
Towards scalable and cross-lingual 
specialist language models for 
oncology
Morteza Rohanian, Tarun Mehra, Nicola Miglino, Farhad Nooralahzadeh, 
Michael Krauthammer & Andreas Wicki

Clinical oncology generates vast, unstructured data that often contain inconsistencies, missing 
information, and ambiguities, making it difficult to extract reliable insights for data-driven decision-
making. General-purpose large language models (LLMs) struggle with these challenges due to their 
lack of domain-specific reasoning, including specialized clinical terminology, context-dependent 
interpretations, and multi-modal data integration. We address these issues with an oncology-
specialized, efficient, and adaptable NLP framework that combines instruction tuning, retrieval-
augmented generation (RAG), and graph-based knowledge integration. Our lightweight models 
prove effective at oncology-specific tasks, such as named entity recognition (e.g., identifying cancer 
diagnoses), entity linking (e.g., linking entities to standardized ontologies), TNM staging, document 
classification (e.g., cancer subtype classification from pathology reports), and treatment response 
prediction. Our framework emphasizes adaptability and resource efficiency. We include minimal 
German instructions, collected at the University Hospital Zurich (USZ), to test whether small amounts 
of non-English language data can effectively transfer knowledge across languages. This approach 
mirrors our motivation for lightweight models, which balance strong performance with reduced 
computational costs, making them suitable for resource-limited healthcare settings. We validated 
our models on oncology datasets, demonstrating strong results in named entity recognition, relation 
extraction, and document classification, and showing consistent performance across multiple 
lightweight architectures.
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Clinical oncology and related disciplines such as radiology or pathology often capture patient-related information 
in an unstructured or semi-structured way. At the same time, there is an increasing need to use real-world data 
to enable data-driven therapy decisions as a strategy that complements standardized evidence-based (study-
informed) decision making.

In the typical healthcare setting, oncologists must gather vast amounts of information from different data 
sources, including radiology images and reports, pathology reports, molecular analyses, clinical notes, and 
patient histories. They rely on these diverse sources to guide diagnosis, the assessment of prognosis and stage, 
and the decision on therapy. However, much of this data is in free text format within electronic health records 
(EHR)1,2. Clinicians waste time and resources as they parse these notes by hand. This leads to slow, inconsistent, 
and error-prone decision-making, especially in resource-limited environments3.

Natural language processing (NLP) offers tools to extract insights from free-text clinical records, with 
early approaches such as rule-based systems, machine learning methods with hand-engineered features, co-
occurrence statistics, and rule-based patterns identifying entities like diseases and treatments4 but struggling 
to generalise to new datasets5. These methods fail to handle the nuanced language and variability of clinical 
data. Pretrained language models (LMs), such as BERT6, BioBERT7, and ClinicalBERT8, improve performance 
on tasks like entity recognition and literature mining by leveraging large biomedical corpora9–12. Despite these 
advances, such models focus primarily on classification, lack flexible reasoning capabilities, and are limited in 
their ability to generate coherent text for summarization or prediction13. Moreover, these models predominantly 
support English, overlooking the multilingual requirements of many healthcare systems.

Large language models (LLMs), such as GPTs14 and LLaMA15, overcome some of these limitations by 
handling diverse tasks and adapting to new domains with minimal labeled data. Researchers have used them to 
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summarize medical records, answer questions, and support clinical decisions16,17. More recent work evaluates 
whether general large language models can handle relation extraction without extensive fine-tuning18. Recent 
systematic studies have benchmarked GPT-3 and Flan-T5 on relation-extraction datasets, showing that few-shot 
prompting can match, and sometimes exceed, fully-supervised baselines19. Conversely, a thorough evaluation 
in the biomedical domain found that GPT-3 in-context learning still lags behind fine-tuned, smaller PLMs for 
NER and RE20. One study framed relation extraction as a binary classification task and combined an open-
source LLM with document retrieval, extracting over 248000 relation triplets from semi-structured biomedical 
websites21. A case study on acupuncture point locations fine-tuned GPT-3.5 and found it outperformed BioBERT 
and LSTM22. General-purpose LLMs often fail in specialized fields like oncology. They lack domain-specific 
knowledge, produce inconsistent reasoning23,24, and require substantial computational resources, which many 
healthcare institutions cannot afford. Lightweight models provide a practical alternative by delivering strong 
performance with significantly reduced resource requirements.

Recent research has adapted LLMs for oncology-specific applications, often addressing single tasks such 
as named entity recognition (NER) or relation extraction25–28. However, these approaches lack scalability and 
multilingual flexibility. Newer methods integrate biomedical corpora, retrieval mechanisms, and parameter-
efficient fine-tuning to handle complex tasks. Some studies have curated large corpora (e.g., from the TCGA 
dataset) to build prognostic models or classify cancer subtypes, but these often rely on manual feature engineering 
or rule-based systems25. Other works used transformer-based models for TNM extraction, disease coding, or 
limited classification tasks29.

We propose an oncology-specialized NLP framework that combines lightweight models, bilingual adaptability, 
and advanced reasoning techniques. Given the Swiss healthcare system’s nature, incorporating German alongside 
English ensures the framework can address the linguistic diversity encountered in clinical practice at institutions 
like USZ. We curated minimal German instructions from clinical queries at the University Hospital Zurich 
(USZ) and systematically varied their number (100, 200, 400) to test whether small amounts of bilingual data 
can transfer domain-specific knowledge effectively across languages. Both bilingual adaptability and lightweight 
models align with our overarching goal of creating scalable NLP systems that can adapt to diverse healthcare 
environments, from large hospitals to resource-limited clinics.

Our framework tries to solve key challenges in oncology NLP by integrating instruction tuning, retrieval-
augmented generation, and graph-based reasoning. Each component targets specific issues in processing clinical 
data.

Instruction tuning fine-tunes a pre-trained language model using paired instructions and responses to better 
follow user directives, and it has become a popular way to align models without reinforcement learning. In 
specialised domains such as oncology, it can handle named entity recognition, relation extraction, TNM staging, 
and treatment response prediction with precision. Bilingual instructions in English and German align with real 
clinical use cases such as ICD-10 coding and treatment classification. However, recent analyses show that this 
technique has important limitations: it does not enhance a model’s factual knowledge and may even degrade 
that knowledge if full-parameter tuning is used. A recent evaluation showed that instruction-tuned Llama-2 
and Mistral models labelled more entities than their chat-tuned or base counterparts30. A cohort study on lung-
cancer reports found that encoder-only transformers still outperformed several instruction-based LLMs, which 
achieved high precision but suffered from low recall31. Encoder-only models typically require institution-specific 
fine-tuning to reach clinical accuracy, whereas instruction-tuned generative LLMs can often be deployed in a 
zero-shot or few-shot fashion. Models often learn to copy response patterns from the instruction data, which 
can reduce response quality and increase hallucinations32. LoRA-based instruction tuning, which adapts only 
a small subset of parameters, can partially incorporate domain-specific knowledge, but its benefits depend on 
model size and do not completely solve domain-adaptation challenges33. Studies developing medical foundation 
models report that instruction tuning alone cannot compensate for a lack of specialised pre-training; only when 
combined with extensive domain-specific pre-training do models achieve strong performance across diverse 
medical tasks34.

RAG improves outputs by retrieving relevant clinical data from trusted sources. External datasets such as 
MIMIC-IV and curated German oncology reports add real-time context to the model’s responses. The retrieval 
process connects queries with factual information from oncology corpora. Using hierarchical methods, RAG 
retrieves critical details efficiently without overwhelming the input with unnecessary context.

Graph-based reasoning ensures outputs are reliable and factually grounded. A knowledge graph integrates 
resources like UMLS, linking extracted entities to verified medical facts. Relationships between entities, such 
as treatments and stages, are organized as nodes and edges. Triple graph construction connects entities to 
authoritative references, reducing ambiguity and improving reasoning. This process strengthens the clinical 
reliability of model-generated outputs.

Lightweight models spanning a range of architectures and parameter sizes (0.6B–8B) combine these methods 
to balance efficiency and performance. This includes configurations from the LLaMA and Qwen families as 
well as the DeepSeek LLM series, each selected for their strong multilingual capabilities, efficient inference, 
and suitability for retrieval-augmented and graph-based reasoning in oncology. The framework adapts to 
resource-limited clinical environments while maintaining high accuracy and flexibility across oncology-specific 
applications.

Our contributions are as follows: 

	1.	 Oncology-Specialized Modeling: Lightweight models fine-tuned for oncology tasks like TNM staging, 
named entity recognition, relation extraction, document classification, and treatment prediction. Bench-
marks include datasets like NCBI-Disease, i2b2-2010, and labeled subsets of TCGA.
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	2.	 Multilingual Adaptability: Minimal German instructions collected from USZ improve cross-lingual per-
formance on ICD-10 coding and TNM staging. The bilingual framework supports diverse healthcare systems 
by addressing multilingual requirements.

	3.	 Model Efficiency: Lightweight models such as LLaMA-2-7B deliver high accuracy with lower computational 
costs. This ensures advanced NLP tools remain accessible to institutions with limited resources.

	4.	 Task Adaptability: The framework applies to diverse tasks, including relation extraction, document classifi-
cation, and multilingual ICD-10 coding. Models adapt to new domains and tasks.

The integration of instruction tuning, RAG, and graph-based reasoning provides oncology NLP systems that 
deliver accurate, efficient, and context-aware solutions for multilingual and resource-limited settings.

Data sources
We use a combination of bilingual clinical datasets and diverse public benchmarks to fine-tune and evaluate 
our oncology NLP framework. These datasets enable the exploration of bilingual adaptability, cross-lingual 
generalization, and task scalability.

USZ oncology dataset
The USZ oncology dataset is derived from German-language clinical reports of the University Hospital Zurich, 
containing both structured and unstructured data from 2,049 unique cancer patients. Patients who had agreed 
to the general informed consent were included. The dataset comprises around 110 structured datapoints, 
including ICD diagnoses, TNM annotations, and medications extracted from electronic health records. Data 
were represented in RDF, encrypted, and securely transferred to institutional repositories. Semantic rules 
(SHACL) and a validation pipeline ensured harmonization, integrity, and consistency of patient timelines. 
Treatment lines and drug regimens were reconstructed and corrected with expert input. Unstructured elements 
such as treatment histories, radiology, histology, and genomic reports were manually annotated by physicians. 
Diagnoses and genomic information were linked to free-text records via patient IDs, ensuring integration of 
structured and unstructured data. All methods complied with ethical and regulatory standards. Protocols were 
approved by the Northwest and Central Swiss Ethics Committee (EKNZ; protocol no. 2020-00347) and ratified 
by local ethics committees.

Public datasets
Our dataset selection is inspired by the Biomedical Language Understanding and Reasoning Benchmark 
(BLURB)9, which established a comprehensive evaluation suite for biomedical NLP by combining multiple tasks 
and datasets. We assembled a diverse set of publicly available resources spanning named entity recognition 
(NER), relation extraction (RE), natural language inference (NLI), and document classification. This multi-task, 
multi-domain design enables us to evaluate both the task-specific performance and the cross-task adaptability of 
our models, reflecting the heterogeneous and complex nature of language encountered in practice.

NER: We use NCBI-Disease35, BC5CDR (Disease/Chem)36, BC2GM37, JNLPBA38, and i2b2-201239 to test 
how well the model extracts biomedical entities such as diseases, chemicals, or genes from text. These datasets 
focus on biomedical literature and primarily employ the standard BIO (Beginning-Inside-Outside) labeling 
scheme.

Relation Extraction: i2b2-201039 and GAD40 measure how well the model links genes, diseases, and 
treatments. This step tests the model’s ability to identify relations, for example, a gene-disease association or a 
drug-disease treatment link. The i2b2-2010 dataset centers on clinical narratives, where relationships are defined 
between problems, test results, and treatments.

NLI: MedNLI41 tests logical reasoning about clinical statements, requiring the model to determine whether a 
conclusion follows logically from given premises. This task is particularly relevant in oncology, where clinicians 
must reconcile conflicting findings from reports, pathology notes, or imaging summaries. For instance, 
determining whether a pathology report implies disease progression based on an imaging report involves 
reasoning over subtle textual cues.

Document Classification: Document classification addresses the task of assigning labels to entire texts, 
such as clinical reports, based on their content. We use the Hallmarks of Cancer (HoC)42 dataset and the TCGA 
Pathology Report Dataset29 for these experiments.

The Hallmarks of Cancer dataset provides multi-class labels aligned with ten canonical hallmarks of cancer, 
including sustained proliferative signaling, immune evasion, and genomic instability. These categories represent 
critical biological processes that drive cancer progression. By applying these labels, the model learns to classify 
biomedical literature according to underlying cancer-related themes.

The TCGA Pathology Report dataset grounds this classification in clinical practice. It includes 9,523 
pathology reports spanning 32 distinct cancer types, each processed through OCR and careful post-processing. 
Beyond cancer-type classification, the TCGA reports include TNM staging annotations (T1–T4, N0–N3, M0–
M1). TNM staging provides essential prognostic information and guides treatment decisions. We split this 
dataset into 70% training, 15% validation, and 15% test, ensuring a balanced approach to model development 
and performance evaluation.

We also incorporate the MSK-IMPACT43 dataset, a curated resource from Memorial Sloan Kettering Cancer 
Center. It includes 1,479 patients treated with systemic immune checkpoint blockade (ICB). This dataset provides 
binary labels for treatment response, where patients are categorized as responders or non-responders based on 
clinical response criteria, such as the RECIST v1.1 guidelines. Responders include both complete responders 
(CR), defined as the disappearance of all target lesions, and partial responders (PR), defined as at least a 30% 
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decrease in the sum of the diameters of target lesions. Non-responders encompass patients with stable disease 
(SD) or progressive disease (PD).

Methodology
Our methodology transforms pretrained language models into specialized oncology tools by integrating 
instruction tuning, retrieval-augmented generation (RAG), and graph-based knowledge integration. In Figure 1, 
we illustrate the fine-tuning process (Panel A) and the document and graph retrieval mechanisms (Panel B). 
Panel A demonstrates the end-to-end workflow for building labeled datasets, constructing instructions, and 
fine-tuning lightweight models. Panel B highlights how the system integrates document retrieval, graph-based 
reasoning, and query embeddings to generate clinically relevant responses. Together, these steps form the core 
of our methodology for transforming general-purpose LLMs into oncology-specialized tools.

These components enable the models to process complex oncology data, reason about medical facts, and 
generate precise predictions for clinical workflows. By emphasizing bilingual adaptability through minimal 
German instructions and resource-efficient lightweight models, we ensure our approach scales across 
multilingual and resource-limited healthcare environments.

Our framework proceeds through a sequence of well-defined steps that can be reproduced. We first construct 
a bilingual instruction dataset and fine-tune lightweight LLaMA variants by minimising the cross-entropy loss

	
Ltuning = − 1

N

N∑
i=1

log Pθ (yi | xi, instruction) ,� (1)

where xi denotes an input clinical text, the “instruction” encodes the task, and yi is the expected output. During 
training, we use a batch size of 32 and a learning rate of 3 × 10−5 for 3 epochs, with early stopping on the 
validation loss.

We then embed incoming queries and document chunks using a domain-specific sentence transformer 
(described below) and index these embeddings in a FAISS vector store. For a query Q and a candidate document 
D with embeddings ϕ(Q) and ϕ(D), we compute their cosine similarity

	
sim(Q, D) = ϕ(Q) · ϕ(D)

∥ϕ(Q)∥ ∥ϕ(D)∥ � (2)

and retrieve the top-k documents by similarity. Retrieved passages are concatenated with the query and passed 
to the fine-tuned LLM. Finally, we enrich the model’s reasoning with a knowledge graph built from external 
ontologies, encoding entities with TransE embeddings and representing relations as directed edges. This detailed 
description clarifies the computational steps and hyper-parameters used in our experiments.

Figure 1.  (A) Fine-tuning and evaluation workflow: This panel shows the process of data collection, 
instruction building, fine-tuning, and evaluation against clinician annotations. (B) Document and graph 
retrieval: This panel highlights the integration of document retrieval and graph-based reasoning for query-
based inference.

 

Scientific Reports |        (2025) 15:35480 4| https://doi.org/10.1038/s41598-025-19282-2

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Instruction tuning across languages
To fine-tune our lightweight generative language models (LLaMA-2-7B, LLaMA-3.1-8B, LLaMA-3.2-1B, and 
LLaMA-3.2-3B), we use curated instruction-response pairs in English and German. These instructions simulate 
real-world oncology queries, such as identifying cancer-related entities, TNM staging annotations, or extracting 
treatment protocols. Each instruction-response pair provides structured outputs, such as JSON-formatted 
annotations specifying entity types, attributes, and their spans within the text. For instance, a tumor-related 
entity recognition query might yield outputs categorizing “lung cancer” or “EGFR-positive adenocarcinoma” 
with attributes like diagnosis date or molecular markers. Table 1 provides examples of instructions used across 
different oncology tasks, highlighting their diversity and task-specific objectives. These examples demonstrate 
how instructions align with tasks like named entity recognition, natural language inference, and relation 
extraction, ensuring task relevance and improving model generalization44.

To evaluate cross-lingual adaptability, we augment public datasets with minimal German instructions, 
ranging from 100 to 400 examples. These instructions cover tasks such as ICD coding, TNM staging, and 
treatment annotation. Training minimizes the instruction tuning loss:

	
Ltuning = − 1

N

N∑
i=1

log Pθ(yi | xi, instruction),

where xi represents the input text, “instruction” specifies the task, and yi is the expected response. Cross-
validation splits are applied to ensure generalization to unseen instructions and languages. The instruction 
tuning data is publicly available at: ​h​t​t​p​s​:​​/​/​h​u​g​g​​i​n​g​f​a​c​​e​.​c​o​/​d​​a​t​a​s​e​​t​s​/​n​l​p​​i​e​/​L​l​a​​m​a​2​-​M​e​​d​T​u​n​e​d​-​I​n​s​t​r​u​c​t​i​o​n​s.

Retrieval-augmented generation (RAG)
Oncology workflows often require reasoning over large, diverse, and evolving datasets. To address this complexity, 
we integrate retrieval-augmented generation (RAG), which grounds model responses in external knowledge. 
We use a sentence embedding model, fine-tuned for oncology-specific tasks, to encode user queries (Q) and 
candidate documents D into dense vector representations. These embeddings capture semantic similarity 
between clinical terms and contexts. To store and index these embeddings efficiently, we use the FAISS (Facebook 
AI Similarity Search) library45. FAISS provides high-speed similarity searches across large document collections, 
enabling real-time retrieval and processing of oncology data. User queries Q and candidate documents D are 
encoded into dense vector representations, with cosine similarity determining their relevance:

	
sim(Q, D) = ϕ(Q) · ϕ(D)

∥ϕ(Q)∥∥ϕ(D)∥ .

Our retrieval pipeline relies on a domain-adapted sentence transformer to produce query and document 
embeddings. We use the sentence-transformers/paraphrase-multilingual-MiniLM-
L12-v2 model, which provides 384-dimensional multilingual embeddings suitable for both English and 
German clinical texts. We normalise all embeddings to unit length and store them in a FAISS index configured 
for inner-product similarity. At inference time we encode the user query, perform a nearest-neighbour search 
to retrieve the top-k relevant chunks (with k = 3 in our experiments), and append these chunks to the query as 
additional context. This explicit description of the embedding model and retrieval parameters makes our RAG 
setup reproducible.

Task Instruction Input Text Output

Hallmarks 
of Cancer 
(HoC)

As a medical expert, assess the clinical text for cancer hallmarks. Assign one or more labels 
from the list: Sustaining proliferative signaling (PS), Enabling replicative immortality 
(RI), Inducing angiogenesis (A), Genome instability & mutation (GI), Tumor-promoting 
inflammation (TPI), ...

Taken together, the present study clearly shows 
the synergistic anti-inflammatory as well as 
anti-oxidative stress effects of CUR and PUFA.

Tumor-
promoting 
inflammation 
(TPI)

Natural 
Language 
Inference 
(MedNLI)

Evaluate the connection between two clinical sentences and classify them into one of these 
categories: Contradiction (if the sentences conflict), Neutral (if no logical association), or 
Entailment (if one sentence logically implies the other)...

Sentence 1:Lung cancer as above s/p 
pneumonectomySentence 2:History of smoking. Neutral

Relationship 
Extraction 
(i2b2-2010)

In the clinical text, your objective is to identify relationships between medical problems, 
treatments, and tests. Medical problems are tagged as @problem$, medical tests as @test$, 
and treatments as @treatment$. Classify the relationship as: Treatment is administered for 
medical problem (TrAP)...

His past medical history is significant for 
prostate cancer, benign prostatic hypertrophy, 
hypothyroidism, status post @treatment$ 
for @problem$, chronic painless hematuria, 
degenerative joint disease, and history of a 
murmur.

TrAP

Named Entity 
Recognition 
(NER)

Your mission is to tag disease-related Named Entities in the text using the BIO labeling 
scheme. When you encounter a disease-related phrase, mark the start with B (Begin) and 
continue with I (Inner) ...

Its role in the therapy of glomerulonephritis, 
autoimmunity, cystic renal diseases and renal 
cancer is under investigation.

... 
cystic: B, 
renal: I, 
diseases: 
I, and: O, 
renal: B, 
cancer: 
I...

Table 1.  Instruction tuning examples for oncology tasks.
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We implement semantic document chunking to ensure that the retrieval module processes coherent units 
of text rather than arbitrary token spans. Given a long document D divided into paragraphs P1, . . . , Pn, we 
compute embeddings ψ(Pi) for each paragraph using the same sentence transformer that we use for retrieval. We 
initialise a chunk with the first paragraph and iteratively append the next paragraph Pi+1 when two conditions 
are met: (i) the combined token length stays below the model’s context window (1024 tokens in our experiments) 
and (ii) the cosine similarity between ψ(Pi) and ψ(Pi+1) exceeds a threshold δc. We set δc = 0.65 (empirically 
tuned on the validation set).

When either condition fails, we start a new chunk with Pi+1. We also add a small buffer of one sentence 
overlap between adjacent chunks to preserve context. This procedure groups semantically similar paragraphs 
together and produces chunks that respect both the model’s token limit and the topical structure of the source 
document.

We optimize retrieval further using a hierarchical U-Retrieval strategy. High-level clinical tags, such as 
tumor stage, disease type, or treatment categories, guide the initial retrieval, reducing the document pool to a 
manageable size. The system then iteratively integrates broader contextual summaries, balancing precision with 
global context awareness. This multi-layered retrieval enables comprehensive reasoning over complex oncology-
specific scenarios.

Graph-based knowledge integration
To enhance factual reliability and interpretability, we integrate a domain-specific knowledge graph G, constructed 
from standardized resources UMLS, SNOMED-CT, and ICD-10. This graph encodes entities as nodes and their 
relationships as edges:

	 G = {(vi, eij , vj) | vi, vj ∈ V, eij ∈ E},

where vi and vj  represent medical entities (e.g., “adenocarcinoma” or “Osimertinib”), and eij  represents 
relationships (e.g., “treated_with”).

Graph enrichment occurs through triple graph construction, linking retrieved entities to authoritative 
references and professional definitions:

	 Triple = [entity, source, definition].

For instance, a TNM stage extracted from text is mapped to corresponding UMLS nodes and linked to oncology 
treatment guidelines, ensuring outputs remain grounded in verified medical knowledge.

To encode the graph, we employ a two-step process: 

	1.	 Node Encoding: Each node is represented as a dense vector embedding using a pretrained graph embedding 
model TransE46. These embeddings capture the semantic meaning of entities based on their attributes and 
the structure of the graph. For example, the embedding for “adenocarcinoma” encodes its connections to 
treatments, symptoms, and associated genes.

	2.	 Edge Encoding: Relationships (edges) between nodes are represented as directional vectors. These are com-
puted by applying transformation functions to the embeddings of the connected nodes. For instance, the 
edge “treated_with” between a disease node and a medication node reflects the nature and direction of the 
relationship.

Hierarchical tagging further improves graph efficiency and interpretability. Each graph node is tagged with 
categories such as “Symptoms,” “Medications,” or “Patient History,” creating a multi-level abstraction. During 
inference, the model accesses relevant graph layers, ensuring fast and precise retrieval for tasks that require high-
level summaries and fine-grained details.

The combined encoding of nodes and edges enables efficient traversal and reasoning over the graph. By 
embedding the graph in a high-dimensional space, the model can retrieve semantically similar nodes and 
relations, supporting robust and context-aware clinical predictions.

Model implementation and evaluation metrics
The instruction tuning, RAG, and graph-based reasoning components are integrated into lightweight LLaMA 
variants, creating a unified inference pipeline. Scalability is evaluated by varying the number of German 
instructions and the model size. Minimal German instructions (100–400 examples) are used to test cross-lingual 
adaptability, highlighting how small bilingual datasets influence performance. During training, we systematically 
vary the instructions to improve the model’s adaptability. Lightweight models are compared with larger variants 
to assess their performance in resource-constrained environments.

We evaluate the framework’s performance using metrics tailored to specific tasks. For entity recognition, 
relation extraction, and document classification, we report the F1 score. For imbalanced datasets like TCGA-C, 
we use the area under the precision-recall curve (AU-PRC) to emphasize performance in uneven class 
distributions. Binary tasks, such as TNM staging and treatment response prediction, are evaluated using the 
area under the curve (AUC).

Results
We evaluated our instruction-tuned LLMs across biomedical and oncology tasks, covering a spectrum of 
architectures and parameter counts, as shown in Tables 2 and 3. This included LLaMA, Qwen, and DeepSeek 
configurations, all integrated into our instruction-tuning, RAG, and graph-reasoning pipeline under the same 
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experimental conditions. Each model variant progressed from a base configuration through instruction tuning, 
RAG integration, and finally Graph-RAG enhancement. We observed consistent performance boosts at every 
stage, especially on the oncology tasks. Larger models like LLaMA-3.1-8B achieved the highest accuracy, but 
smaller models such as Qwen3-1.7B remained competitive while requiring markedly fewer resources.

Model Configuration HoC TCGA-C TCGA-T TCGA-N TCGA-M MSK-IMPACT ICD-10 USZ-T USZ-N USZ-M SNOMED

 Type Model EN EN EN EN EN EN DE DE DE DE DE

Base LLM

LLaMA-3.1-8B 80.4 89.7 92.3 92.9 73.6 78.2 78.4 81.5 78.6 74.1 78.8

LLaMA-3.2-3B 80.8 88.6 91.5 90.3 71.9 77.4 77.2 75.8 77.9 71.7 72.5

Qwen3-8B 81.5 88.1 91.2 90.7 73.8 77.6 80.1 77.4 77.1 72.3 78.7

Qwen3-1.7B 79.6 87.3 90.5 89.8 71.4 75.9 75.7 76.5 75.6 70.8 70.4

DeepSeek-LLM-7B 80.1 88.4 91.1 90.6 72.7 77.5 77.9 78.2 75.5 71.9 72.6

Instruction-Tuned

LLaMA-3.1-8B 83.1 90.9 93.7 92.5 74.2 78.6 83.3 83.7 80.2 75.4 81.6

LLaMA-3.2-3B 82.3 88.5 91.6 90.9 73.4 77.4 80.5 75.6 77.3 73.5 72.9

Qwen3-8B 83.1 89.3 93.5 92.6 74.1 78.7 83.5 80.3 79.6 74.9 81.3

Qwen3-1.7B 81.9 88.2 91.8 90.8 72.9 77.4 79.0 78.6 77.2 72.1 77.5

DeepSeek-LLM-7B 82.3 89.1 92.4 91.1 73.7 78.4 81.2 79.5 78.3 73.7 78.0

+RAG

LLaMA-3.1-8B 83.6 89.8 94.5 93.8 75.9 80.7 82.8 83.9 80.7 74.6 81.5

LLaMA-3.2-3B 83.3 89.5 91.8 91.4 73.3 77.9 80.8 80.3 77.5 73.1 72.6

Qwen3-8B 84.2 89.6 94.1 93.2 75.4 79.8 83.5 81.6 79.3 74.8 82.4

Qwen3-1.7B 82.7 88.6 92.7 91.9 73.5 77.7 80.1 79.8 77.6 72.8 78.5

DeepSeek-LLM-7B 82.9 89.3 93.3 92.4 74.3 79.3 82.4 80.6 78.4 73.4 80.1

+Graph-RAG

LLaMA-3.1-8B 84.5 91.2 94.3 93.4 76.1 80.5 86.5 82.4 80.9 74.6 85.4

LLaMA-3.2-3B 83.4 90.3 92.6 91.5 73.8 78.5 84.2 80.7 78.5 73.6 79.2

Qwen3-8B 84.3 90.6 94.2 93.5 75.7 79.6 85.3 81.6 79.2 74.3 83.1

Qwen3-1.7B 81.8 88.4 92.5 91.7 73.2 77.2 82.7 79.9 77.8 72.5 79.6

DeepSeek-LLM-7B 82.4 89.2 93.4 92.3 74.3 79.1 82.9 80.1 78.1 73.3 80.4

Table 3.  Performance of lightweight models on English and multilingual oncology tasks, including LLaMA, 
Qwen, and DeepSeek configurations.

 

Model Configuration NCBI-Disease BC5CDR-Disease BC5CDR-Chem BC2GM JNLPBA i2b2-2012 i2b2-2010 MedNLI

 Type Model NER NER NER NER NER NER RE NLI

Base LLM

LLaMA-3.1-8B 86.3 83.8 93.4 79.9 79.7 80.5 90.8 88.0

LLaMA-3.2-3B 83.5 82.8 92.2 78.9 79.1 79.9 89.8 86.6

Qwen3-8B 86.0 83.7 93.2 80.0 79.5 80.5 90.5 87.9

Qwen3-1.7B 84.0 82.0 92.0 78.5 79.5 79.5 89.0 86.0

DeepSeek-LLM-7B 85.0 83.0 92.5 79.0 79.8 79.9 90.0 87.5

Instruction-Tuned

LLaMA-3.1-8B 89.5 87.6 94.8 84.41 83.6 81.92 93.2 90.5

LLaMA-3.2-3B 85.4 86.0 93.2 81.7 81.9 80.8 92.5 89.8

Qwen3-8B 89.1 87.4 94.4 83.8 83.4 81.5 93.0 90.4

Qwen3-1.7B 85.5 85.0 92.8 80.5 81.0 79.8 91.0 88.5

DeepSeek-LLM-7B 86.8 85.5 93.1 81.5 81.5 80.7 92.1 88.7

+RAG

LLaMA-3.1-8B 88.8 87.5 94.7 84.7 83.0 81.2 92.9 91.0

LLaMA-3.2-3B 85.4 86.0 93.1 82.3 81.9 80.7 91.0 90.6

Qwen3-8B 88.6 87.0 94.6 84.1 83.1 81.3 92.8 91.0

Qwen3-1.7B 85.0 85.5 93.0 81.0 81.7 80.5 92.0 89.5

DeepSeek-LLM-7B 86.5 85.8 93.2 82.0 81.7 80.3 91.8 89.5

+Graph-RAG

LLaMA-3.1-8B 88.7 87.3 94.4 84.8 83.5 81.9 93.5 91.8

LLaMA-3.2-3B 87.37 86.53 93.90 83.59 82.09 80.26 92.57 90.58

Qwen3-8B 88.7 87.1 94.6 84.5 83.5 81.7 93.6 91.5

Qwen3-1.7B 86.2 85.0 93.0 81.5 81.5 80.0 92.0 89.5

DeepSeek-LLM-7B 87.0 85.8 93.1 82.2 81.8 80.3 92.4 90.0

Table 2.  Performance of lightweight models across biomedical tasks with different configurations, including 
architectures from the LLaMA, Qwen, and DeepSeek families.
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Instruction tuning substantially increased F1 scores on standard NER benchmarks (Table 2). For example, 
LLaMA-3.1-8B improved from 86.3 to 89.5 on NCBI-Disease after tuning, while LLaMA-3.2-3B rose 
from 82.8 to 86.0 on BC5CDR-Disease. In parallel, Qwen3-8B climbed from 86.0 to 89.1 on the same dataset, 
confirming that the gains generalize beyond the LLaMA family. On BC5CDR-Chem, contextual information 
reduced confusion about similar chemical mentions; for LLaMA-3.1-8B the +RAG stage lifted performance 
to 94.7, and Graph-RAG maintained 94.4.

Instruction tuning also helped relation extraction. The models learned to link diseases with treatments or 
genetic variants. LLaMA-3.2-3B reached 92.5 on i2b2-2010, while LLaMA-3.1-8B achieved 93.2; Qwen3-
8B followed closely at 93.0. Using RAG and Graph-RAG, the models matched gene–disease pairs more precisely.

Natural-language inference tasks such as MedNLI tested logical reasoning. Instruction-tuned LLaMA-3.1-
8B improved from 88.0 to 90.5, and LLaMA-3.2-3B advanced from 86.6 to 89.8.

On oncology-specific tasks (Table  3), the graph-based models excelled. In TNM staging, Graph-RAG 
enhanced entity linking by referencing established oncology guidelines, boosting F1 scores by up to 2.6. This 
structured reasoning allowed the models to generate consistent, verifiable outputs even in complex staging 
scenarios. LLaMA-3.1-8B now classifies biomedical literature into canonical cancer hallmarks with an F1 
of 84.5, surpassing its previous 83.8. Linking TNM attributes to known ontologies supported correct category 
assignment and raised F1 scores on T, N, and M labels. Despite their compact size, DeepSeek-LLM-7B and 
Qwen3-1.7B each surpassed 80 macro-F1 once graph reasoning was added, underscoring the generality of 
the approach.

Cross-lingual tests further highlighted the value of bilingual instruction. With only a few hundred German 
demonstrations, LLaMA-3.1-8B improved from 78.4 to 83.3 on ICD-10 coding, and Graph-RAG pushed the 
score to 86.5. Comparable trends appeared for Qwen3-8B (80.1 → 83.5 → 85.3 ) and DeepSeek-LLM-7B 
(77.9 → 81.2 → 82.9 ). The multilingual tuning also benefited SNOMED classification and TNM staging in 
German. Figure 2 shows that gains peak with roughly 200 instructions, demonstrating that even small bilingual 
datasets enable substantial cross-lingual generalisation.

As seen in Figure 2, performance improves as the number of German instructions increases from 100 to 400, 
with gains plateauing around 200 examples for many tasks. Complex tasks still benefited from 400. LLaMA-

Figure 2.  Performance scores for Instruction-Tuned Models with 100, 200, and 400 German instructions.
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3.1-8B, with its larger capacity, made better use of these extra instructions. Smaller models also gained but 
reached a plateau sooner. LLaMA-3.2-3B maintained a favourable balance between efficiency and accuracy, 
making it attractive for clinical environments with limited computational resources.

Discussion
Our findings show the promise of combining instruction tuning, retrieval augmentation, and graph-based 
knowledge integration for oncology NLP. The incorporation of a few instructions in another language 
demonstrated the potential of cross-lingual capabilities. By using minimal bilingual training data, our approach 
bypassed the usual costs associated with large-scale multilingual training, offering a practical and scalable 
solution for global healthcare systems with diverse linguistic needs. This tuning step aligned the models with 
domain-specific tasks and helped them recognise disease names, biomarkers, and chemical entities. Adding 
retrieval further refined results.

Retrieval augmentation added critical agility to the system, allowing the model to dynamically access up-to-
date information at inference time instead of relying solely on static, parameter-encoded knowledge. This design 
enables models to adapt to evolving oncology guidelines and clinical practices, which often change multiple 
times a year. For example, retrieval mechanisms can help the model navigate newly introduced therapies or 
updated TNM staging criteria without requiring expensive retraining. The integration of retrieval from trusted 
clinical sources highlights its potential in dealing with incomplete or ambiguous clinical data.

Graph-based knowledge integration improved the model’s reasoning by structuring relationships between 
clinical entities. Rather than merely retrieving relevant concepts, the knowledge graph enabled the model 
to place these concepts into a structured context, improving logical reasoning and reducing errors due to 
ambiguous terms. This structured reasoning aligns closely with clinical workflows, where decisions depend on 
clear relationships between diagnoses, treatments, and outcomes. By linking predictions to specific nodes in 
the graph, the model can help with traceability and explainability, which are crucial for building clinician trust.

Model size played a role in performance. Larger models, like LLaMA-3.1-8B, excelled in extracting 
biomedical entities. However, smaller models such as LLaMA-3.2-3B and Qwen3-1.7B achieved comparable 
results on many tasks–particularly when supported by retrieval and graph integration. This trade-off between 
performance and computational cost is especially relevant for resource-constrained settings. DeepSeek-LLM-
7B likewise illustrated that mid-sized checkpoints, when paired with our pipeline, can match or exceed larger 
baselines. Smaller models, paired with efficient retrieval and graph-based reasoning, offer a viable pathway for 
deploying advanced NLP tools in clinics with limited hardware capabilities.

Our experiments showed diminishing returns with high instruction counts. After approximately 200 German 
instructions, improvements plateaued for simpler tasks such as ICD-10 coding. Complex tasks, like TNM 
staging, showed marginal gains up to 400 instructions. This finding underscores the importance of tailoring 
instruction counts to task complexity and resource availability. Future exploration of instruction prioritisation 
or curriculum learning could optimise the cost-benefit balance, ensuring that effort is directed where it yields 
the most significant gains.

The cross-lingual modelling approach demonstrated real-world applicability. Bilingual instruction tuning, 
combined with retrieval and knowledge graphs, empowered the model to navigate clinical texts in another 
language–even with minimal supervision. Notably, Qwen3-8B and DeepSeek-LLM-7B both surpassed 85 
macro-F1 on ICD-10 coding after Graph-RAG, confirming that cross-lingual gains are architecture-agnostic. 
This adaptability can address challenges faced by rural or underserved regions where linguistic diversity often 
limits access to advanced clinical technologies. Adding a modest number of domain-specific glossaries or 
synthetic training examples may further enhance performance on rare or compound medical terminology.

Qualitative analyses revealed model limitations. On NER tasks, confusion between biomarkers such as EGFR 
and HER2 highlighted the need for more robust contextual disambiguation. Graph-based reasoning mitigated 
these issues in part by linking terms to authoritative definitions, yet uncommon or rare entities continued to 
pose challenges. Similarly, for TNM staging extraction, the model excelled with standard terminology but 
struggled with vague or non-standard formulations. Retrieval partially addressed these gaps by surfacing 
canonical TNM definitions, while graph integration provided structured connections between terms and staging 
guidelines. However, cases where clinical texts themselves lacked clarity remained problematic, underscoring 
the dependence of NLP systems on the quality of source data.

Cross-lingual coding introduced unique challenges. While minimal German instructions helped the model 
perform ICD-10 coding and SNOMED classification tasks, the model occasionally failed with long compound 
German words or uncommon clinical expressions. Further refining multilingual embeddings and leveraging 
Qwen’s larger vocabulary coverage may alleviate these errors, especially when handling specialised oncology 
terminology.

A deeper look at the model’s performance on the MSK-IMPACT dataset revealed its ability to correctly match 
common mutations, such as EGFR, to appropriate therapies. However, the model struggled with rare genetic 
variants due to sparse retrieval references. In such cases, indirect reasoning and inference from related mutations 
proved insufficient. Future work could address this limitation by integrating curated genomic knowledge bases 
or using generative retrieval strategies to synthesise knowledge from related contexts.

Future directions could refine these methods further. Expanding multimodal capabilities by integrating 
text-based NLP with imaging data–such as radiology scans or histopathology images–could create a more 
comprehensive oncology assistant. Generative retrieval strategies and graph embedding techniques may raise 
the performance ceiling by improving the depth and scope of retrieved knowledge. Extending cross-lingual 
integration to low-resource languages could address global disparities in healthcare technology access. Testing 
the framework in clinical trials with real-world practitioners will provide critical insights into its usability, 
reliability, and impact on decision-making.
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Data Availability
The Llama2-MedTuned-Instructions dataset used for instruction tuning is publicly available at: ​h​t​t​p​s​:​​/​/​h​u​g​g​​i​n​g​f​
a​c​​e​.​c​o​/​d​​a​t​a​s​e​​t​s​/​n​l​p​​i​e​/​L​l​a​​m​a​2​-​M​e​​d​T​u​n​e​d​-​I​n​s​t​r​u​c​t​i​o​n​s. The TCGA Pathology Report dataset, used for ​d​o​c​u​m​e​n​
t classification and TNM staging, can be accessed at: ​h​t​t​p​s​:​​/​/​w​w​w​.​​c​a​n​c​e​r​​.​g​o​v​/​c​​c​g​/​r​e​​s​e​a​r​c​h​​/​g​e​n​o​m​​e​-​s​e​q​u​​e​n​c​i​n​g​/​
t​c​g​a. The MSK-IMPACT dataset, used for treatment response prediction, is available from cBioPortal: ​h​t​t​p​s​:​​​/​​/​w​
w​​w​.​c​b​i​o​p​o​r​t​a​​l​.​​o​​r​g​/​s​​t​u​​d​y​/​​s​u​m​m​​a​r​​y​​?​i​d​​​=​m​s​k​_​i​m​​p​a​c​t​_​2​0​1​7. The aggregated data used for modeling in this study 
can be requested from the authors’ institution for non-commercial research and validation purposes, subject to 
a data transfer agreement and approval from the relevant ethical and data governance boards.
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