this case, identifying skeletal features in histological images of zebrafish
larvae. The BEiT-Large-Patch16-512 model, a specific variant of BEiT, represents the final architecture applied
in this study. It processes images by first dividing them into fixed-size patches, then passing these through 24
transformer layers, and finally aggregating the learned representations in a classification head to produce the
final prediction®.

Al experimental setup
The experimental setup was designed to systematically train and evaluate Al classification models on microscopy
images of zebrafish skeletal structures. The primary objective was to determine whether deep learning models
can effectively distinguish between wildtype, heterozygous, and homozygous genotypes based on visual features,
identifying minor changes at early developmental time points. The code used in the creation of this paper is
available on GitHub (https://github.com/simonzrln/zebrafish_paper).

To ensure an unbiased evaluation, the available images were first divided into two parts: a training set and a
test set for assessing final performance. A stratified five-fold cross-validation approach was applied when splitting

Structure | Zoom | Wildtype | Heterozygous | Homozygous
20 52 58 46
Visc 10X 69 73 69
4x 20 38 27
20 48 43 52
Neuro 10x 77 77 65
4x 22 42 23
Total 288 331 282

Table 1. Number of images per class for each craniofacial structure (viscerocranium (visc) and neurocranium
(neuro)) and zoom level.
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the data to ensure that each of the five subsets contained a balanced distribution of genotypes. To avoid overlap
between training and validation sets, images from the same fish were assigned to a single split. The dataset was
shuffled five times to ensure that each subset served as the test dataset once, resulting in five distinct training
and test sets, as illustrated in Fig. 1A. To minimize variance resulting from unfavorable data partitioning, an
additional stratified five-fold split was applied within the training set to create validation sets for tuning model
parameters during training. After training, the model resulting from the best-performing fold, as determined by
accuracy on the validation set, was used to classify the images in the test set.

As shown in Fig. 1B, the BEiT-large-patch16-512 model was adapted to the zebrafish skeleton images using
transfer learning. The adaptation strategy is described in the Appendix (see subsection 4.4).

Furthermore Attention Rollout was used to improve the interpretability of the model’s decisions, highlighting
image regions that most strongly influenced the model’s predictions**!. Attention Rollout works by tracing how
information flows through the layers of the transformer and combining the model’s internal focus on different
image regions across all of its layers. In doing so, it estimates how much each image patch contributes to the
final prediction. Regions that are considered important by the model are highlighted more strongly, while less
relevant areas receive little or no emphasis. The resulting map reflects the importance of each image patch within
the 16 x 16 grid structure of the Vision Transformer and was subsequently smoothed to create continuous
heatmaps. These heatmaps were then overlaid onto the original images by combining of the original image with
the heatmap (see Fig. 1C).

Benchmarks

To evaluate the performance of the BEiT-based model, two key baselines were selected for comparison: (1)
human classification performance and (2) alternative deep learning architectures commonly used in medical
image analysis. These benchmarks provide a meaningful reference to assess the potential advantages and
limitations of the BEiT model for the given classification task.

A. Dataset Split

experiment 1

random sample for
human evaluation

T (6, ]
experiment 2 > o —
[a X
)]
experiment n full
P ull dataset k-fold validation
B. Transfer Learning beit-large-patch1 6;512

augmentation training |
> E—
normalization k-fold
validation i Il
training dataset frozen trainable

C. Inference

e
r

test dataset

.
classification

inference

visualization

7l
P

best k-fold model

v

Fig. 1. Overview of the Al-based classification pipeline. (A) Images from multiple experiments are collected.
A subset of 100 images was selected for manual human classification. k-fold cross-validation is performed.
(B) The dataset is augmented and normalized. The BEiT model is trained using k-fold cross-validation (C)
Inference is performed on the corresponding test dataset. Images were classified into three genotype classes:
wildtype (WT), heterozygous (HET) and homozygous (HOM). Attention Rollout was applied to visualize the
models decision making.
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Human classification performance serves as an empirical baseline to compare Al-based predictions against
assessments by four individuals. To evaluate human accuracy, a random sample of 100 images was drawn from
the dataset. Each participant was assigned an individual sample of pictures. Participants classified the images
using a graphical user interface. The interface allowed users to select among the three predefined genotypic
classes.

In addition to the human benchmark, two deep learning architectures were selected for comparison.
ResNet-101%? represents a well-established convolutional neural network (CNN) baseline, widely used in
medical imaging due to its stability in training and strong performance across various classification tasks. It
was chosen over simpler (e.g., ResNet-50) and more complex variants (e.g., ResNet-152), based on superior
performance observed during preliminary testing. ViT-base-patch16-224-in21k* was included as a Transformer-
based benchmark to evaluate whether the masked image modeling pretraining of BEiT provides a significant
performance advantage over standard Vision Transformers. As the underlying architecture of BEiT is based on
ViT, this comparison isolates the effect of the pretraining strategy.

Evaluation metrics

To assess the performance of the AI models, we later report several evaluation metrics including accuracy,
precision, recall, sensitivity, F1-score, and the Area Under the Curve (AUC). These metrics provide a
comprehensive analysis of classification performance across different aspects.

A prediction is considered correct if the class with the highest assigned probability matches the ground truth
label. All metrics are computed as the average over all five test datasets, with the standard deviation reported
to quantify variability in model performance. Additionally, statistical significance in performance differences
between the AI model and human classification was assessed using a Student’s t-test.

Accuracy measures the proportion of correctly classified instances among all instances,

TP +TN
TP+TN+FP+FN’

(1)

Accuracy =

where TP (True Positives) and TN (True Negatives) represent correctly classified positive and negative samples,
respectively, while FP (False Positives) and FN (False Negatives) denote misclassified samples.
Precision quantifies how many of the predicted positive instances are actually positive,

TP
Precision = W (2)

Recall, also referred to as sensitivity, measures the proportion of actual positives that were correctly identified,

TP
Recall = m (3)

F1-Score is the harmonic mean of precision and recall, providing a balanced measure between the two,

Precision x Recall
- = . 4
F1-Score = 2 x Precision + Recall @

Area Under the Curve (AUC) represents the area under the Receiver Operating Characteristic (ROC) curve and
evaluates the ability of the model to distinguish between classes. In multi-class classification, AUC is computed
using a one-vs-all (OvA) approach, where each class is treated as the positive class while the remaining classes
are considered negative®®. This allows for separate evaluation of the model’s ability to differentiate each genotype.

AUC is formally defined as the integral of the True Positive Rate (TPR) against the False Positive Rate (FPR),

1
AUC = / TPR(FPR)dFPR, (5
0
where
TP FP
TPR= ————, FPR= ————. 6
R=Tprrn R=rpiTn (©)

To assess whether the performance difference between AI models and human classification is statistically
significant, a Student’s t-test is conducted. Given two sets of performance scores, the t-statistic is computed as

X1 — X

=1 22
52 s2 (7)
o e

where X1 and X> are the mean performance values of the Al model and human classification, respectively, s?
and s3 are the variances, and n1 and ns are the number of observations in each group.
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Results

Establishment and Investigation of alpl Knockout Zebrafish Line

For molecular investigation of HPP disease progression, we generated a new transgenic animal model in
zebrafish. Initially, two sgRNAs targeting the alpl locus (ENSEMBL ID: ENSDARG00000015546) within
the 5’"UTR region (alpl c.-451_-431) and intron 1-2 (alpl c.37+494_37+514) were designed and generated
by RNA in vitro transcription. Both sgRNAs were mixed in a 1:1 ratio, preassembled with Cas9 protein, and
were injected into one cell-stage zebrafish eggs. CRISPR/Cas9 functionality was tested by gDNA sequencing
of single, positively injected zebrafish embryos at 3 days post fertilization (dpf). After raising positively
injected embryos to adulthood, individual crossing of FO founder fish with AB/AB wildtype zebrafish were
conducted. Identification of F1 embryos carrying a heterozygous deletion within the desired genomic region
was done by gDNA-PCR amplification and gel electrophoresis (Figure S 1). Subsequent generation crossing
of heterozygous alpl**’/* animals confirmed stable transgene propagation and appearance of homozygous
alpl¥v¢7"ue7 embryos. For the exclusion of possible CRISPR off target effects, we out-crossed our mutants to
wildtype zebrafish to screen for phenotype continuity between generations. Mapping of the genomic position
of the variant of alpl*"*’ was confirmed by Sanger Sequencing and corresponds to alpl c.-506_37+78del in
transcript ENSDART00000146461.3 (supplementary Figure S 1 B). The deleted region within the alpl gene locus
is spanning 621 bp (GRCz11 genomic location: chr11:27968625-27969245), including 5UTR sequences, the
protein coding exon 1, as well as a small region in the of intron 1-2 (affected ENSEMBL Transcripts: alpl-202/
ENSDART00000146461.3 (canonical reference) and alpl-203/ ENSDART00000147984.3 (predicted transcript);
Fig. 2A. Since alpl exon 1 contains the transcriptional start site along with 37 bp of protein coding sequence and
cis-elements of the promoter of the alpl mRNA transcript, this mutation is considered to result in no alpl mRNA
expression and subsequently lack of Thap protein. A statistically highly significant reduction of alpl mRNA
expression in homozygous alpl*““/*"¢7 |arvae was confirmed via QPCR analysis (see supplement Figure S 3; pre-
genotyped, pooled 120 hpf whole embryo cDNAs). Moreover, qPCR analyses did not show statistical significant

A. promoter deletion activssite AP domain
| || I T | I |
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chr.11
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Fig. 2. Generation and investigation of transgenic alpl knockout zebrafish line. (A) Schematic drawing

of the genomic region on chromosome 11 deleted in alpl"**’ zebrafish larvae. The inserted alp! promoter
deletion is including the alpl promoter region, together with exon 1 and parts of 5’UTR and intron 1. (B) Bone
and cartilage double-stainings of 120 hpf transgenic zebrafish larvae display slightly changed craniofacial
development in the neurocranium and viscerocranium. Bone (red) and cartilage (blue). Two individuals
representing the same genotype, but different phenotype severities are shown for hetero- and homozygotes.
wildtype = alpl*’*; heterozygous = alpl*“*”"*; homozygous = alpl*ue7/Wue7,
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changes in alpl expression in heterozygous samples. Thus, we concluded the successful generation of a transgenic
zebrafish alpl loss-of-function line, resembling HPP disease condition.

Defects in bone mineralization in alpl knockout larvae

In HPP patients, loss of TNAP function predominantly results in skeletal malformations and reduced
calcification. Therefore, the impact on bone mineralization during craniofacial development of the transgenic
alpl"*¢’ line was investigated. Bone and cartilage of zebrafish early larvae were stained at 120 hpf with alizarin
red and alcian blue (Fig. 2B). This developmental stage was chosen since we wanted to detect changes in bone
mineralization as early as possible and bone mineralization starts at 4-5 dpf in zebrafish larvae*. In addition,
earlier data from TNAP inhibitor experiments on zebrafish larvae at 120 hpf showed strong effects on bone
calcification. After staining, individual larvae were dissected into head and tail regions. Heads were further
manually dissected into neurocranium and viscerocranium and subsequently imaged. Tails were used for gDNA
extraction and subsequent genotyping. To check that the workflow works robustly even with the minor variations
seen between independent biological replicates we ensured that this double-staining method was independently
performed over seven times from different persons, was imaged by two different microscope systems at different
microscope settings (including magnification and intensity levels) and resulted in a data set of 97 investigated
individuals and 901 images. Investigation for possible changes in calcification patterns was performed blinded
without information about the genotype. Manual image evaluation did not reveal reliable association of distinct
mineralization patterns to a certain genotype (Fig. 3A).

A. B.
X B
804 < — = Random guessing °
= e
ol >
701 = ® § < i}
A ) =
3 g3 = =
60 - 0 — A &
o o
S = O 53
S 50 4 B R E S
> & N >
9 @ 23
5 40 A = 3 E
3 I . Al I - o2
< 30 4 "
]
a a 2 a >
20 1 o o [S) o a*
2 2 S S 3
10 g g 8 g g
£ £ £ £ 2
2 2 2 2 ! !
0 wildtype heterozygous homozygous
BEIT ResNet ViT Human Prediction
C.
1.0
BEIT - wildtype (AUC = 0.83)
0.8 A BEIT - heterozygous (AUC = 0.83)
—— BEIT - homozygous (AUC = 0.87)
ResNet - wildtype (AUC = 0.75)
2 0.6 1 ResNet - heterozygous (AUC = 0.76)
:E —— ResNet - homozygous (AUC = 0.80)
2 VIT - wildtype (AUC = 0.68)
& 0.4 - ViT - heterozygous (AUC = 0.74)
—— VIiT - homozygous (AUC = 0.74)
Human - wildtype (AUC = 0.52)
0.2 1 —— Human - heterozygous (AUC = 0.52)
—— Human - homozygous (AUC = 0.55)
0.0 A

0.4 0.6
1 - Specificity

0.8 1.0

Fig. 3. Model performance of different tested AI methods. (A) Overall classification accuracy per genotype
class for the four methods (BEiT, ResNet, ViT, Human), with the dashed line indicating random-guessing. (B)
Confusion matrix illustrating the distribution of predictions of the BEiT Model for the three genotype classes.
(C) Receiver operating characteristic (ROC) curves for each class and method, with corresponding area-under-
the-curve (AUC) values.
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Genotype No loss Partial loss Heavy loss
Wildtype 72.2% (26/36) | 19.4% (7/36) | 8.3% (3/36)
Heterozygous | 51.3% (19/38) | 32.4% (12/38) | 18.9% (7/38)
Homozygous | 29.2% (7/24) | 50% (12/24) 20.8% (5/24)

Table 2. Human based classification of bone mineralization loss in 97 stained alpl""*’ larvae. Larvae with
“no loss” in mineralization had a fully stained notochord, at least two stained teeth and additional visible
bone structures (like parasphenoid, cleithrum). Larvae with “partial loss” showed a semi-intensely stained
notochord. Larvae with “heavy loss” showed no red stained notochord and/or complete loss in tooth staining.

Metric BEiT ResNet ViT Human
AUC 84.3 £ 2.0 | 77,0 £3.4%* | 71.8 +3.1"* | 54.6+3.6

Accuracy |68.1 £2.3%* |587+19% |529+31 38.0 6.4

Fl Score |67.9 4 2.0 | 584419 [51.6+3.9* |368+53

Precision | 69.6 £ 1.8 | 60,5+ 2.8 | 554+ 4.4 | 382 +4.2

TPR 68.4 4 2.5 | 58.4+1.8 |526+34* |37.6+5.1

FPR 84.0 £ 1.2 1792409 |764+1.6* |689+27

Table 3. Performance metrics comparison for different models, including human performance. Statistical
significance was assessed using a Student’s t-test comparing the AT models against human performance.
Significance levels: *p < 0.05, **p < 0.01, **p < 0.001. All values are given in percentage and represent the
mean + standard deviation. The highest value for each metric is bold and underlined, and the second-highest is
bold only.

» «

For conventional classification, individuals were grouped in “no loss”, “partial loss” and “heavy loss” in bone
mineralization. Larvae with “no loss” in mineralization had a fully stained notochord, calcified ceratobranchial
5, and at least two tooth precursor structures, as well as additional visible bone structures, like the parasphenoid
or the cleithrum. Larvae with “partial loss” showed a semi-intensely stained notochord with missing staining
in the tip of the notochord as well as reduced tooth mineralization with only one visible tooth at each fifth
ceratobranchial bow. “Heavyloss” indicated a completely missing red notochord staining (see Table 2). Transgenic
alpl"'¢’ larvae indicated slight changes in the mineralization of notochord and teeth, but these differences were
not consistently distinguishable across all samples and genotypes by simple microscopic observation. 70.8% of
the homozygous larvae and 51.3% of the heterozygous larvae showed changed bone mineralization (“partial
loss” or “heavy loss”), though similar variations were also observed in 27.7% of the wildtype larvae, making
phenotype classification unreliable in a blinded setting (see Table 2). Further image analysis confirmed that
also cartilage staining intensity varied greatly between experiments. The high variability in staining patterns
across different imaging sessions in addition to HPP phenotype variability and individual experiments suggests
that manual phenotype assessment is highly subjective and lacks reproducibility. This motivates the need for
automated image-based classification approaches to objectively quantify phenotypic differences in zebrafish
skeletal structures.

Al-based classification shows significant genotype—phenotype correlations

To overcome the limitations of manual assessment, we evaluated three deep learning models (BEiT, ResNet,
and ViT) for classifying zebrafish phenotypes into genotype classes (wildtype, heterozygous, homozygous)
based on skeletal imaging data in zebrafish. Human performance served as a baseline comparator. Full model
configurations are provided in the supplement (see Table S 3 & Table S 4).

The performance of the evaluated models is shown in Table 3. It presents classification results across
multiple metrics, including accuracy, AUC, Fl-scores, precision, sensitivity (TPR) and specificity (FPR). To
assess statistical significance, human performance was compared to that of three deep learning models: BEiT,
ResNet, and ViT. Among the models, BEiT exhibited the strongest performance across all metrics. It achieved
highest accuracy (68.1%), significantly outperforming both humans and other models—ResNet (58.7%) and
ViT (52.9%)—with p < 0.0001 in all comparisons. In addition, BEiT also obtained the highest AUC (84.3%),
reflecting its strong discriminative capability of different classes, followed by ResNet (77.0%) and ViT (71.8%).
BEiT further led in F1 score (67.9%), precision (69.6%), sensitivity (68.4%), and specificity (84.0%), which
indicated balanced and reliable classification performance, with both low false positive and false negative rates.
Notably, human performance was relatively low across all metrics, with accuracy (38.0%) and AUC (54.6%),
which was close to random guessing. This highlights the value of Al-based support in addressing the inherent
difficulty of the task.

Next, we examine class-specific performance across the three genotype categories, namely wildtype,
heterozygous, and homozygous to understand model behavior beyond aggregated metrics Fig. 3
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Fig. 4. Correlation of Al analyzed structures by attention rollout visualizations overlaid on the original
microscopic images. (A.1 & B.1) Annotated illustrations on the left side indicated key structures of the (A)
neurocranium and (B) viscerocranium. (A.2-4 & B.2-4) Right side pictures highlight the spatial distribution
of attention across skeletal and cartilaginous structures in different genotype groups. Cb, ceratobranchial
cartilage; Ch, ceratohylal cartilage; Cl, cleithrum; Ep, ethmoid plate; M, Meckel’s cartilage; No, notochord; Op,
operculum; Ot, otoliths; Ov, otic vesicle; Pc, parachordal cartilage; Pq, palatoquadrate cartilage; Th, teeth; Tr,
trabecular cartilage.

Panel A presents the classification accuracy for each genotype class, alongside the average across classes per
model. BEiT consistently outperformed all other models across all genotypes. Even though homozygous samples
were the most challenging for all other models, BEiT maintained a clear margin on this class, which showed the
model successfully captured distinct visual patterns associated with homozygosity.

Panel B displays the confusion matrix for BEiT. Here, the diagonal cells indicate correct classifications.
Misclassifications primarily involved heterozygotes that were often confused with both wildtype (76 cases)
and homozygous (47 cases). The more frequent confusion suggests that the feature space between wildtype
and heterozygous genotypes is less distinct than for the homozygous category. This may reflect underlying
phenotypic similarities between wildtype and heterozygous zebrafish, particularly with regard to partially
overlapping mineralization patterns.

Receiver operating characteristic (ROC) curves for each model and class, as well as for human performance,
are provided in panel C. The ROC curve illustrates how well a model distinguishes between classes across different
classification thresholds in a one-vs-all setting, with the area under the curve (AUC) serving as a summary
measure of this ability. As in previous evaluations, BEiT achieved the highest AUC scores across all genotype
classes, indicating that it not only predicted accurately, but did so with consistent confidence across a range
of decision thresholds. Furthermore, the consistently high AUC scores suggest that BEiT effectively separates
wildtype, heterozygous, and homozygous larvae without introducing systematic biases toward any genotype.

Attention-based visualization reveals biologically relevant decision-making in BEiT model

To evaluate the interpretability of the BEiT model’s predictions, we conducted attention rollout analysis to
identify image regions contributing most to classification decisions. These heatmaps were overlaid on original
bone and cartilage staining images for each genotype class, indicating the biological relevance of the investigated
areas (Fig. 4). In the neurocranium, the model consistently focused on the notochord and otoliths, which are
early-forming mineralized structures. Unlike the notochord, otoliths are not bone tissue, but mineralized parts
of the otic vesicle, the early hearing and balancing organ of the zebrafish. The parasphenoid, which is also an
early developing skeletal structure, additionally emerged as an important contributor in some cases (Fig. 4A).
Within the viscerocranium, the dental papillae of the fifth ceratobranchial arch were the primary focus across
all genotypes. The cleithrum was also highlighted in certain cases (Fig. 4B). These earliest bone tissues of the
zebrafish align with known sites of TNAP-dependent mineralization, validating the biological relevance of the
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model’s focus areas. Notably, cartilage elements did not prominently influence classification, which suggested that
the AT model primarily relies on bone-specific features. Across all genotypes, similar regions were emphasized.
However, in homozygous mutants, a lack of mineralization led to a relative absence of attention signal in the
affected areas.

Discussion
In the following, we first discuss the contributions of this research. Thereafter, we elaborate on the implications
resulting from the contributions.

First, our study provides novel insights into the phenotype-genotype correlation in the newly established
HPP model. Establishing clear correlations between phenotype and genotype presents challenges not only in our
transgenic alpl***’ line but also represents a broader issue in patients diagnosed with HPP'>!7. HPP is a highly
heterogeneous, multisystemic disorder characterized by significant phenotypic variability, even among family
members sharing the same genetic background'®. Although numerous studies have addressed this challenge,
definitive genotype-phenotype correlations in HPP remain elusive!>!”.

Using our newly developed Al model, we successfully correlated the phenotype of our alpl*"¢’ line with
its corresponding genotype, achieving high statistical significance. The accuracy of our AI model strongly
indicates that substantial genotype-phenotype correlations exist within HPP. Establishing such correlations was
previously unattainable with manual classification carried out by humans. Our findings therefore suggest that
HPP might not as heterogeneous as currently assumed; rather, variations in clinical phenotype might be too
subtle for humans to identify.

In addition, the visualization of the decision-making process of the Al model using attention rollout provided
further insights into the phenotype-genotype correlation. As expected, the model focused on regions associated
with early bone development. Interestingly, it also concentrated on the otoliths, calcium carbonate structures
within the otic vesicle that develop into the zebrafish’s inner ear**. Although the mineralization process of otoliths
differs from that of vertebral bone, in which Tnap plays a central role**, these structures appear to be altered in
our alpl***’ line. This may represent a secondary effect of generally disregulated mineralization. Different genetic
factors have been identified in zebrafish mutant lines which display prominent otolith malformations, e.g. stm:
starmaker (stm)*® or pksI: no content (nco)/corkscrew (csr)/vanished (vns)?’, but have not been linked to Alpl
function yet.

Second, we developed the first image classification AI model capable of correlating the HPP bone phenotype
with genotype in zebrafish. Prior research has applied Al in diagnosing HPP within a metabolic context, but
did not use image-based methods*®. By applying deep learning, our study enabled an automated and unbiased
analysis of skeletal structures, providing novel insights into the complex phenotypic composition of HPP.

Third, with the generation of our knockout alpl"e¢” zebrafish line, we introduce a new animal model for HPP.
By deleting both the alpl promoter and start codon, we aimed to eliminate potential off-target effects or genetic
compensation mechanisms, which can arise from the expression of defective mRNA, such as that resulting from
frameshift mutations*>?*. As we demonstrated a highly statistically significant downregulation of alpl expression
in homozygous alpl"*7/*¥¢7 Jarvae at 120 hpf, the resulting bone phenotype is expected to accurately reflect the
pathological features of severe HPP. Although, this newly established alpl*¢’ line is different to observations
made either in HPP patients or classical Alpl knockout mouse models, as the heterozygous state in zebrafish is
variable. Our observations indicate a rather normal level of alpl expression in heterozygous alpl*“*’"* embryos
(see supplement Figure S 3) and inhomogeneous histological observations in this group (see Table 2). Reasons
for this discrepancy might be due to technical (e.g. pooled embryos for qPCR analyses) or biological reasons
(e.g. compensatory mechanisms) and are currently under investigation. Our newly established AI tool helps us
to correlate variable histological changes and genotype also for this group with high reliability.

Fourth, through the generation of our dataset comprising nearly 1000 microscopic images of bone and
cartilage double staining in zebrafish, we provide a valuable new resource for the field. This dataset can be
used to train Al models, particularly for handling complex and challenging image data. Since zebrafish image
classification remains a relatively underexplored area in Al research, the availability of such datasets supports
foundational model training and facilitates progress in similar classification tasks.

The aforementioned contributions also have important implications for future research and therapeutic
development. First, the implemented AI model offers a robust and unbiased assay for drug screening in the
context of HPP. Treated alpl*"?’ larvae can be stained using the same skeletal imaging protocol, and the ATl model
can then evaluate treatment efficacy by determining whether treated homozygous individuals are phenotypically
classified as resembling heterozygous or wildtype fish—indicating a potential rescue effect. This strategy provides
a rapid, scalable, and reproducible approach to high-throughput screening, with the potential to significantly
accelerate early-phase compound evaluation for HPP. Furthermore, the methodology is broadly applicable and
could be adapted for drug discovery in other skeletal disorders exhibiting subtle phenotypic variation.

Second, by applying attention rollout to visualize the AT’s decision-making process, our study provides an
example of how explainable AI can advance the field of biomedical imaging. Explainability techniques contribute
not only to greater transparency and trust in the AI but also to deeper biological insight—especially in the
context of heterogeneous diseases such as HPP. Notably, the model’s unexpected focus on otoliths highlights its
ability to detect subtle, clinically relevant features that might otherwise be overlooked. Our results underscore
the value of explainable Al for dissecting phenotypic variability, where human interpretation is often limited
by cognitive bias based on prior expectations or a narrow focus. In the long term, such interpretable image
classification systems hold promise for supporting automated diagnosis, phenotype stratification, and treatment
monitoring in clinical practice.

Third, our model offers valuable insights into training AI systems under data-limited conditions. Despite
operating in a niche domain with a relatively small dataset, the model achieved high classification performance,
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demonstrating the effectiveness of data-efficient strategies such as transfer learning and careful dataset curation.
These findings highlight best practices for developing robust AI models in biomedical contexts where large,
annotated datasets are often unavailable. As such, our approach may serve as a template for other applications in
biology and medicine that face similar data constraints.

Finally, given the successful application of Al in our zebrafish HPP model, our approach also holds strong
potential for adaptation to other experimental systems, including additional HPP models such as mouse or
cell culture-based platforms. Moreover, it could be extended to address phenotypic heterogeneity in other
skeletal disorders, such as in osteoporosis zebrafish models*’, and potentially in broader contexts where subtle
morphological variation complicates diagnosis, monitoring, or therapeutic evaluation.

Data availability

The dataset supporting the conclusions of this article is included within the article and its additional files. Newly
produced materials are available upon request. https://zenodo.org/records/15269595. The code used in the creat
ion of this paper is available on GitHub (https://github.com/simonzrln/zebrafish_paper).
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