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Hypophosphatasia (HPP) is a rare genetic disorder mainly affecting bone and tooth mineralization 
in patients due to ALPL gene mutations. Understanding genotype-phenotype correlations in HPP 
remains challenging due to different severities and the disease’s heterogeneity. To address this, we 
established a novel zebrafish animal model (alplwue7), which mimics severe HPP disease forms. To 
bypass limitations in human-based phenotypic classification of skeletal alterations in this transgenic 
line, we developed and trained an artificial intelligence (AI) model capable of image-based classification 
with 68% accuracy—an improvement of 79% over manual classification. Our AI model could 
successfully identify early developmental alterations independent of altered image magnification, 
coloration quality and executing scientists. Using attention rollout, we further visualized AI decision-
making, revealing not only expected focus on early bone structures but also unexpected emphasis on 
the otoliths—parts of the zebrafish’s hearing and balancing organ. We see applications of our AI system 
in analyzing other skeletal disorder models as well as in providing an unbiased, high-throughput 
phenotypic rescue quantification assay for potential drug screening applications in zebrafish larvae. 
Overall, our findings establish an integrated platform for studying HPP and open new avenues for AI-
assisted phenotyping and therapeutic discovery.

Keywords  Hypophosphatasia, Zebrafish, ALPL, Deep learning, Vision Transformers, Phenotype 
classification, Explainable AI

Hypophosphatasia (HPP) is a rare, genetically inherited metabolic disorder that manifests in different clinical 
forms and severities1,2. It is classified into maximum six clinical subtypes, which exhibit highly variable 
symptoms. These range from the perinatal lethal form as the most severe, to the adult form, which represents 
the mildest manifestation (adult: OMIM # 146300, infantile: OMIM # 241500, childhood: OMIM # 241510, 
odontoHPP: OMIM # 146300)3. The most prominent symptoms of all HPP patients are caused by impaired 
bone and tooth mineralization4, which subsequently results in increased occurrence of fractures, ricket-like 
deformities, osteomalacia, short stature, and premature tooth loss2. The estimated incidence of severe HPP 
is approximately 1 in 300,000 births in Europe5 and 1 in 100,000 in North America6. In addition to skeletal 
symptoms, HPP can also present with milder manifestations in other organs, including the liver, kidneys, lungs, 
and central nervous system4,7.

The genetic cause of hypophosphatasia (HPP) has been causatively linked to loss-of-function mutations in 
the ALPL gene (HGNC ID:438)8–10, which encodes the ectoenzyme ’Tissue Nonspecific Alkaline Phosphatase’ 
(TNAP; UniProt ID: P05186). Disease-causing variants in ALPL can be inherited in either an autosomal recessive 
or autosomal dominant manner11. The most severe forms of HPP are typically observed in individuals who 
are compound heterozygous or homozygous variant carriers, resulting in a complete loss of TNAP function12. 
TNAP plays a central biochemical role in bone mineralization by regulating the formation of hydroxyapatite13. 
It does so through the dephosphorylation of mineralization inhibitors such as inorganic pyrophosphate (PPi) 
and phosphorylated osteopontin (pOPN), thereby facilitating the deposition of hydroxyapatite crystals in the 
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extracellular matrix (ECM)14,15. During skeletal development, both the concentration and enzymatic activity of 
TNAP in the ECM are critical, as they precisely control the local balance of substrates and products necessary 
for proper mineralization of skeletal tissues2,13.

Several studies have attempted to establish genotype–phenotype correlations in HPP; however, the exceptional 
heterogeneity of the disease has made this challenging. As a result, many ALPL genetic variants still cannot be 
reliably associated with a specific phenotype or clinical outcome12,16,17. Furthermore, identical ALPL variants 
can lead to various HPP phenotypes in intra-familiar patients. So far, this observation cannot be satisfactorily 
explained and hints to additional confounding factors during disease progression17,18.

To identify such potential factors and investigate the molecular mechanisms underlying HPP, several mouse 
models have been developed19. However, similar to the Heterogeneity observed in patients, mouse models 
mimicking the infantile HPP subtype exhibit inconsistent phenotypes. For example, only approximately 50% 
of homozygous mice display impaired bone mineralization eight days after birth20. As an auxiliary vertebrate 
model for studying bone development, the zebrafish (Danio rerio) has been widely and successfully used to 
model various human diseases21. Initial studies from our lab using alpl morpholino knockdown and Tnap 
chemical inhibition in zebrafish indicated prominent effects on earliest zebrafish bone development22. However, 
morpholino-based knockdown can lead to phenotypes that differ from those caused by genetic ablation due 
to genetic compensation mechanisms23,24, while chemical inhibition can result in pharmacological off-target 
effects25.

To eliminate potential misinterpretations caused by genetic compensation or off-target effects, we generated 
a stable transgenic alpl knockout zebrafish line lacking both the alpl promoter and exon 1 (alplwue7). This model 
was histologically investigated for common HPP-related phenotypes and exhibited mineralization defects across 
multiple skeletal structures, consistent with findings from previous knockdown studies22.

Given the subtle and heterogeneous disease presentations observed in our zebrafish HPP model, manual 
evaluation of skeletal structures—despite high-resolution imaging—proved to be both subjective and error-
prone. These limitations underscored the need for a more robust, scalable, and unbiased approach to phenotype 
classification. To overcome these challenges, we turned to automated image analysis using deep learning, a 
methodology that has rapidly gained prominence in biological and medical research. Convolutional neural 
networks (CNNs) have long been the dominant architecture in image-based classification tasks within these 
fields26–31. In this study, we employed Vision Transformers (ViTs)32, a state-of-the-art model architecture for 
image classification. ViTs offer advantages over CNNs in capturing global image features and have demonstrated 
strong performance in tasks involving limited data and subtle visual cues—such as biological phenotypes. We 
specifically used the BEiT (Bidirectional Encoder representation from Image Transformers) framework33, which 
builds upon the ViT architecture. To adapt the model to our biological image data, we applied a transfer learning 
(see subsection 4.3) approach, initializing with a BEiT model pre-trained on the ImageNet-1K dataset—a large-
scale image collection containing approximately one million natural images34.

To address the unresolved genotype–phenotype correlations in HPP, we apply state-of-the-art deep learning 
techniques to our newly developed alplwue7 knockout zebrafish model. This approach enables unbiased 
classification of heterogeneous skeletal phenotypes and revealed subtle, previously unrecognized morphological 
alterations. By combining the AI model with a curated dataset of annotated images, we provide novel insights 
into the complex phenotypic manifestations of HPP and establish an explainable, scalable framework for early 
phenotypic analysis. These contributions advance the fields of HPP research, biomedical image analysis, and 
offer further applicability for drug screening and skeletal disease modeling across species.

Methods
This section describes the acquisition and preprocessing of microscopy images (Sections 2.1 to 2.3), and the 
development and evaluation of the AI model (Sections 2.4 to 2.7). Detailed methods for the generation and 
characterization of the transgenic zebrafish alplwue7 line are stated in supplementary sections 4.2.1–4.2.6. All 
procedures involving experimental animals were performed in compliance with local animal welfare laws 
(Tierschutzgesetz §11, Abs. 1, Nr. 1 and corresponding TierSchVersV, husbandry permit number 568/300-
1870/13), European Union animal welfare guidelines (EU directive 2010/63/EU), and ARRIVE guidelines. 
Establishment and propagation of alpl transgenic lines has been approved by the Regierung von Unterfranken 
(permit number 55.2.2-2532-2-1472). All experimental zebrafish used in this study were euthanized until 120 
hours post fertilization (hpf) by 10 min incubation in 0.3 mg/ml MS-222 on ice.

Bone and cartilage double staining
For simultaneous visualization of cartilage and mineralized tissue, acid-free alizarin red and alcian blue staining 
was performed in zebrafish larvae at 120 hpf according to standard protocols35. PTU treated larvae were killed 
and fixed in 4 % paraformaldehyde/phosphate buffered saline (PBS) for 2 h at room temperature. A double 
staining solution consisting of 0.001 % Alizarin red S (m/v, C.I. 58005, Carl Roth, Germany) and 0.4 v/v % Alcian 
blue 8 GS (m/v, C.I. 74240, Carl Roth GmbH, Germany), 150 mM MgCl2 diluted in 70 % ethanol was used 
subsequently. After staining for two days, larvae were destained in 20 % glycerol/1 % KOH/water for 2 h, and 50 
% glycerol/1 % KOH/water overnight. Larvae were transferred in a rising dilution series of 50 %, 75 % glycerol/
water (each step 5 min, RT) and were finally dissected in 100 % glycerol. The trunk was used for genotyping 
(see supplement method 4.2.5), while heads were manually dissected into viscerocranium (“DOWN”) and 
neurocranium (“UP”).

Imaging
Microscopy images were acquired either with a Keyence BZ-X810 fluorescence microscope (used filter set: Texas 
Red, bright field) or a ZEISS Axio.Imager A1 microscope (camera: AxioCAM “MRc”, used filter set: Texas Red 
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and bright field, fluorescent lamp: ZEISS HXP 120). Brightfield images were taken for assesment of general 
morphology, fluorescence imaging was only used to clarify red staining. Images were aquired correspondingly 
by Axiovision software (ZEISS, Germany), or BZ-X800 Analyzer (Keyence Corporation, Japan). Images were 
subsequently processed as .tif or .zvi formats by using ImageJ Fiji (https://fiji.sc/) and CorelDraw Graphics Suite 
2023 software (Corel Corporation).

Dataset
The dataset used in this study consists exclusively of brightfield microscopy images of bone cartilage staining, 
which were obtained in the experiments described in subsection 2.1). Each image was assigned an unique ID 
during preprocessing, encoding metadata related to the experiment and the individual specimen. No images 
were excluded due to irregularities. The ground truth labels were assigned based on genetic genotyping.

A total of 97 zebrafish larvae were examined, 36 of which were wildtype (alpl+/+) genotypes, 38 heterozygous 
(alplwue7/+), and 24 homozygous (alplwue7/wue7). The dataset includes neurocranium (ventral) and viscerocranium 
(dorsal) microscopy images captured at varying magnification levels (zoom) levels (see Table 1).

The raw images were initially acquired in .tif or .zvi format at a resolution of 1920×1440 pixels. To ensure 
a uniform format for processing, all images were converted to .png using the ImageJ python library36 and 
subsequently compiled into the final dataset in .pkl format. Color information was fully preserved throughout 
these pre-processing steps.

The complete dataset supporting this paper has been made publicly available on Zenodo and can be accessed 
at https://zenodo.org/records/15269595.

Foundational model architecture: BEiT
To classify the microscopy images, a Transformer-based model was used as the basis. The transformer architecture, 
introduced in “Attention Is All You Need”37, first revolutionized natural language processing (NLP) through the 
self-attention mechanism. Transformers are the foundation of popular large language models such as ChatGPT 
(Generative Pre-trained Transformer)38 or DeepSeek39. Their application to computer vision was later pioneered 
with the Vision Transformer (ViT)32, which divides images into smaller, grid-like regions (patches) and analyzes 
their interrelations - analogous to how language models capture dependencies between words.

BEiT extends the ViT architecture by introducing a self-supervised pretraining strategy. Self-supervised 
learning leverages the intrinsic structure of data to generate learning signals, eliminating the need for labeled 
examples. As part of this strategy, BEiT incorporates masked image modeling (MIM). The objective of MIM is 
to enable the model to infer missing visual information based on the surrounding context. During pretraining, 
portions of the input image are randomly masked, and the model is trained to reconstruct these masked regions. 
This encourages the learning of meaningful and robust image representations33. For this pretraining, the 
ImageNet-1K34 dataset, containing approximately 1.2 million images at a resolution of 224 × 22433, is used.

Following the self-supervised pretraining, BEiT undergoes an additional refinement step at different 
resolutions on an auxiliary dataset. The model used in this work was subsequently retrained on the ImageNet-
1K dataset, this time using the images ground truth classes, at a higher resolution of 512 × 512 pixels. Only 
after this intermediate pretraining step is a task-specific classification layer added, enabling the model to make 
predictions for the downstream task–in this case, identifying skeletal features in histological images of zebrafish 
larvae. The BEiT-Large-Patch16-512 model, a specific variant of BEiT, represents the final architecture applied 
in this study. It processes images by first dividing them into fixed-size patches, then passing these through 24 
transformer layers, and finally aggregating the learned representations in a classification head to produce the 
final prediction33.

AI experimental setup
The experimental setup was designed to systematically train and evaluate AI classification models on microscopy 
images of zebrafish skeletal structures. The primary objective was to determine whether deep learning models 
can effectively distinguish between wildtype, heterozygous, and homozygous genotypes based on visual features, 
identifying minor changes at early developmental time points. The code used in the creation of this paper is 
available on GitHub (https://github.com/simonzrln/zebrafish_paper).

To ensure an unbiased evaluation, the available images were first divided into two parts: a training set and a 
test set for assessing final performance. A stratified five-fold cross-validation approach was applied when splitting 

Structure Zoom Wildtype Heterozygous Homozygous

Visc

20× 52 58 46

10× 69 73 69

4× 20 38 27

Neuro

20× 48 43 52

10× 77 77 65

4× 22 42 23

Total 288 331 282

Table 1.  Number of images per class for each craniofacial structure (viscerocranium (visc) and neurocranium 
(neuro)) and zoom level.
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the data to ensure that each of the five subsets contained a balanced distribution of genotypes. To avoid overlap 
between training and validation sets, images from the same fish were assigned to a single split. The dataset was 
shuffled five times to ensure that each subset served as the test dataset once, resulting in five distinct training 
and test sets, as illustrated in Fig. 1A. To minimize variance resulting from unfavorable data partitioning, an 
additional stratified five-fold split was applied within the training set to create validation sets for tuning model 
parameters during training. After training, the model resulting from the best-performing fold, as determined by 
accuracy on the validation set, was used to classify the images in the test set.

As shown in Fig. 1B, the BEiT-large-patch16-512 model was adapted to the zebrafish skeleton images using 
transfer learning. The adaptation strategy is described in the Appendix (see subsection 4.4).

Furthermore Attention Rollout was used to improve the interpretability of the model’s decisions, highlighting 
image regions that most strongly influenced the model’s predictions40,41. Attention Rollout works by tracing how 
information flows through the layers of the transformer and combining the model’s internal focus on different 
image regions across all of its layers. In doing so, it estimates how much each image patch contributes to the 
final prediction. Regions that are considered important by the model are highlighted more strongly, while less 
relevant areas receive little or no emphasis. The resulting map reflects the importance of each image patch within 
the 16 × 16 grid structure of the Vision Transformer and was subsequently smoothed to create continuous 
heatmaps. These heatmaps were then overlaid onto the original images by combining of the original image with 
the heatmap (see Fig. 1C).

Benchmarks
To evaluate the performance of the BEiT-based model, two key baselines were selected for comparison: (1) 
human classification performance and (2) alternative deep learning architectures commonly used in medical 
image analysis. These benchmarks provide a meaningful reference to assess the potential advantages and 
limitations of the BEiT model for the given classification task.

Fig. 1.  Overview of the AI-based classification pipeline. (A) Images from multiple experiments are collected. 
A subset of 100 images was selected for manual human classification. k-fold cross-validation is performed. 
(B) The dataset is augmented and normalized. The BEiT model is trained using k-fold cross-validation (C) 
Inference is performed on the corresponding test dataset. Images were classified into three genotype classes: 
wildtype (WT), heterozygous (HET) and homozygous (HOM). Attention Rollout was applied to visualize the 
models decision making.
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Human classification performance serves as an empirical baseline to compare AI-based predictions against 
assessments by four individuals. To evaluate human accuracy, a random sample of 100 images was drawn from 
the dataset. Each participant was assigned an individual sample of pictures. Participants classified the images 
using a graphical user interface. The interface allowed users to select among the three predefined genotypic 
classes.

In addition to the human benchmark, two deep learning architectures were selected for comparison. 
ResNet-10142 represents a well-established convolutional neural network (CNN) baseline, widely used in 
medical imaging due to its stability in training and strong performance across various classification tasks. It 
was chosen over simpler (e.g., ResNet-50) and more complex variants (e.g., ResNet-152), based on superior 
performance observed during preliminary testing. ViT-base-patch16-224-in21k32 was included as a Transformer-
based benchmark to evaluate whether the masked image modeling pretraining of BEiT provides a significant 
performance advantage over standard Vision Transformers. As the underlying architecture of BEiT is based on 
ViT, this comparison isolates the effect of the pretraining strategy.

Evaluation metrics
To assess the performance of the AI models, we later report several evaluation metrics including accuracy, 
precision, recall, sensitivity, F1-score, and the Area Under the Curve  (AUC). These metrics provide a 
comprehensive analysis of classification performance across different aspects.

A prediction is considered correct if the class with the highest assigned probability matches the ground truth 
label. All metrics are computed as the average over all five test datasets, with the standard deviation reported 
to quantify variability in model performance. Additionally, statistical significance in performance differences 
between the AI model and human classification was assessed using a Student’s t-test.

Accuracy measures the proportion of correctly classified instances among all instances,

	
Accuracy = T P + T N

T P + T N + F P + F N
,� (1)

where TP (True Positives) and TN (True Negatives) represent correctly classified positive and negative samples, 
respectively, while FP (False Positives) and FN (False Negatives) denote misclassified samples.

Precision quantifies how many of the predicted positive instances are actually positive,

	
Precision = T P

T P + F P
.� (2)

Recall, also referred to as sensitivity, measures the proportion of actual positives that were correctly identified,

	
Recall = T P

T P + F N
.� (3)

F1-Score is the harmonic mean of precision and recall, providing a balanced measure between the two,

	
F1-Score = 2 × Precision × Recall

Precision + Recall
.� (4)

Area Under the Curve (AUC) represents the area under the Receiver Operating Characteristic (ROC) curve and 
evaluates the ability of the model to distinguish between classes. In multi-class classification, AUC is computed 
using a one-vs-all (OvA) approach, where each class is treated as the positive class while the remaining classes 
are considered negative43. This allows for separate evaluation of the model’s ability to differentiate each genotype.

AUC is formally defined as the integral of the True Positive Rate (TPR) against the False Positive Rate (FPR),

	
AUC =

∫ 1

0
T P R(F P R)dF P R,� (5)

where

	
TPR = T P

T P + F N
, FPR = F P

F P + T N
.� (6)

To assess whether the performance difference between AI models and human classification is statistically 
significant, a Student’s t-test is conducted. Given two sets of performance scores, the t-statistic is computed as

	

t = X̄1 − X̄2√
s2

1
n1

+ s2
2

n2

.� (7)

where X̄1 and X̄2 are the mean performance values of the AI model and human classification, respectively, s2
1 

and s2
2 are the variances, and n1 and n2 are the number of observations in each group.
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Results
Establishment and Investigation of alpl Knockout Zebrafish Line
For molecular investigation of HPP disease progression, we generated a new transgenic animal model in 
zebrafish. Initially, two sgRNAs targeting the alpl locus (ENSEMBL ID: ENSDARG00000015546) within 
the 5’UTR region (alpl c.-451_-431) and intron 1-2 (alpl c.37+494_37+514) were designed and generated 
by RNA in vitro transcription. Both sgRNAs were mixed in a 1:1 ratio, preassembled with Cas9 protein, and 
were injected into one cell-stage zebrafish eggs. CRISPR/Cas9 functionality was tested by gDNA sequencing 
of single, positively injected zebrafish embryos at 3 days post fertilization (dpf). After raising positively 
injected embryos to adulthood, individual crossing of F0 founder fish with AB/AB wildtype zebrafish were 
conducted. Identification of F1 embryos carrying a heterozygous deletion within the desired genomic region 
was done by gDNA-PCR amplification and gel electrophoresis (Figure S 1). Subsequent generation crossing 
of heterozygous alplwue7/+ animals confirmed stable transgene propagation and appearance of homozygous 
alplwue7/wue7 embryos. For the exclusion of possible CRISPR off target effects, we out-crossed our mutants to 
wildtype zebrafish to screen for phenotype continuity between generations. Mapping of the genomic position 
of the variant of alplwue7 was confirmed by Sanger Sequencing and corresponds to alpl c.-506_37+78del in 
transcript ENSDART00000146461.3 (supplementary Figure S 1 B). The deleted region within the alpl gene locus 
is spanning 621 bp (GRCz11 genomic location: chr11:27968625-27969245), including 5’UTR sequences, the 
protein coding exon 1, as well as a small region in the of intron 1-2 (affected ENSEMBL Transcripts: alpl-202/
ENSDART00000146461.3 (canonical reference) and alpl-203/ ENSDART00000147984.3 (predicted transcript); 
Fig. 2A. Since alpl exon 1 contains the transcriptional start site along with 37 bp of protein coding sequence and 
cis-elements of the promoter of the alpl mRNA transcript, this mutation is considered to result in no alpl mRNA 
expression and subsequently lack of Tnap protein. A statistically highly significant reduction of alpl mRNA 
expression in homozygous alplwue7/wue7 larvae was confirmed via qPCR analysis (see supplement Figure S 3; pre-
genotyped, pooled 120 hpf whole embryo cDNAs). Moreover, qPCR analyses did not show statistical significant 

Fig. 2.  Generation and investigation of transgenic alpl knockout zebrafish line. (A) Schematic drawing 
of the genomic region on chromosome 11 deleted in alplwue7 zebrafish larvae. The inserted alpl promoter 
deletion is including the alpl promoter region, together with exon 1 and parts of 5’UTR and intron 1. (B) Bone 
and cartilage double-stainings of 120 hpf transgenic zebrafish larvae display slightly changed craniofacial 
development in the neurocranium and viscerocranium. Bone (red) and cartilage (blue). Two individuals 
representing the same genotype, but different phenotype severities are shown for hetero- and homozygotes. 
wildtype = alpl+/+; heterozygous = alplwue7/+; homozygous = alplwue7/wue7.
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changes in alpl expression in heterozygous samples. Thus, we concluded the successful generation of a transgenic 
zebrafish alpl loss-of-function line, resembling HPP disease condition.

Defects in bone mineralization in alpl knockout larvae
In HPP patients, loss of TNAP function predominantly results in skeletal malformations and reduced 
calcification. Therefore, the impact on bone mineralization during craniofacial development of the transgenic 
alplwue7 line was investigated. Bone and cartilage of zebrafish early larvae were stained at 120 hpf with alizarin 
red and alcian blue (Fig. 2B). This developmental stage was chosen since we wanted to detect changes in bone 
mineralization as early as possible and bone mineralization starts at 4–5 dpf in zebrafish larvae50. In addition, 
earlier data from TNAP inhibitor experiments on zebrafish larvae at 120 hpf showed strong effects on bone 
calcification. After staining, individual larvae were dissected into head and tail regions. Heads were further 
manually dissected into neurocranium and viscerocranium and subsequently imaged. Tails were used for gDNA 
extraction and subsequent genotyping. To check that the workflow works robustly even with the minor variations 
seen between independent biological replicates we ensured that this double-staining method was independently 
performed over seven times from different persons, was imaged by two different microscope systems at different 
microscope settings (including magnification and intensity levels) and resulted in a data set of 97 investigated 
individuals and 901 images. Investigation for possible changes in calcification patterns was performed blinded 
without information about the genotype. Manual image evaluation did not reveal reliable association of distinct 
mineralization patterns to a certain genotype (Fig. 3A).

Fig. 3.  Model performance of different tested AI methods. (A) Overall classification accuracy per genotype 
class for the four methods (BEiT, ResNet, ViT, Human), with the dashed line indicating random-guessing. (B) 
Confusion matrix illustrating the distribution of predictions of the BEiT Model for the three genotype classes. 
(C) Receiver operating characteristic (ROC) curves for each class and method, with corresponding area-under-
the-curve (AUC) values.
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For conventional classification, individuals were grouped in “no loss”, “partial loss” and “heavy loss” in bone 
mineralization. Larvae with “no loss” in mineralization had a fully stained notochord, calcified ceratobranchial 
5, and at least two tooth precursor structures, as well as additional visible bone structures, like the parasphenoid 
or the cleithrum. Larvae with “partial loss” showed a semi-intensely stained notochord with missing staining 
in the tip of the notochord as well as reduced tooth mineralization with only one visible tooth at each fifth 
ceratobranchial bow. “Heavy loss” indicated a completely missing red notochord staining (see Table 2). Transgenic 
alplwue7 larvae indicated slight changes in the mineralization of notochord and teeth, but these differences were 
not consistently distinguishable across all samples and genotypes by simple microscopic observation. 70.8% of 
the homozygous larvae and 51.3% of the heterozygous larvae showed changed bone mineralization (“partial 
loss” or “heavy loss”), though similar variations were also observed in 27.7% of the wildtype larvae, making 
phenotype classification unreliable in a blinded setting (see Table 2). Further image analysis confirmed that 
also cartilage staining intensity varied greatly between experiments. The high variability in staining patterns 
across different imaging sessions in addition to HPP phenotype variability and individual experiments suggests 
that manual phenotype assessment is highly subjective and lacks reproducibility. This motivates the need for 
automated image-based classification approaches to objectively quantify phenotypic differences in zebrafish 
skeletal structures.

AI-based classification shows significant genotype–phenotype correlations
To overcome the limitations of manual assessment, we evaluated three deep learning models (BEiT, ResNet, 
and ViT) for classifying zebrafish phenotypes into genotype classes (wildtype, heterozygous, homozygous) 
based on skeletal imaging data in zebrafish. Human performance served as a baseline comparator. Full model 
configurations are provided in the supplement (see Table S 3 & Table S 4).

The performance of the evaluated models is shown in Table 3. It presents classification results across 
multiple metrics, including accuracy, AUC, F1-scores, precision, sensitivity (TPR) and specificity (FPR). To 
assess statistical significance, human performance was compared to that of three deep learning models: BEiT, 
ResNet, and ViT. Among the models, BEiT exhibited the strongest performance across all metrics. It achieved 
highest accuracy (68.1%), significantly outperforming both humans and other models—ResNet (58.7%) and 
ViT (52.9%)—with p < 0.0001 in all comparisons. In addition, BEiT also obtained the highest AUC (84.3%), 
reflecting its strong discriminative capability of different classes, followed by ResNet (77.0%) and ViT (71.8%). 
BEiT further led in F1 score (67.9%), precision (69.6%), sensitivity (68.4%), and specificity (84.0%), which 
indicated balanced and reliable classification performance, with both low false positive and false negative rates. 
Notably, human performance was relatively low across all metrics, with accuracy (38.0%) and AUC (54.6%), 
which was close to random guessing. This highlights the value of AI-based support in addressing the inherent 
difficulty of the task.

Next, we examine class-specific performance across the three genotype categories, namely wildtype, 
heterozygous, and homozygous to understand model behavior beyond aggregated metrics Fig. 3

Metric BEiT ResNet ViT Human

AUC 84.3 ± 2.0*** 77.0 ± 3.4*** 71.8 ± 3.1*** 54.6 ± 3.6

Accuracy 68.1 ± 2.3*** 58.7 ± 1.9* 52.9 ± 3.1 38.0 ± 6.4

F1 Score 67.9 ± 2.0*** 58.4 ± 1.9** 51.6 ± 3.9** 36.8 ± 5.3

Precision 69.6 ± 1.8*** 60.5 ± 2.8*** 55.4 ± 4.4*** 38.2 ± 4.2

TPR 68.4 ± 2.5*** 58.4 ± 1.8** 52.6 ± 3.4** 37.6 ± 5.1

FPR 84.0 ± 1.2*** 79.2 ± 0.9** 76.4 ± 1.6* 68.9 ± 2.7

Table 3.  Performance metrics comparison for different models, including human performance. Statistical 
significance was assessed using a Student’s t-test comparing the AI models against human performance. 
Significance levels: *p < 0.05, **p < 0.01, ***p < 0.001. All values are given in percentage and represent the 
mean ± standard deviation. The highest value for each metric is bold and underlined, and the second-highest is 
bold only.

 

Genotype No loss Partial loss Heavy loss

Wildtype 72.2% (26/36) 19.4% (7/36) 8.3% (3/36)

Heterozygous 51.3% (19/38) 32.4% (12/38) 18.9% (7/38)

Homozygous 29.2% (7/24) 50% (12/24) 20.8% (5/24)

Table 2.  Human based classification of bone mineralization loss in 97 stained alplwue7 larvae. Larvae with 
“no loss” in mineralization had a fully stained notochord, at least two stained teeth and additional visible 
bone structures (like parasphenoid, cleithrum). Larvae with “partial loss” showed a semi-intensely stained 
notochord. Larvae with “heavy loss” showed no red stained notochord and/or complete loss in tooth staining.
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Panel A presents the classification accuracy for each genotype class, alongside the average across classes per 
model. BEiT consistently outperformed all other models across all genotypes. Even though homozygous samples 
were the most challenging for all other models, BEiT maintained a clear margin on this class, which showed the 
model successfully captured distinct visual patterns associated with homozygosity.

Panel B displays the confusion matrix for BEiT. Here, the diagonal cells indicate correct classifications. 
Misclassifications primarily involved heterozygotes that were often confused with both wildtype (76 cases) 
and homozygous (47 cases). The more frequent confusion suggests that the feature space between wildtype 
and heterozygous genotypes is less distinct than for the homozygous category. This may reflect underlying 
phenotypic similarities between wildtype and heterozygous zebrafish, particularly with regard to partially 
overlapping mineralization patterns.

Receiver operating characteristic (ROC) curves for each model and class, as well as for human performance, 
are provided in panel C. The ROC curve illustrates how well a model distinguishes between classes across different 
classification thresholds in a one-vs-all setting, with the area under the curve (AUC) serving as a summary 
measure of this ability. As in previous evaluations, BEiT achieved the highest AUC scores across all genotype 
classes, indicating that it not only predicted accurately, but did so with consistent confidence across a range 
of decision thresholds. Furthermore, the consistently high AUC scores suggest that BEiT effectively separates 
wildtype, heterozygous, and homozygous larvae without introducing systematic biases toward any genotype.

Attention-based visualization reveals biologically relevant decision-making in BEiT model
To evaluate the interpretability of the BEiT model’s predictions, we conducted attention rollout analysis to 
identify image regions contributing most to classification decisions. These heatmaps were overlaid on original 
bone and cartilage staining images for each genotype class, indicating the biological relevance of the investigated 
areas (Fig. 4). In the neurocranium, the model consistently focused on the notochord and otoliths, which are 
early-forming mineralized structures. Unlike the notochord, otoliths are not bone tissue, but mineralized parts 
of the otic vesicle, the early hearing and balancing organ of the zebrafish. The parasphenoid, which is also an 
early developing skeletal structure, additionally emerged as an important contributor in some cases (Fig. 4A). 
Within the viscerocranium, the dental papillae of the fifth ceratobranchial arch were the primary focus across 
all genotypes. The cleithrum was also highlighted in certain cases (Fig. 4B). These earliest bone tissues of the 
zebrafish align with known sites of TNAP-dependent mineralization, validating the biological relevance of the 

Fig. 4.  Correlation of AI analyzed structures by attention rollout visualizations overlaid on the original 
microscopic images. (A.1 & B.1) Annotated illustrations on the left side indicated key structures of the (A) 
neurocranium and (B) viscerocranium. (A.2-4 & B.2-4) Right side pictures highlight the spatial distribution 
of attention across skeletal and cartilaginous structures in different genotype groups. Cb, ceratobranchial 
cartilage; Ch, ceratohylal cartilage; Cl, cleithrum; Ep, ethmoid plate; M, Meckel’s cartilage; No, notochord; Op, 
operculum; Ot, otoliths; Ov, otic vesicle; Pc, parachordal cartilage; Pq, palatoquadrate cartilage; Th, teeth; Tr, 
trabecular cartilage.
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model’s focus areas. Notably, cartilage elements did not prominently influence classification, which suggested that 
the AI model primarily relies on bone-specific features. Across all genotypes, similar regions were emphasized. 
However, in homozygous mutants, a lack of mineralization led to a relative absence of attention signal in the 
affected areas.

Discussion
In the following, we first discuss the contributions of this research. Thereafter, we elaborate on the implications 
resulting from the contributions.

First, our study provides novel insights into the phenotype-genotype correlation in the newly established 
HPP model. Establishing clear correlations between phenotype and genotype presents challenges not only in our 
transgenic alplwue7 line but also represents a broader issue in patients diagnosed with HPP12,17. HPP is a highly 
heterogeneous, multisystemic disorder characterized by significant phenotypic variability, even among family 
members sharing the same genetic background18. Although numerous studies have addressed this challenge, 
definitive genotype-phenotype correlations in HPP remain elusive12,17.

Using our newly developed AI model, we successfully correlated the phenotype of our alplwue7 line with 
its corresponding genotype, achieving high statistical significance. The accuracy of our AI model strongly 
indicates that substantial genotype-phenotype correlations exist within HPP. Establishing such correlations was 
previously unattainable with manual classification carried out by humans. Our findings therefore suggest that 
HPP might not as heterogeneous as currently assumed; rather, variations in clinical phenotype might be too 
subtle for humans to identify.

In addition, the visualization of the decision-making process of the AI model using attention rollout provided 
further insights into the phenotype-genotype correlation. As expected, the model focused on regions associated 
with early bone development. Interestingly, it also concentrated on the otoliths, calcium carbonate structures 
within the otic vesicle that develop into the zebrafish’s inner ear44. Although the mineralization process of otoliths 
differs from that of vertebral bone, in which Tnap plays a central role45, these structures appear to be altered in 
our alplwue7 line. This may represent a secondary effect of generally disregulated mineralization. Different genetic 
factors have been identified in zebrafish mutant lines which display prominent otolith malformations , e.g. stm: 
starmaker (stm)46 or pks1: no content (nco)/corkscrew (csr)/vanished (vns)47, but have not been linked to Alpl 
function yet.

Second, we developed the first image classification AI model capable of correlating the HPP bone phenotype 
with genotype in zebrafish. Prior research has applied AI in diagnosing HPP within a metabolic context, but 
did not use image-based methods48. By applying deep learning, our study enabled an automated and unbiased 
analysis of skeletal structures, providing novel insights into the complex phenotypic composition of HPP.

Third, with the generation of our knockout alplwue7 zebrafish line, we introduce a new animal model for HPP. 
By deleting both the alpl promoter and start codon, we aimed to eliminate potential off-target effects or genetic 
compensation mechanisms, which can arise from the expression of defective mRNA, such as that resulting from 
frameshift mutations23,24. As we demonstrated a highly statistically significant downregulation of alpl expression 
in homozygous alplwue7/wue7 larvae at 120 hpf, the resulting bone phenotype is expected to accurately reflect the 
pathological features of severe HPP. Although, this newly established alplwue7 line is different to observations 
made either in HPP patients or classical Alpl knockout mouse models, as the heterozygous state in zebrafish is 
variable. Our observations indicate a rather normal level of alpl expression in heterozygous alplwue7/+ embryos 
(see supplement Figure S 3) and inhomogeneous histological observations in this group (see Table 2). Reasons 
for this discrepancy might be due to technical (e.g. pooled embryos for qPCR analyses) or biological reasons 
(e.g. compensatory mechanisms) and are currently under investigation. Our newly established AI tool helps us 
to correlate variable histological changes and genotype also for this group with high reliability.

Fourth, through the generation of our dataset comprising nearly 1000 microscopic images of bone and 
cartilage double staining in zebrafish, we provide a valuable new resource for the field. This dataset can be 
used to train AI models, particularly for handling complex and challenging image data. Since zebrafish image 
classification remains a relatively underexplored area in AI research, the availability of such datasets supports 
foundational model training and facilitates progress in similar classification tasks.

The aforementioned contributions also have important implications for future research and therapeutic 
development. First, the implemented AI model offers a robust and unbiased assay for drug screening in the 
context of HPP. Treated alplwue7 larvae can be stained using the same skeletal imaging protocol, and the AI model 
can then evaluate treatment efficacy by determining whether treated homozygous individuals are phenotypically 
classified as resembling heterozygous or wildtype fish—indicating a potential rescue effect. This strategy provides 
a rapid, scalable, and reproducible approach to high-throughput screening, with the potential to significantly 
accelerate early-phase compound evaluation for HPP. Furthermore, the methodology is broadly applicable and 
could be adapted for drug discovery in other skeletal disorders exhibiting subtle phenotypic variation.

Second, by applying attention rollout to visualize the AI’s decision-making process, our study provides an 
example of how explainable AI can advance the field of biomedical imaging. Explainability techniques contribute 
not only to greater transparency and trust in the AI but also to deeper biological insight—especially in the 
context of heterogeneous diseases such as HPP. Notably, the model’s unexpected focus on otoliths highlights its 
ability to detect subtle, clinically relevant features that might otherwise be overlooked. Our results underscore 
the value of explainable AI for dissecting phenotypic variability, where human interpretation is often limited 
by cognitive bias based on prior expectations or a narrow focus. In the long term, such interpretable image 
classification systems hold promise for supporting automated diagnosis, phenotype stratification, and treatment 
monitoring in clinical practice.

Third, our model offers valuable insights into training AI systems under data-limited conditions. Despite 
operating in a niche domain with a relatively small dataset, the model achieved high classification performance, 
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demonstrating the effectiveness of data-efficient strategies such as transfer learning and careful dataset curation. 
These findings highlight best practices for developing robust AI models in biomedical contexts where large, 
annotated datasets are often unavailable. As such, our approach may serve as a template for other applications in 
biology and medicine that face similar data constraints.

Finally, given the successful application of AI in our zebrafish HPP model, our approach also holds strong 
potential for adaptation to other experimental systems, including additional HPP models such as mouse or 
cell culture-based platforms. Moreover, it could be extended to address phenotypic heterogeneity in other 
skeletal disorders, such as in osteoporosis zebrafish models49, and potentially in broader contexts where subtle 
morphological variation complicates diagnosis, monitoring, or therapeutic evaluation.

Data availability
The dataset supporting the conclusions of this article is included within the article and its additional files. Newly 
produced materials are available upon request. https://zenodo.org/records/15269595. The code used in the ​c​r​e​a​t​
i​o​n of this paper is available on GitHub (https://github.com/simonzrln/zebrafish_paper).
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